Skip to main content
eScholarship
Open Access Publications from the University of California

Department of Statistics

Open Access Policy Deposits bannerUC Irvine

Open Access Policy Deposits

This series is automatically populated with publications deposited by UC Irvine Donald Bren School of Information and Computer Sciences Department of Statistics researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Where’s Waldo, Ohio? Using Cognitive Models to Improve the Aggregation of Spatial Knowledge

(2024)

We apply cognitive modeling to improve the wisdom of the crowd in a spatial knowledge task. Participants provided point estimates for where 48 US cities are located and then, using the point estimate as a center point, chose a radius large enough that they believed the resulting circle was certain to contain the city’s location. Simple and radius-weighted arithmetic averages of the individuals’ point estimates produced more accurate group answers than the majority of individuals. These statistical aggregates, however, assume there are no differences in individual expertise nor in the difficulty of locating different cities. Accordingly, we develop a set of cognitive models to infer group estimates that make various assumptions about individual expertise and differences in city difficulty. The model-based estimates generally outperform the statistical averages. The models are especially accurate if they allow for individual differences in expertise that can vary city by city. We replicate this finding by applying the same cognitive models to data reported by Mayer and Heck (2023) in which participants provided point estimates for the locations of European cities.

The HDI + ROPE Decision Rule Is Logically Incoherent But We Can Fix It

(2024)

The Bayesian highest-density interval plus region of practical equivalence (HDI + ROPE) decision rule is an increasingly common approach to testing null parameter values. The decision procedure involves a comparison between a posterior highest-density interval (HDI) and a prespecified region of practical equivalence. One then accepts or rejects the null parameter value depending on the overlap (or lack thereof) between these intervals. Here, we demonstrate, both theoretically and through examples, that this procedure is logically incoherent. Because the HDI is not transformation invariant, the ultimate inferential decision depends on statistically arbitrary and scientifically irrelevant properties of the statistical model. The incoherence arises from a common confusion between probability density and probability proper. The HDI + ROPE procedure relies on characterizing posterior densities as opposed to being based directly on probability. We conclude with recommendations for alternative Bayesian testing procedures that do not exhibit this pathology and provide a "quick fix" in the form of quantile intervals. This article is the work of the authors and is reformatted from the original, which was published under a CC-BY Attribution 4.0 International license and is available at https://psyarxiv.com/5p2qt/. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

Cover page of A Novel Approach to Integrate Human Biomonitoring Data with Model Predicted Dietary Exposures: A Crop Protection Chemical Case Study Using Lambda-Cyhalothrin.

A Novel Approach to Integrate Human Biomonitoring Data with Model Predicted Dietary Exposures: A Crop Protection Chemical Case Study Using Lambda-Cyhalothrin.

(2024)

The appropriate use of human biomonitoring data to model population chemical exposures is challenging, especially for rapidly metabolized chemicals, such as agricultural chemicals. The objective of this study is to demonstrate a novel approach integrating model predicted dietary exposures and biomonitoring data to potentially inform regulatory risk assessments. We use lambda-cyhalothrin as a case study, and for the same representative U.S. population in the National Health and Nutrition Examination Survey (NHANES), an integrated exposure and pharmacokinetic model predicted exposures are calibrated to measurements of the urinary metabolite 3-phenoxybenzoic acid (3PBA), using an approximate Bayesian computing (ABC) methodology. We demonstrate that the correlation between modeled urinary 3PBA and the NHANES 3PBA measurements more than doubled as ABC thresholding narrowed the acceptable tolerance range for predicted versus observed urinary measurements. The median predicted urinary concentrations were closer to the median measured value using ABC than using current regulatory Monte Carlo methods.

Cover page of Deep latent variable joint cognitive modeling of neural signals and human behavior

Deep latent variable joint cognitive modeling of neural signals and human behavior

(2024)

As the field of computational cognitive neuroscience continues to expand and generate new theories, there is a growing need for more advanced methods to test the hypothesis of brain-behavior relationships. Recent progress in Bayesian cognitive modeling has enabled the combination of neural and behavioral models into a single unifying framework. However, these approaches require manual feature extraction, and lack the capability to discover previously unknown neural features in more complex data. Consequently, this would hinder the expressiveness of the models. To address these challenges, we propose a Neurocognitive Variational Autoencoder (NCVA) to conjoin high-dimensional EEG with a cognitive model in both generative and predictive modeling analyses. Importantly, our NCVA enables both the prediction of EEG signals given behavioral data and the estimation of cognitive model parameters from EEG signals. This novel approach can allow for a more comprehensive understanding of the triplet relationship between behavior, brain activity, and cognitive processes.

A tutorial on fitting joint models of M/EEG and behavior to understand cognition

(2024)

We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifically those researchers who seek to understand human cognition. Although these techniques could easily be applied to animal models, the focus of this tutorial is on human participants. Joint modeling of M/EEG and behavior requires some knowledge of existing computational and cognitive theories, M/EEG artifact correction, M/EEG analysis techniques, cognitive modeling, and programming for statistical modeling implementation. This paper seeks to give an introduction to these techniques as they apply to estimating parameters from neurocognitive models of M/EEG and human behavior, and to evaluate model results and compare models. Due to our research and knowledge on the subject matter, our examples in this paper will focus on testing specific hypotheses in human decision-making theory. However, most of the motivation and discussion of this paper applies across many modeling procedures and applications. We provide Python (and linked R) code examples in the tutorial and appendix. Readers are encouraged to try the exercises at the end of the document.

Cover page of Prenatal Exposure to Maternal Mood Entropy Is Associated With a Weakened and Inflexible Salience Network in Adolescence.

Prenatal Exposure to Maternal Mood Entropy Is Associated With a Weakened and Inflexible Salience Network in Adolescence.

(2024)

BACKGROUND: Fetal exposure to maternal mood dysregulation influences child cognitive and emotional development, which may have long-lasting implications for mental health. However, the neurobiological alterations associated with this dimension of adversity have yet to be explored. Here, we tested the hypothesis that fetal exposure to entropy, a novel index of dysregulated maternal mood, would predict the integrity of the salience network, which is involved in emotional processing. METHODS: A sample of 138 child-mother pairs (70 females) participated in this prospective longitudinal study. Maternal negative mood level and entropy (an index of variable and unpredictable mood) were assessed 5 times during pregnancy. Adolescents engaged in a functional magnetic resonance imaging task that was acquired between 2 resting-state scans. Changes in network integrity were analyzed using mixed-effect and latent growth curve models. The amplitude of low frequency fluctuations was analyzed to corroborate findings. RESULTS: Prenatal maternal mood entropy, but not mood level, was associated with salience network integrity. Both prenatal negative mood level and entropy were associated with the amplitude of low frequency fluctuations of the salience network. Latent class analysis yielded 2 profiles based on changes in network integrity across all functional magnetic resonance imaging sequences. The profile that exhibited little variation in network connectivity (i.e., inflexibility) consisted of adolescents who were exposed to higher negative maternal mood levels and more entropy. CONCLUSIONS: These findings suggest that fetal exposure to maternal mood dysregulation is associated with a weakened and inflexible salience network. More broadly, they identify maternal mood entropy as a novel marker of early adversity that exhibits long-lasting associations with offspring brain development.

Commensurability engineering is first and foremost a theoretical exercise.

(2024)

I provide a personal perspective on metastudies and emphasize lesser-known benefits. I stress the need for integrative theories to establish commensurability between experiments. I argue that mathematical social scientists should be engaged to develop integrative theories, and that likelihood functions provide a common mathematical framework across experiments. The development of quantitative theories promotes commensurability engineering on a larger scale.

Cover page of Intranasal Delivery of Ketamine Induces Cortical Disinhibition.

Intranasal Delivery of Ketamine Induces Cortical Disinhibition.

(2024)

Our previous studies find that subcutaneously administered (s.c.) subanesthetic ketamine promotes sustained cortical disinhibition and plasticity in adult mouse binocular visual cortex (bV1). We hypothesized that intranasal delivery (i.n.) of subanesthetic ketamine may have similar actions. To test this, we delivered ketamine (10 mg/kg, i.n.) to adult mice and then recorded excitatory pyramidal neurons or PV+ interneurons in L2/3 of bV1 slices. In pyramidal neurons the baseline IPSC amplitudes from mice treated with ketamine are significantly weaker than those in control mice. Acute bath application of neuregulin-1 (NRG1) to cortical slices increases these IPSC amplitudes in mice treated with ketamine but not in controls. In PV+ interneurons, the baseline EPSC amplitudes from mice treated with ketamine are significantly weaker than those in control mice. Acute bath application of NRG1 to cortical slices increases these EPSC amplitudes in mice treated with ketamine but not in controls. We also found that mice treated with ketamine exhibit increased pCREB staining in L2/3 of bV1. Together, our results show that a single intranasal delivery of ketamine reduces PV+ interneuron excitation and reduces pyramidal neuron inhibition and that these effects are acutely reversed by NRG1. These results are significant as they show that intranasal delivery of ketamine induces cortical disinhibition, which has implications for the treatment of psychiatric, neurologic, and ophthalmic disorders.

Cover page of Anatomical and molecular characterization of parvalbumin-cholecystokinin co-expressing inhibitory interneurons: implications for neuropsychiatric conditions.

Anatomical and molecular characterization of parvalbumin-cholecystokinin co-expressing inhibitory interneurons: implications for neuropsychiatric conditions.

(2023)

Inhibitory interneurons are crucial to brain function and their dysfunction is implicated in neuropsychiatric conditions. Emerging evidence indicates that cholecystokinin (CCK)-expressing interneurons (CCK+) are highly heterogenous. We find that a large subset of parvalbumin-expressing (PV+) interneurons express CCK strongly; between 40 and 56% of PV+ interneurons in mouse hippocampal CA1 express CCK. Primate interneurons also exhibit substantial PV/CCK co-expression. Mouse PV+/CCK+ and PV+/CCK- cells show distinguishable electrophysiological and molecular characteristics. Analysis of single nuclei RNA-seq and ATAC-seq data shows that PV+/CCK+ cells are a subset of PV+ cells, not of synuclein gamma positive (SNCG+) cells, and that they strongly express oxidative phosphorylation (OXPHOS) genes. We find that mitochondrial complex I and IV-associated OXPHOS gene expression is strongly correlated with CCK expression in PV+ interneurons at both the transcriptomic and protein levels. Both PV+ interneurons and dysregulation of OXPHOS processes are implicated in neuropsychiatric conditions, including autism spectrum (ASD) disorder and schizophrenia (SCZ). Analysis of human brain samples from patients with these conditions shows alterations in OXPHOS gene expression. Together these data reveal important molecular characteristics of PV-CCK co-expressing interneurons and support their implication in neuropsychiatric conditions.

Cover page of Reanalysis of primate brain circadian transcriptomics reveals connectivity-related oscillations

Reanalysis of primate brain circadian transcriptomics reveals connectivity-related oscillations

(2023)

Research shows that brain circuits controlling vital physiological processes are closely linked with endogenous time-keeping systems. In this study, we aimed to examine oscillatory gene expression patterns of well-characterized neuronal circuits by reanalyzing publicly available transcriptomic data from a spatiotemporal gene expression atlas of a non-human primate. Unexpectedly, brain structures known for regulating circadian processes (e.g., hypothalamic nuclei) did not exhibit robust cycling expression. In contrast, basal ganglia nuclei, not typically associated with circadian physiology, displayed the most dynamic cycling behavior of its genes marked by sharp temporally defined expression peaks. Intriguingly, the mammillary bodies, considered hypothalamic nuclei, exhibited gene expression patterns resembling the basal ganglia, prompting reevaluation of their classification. Our results emphasize the potential for high throughput circadian gene expression analysis to deepen our understanding of the functional synchronization across brain structures that influence physiological processes and resulting complex behaviors.