Skip to main content
eScholarship
Open Access Publications from the University of California

Civil and Environmental Engineering - Open Access Policy Deposits

This series is automatically populated with publications deposited by UC Irvine Samueli School of Engineering Civil and Environmental Engineering researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of Methane Hydrate Structure I Dissociation Process and Free Surface Analysis

Methane Hydrate Structure I Dissociation Process and Free Surface Analysis

(2024)

Methane hydrates are crystalline solids of water that contain methane molecules trapped inside their molecular cavities. Gas hydrates with methane as a guest molecule form structure I hydrates with two small dodecahedral cages and six tetra decahedral large cages. This study assesses the influence of occupation and the behavior of methane release from the molecular perspective during the dissociation process, particularly for the purpose of testing a series of molecular dynamics simulations. The dissociation cases conducted include an ideal 4 × 4 × 4 and 2 × 2 × 2 supercell methane hydrate system while inducing dissociation with two different types of temperature-rising functions for understanding the limitation and capability. These temperature-rising functions are temperature ramping and a single temperature step simulating in 5-7 various conditions. Temperature step results showed the earliest dissociation starting 50 ps into the simulation at an ΔT of 100 K, while at an ΔT of 80 K, dissociation was not observed. There was not a distinct dissociation preference observed between large and small cages, so it appears that the dissociation affects the entire structure uniformly when temperature increases are applied throughout the system rather than transport from a boundary. Temperature ramping simulations showed that the dissociation temperature increased with a higher heating rate. The mean-squared displacement results for the oxygen atoms in the water molecules at a high heating rate of 400 TK/s showed behavior similar to that for methane gas. As in the temperature step simulation, there were no clear differences in dissociation between large and small cages, which suggested homogeneous dissociation in all cases. Finally, a coordination analysis was performed on a 3 × 4 × 4 structure I methane hydrate with two free surfaces to demonstrate clear free surface boundaries and its location.

Cover page of Investigating Fire–Atmosphere Interaction in a Forest Canopy Using Wavelets

Investigating Fire–Atmosphere Interaction in a Forest Canopy Using Wavelets

(2024)

Wildland fire–atmosphere interaction generates complex turbulence patterns, organized across multiple scales, which inform fire-spread behaviour, firebrand transport, and smoke dispersion. Here, we utilize wavelet-based techniques to explore the characteristic temporal scales associated with coherent patterns in the measured temperature and the turbulent fluxes during a prescribed wind-driven (heading) surface fire beneath a forest canopy. We use temperature and velocity measurements from tower-mounted sonic anemometers at multiple heights. Patterns in the wavelet-based energy density of the measured temperature plotted on a time–frequency plane indicate the presence of fire-modulated ramp–cliff structures in the low-to-mid-frequency band (0.01–0.33 Hz), with mean ramp durations approximately 20% shorter and ramp slopes that are an order of magnitude higher compared to no-fire conditions. We then investigate heat- and momentum-flux events near the canopy top through a cross-wavelet coherence analysis. Briefly before the fire-front arrives at the tower base, momentum-flux events are relatively suppressed and turbulent fluxes are chiefly thermally-driven near the canopy top, owing to the tilting of the flame in the direction of the wind. Fire-induced heat-flux events comprising warm updrafts and cool downdrafts are coherent down to periods of a second, whereas ambient heat-flux events operate mainly at higher periods (above 17 s). Later, when the strongest temperature fluctuations are recorded near the surface, fire-induced heat-flux events occur intermittently at shorter scales and cool sweeps start being seen for periods ranging from 8 to 35 s near the canopy top, suggesting a diminishing influence of the flame and increasing background atmospheric variability thereat. The improved understanding of the characteristic time scales associated with fire-induced turbulence features, as the fire-front evolves, will help develop more reliable fire behaviour and scalar transport models.

Cover page of Methodology for Assessing Retrofitted Hydrogen Combustion and Fuel Cell Aircraft Environmental Impacts

Methodology for Assessing Retrofitted Hydrogen Combustion and Fuel Cell Aircraft Environmental Impacts

(2024)

Hydrogen (H2) combustion and solid oxide fuel cells (SOFCs) can potentially reduce aviation-produced greenhouse gas emissions compared to kerosene propulsion. This paper outlines a methodology for evaluating performance and emission tradeoffs when retrofitting conventional kerosene-powered aircraft with lower-emissionH2 combustion and SOFC hybrid alternatives. The proposed framework presents a constant-range approach for designing liquid hydrogen fuel tanks, considering insulation, sizing, center of gravity, and power constraints. A lifecycle assessment evaluates greenhouse gas emissions and contrail formation effects for carbon footprint mitigation, while a cost analysis examines retrofit implementation consequences. A Cessna Citation 560XLS+ case study shows a 5% mass decrease for H2 combustion and a 0.4% mass decrease for the SOFC hybrid, at the tradeoff of removing three passengers. The lifecycle analysis of green hydrogen in aviation reveals a significant reduction in CO2 emissions for H2 combustion and SOFC systems, except for natural-gas-produced H2 combustion, when compared to Jet-A fuel. However, this environmental benefit is contrasted by an increase in fuel cost per passenger-km for green H2 combustion and a rise for natural-gas-produced H2 SOFC compared to kerosene. The results suggest that retrofitting aircraft with alternative fuels could lower carbon emissions, noting the economic and passenger capacity tradeoffs.

Global‐Scale Convergence Obscures Inconsistencies in Soil Carbon Change Predicted by Earth System Models

(2024)

Soil carbon (C) responses to environmental change represent a major source of uncertainty in the global C cycle. Feedbacks between soil C stocks and climate drivers could impact atmospheric CO2 levels, further altering the climate. Here, we assessed the reliability of Earth system model (ESM) predictions of soil C change using the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6). ESMs predicted global soil C gains under the high emission scenario, with soils taking up 43.9 Pg (95% CI: 9.2–78.5 Pg) C on average during the 21st century. The variation in global soil C change declined significantly from CMIP5 (with average of 48.4 Pg [95% CI: 2.0–94.9 Pg] C) to CMIP6 models (with average of 39.3 Pg [95% CI: 23.9–54.7 Pg] C). For some models, a small C increase in all biomes contributed to this convergence. For other models, offsetting responses between cold and warm biomes contributed to convergence. Although soil C predictions appeared to converge in CMIP6, the dominant processes driving soil C change at global or biome scales differed among models and in many cases between earlier and later versions of the same model. Random Forest models, for soil carbon dynamics, accounted for more than 63% variation of the global soil C change predicted by CMIP5 ESMs, but only 36% for CMIP6 models. Although most CMIP6 models apparently agree on increased soil C storage during the 21st century, this consensus obscures substantial model disagreement on the mechanisms underlying soil C response, calling into question the reliability of model predictions.

Cover page of Reply to Comment by W. Knoben and M. Clark on “The Treatment of Uncertainty in Hydrometric Observations: A Probabilistic Description of Streamflow Records”

Reply to Comment by W. Knoben and M. Clark on “The Treatment of Uncertainty in Hydrometric Observations: A Probabilistic Description of Streamflow Records”

(2024)

In this Reply, we address the concerns of Knoben and Clark (2023, https://doi.org/10.1029/2022WR034294) or KC23 that “the assumptions needed to effectively use difference-based variance estimation methods are not always met by hourly streamflow records.” There should be little doubt that the assumptions of our difference-based estimator will sometimes be violated in hourly streamflow records but the results from de Oliveira and Vrugt (2022, https://doi.org/10.1029/2022wr032263) and confirmed by the findings in our Reply show that such violations are sporadic enough not to affect much the error variance estimates. Snowmelt as pointed out by KC23 (https://doi.org/10.1029/2022WR034294) may not have received sufficient attention in our paper, yet their 365-day record is simply not long enough to demonstrate bias of our discharge error variance estimates (and their dependence on flow level). This would require analysis of a much longer, multi-year, streamflow record of a snowmelt-driven watershed. The snowmelt catchment analyzed in dOV22 (https://doi.org/10.1029/2022wr032263) did not demonstrate bias in the discharge error variance estimates. We also provide additional clarification on the interpretation of the variance estimates obtained with the nonparametric estimator, and discuss the main issues in the test case presented in Knoben and Clark (2023, https://doi.org/10.1029/2022WR034294)).

Cover page of Impact of Momentum Perturbation on Convective Boundary Layer Turbulence

Impact of Momentum Perturbation on Convective Boundary Layer Turbulence

(2024)

Mesoscale-to-microscale coupling is an important tool for conducting turbulence-resolving multiscale simulations of realistic atmospheric flows, which are crucial for applications ranging from wind energy to wildfire spread studies. Different techniques are used to facilitate the development of realistic turbulence in the large-eddy simulation (LES) domain while minimizing computational cost. Here, we explore the impact of a simple and computationally efficient Stochastic Cell Perturbation method using momentum perturbation (SCPM-M) to accelerate turbulence generation in boundary-coupled LES simulations using the Weather Research and Forecasting model. We simulate a convective boundary layer (CBL) to characterize the production and dissipation of turbulent kinetic energy (TKE) and the variation of TKE budget terms. Furthermore, we evaluate the impact of applying momentum perturbations of three magnitudes below, up to, and above the CBL on the TKE budget terms. Momentum perturbations greatly reduce the fetch associated with turbulence generation. When applied to half the vertical extent of the boundary layer, momentum perturbations produce an adequate amount of turbulence. However, when applied above the CBL, additional structures are generated at the top of the CBL, near the inversion layer. The magnitudes of the TKE budgets produced by SCPM-M when applied at varying heights and with different perturbation amplitudes are always higher near the surface and inversion layer than those produced by No-SCPM, as are their contributions to the TKE. This study provides a better understanding of how SCPM-M reduces computational costs and how different budget terms contribute to TKE in a boundary-coupled LES simulation.

Cover page of DomiRank Centrality reveals structural fragility of complex networks via node dominance

DomiRank Centrality reveals structural fragility of complex networks via node dominance

(2024)

Determining the key elements of interconnected infrastructure and complex systems is paramount to ensure system functionality and integrity. This work quantifies the dominance of the networks' nodes in their respective neighborhoods, introducing a centrality metric, DomiRank, that integrates local and global topological information via a tunable parameter. We present an analytical formula and an efficient parallelizable algorithm for DomiRank centrality, making it applicable to massive networks. From the networks' structure and function perspective, nodes with high values of DomiRank highlight fragile neighborhoods whose integrity and functionality are highly dependent on those dominant nodes. Underscoring this relation between dominance and fragility, we show that DomiRank systematically outperforms other centrality metrics in generating targeted attacks that effectively compromise network structure and disrupt its functionality for synthetic and real-world topologies. Moreover, we show that DomiRank-based attacks inflict more enduring damage in the network, hindering its ability to rebound and, thus, impairing system resilience. DomiRank centrality capitalizes on the competition mechanism embedded in its definition to expose the fragility of networks, paving the way to design strategies to mitigate vulnerability and enhance the resilience of critical infrastructures.

Cover page of The time validity of Philip's two‐term infiltration equation: An elusive theoretical quantity?

The time validity of Philip's two‐term infiltration equation: An elusive theoretical quantity?

(2024)

The two-term infiltration equation (Formula presented.) is commonly used to determine the sorptivity, (Formula presented.) (Formula presented.), and product, (Formula presented.) (Formula presented.), of the dimensionless multiple (Formula presented.) and saturated soil hydraulic conductivity (Formula presented.) (Formula presented.) from cumulative vertical infiltration measurements (Formula presented.) (L) at times (Formula presented.) (T). This reduced form of the quasi-analytical power series solution of Richardson's equation of Philip enjoys a solid physical underpinning but at the expense of a limited time validity. Using simulated infiltration data, Jaiswal et al. have shown this time validity to equal about 2.5 cm of cumulative infiltration. The goals of this work are twofold. First, we investigate the extent to which cumulative infiltration measurements larger than 2.5 cm bias the estimates of (Formula presented.) and (Formula presented.). Second, we investigate the impact of epistemic errors on the inferred time validities and parameters. Partial infiltration curves up to 2.5 cm of cumulative vertical infiltration improve substantially the agreement between actual and least squares estimates of (Formula presented.) and (Formula presented.). But this only holds if the data generating infiltration process follows Richardson's equation and experimental conditions satisfy assumptions of soil homogeneity and a uniform initial water content. Otherwise, autocorrelated cumulative infiltration residuals will bias the least squares estimates of (Formula presented.) and (Formula presented.). Our findings reiterate and reinvigorate earlier conclusions of Haverkamp et al. and show that epistemic errors deteriorate the physical significance of the coefficients of infiltration functions. As a result, the parameters of infiltration functions cannot simply be used in storm water and vadose zone flow models to forecast runoff and recharge at field and landscape scales unless these predictions are accompanied by realistic uncertainty bounds. We conclude that the time validity of Philip's two-term equation is an elusive theoretical quantity with arbitrary physical meaning.

Cover page of Level crossings reveal organized coherent structures in a turbulent time series

Level crossings reveal organized coherent structures in a turbulent time series

(2024)

In turbulent flows, energy production is associated with highly organized structures, known as coherent structures. Since these structures are three dimensional, their detection remains challenging in the most common situation in experiments, when single-point temporal measurements are considered. While previous research on coherent structure detection from time series employs a thresholding approach, either in spectral or temporal domain, the thresholds are ad hoc and vary significantly from one study to another. To circumvent this issue, we introduce the level-crossing method and show how specific features of a turbulent time series associated with coherent structures can be objectively identified, without assigning a priori any arbitrary threshold. By using two wall-bounded turbulence time-series datasets (at a Reynolds number of 104), we successfully extract through level-crossing analysis the impacts of coherent structures on turbulent dynamics and therefore open an alternative avenue in experimental turbulence research. By utilizing this framework further, we discover a metric, characterized by a statistical asymmetry between the peaks and troughs of a turbulent signal, to quantify inner-outer interaction in wall turbulence. Most importantly, through phase-randomized surrogate data modeling, we demonstrate that the level-crossing statistics are quite sensitive to the nonlinear dependencies in a turbulent signal. Physically, this finding implies that the large-scale coherent structures modulate the near-wall turbulent dynamics through a nonlinear interaction associated with low-speed streaks, a mechanism not identifiable from spectral analysis alone. Moreover, a connection is established between extreme value statistics and level-crossing analysis, thereby allowing additional possibilities to study extreme events in other dynamical systems.