Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

C5aR1 antagonism alters microglial polarization and mitigates disease progression in a mouse model of Alzheimer’s disease

Abstract

Multiple studies have recognized the involvement of the complement cascade during Alzheimer's disease pathogenesis. However, the specific role of C5a-C5aR1 signaling in the progression of this neurodegenerative disease is still not clear. Furthermore, its potential as a therapeutic target to treat AD still remains to be elucidated. Canonically, generation of the anaphylatoxin C5a as the result of complement activation and interaction with its receptor C5aR1 triggers a potent inflammatory response. Previously, genetic ablation of C5aR1 in a mouse model of Alzheimer's disease exerted a protective effect by preventing cognitive deficits. Here, using PMX205, a potent, specific C5aR1 antagonist, in the Tg2576 mouse model of Alzheimer's disease we show a striking reduction in dystrophic neurites in parallel with the reduced amyloid load, rescue of the excessive pre-synaptic loss associated with AD cognitive impairment and the polarization of microglial gene expression towards a DAM-like phenotype that are consistent with the neuroprotective effects seen. These data support the beneficial effect of a pharmacological inhibition of C5aR1 as a promising therapeutic approach to treat Alzheimer's disease. Supportive of the safety of this treatment is the recent FDA-approval of another other C5a receptor 1 antagonist, Avacopan, as a treatment for autoimmune inflammatory diseases.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View