Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

Electrical Transport of Topological Insulator-Bi2Se3 and Thermoelectric Properties of Graphene

Abstract

This thesis summarizes our work in the past four years in the field of transport studies of the topological insulator materials and thermoelectric properties of graphene. The first half of the thesis is focused on the transport properties of topological insulator material-Bi2Se3. In our research, we systematically tune the position of the chemical potential in p-type Ca-doped Bi2Se3 thin devices first by eliminating excess holes with controlled post-fabrication electron beam irradiation that results in an insulating bulk state. In spite of the fact that the energetic electron beam creates defects to localize the bulk carriers and inevitably to cause additional scattering, we find a tenfold increase in carrier mobility associated with the extended states in the band gap. In addition, the resistance undergoes a fivefold increase and passes the maximum as the chemical potential is further tuned by electrostatic gating. A cusp-like low-field magnetoresistance feature also emerges which is indicative of strong spin-orbit interaction. The observed gate-tunable high-mobility is a signature of massless Dirac fermions in the band gap of Bi2Se3.

The second half of this thesis is focused on graphene. Our work first reported the thermoelectric study of graphene and demonstrated the anomalous thermoelectric transport of massless Dirac fermions. As a direct consequence of the linear dispersion of massless particles, we find that the Seebeck coefficient Sxx diverges with 1 / |n2D|½, where n2D is the carrier density. We observe a very large Nernst signal Sxy (~ 50 μV/K at 8 T) at the Dirac point, and an oscillatory dependence of both Sxx and Sxy on n2D at low temperatures. Our results underscore the anomalous thermoelectric transport in graphene, which may be used as a highly sensitive probe for impurity bands near the Dirac point.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View