Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Nuclear Factor-κB Decoy Oligodeoxynucleotide Attenuates Cartilage Resorption In Vitro.

Abstract

BACKGROUND: Cartilage harvest and transplantation is a common surgery using costal, auricular, and septal cartilage for craniofacial reconstruction. However, absorption and warping of the cartilage grafts can occur due to inflammatory factors associated with wound healing. Transcription factor nuclear factor-κB (NF-κB) is activated by the various stimulation such as interleukin-1 (IL-1), and plays a central role in the transactivation of this inflammatory cytokine gene. Inhibition of NF-κB may have anti-inflammatory effects. The aim of this study was to explore the potential of an NF-κB decoy oligodeoxynucleotide (Decoy) as a chondroprotective agent. MATERIALS AND METHODS: Safe and efficacious concentrations of Decoy were assessed using rabbit nasal septal chondrocytes (rNSChs) and assays for cytotoxicity, proteoglycan (PG) synthesis, and PG turnover were carried out. The efficacious concentration of Decoy determined from the rNSChs was then applied to human nasal septal cartilage (hNSC) in vitro and analyzed for PG turnover, the levels of inflammatory markers, and catabolic enzymes in explant-conditioned culture medium. RESULTS: Over the range of Decoy conditions and concentrations, no inhibition of PG synthesis or cytotoxicity was observed. Decoy at 10 μM effectively inhibited PG degradation in the hNSC explant, prolonging PG half-life by 63% and decreasing matrix metalloprotease 3 (MMP-3) by 70.7% (p = 0.027). CONCLUSIONS: Decoy may be considered a novel chondroprotective therapeutic agent in cartilage transplantation due to its ability to inhibit cartilage degradation due to inflammation cytokines.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View