Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis

Abstract

Metallochaperones traffic copper (Cu(+)) from its point of entry at the plasma membrane to its destination. In plants, one destination is the chloroplast, which houses plastocyanin, a Cu-dependent electron transfer protein involved in photosynthesis. We present a previously unidentified Cu(+) chaperone that evolved early in the plant lineage by an alternative-splicing event of the pre-mRNA encoding the chloroplast P-type ATPase in Arabidopsis 1 (PAA1). In several land plants, recent duplication events created a separate chaperone-encoding gene coincident with loss of alternative splicing. The plant-specific Cu(+) chaperone delivers Cu(+) with specificity for PAA1, which is flipped in the envelope relative to prototypical bacterial ATPases, compatible with a role in Cu(+) import into the stroma and consistent with the canonical catalytic mechanism of these enzymes. The ubiquity of the chaperone suggests conservation of this Cu(+)-delivery mechanism and provides a unique snapshot into the evolution of a Cu(+) distribution pathway. We also provide evidence for an interaction between PAA2, the Cu(+)-ATPase in thylakoids, and the Cu(+)-chaperone for Cu/Zn superoxide dismutase (CCS), uncovering a Cu(+) network that has evolved to fine-tune Cu(+) distribution.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View