Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Designed Y3+ Surface Segregation Increases Stability of Nanocrystalline Zinc Aluminate

Abstract

The thermal stability of zinc aluminate nanoparticles is critical for their use as catalyst supports. In this study, we experimentally show that doping with 0.5 mol % Y2O3 improves the stability of zinc aluminate nanoparticles. The dopant spontaneously segregates to the nanoparticle surfaces in a phenomenon correlated with excess energy reduction and the hindering of coarsening. Y3+ was selected based on atomistic simulations on a 4 nm zinc aluminate nanoparticle singularly doped with elements of different ionic radii: Sc3+, In3+, Y3+, and Nd3+. The segregation energies were generally proportional to ionic radii, with Y3+ showing the highest potential for surface segregation. Direct measurements of surface thermodynamics confirmed the decreasing trend in surface energy from 0.99 for undoped to 0.85 J/m2 for Y-doped nanoparticles. Diffusion coefficients calculated from coarsening curves for undoped and doped compositions at 850 °C were 4.8 × 10-12 cm2/s and 2.5 × 10-12 cm2/s, respectively, indicating the coarsening inhibition induced by Y3+ results from a combination of a reduced driving force (surface energy) and decreased atomic mobility.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View