Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

In vivo diffusion‐tensor MRI of the human heart on a 3 tesla clinical scanner: An optimized second order (M2) motion compensated diffusion‐preparation approach

Published Web Location

https://doi.org/10.1002/mrm.26380
Abstract

Purpose

To optimize a diffusion-prepared balanced steady-state free precession cardiac MRI (CMR) technique to perform diffusion-tensor CMR (DT-CMR) in humans on a 3 Tesla clinical scanner METHODS: A previously developed second order motion compensated (M2) diffusion-preparation scheme was significantly shortened (40%) yielding sufficient signal-to-noise ratio for DT-CMR imaging. In 20 healthy volunteers and 3 heart failure (HF) patients, DT-CMR was performed comparing no motion compensation (M0), first order motion compensation (M1), and the optimized M2. Mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA), and HA transmural slope (HATS) were calculated. Reproducibility and success rate (SR) were investigated.

Results

M2-derived left ventricular (LV) MD, FA, and HATS (1.4 ± 0.2 μm2 /ms, 0.28 ± 0.06, -1.0 ± 0.2 °/%trans) were significantly (P < 0.001) less than M1 (1.8 ± 0.3 μm2 /ms, 0.46 ± 0.14, -0.1 ± 0.3 °/%trans) and M0 (4.8 ± 1.0 μm2 /ms, 0.70 ± 0.14, 0.1 ± 0.3 °/%trans) indicating less motion corruption and yielding values more consistent with previous literature. M2-derived DT-CMR parameters had higher reproducible (ICC > 0.85) and SR (82%) than M1 (ICC = 0.20-0.85; SR = 37%) and M0 (ICC = 0.20-0.30; SR = 11%). M2 DT-CMR was able to yield HA maps with smooth transmural transition from endocardium to epicardium.

Conclusion

The proposed M2 DT-CMR reproducibly yielded bulk motion robust estimations of mean LV MD, FA, HA, and HATS on a 3T clinical scanner. Magn Reson Med 76:1354-1363, 2016. © 2016 International Society for Magnetic Resonance in Medicine.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View