Skip to main content
eScholarship
Open Access Publications from the University of California

Predicting the impact of land management decisions on overland flow generation: Implications for cesium migration in forested Fukushima watersheds

Abstract

The effects of land use and land cover (LULC) change on environmental systems across the land surface's “critical zone” are highly uncertain, often making prediction and risk management decision difficult. In a series of numerical experiments with an integrated hydrologic model, overland flow generation is quantified for both present day and forest thinning scenarios. A typhoon storm event in a watershed near the Fukushima Dai-ichi Nuclear Power Plant is used as an example application in which the interplay between LULC change and overland flow generation is important given that sediment-bound radionuclides may cause secondary contamination via surface water transport. Results illustrate the nonlinearity of the integrated system spanning from the deep groundwater to the atmosphere, and provide quantitative tools when determining the tradeoffs of different risk-mitigation strategies.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View