Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Prenatal and early life exposures to ambient air pollution and development

Abstract

Background

Residential proximity to major roadways, and prenatal exposures to particulate matter <2.5 μm (PM2.5) and ozone (O3) are linked to poor fetal outcomes but their relationship with childhood development is unclear.

Objectives

We investigated whether proximity to major roadways, or prenatal and early-life exposures to PM2.5 and O3 increase the risk of early developmental delays.

Study design

Prospective cohort.

Settings

New York State excluding New York City.

Participants

4089 singletons and 1016 twins born between 2008 and 2010.

Exposures

Proximity to major roadway was calculated using road network data from the NY Department of Transportation. Concentrations of PM2.5 and O3 estimated by the Environmental Protection Agency Downscaler models were spatiotemporally linked to each child's prenatal and early-life addresses incorporating residential history, and locations of maternal work and day-care.

Outcomes

Parents reported their children's development at ages 8, 12, 18, 24, 30 and 36 months in five domains using the Ages and Stages Questionnaire. Generalized mixed models estimated the relative risk (RR) and 95% CI for failing any developmental domain per 10 units increase in PM2.5 and O3, and for those living <1000 m away from a major roadway compared to those living further. Models adjusted for potential confounders.

Results

Compared to those >1000 m away from a major roadway, those resided 50-100 m [RR: 2.12 (1.00-4.52)] and 100-500 m [RR: 2.07 (1.02-4.22)] away had twice the risk of failing the communication domain. Prenatal exposures to both PM2.5 and ozone during various pregnancy windows had weak but significant associations with failing any developmental domain with effects ranging from 1.6% to 2.7% for a 10 μg/m3 increase in PM2.5 and 0.7%-1.7% for a 10 ppb increase in ozone. Average daily postnatal ozone exposure was positively associated with failing the overall screening by 8 months [3.3% (1.1%-5.5%)], 12 months [17.7% (10.4%-25.5%)], and 30 months [7.6%, (1.3%-14.3%)]. Findings were mixed for postnatal PM2.5 exposures.

Conclusions

In this prospective cohort study, proximity to major roadway and prenatal/early-life exposures to PM2.5 and O3 were associated with developmental delays. While awaiting larger studies with personal air pollution assessment, efforts to minimize air pollution exposures during critical developmental windows may be warranted.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View