Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Hollow Micropillar Array Method for High-Capacity Drug Screening on Filter-Grown Epithelial Cells

Abstract

New high-throughput assay formats and innovative screening technologies are needed for miniaturized screens using small quantities of near-native, patient-derived cells. Here, we developed a hollow micropillar array method to screen compounds using epithelial cells cultured on a porous support, with the goal of screening thousands of compounds using a single 24 mm diameter transwell filter containing cultured cells. Test compounds (∼1 nL) in an alginate hydrogel were printed by microinjection in hollow cylindrical micropillars (height = 150 μm, inner diameter = 100 μm) spaced 300 μm apart in a square array configuration. Compounds were delivered by positioning the array near the surface of a cell layer, with 5-10 μm of distance between the micropillars and cell surface. Micropillar array geometry, and the viscosity of the hydrogel and overlying solutions, were optimized computationally and experimentally to produce sustained exposure of cells to test compounds with minimal cross-talk from compounds in neighboring micropillar wells. The method was implemented using a 10 × 10 micropillar array (size = 3 × 3 mm) on CFTR-expressing epithelial cells, in which CFTR chloride channel function was measured from fluorescence in response to iodide addition using a genetically encoded cytoplasmic yellow fluorescent protein halide indicator. The hollow micropillar array platform developed here should be generally applicable for high-capacity drug screening using small numbers of cells cultured on solid or porous supports.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View