Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Outdoor air pollution and mosaic loss of chromosome Y in older men from the Cardiovascular Health Study

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971001/
No data is associated with this publication.
Abstract

Background

Mosaic loss of chromosome Y (mLOY) can occur in a fraction of cells as men age, which is potentially linked to increased mortality risk. Smoking is related to mLOY; however, the contribution of air pollution is unclear.

Objective

We investigated whether exposure to outdoor air pollution, age, and smoking were associated with mLOY.

Methods

We analyzed baseline (1989-1993) blood samples from 933 men ≥65 years of age from the prospective Cardiovascular Health Study. Particulate matter ≤10 μm (PM10), carbon monoxide, nitrogen dioxide, sulfur dioxide, and ozone data were obtained from the U.S. EPA Aerometric Information Retrieval System for the year prior to baseline. Inverse-distance weighted air monitor data were used to estimate each participants' monthly residential exposure. mLOY was detected with standard methods using signal intensity (median log-R ratio (mLRR)) of the male-specific chromosome Y regions from Illumina array data. Linear regression models were used to evaluate relations between mean exposure in the prior year, age, smoking and continuous mLRR.

Results

Increased PM10 was associated with mLOY, namely decreased mLRR (p-trend = 0.03). Compared with the lowest tertile (≤28.5 μg/m3), the middle (28.5-31.0 μg/m3; β = -0.0044, p = 0.09) and highest (≥31 μg/m3; β = -0.0054, p = 0.04) tertiles had decreased mLRR, adjusted for age, clinic, race/cohort, smoking status and pack-years. Additionally, increasing age (β = -0.00035, p = 0.06) and smoking pack-years (β = -0.00011, p = 1.4E-3) were associated with decreased mLRR, adjusted for each other and race/cohort. No significant associations were found for other pollutants.

Conclusions

PM10 may increase leukocyte mLOY, a marker of genomic instability. The sample size was modest and replication is warranted.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item