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ABSTRACT OF THE THESIS

Understanding Learned Visual Invariances
Through Hierarchical Dataset Design and Collection
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While CNNs have enabled tremendous progress in computer vision for a variety of tasks,

robust generalization across domain, viewpoint, and class remains a significant challenge. This

thesis therefore centers around a new hierarchical multiview, multidomain image dataset with

3D meshes called 3D-ODDS. Data was collected in several ways, involving turntable setups,

flying drones, and in-the-wild photos under diverse indoor/outdoor locations. Experiments were

subsequently conducted on two important vision tasks: single view 3D reconstruction and image

classification. For single view 3D reconstruction, a novel postprocessing step involving test-

xiv



time self-supervised learning is proposed to help improve reconstructed shape robustness. For

image classification, we consider an adversarial attack framework using perturbations which are

semantically imperceptible based on human subject surveys. For both tasks, experiments show

that 3D-ODDS is a challenging dataset for state of the art methods and is useful in measuring

class, pose, and domain invariance. We believe that the dataset will remain relevant moving

forward, inspiring future works towards robust and invariant methods in computer vision.
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Introduction
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(a) OTURN Domain
(In the lab, turntable & DSLR Camera to create 3D meshes.)

(b) OOWL Domain
(In the lab, �lying drone camera)

(c) OWILD Domain
(Real indoor/outdoor locations, smartphone camera)

Figure 1.1: Data collection for 3D-ODDS domains. OTURN uses a high resolution camera
turntable setup, for generating 3D meshes with structure-from-motion. OOWL is captured
using a drone camera, mid-flight. OWILD depicts objects in diverse indoor/outdoor locations,
captured using smartphone cameras.

Over the past decade, convolutional neural networks (CNNs) [47, 82, 28] have led to

tremendous progress in computer vision. Significant advances have been made for many tasks (e.g.

classification, regression, retrieval, segmentation, detection, 3D reconstruction, and generation [86,

122, 127, 108]), under many machine learning paradigms (e.g. fully supervised, self supervised,

unsupervised, and low-shot [38, 107, 67]). This is in large part enabled by recent advances in

hardware (especially GPUs [80]) and large scale datasets collected on the internet [12]. However,

generalizability and robustness is still a significant challenge. For example, although state of the art

methods can now achieve up to 90.2% top-1 and 98.8% top-5 classification accuracy [74] on large

scale datasets like ImageNet, they are vulnerable to adversarial attacks [48, 71, 66, 87], indicating

a lack of robustness. All datasets are also to some degree subject to particular biases [96, 95].

Thus, methods trained on them can incur “blind spots”, making them insufficiently generalized

to images encountered in the real world. Alarmingly, these weaknesses can be “hidden” under

misleadingly high test set performance – a dataset’s test set is insufficient to reveal generalizability

weaknesses, since it is ultimately drawn from the same distribution as the training set. In this

thesis, it is hypothesized that an external dataset with controlled, hierarchical levels of variability

would effectively reveal these generalizability blind spots in state of the art methods. A new

dataset satisfying these characteristics is presented, several experimental results are described,

and methods are proposed to improve robustness and generalizability.

2
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Figure 1.2: The proposed 3D-ODDS dataset incorporates many objects from 16 classes. Along
with 3D mesh scans, real-world images are systematically captured from 3 domains and 8
azimuth angles.

1.1 Robustness and Invariance in Computer Vision

In the context of computer vision, a model is considered robust if its predictions are

correct and consistent (invariant) regardless of appearance-based changes in its input. That is,

to a reasonable extent (i.e. that of the human visual system [41, 36]), external factors affecting

image appearance like camera quality, viewpoint, lighting, color, rotation, background, scale, and

spatial translation should not affect the accuracy of the prediction. This has been a fundamental

challenge in computer vision, from its origins to present day. For example, the Harris corner

detector [25] is a classical method for image feature extraction, whose corner-based features

are generally invariant to translation, rotation, and illumination. SIFT [62] features built on top

of this by also enabling scale invariance and some local affine invariance, through a pyramidal

difference of Gaussians approach. Overall, these classical methods are handcrafted and can

generally only enable invariance with respect to low-level, geometrical properties like scale, affine

transformation, and rotation.

More recently, CNNs have been incredibly popular and are trained using large datasets,

allowing for more abstract and complicated invariances like viewpoint, lighting, and back-

3



ground. Here, mappings to the same output are learnable through exposure to multiple copies

of transformed training inputs. Architectural components also enable geometric invariances,

i.e. max pooling layers for scale invariance and sliding convolutional filters for translation

invariance [84, 43]. Additionally, techniques exist to enhance robustness, such as data augmen-

tation [81]. While CNNs’ data-driven approach provides significant advantages, there are also

some consequences to contend with. First, CNNs can be vulnerable to adversarial attack ex-

ploits [48, 71, 66, 87] which leverage the fact that they are data-driven models whose parameters

are only approximately optimized through gradient decent. A subset of these attacks can be

defended against [49, 97, 35], but generally require access to the underlying data-generation

mechanism for additional training. Second, relying on datasets will inevitably incur certain types

of bias. For example, large scale datasets do not have a uniform distribution of viewpoints with

which objects are depicted [113], leading to pose bias. Additionally, issues can exist at inference

time if images’ general appearance do not match with the images seen during training [124, 102],

in the form of domain bias. These biases lead to blind spots in trained networks, prohibiting true

invariance.

1.2 Contributions of the Thesis

To tackle the aforementioned issues, this thesis centers around a new dataset called the

3D Object Domain Dataset Suite (3D-ODDS). This dataset contains over 100,000 images of real

objects collected under controlled viewpoints, along with their scanned 3D meshes. As illustrated

in Figures 1.1 and 1.2, each object is depicted in three different domains: OTURN, OOWL, and

OWILD. OTURN images were collected with a turntable DSLR camera setup, OOWL using drone

cameras during flight, and OWILD with smartphones in diverse indoor/outdoor locations. To show

that 3D-ODDS can effectively diagnose for class, pose, and domain invariance, we use it to test

two key vision tasks: 3D reconstruction and image classification. Through numerous experiments,
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it is shown that 3D-ODDS is an extremely challenging dataset for state of the art methods. To

address this, novel approaches are proposed to help improve robustness and generalizability. We

believe that the 3D-ODDS dataset will remain relevant moving forward, inspiring future works

towards domain generalizable [124, 102] and invariant methods in computer vision.

1.2.1 Robustness for Single View 3D Reconstruction

Chapter 2 introduces the 3D-ODDS dataset, and explores robustness in the context of

single view 3D reconstruction. In this task, the goal is to reconstruct the 3D shape of an object

from an image of it. Besides being a fundamental research question for artificial intelligence

(humans can easily envision 3D structure at a glance [79]), it is also important in areas such

as autonomous vehicle 3D environment mapping [121], robotic object manipulation/grasping

[51], and virtual/augmented reality interaction [119]. Much recent progress has been made,

but due to the difficulty of collecting large datasets in the wild with 3D ground truth, it still

remains a significant challenge for methods to generalize across domain, viewpoint, and class.

Current methods also tend to produce averaged “nearest-neighbor” memorized shapes instead

of genuinely understanding the image, thus eliminating important details. To address this we

propose REFINE, a postprocessing mesh refinement step easily integratable into the pipeline

of any black-box method in the literature. At test time, REFINE optimizes a network per mesh

instance, to encourage consistency between the mesh and the given object view. This, with a

novel combination of losses addressing degenerate solutions, reduces domain gap and restores

details to achieve state of the art performance.

1.2.2 Robustness for Classification

Chapter 3 explores robustness in the context of image classification, from an adversarial

attack [48, 71, 66, 87] point of view. In particular, the 3D-ODDS dataset enables us to consider
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attacks that are trivial to perform but difficult to defend. A framework for the study of such attacks

is proposed, using real world object manipulations. Unlike most works in the past, this framework

supports the design of attacks based on both small and large image perturbations, implemented

by drone camera shake and pose variation from OOWL. A setup is proposed for the collection of

such perturbations and determination of their perceptibility. It is argued that the latter depends

on context, and a distinction is made between imperceptible and semantically imperceptible

perturbations. While the former survive image comparisons, the latter are perceptible but have no

impact on human object recognition. A procedure is proposed to determine the perceptibility of

perturbations using Amazon Mechanical Turk [69] experiments, and a dataset of both perturbation

classes which enables replicable studies of object manipulation attacks, is assembled. Experiments

using defenses based on many datasets, CNN models, and algorithms from the literature elucidate

the difficulty of defending these attacks – in fact, none of the existing defenses is found effective

against them. Better results are achieved with real world data augmentation, but even this is

not foolproof. These results confirm the hypothesis that current CNNs are vulnerable to attacks

implementable even by a child, and that such attacks may prove difficult to defend.
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Chapter 2

Improved 3D Reconstruction Robustness

via Test-Time Shape REFINEment
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2.1 Introduction

Single view reconstruction (SVR) aims to generate the 3D shape of an object from an

image of it. SVR networks are usually learned from datasets with many views of different objects.

While ideally these datasets should be large, composed of real images, cover many object classes

with many views per object, and come with corresponding 3D ground truth, this is extremely

difficult to achieve in practice. As a result most methods are trained on renders of synthetic 3D

CAD models [63, 104, 117], or only applicable to a specific object class per network, such as

birds [40, 53], beyond which they cannot generalize. The goal of learning universal SVR models,

applicable to any object, remains a significant challenge. This is compounded by the difficulty

of generalizing across domains. As illustrated in Figures 2.1 and 2.4, the application of an SVR

network trained on ShapeNet [7] to real images leads to severe reconstruction failures. Even with

3D synthetic data, current methods tend to recognize the object, perform a “nearest-neighbor”

search for a “mean class shape” memorized during training [93], and make slight adjustments

that are usually not enough to recover intricate shape details. As shown in Figure 2.2, while

reconstructions (bottom row) reflect the category of the object in the image (top row), details that

determine fine-grained identity are usually lost.

Test-Time Shape Refinement (TTSR) [76] is a promising solution to these problems. It

poses the question of whether the SVR network reconstruction can be improved upon at test-time

by providing some additional information about the object, e.g. a silhouette. TTSR has at least

two interesting properties. First, because it is a test-time operation, it only requires relatively small

datasets to design and evaluate. This enables the collection of datasets in the lab, to explicitly test

how TTSR can enhance the robustness of reconstruction across many object classes and different

image domains, while providing a dense coverage of object views. In this work, we leverage this

observation and propose a new hierarchical multiview, multiclass, multidomain dataset called the

3D Object Domain Dataset Suite (3D-ODDS), containing 71,496 real images of objects collected

8



Input Image Re�ined MeshOriginal Mesh

SV
 R

ec
.

RE
FI

N
E 

O
pt

im
iz

at
io

n

An
y 

S.
V.

  R
ec

on
st

ru
ct

io
n 

N
et

w
or

k
Figure 2.1: bbTTSR: Reconstructions by a SVR network trained on ShapeNet are fed to the
proposed external shape REFINEment network at test-time. Evaluation: Images from the
training domain (top, from ShapeNet) are combined with a new dataset, to evaluate how bbTTSR
enhances accuracy and robustness.
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Figure 2.2: Important image details (circled in green) are frequently lost by state of the art 3D
reconstruction methods (circled in red).

under many different controlled poses and domains, along with their scanned 3D meshes (Figures

2.1, 2.8). A second interesting property of TTSR is that it provides the opportunity to exploit

optimization at test time, instead of just a forward pass, to improve reconstruction results. This

was shown in [76] but posed as a fine-tuning problem, where parameters of their network are

adjusted to achieve this goal.

In this work we ask the broader question of whether TTSR can be performed by an

external network which refines the mesh shape produced by the SVR network, a posteriori as

illustrated in Figure 2.1, and is applicable to any SVR method. We denote this as black-box TTSR

(bbTTSR). There are several advantages in bbTTSR over TTSR. First, it is agnostic to the SVR
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architecture. As demonstrated in this work, it can be equally easily applied to approaches like

DeepSDF [73] or OccNet [63] which use implicit functions, Mesh R-CNN [20] or Pix2Vox [117]

which have voxel-based components, and AtlasNet [23] which represents meshes using atlas

surface elements. Second, because it does not even require knowledge of the inner workings of

the SVR network, it supports applications where the latter is provided by a third party and not

publicly available. Finally, unlike network finetuning, bbTTSR encourages the joint development

of networks and losses that explicitly address the degenerate solution tendencies and extreme data

efficiency challenges seen in test-time refinement.

Given these potential advantages, we propose a REFine INstances at Evaluation (REFINE)

architecture for bbTTSR. REFINE utilizes a mesh feature encoder with a graph refiner network,

trained using a novel combination of loss functions encouraging both silhouette consistency and

confidence-based mesh symmetry. We then combine existing datasets [7, 10, 88] with 3D-ODDS

to produce an experimental framework to test how bbTTSR methods improve the effectiveness

and robustness of SVR. These extensive experiments rigorously show that REFINE improves

the reconstruction accuracy of many SVR networks as measured by several metrics, both in the

presence and absence of domain gap between training and inference data, for both synthetic and

real images, across diverse object classes/views.

Overall, this work makes four main contributions. The first is the concept of bbTTSR,

i.e. the use of external post-processing networks at test time, to improve the quality of meshes

produced by SVR methods. The second is the 3D-ODDS dataset. This is the first SVR dataset

to deliberately target questions such as robustness of SVR to domain shift, using real world

images of objects from many classes, and precise control of object pose. Third, we propose the

first solution to the challenging bbTTSR problem with REFINE, which successfully suppresses

degenerate solutions to provide performance gains. Finally, extensive experiments show that

REFINE outperforms the state of the art in TTSR, is an effective solution for bbTTSR, and

enhances the performance of many SVR networks under many experimental conditions.

10



2.2 Related Work

Single View 3D Reconstruction. While many SVR methods have been proposed, they all

suffer from the inconsistencies of Figure 2.2, and can benefit from REFINE. The main 3D output

modalities are voxels, pointclouds, and meshes. Voxel methods typically encode an image into

a latent vector, then decoded into a 3D voxel grid with upsampling 3D convolutions [117, 10].

Octrees can enable higher voxel resolution [92, 105]. Pointclouds have been explored as an

alternative to voxels [16, 54] but usually require voxel or mesh conversion for use by downstream

tasks. Among mesh methods, some learn to displace vertices on a sphere [42, 104] or a mean

shape [40] to reconstruct. Current state of the art methods rely on an intermediate implicit

function representation to describe shape [63, 118, 73, 19, 68], mapped into a mesh by marching

cubes [61].

Methods also vary by their level of supervision. Most are fully supervised, requiring a

large dataset of 3D shapes such as ShapeNet [7]. Recently, weakly-supervised methods have

also been introduced, using semantic keypoints [40] or 2.5D sketches [109] as supervision.

Alternatively, [53] has proposed a fully unsupervised method, combining part segmentation and

differentiable rendering. Few-shot is considered in [100, 64] where classes have limited training

data. Domain adaptation was explored in [75], which assumes access to data from a known target

domain.

Despite progress in single view 3D reconstruction, questions arise on what is actually

being learned. In particular, [93] shows that simple nearest-neighbor model retrieval can beat

state of the art reconstruction methods. This raises concerns that current methods bypass genuine

reconstruction, simply combining image recognition and shape memorization. Such memorization

is consistent with Figures 2.1 and 2.2, leading to suboptimal reconstructions and inability to

generalize across domains. It is likely a consequence of learning the reconstruction network

over a training set of many instances from the same class. In contrast, REFINE uses test-
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time optimization to refine a single shape, encouraging consistency with a single silhouette.

This prevents memorization, directly addressing the concerns of [93]. It also makes REFINE

complementary to reconstruction methods and applicable as a postprocessing stage to any of

them.

Test-Time Optimization. Test-time training [89] or optimization usually exploits inherent

structure of the data in a self-supervised manner, as no ground truth labels are available. In [89],

an auxiliary self-supervised rotation angle prediction task is leveraged to reduce domain shift

in object classification. The same goal is achieved in [101] by test-time entropy minimization.

Meanwhile, [98] uses self-supervision at test time to improve human motion capture. Additionally,

interactive user feedback serves to dynamically optimize segmentation predictions [78, 85, 37].

Test-Time Shape Refinement. Test-time shape refinement (TTSR) requires a postprocessing

procedure to improve the accuracy of meshes produced by a reconstruction network. Most

previous approaches are white-box methods, i.e. they are specific to a particular model (or class

of models) and require access to the internal workings of the model. Examples include methods

that exploit temporal consistency in videos, akin to multi-view 3D reconstruction [52, 55]. [52]

requires the unsupervised part-based video reconstruction architecture proposed by the authors

and [128] optimizes over a shape space specific to their architecture for zebra images. Among

white-box methods, the approach closest to REFINE is that of [76], which finetunes the weights

of the reconstruction network at test time, to better match the object silhouette. But even this

method is specific to sign distance function (DeepSDF [73]) networks. By instead adopting the

black-box bbTTSR paradigm, where the mesh refinement step is intentionally decoupled from

the reconstruction process, REFINE is capable of learning vertex-based deformations for a mesh

generated by any reconstruction architecture. Our experiments show that it can be effectively

applied to improve the reconstruction performance of many networks and achieves state of the

art results for test-time shape refinement, even outperforming [76] for DeepSDF networks. In
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Table 2.1: REFINE improves reconstruction by introducing only a small number of parameters,
relative to popular networks.

REFINE OccNet [63] MeshSDF [73] Pix2Mesh [104] AtlasNet [23]
Params. (M) 0.9 12.7 13.2 18.8 20.3

summary, unlike prior approaches, REFINE is a black-box technique that can be universally

applied to improve reconstruction accuracy, a posteriori.

2.3 Black-Box Test-Time Shape Refinement

2.3.1 Formulation and Inputs

Single view 3D reconstruction methods reconstruct a 3D object shape from a single image

of the object. This is implemented with a mapping

S : RW×H×3 → M ∈ V ×E , (2.1)

where an RGB image x ∈ RW×H×3 of width W and height H is mapped to a mesh M = (V,E) =

S(x) by a reconstruction network, where V ∈ V ⊂ RN×3 is a set of vertices and E ∈ E ⊂ B(
N
2)

a set of edges. B is a boolean domain specifying mesh connectivity. S(x) is usually a coarse

shape estimate, whose details do not match the input image, as shown in Figure 2.2. Performance

further degrades when x is sampled from an image distribution different from that used during

training [75].

In [76], it was explored whether or not the use of additional auxiliary test-time information

could help mitigate these problems. Their approach involved optimizing the parameters of S

on-the-fly during inference, given a coarsely reconstructed mesh S(x) = Mc = (Vc,Ec) ∈ M , an

object silhouette xs, and the camera pose p. We call this problem setting test-time shape refinement

(TTSR), and we propose to investigate an alternative class of black-box TTSR (bbTTSR) solutions
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which abstracts shape refinement from any black-box reconstruction network S. This consists of

introducing a dedicated refinement network R, external to S, to implement the shape refinement.

R is trained at test-time, so that the 3D mesh R◦S(x) more accurately approximates the object

shape, as illustrated in Figure 2.1. We denote the approach as REFINE and R as the REFINEment

network. In this formulation, R predicts a set of 3D displacements Vdis ∈ RN×3 for the vertices in

Vc. These are used to compute the REFINEd mesh Mr = (Vr,Er) = (Vc +Vdis,Ec) whose render

best matches the silhouette xs. Displacements are complemented by a set of symmetry confidence

scores VsCon f ∈ [0,1]N×1, which regularizes Vdis through a symmetry prior, as detailed in Section

2.3.3.

Several advantages derive from bbTTSR’s abstraction of refinement from reconstruction.

First, REFINE is a black-box technique, applicable to any network S. In fact, the network does not

even have to be available, only the mesh S(x), which gives REFINE a great deal of flexibility. For

example, while MeshSDF can only be used with DeepSDF networks, REFINE is applicable even

to voxel and pointcloud reconstruction methods, by using mesh conversions [45, 44, 5, 3]. This

property is important, as different methods are better suited for different downstream applications.

For example, implicit methods [63, 73] tend to produce the best reconstructions but can have

slow inference [73]. Meanwhile, AtlasNet [23] is less accurate but much more efficient, and

inherently provides a parametric patch representation useful for downstream applications like

shape correspondence. Second, because the refinement network R and loss functions used to

train it are independent of the reconstruction network S, they can be specialized to the test-time

shape refinement goal. This is important because the regularization required to avoid degenerate

solutions for the learning of R, which is based on a single mesh instance, is quite different from

that of S, which is learned from a large dataset. In REFINE, several loss functions tailored for

test-time training are proposed to achieve this. We also design R to be much smaller than S, to

lessen the additional computational overhead for refinement. As shown in Table 2.1, the REFINE

network is at least 10 times smaller than most currently popular reconstruction networks.
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single examples, at test time.

2.3.2 Architecture

Figure 2.3 summarizes the REFINE architecture. This is a combination of an encoder

E and a graph refiner G followed by 2 branches Bdis and BsCon f , which predict the vertex

displacements and vertex confidence scores respectively. The encoder module E contains L

neural network layers of parameters {θi}L
i=1, takes silhouette xs as input, and outputs a set of L

feature maps F(xs;Θl = {θ j}l
j=1) ∈ R Wl×Hl×Cl , of width Wl , height Hl and Cl channels. In our

implementation, E is based on ResNet [28]; L is set to 2, where C1 = 64 and C2 = 128.

Given feature map F(xs;Θl), the feature vector f v
l corresponding to a vertex v in Mc is

computed by projecting the vertex position onto the feature map [20, 104],

f v
l = Pro j(v;F(xs;Θl), p) ∈ R Cl , (2.2)

where p is the camera viewpoint and Pro j a perspective projection with bilinear interpolation.

Vertices are represented at different resolutions, by concatenating the feature vectors of different

layers into Fv = ( f v
1 , . . . , f v

L)
T . The set {Fv}N

v=1 of concatenated feature vectors extracted from

all vertices is then processed by a graph convolution [46] refiner G, of parameters φ, to produce
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an improved set of feature vectors {Hv}N
v=1 = G({Fv}N

v=1;φ). Finally, this set is mapped into the

displacement vector Vdis

Vdis = Bdis({Hv}N
v=1;ψdis), (2.3)

by a fully connected branch Bdis of parameters ψdis and into the confidence vector

VsCon f = BsCon f ({Hv}N
v=1;φ);ψsCon f ) (2.4)

by a fully connected branch BsCon f of parameters ψsCon f . Overall, the REFINE network imple-

ments the mapping

R(xs,Mc;{θi},φ,ψdis,ψsCon f , p) = {Vdis,VsCon f }. (2.5)

2.3.3 Optimization

The REFINE optimization combines popular reconstruction losses with novel losses

tailored for test-time shape refinement. In what follows we use Mp to denote a differentiable

renderer [42, 56] that maps mesh M ∈ M into its image captured by a camera of parameters p.

We also define sets V s
r , V s

dis, and V s
sCon f of size N, constructed with the rows of Vr, Vdis, and VsCon f

respectively. A set of popular reconstruction losses are used in REFINE, as follows.

Silhouette Loss: Penalizes shape and silhouette mismatch

LSil = LBCE(xs,γ(Mp
r )), (2.6)

where γ(Mp
r ) is the silhouette of the rendered shape, using the 2D binary cross entropy loss

LBCE(a,b) = ∑
i j

ai j log(bi j)+(1−ai j) log(1−bi j). (2.7)

16



Input
Image

Original
Mesh

Re�ined Mesh Input
Image

Original
Mesh

Re�ined Mesh

Figure 2.4: REFINEd reconstructions from an OccNet trained on ShapeNet. Results for objects
from ShapeNet (top row), Pix3D (middle rows), & 3D-ODDS (bottom row). REFINE can
correct small details as well as generate entirely new parts.

Displacement Loss: Discourages overly large vertex deformations, with

LDis = ∑
vi∈V s

dis

||vi||22. (2.8)

Normal Consistency & Laplacian Losses: LNc and LLp are widely used [104, 13] and encour-

ages mesh smoothness.

A second set of losses is introduced to avoid degenerate solutions, namely overfitting to

the input view during bbTTSR. These leverage the structural prior that many real world objects are

bilaterally symmetric about a reflection plane Z. Symmetry has long been exploited in computer

vision, graphics, and geometry [58]. Many methods (e.g. [63, 104]) learn symmetry implicitly

from the training data. Since datasets like Shapenet [7] are composed primarily of symmetric

objects, a learned bias towards symmetry is almost impossible to avoid. Symmetry can also be

explicit, e.g. [125] predicts planes of symmetry given 2D images to improve monocular depth

estimation, or used to regularize learning, e.g. with horizontal flips during training [111].
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Rather than 2D images, we exploit 3D shape symmetry by imposing two test-time

constraints on reconstructed 3D meshes: 1) object vertices should be symmetric, and 2) mesh

rendered images should reflect this symmetry. These leverage horizontal flips, vertex symmetry,

and camera symmetry. Reflections are implemented with transformation T = I − 2⃗n⃗n⊺, where

n⃗ ∈ R3 is the unit normal vector of the reflection plane Z. While there are methods to predict

planes of object symmetry [18, 125] we have found that most reconstruction networks output

aligned meshes, where n⃗ = [0,0,1]⊺. To prevent the symmetry prior from overwhelming (2.6) if

some asymmetry is present, confidence scores σi are learned during the REFINE optimization

per vertex vi. This enables local deviations from 3D symmetry when appropriate. The symmetry

losses are as follows.

Vertex-Based Symmetry Loss: Encourages symmetric mesh vertices according to

LV sym =
1
N

N

∑
i=1

σi min
v j∈V s

r

∥∥T vi − v j
∥∥2

2 +λSymB ln
(

1
σi

)
, (2.9)

where vi ∈V s
r are the mesh vertices and σi ∈V s

sCon f the associated symmetry confidence scores.

The first term penalizes distances between each vertex and its nearest neighbor upon reflection

about Z. This is weighted by the confidence score σi, which is low for vertices that should be

asymmetric based on the object silhouette. The second term penalizes small confidence scores,

preventing trivial solutions. The trade-off between the two terms is controlled by hyperparameter

λSymB ∈ [0,∞). As shown in Figure 2.6, scores σi are large except in areas of clear asymmetry.

Render-Based Image Symmetry Loss: Encourages image projections that reflect object symme-

try. Given m camera viewpoints PIsym = {p1, ..., pm}, T is used to obtain differentiably rendered

pairs from symmetric camera viewpoints {(Mp1
r ,MT p1

r ), ...,(Mpm
r ,MT pm

r )}, as shown in the rows

of Figure 2.5. The loss is defined as

LIsym =
1
m

m

∑
i=1

∑
j,k

[
σ j,k||γ(h(Mpi

r )) j,k − γ(MT pi
r ) j,k||22 +λSymB ln

(
1

σ j,k

)]
, (2.10)

18



Cam. 1 Render Cam. 2 RenderHorizontal Flip

Figure 2.5: To enforce symmetry, a mesh is differentiably rendered by two cameras; the
viewpoint of camera 2 is obtained by reflecting that of camera 1 about the mesh’s plane of
symmetry (yellow). The second render is compared to the horizontal flip of the first.

Vertex Sym. Conf. Textured Sym. Conf.Re�ined MeshOriginal MeshInput Image

Figure 2.6: Left to right: image, original mesh, REFINEd mesh, and vertex confidence weights
(shown as points or colors on the REFINEd mesh). Green shades indicate higher confidence;
red lower, relaxing the symmetry prior on asymmetric object parts.

where h(·) is an horizontal image flip and j,k are image coordinates. Symmetry is enforced by

minimizing the distance between the horizontal flip of each render Mpi
r and the render MT pi

r at

the symmetrical camera viewpoint. This is akin to comparing a “virtual image” of what the mesh

should symmetrically look like. Pixel-based confidence scores σ j,k are used as in (2.9). However,

they are not relearned, but derived from the vertex confidences σi, i ∈ V j,k, of (2.9) by barycentric

interpolation on the mesh faces, where V j,k are mesh face vertices projected into pixel j,k.

Overall Loss: REFINE is trained with a weighed combination of the six losses

Ltotal = λSilLSil +λIsymLIsym +λV symLV sym +λDisLDis +λNcLNc +λLpLLp. (2.11)

LSil is the main driving factor to ensure input silhouette consistency, while other losses serve

as regularizers to prevent degenerate solutions. Figure 2.7 shows that REFINEd shape quality

19



Input Image

Figure 2.7: Mesh shape improves as REFINEment optimizes.

tracks the evolution of this loss, for an airplane whose body has been truncated in the original

reconstruction. As the REFINE loss steadily decreases, the mesh progressively becomes more

faithful to the input image; this is seen in the elongated body and corrected wing shape.

2.3.4 Implementation Details

Several details of our implementation are worth noting. In all experiments we used PIsym

of 6 viewpoints, with azimuths in {15◦,45◦,75◦} and elevations in {−45◦,45◦}. The learning

rate is 0.00007, λSil = 10, λIsym = 80, λV sym = 20, λSymB = 0.0005 λDis = 100, λNc = 10, and

λLp = 10. Also, REFINE supports a variable number of vertices per mesh, generally converges in

400 iterations, and takes only seconds to complete when performed in parallel. More details are

given in the Appendix.

2.4 Multiview, Multidomain 2D & 3D Dataset

SVR is usually benchmarked on synthetic CAD datasets [7, 112] because these, albeit

unrealistic, allow renders of images from many viewpoints. While real data can also be collected

[50, 31, 9, 83], this has various difficulties resulting in datasets with different limitations. For

example, Pascal3D [114] contains diverse real indoor/outdoor settings, but meshes are only

approximations manually chosen from a CAD library. Pix3D [88] includes ground truth meshes

20



but is relatively small and primarily depicts furniture in indoor locations with uncontrolled

viewpoints. No existing real-world dataset enables systematic study of reconstruction across both

controlled viewpoints and domains.

In this work, we introduce the 3D-ODDS dataset to address these two fundamental

challenges towards generalizable vision. 3D-ODDS contains DSLR-captured images of 331

objects from 16 different classes with dense pose coverage (72 azimuths, 3 elevations) for 216

images per object, and 71,496 images total. These images were used to generate 3D meshes

for each object (331 meshes total, details in Appendix). Crucially, 232 of the objects can also

be found in two real-world, multiview image datasets: OOWL [29] and OWILD [30]. They

depict the same objects with 45◦ azimuth increments in different domains. OOWL images were

collected using drone cameras during flight, OWILD in diverse indoor/outdoor locations with

smartphones.

Note that the relatively small dataset size reflects the difficulty of real-world 3D data

collection. While insufficient for large scale SVR network training, 3D-ODDS is ideally suited

for tasks such as TTSR, domain adaptation, or few-shot learning, needed to translate shape

reconstruction research into real applications. Using synthetic CAD datasets alone is also

inadequate in achieving this goal. As illustrated in Figure 2.8, 3D-ODDS combines OTURN (our

collected turntable images and 3D meshes) with OOWL and OWILD images to create a uniquely

challenging hierarchical dataset of real images with 3 disentangled factors of variation: pose,

object class, and domain. This results in the first real-world dataset to provide both 3D meshes of

objects and their images under controlled viewpoints and domains. We believe that 3D-ODDS (to

be released publicly) will be an important testing ground to evaluate the real world robustness of

SVR methods.
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2.5 Experiments

2.5.1 Experimental Setup

Metrics: To evaluate bbTTSR performance, the original mesh is first reconstructed by a

baseline SVR method, and the reconstruction accuracy is measured. REFINE is then applied to

the mesh and its accuracy is measured again. Several metrics of 3D accuracy [93] are used: EMD,

l2 Chamfer Distance, F-Score, and 3D Volumetric IoU. Lower is better for EMD and Chamfer,

while higher is better for IoU and F-Score; for details please refer to the Appendix.

Datasets: Five datasets are considered, to carefully study domain shift. All baseline

models are trained on the synthetic ShapeNet dataset [7], with images rendered by [10] using

Blender [11]. We also re-rendered the 3D models in the test set of [10] using Pytorch3D [39].

This second dataset, called RerenderedShapeNet is designed to create a domain gap due to

significant differences in shading, viewpoint, and lighting. The third dataset is motivated by

our observation that about 97% of ShapeNet is symmetrical, in the sense that each mesh has

a symmetry loss LIsym < 0.01 for λSymB = 1 and σ j,k = 1. To ablate how asymmetry affects

reconstruction quality, we introduce a subset of RerenderedShapeNet, denoted as ShapeNetAsym,

containing 1259 asymmetric meshes. Fourth, we use the Pix3D dataset [88], which contains real

images and their ground truth meshes, to test for large domain shifts. Finally, we use 3D-ODDS

to study invariance to pose and image domain. For bbTTSR experiments, we use a subset of

3D-ODDS consisting of objects with high quality 3D mesh scans and images of 45◦ increment

azimuth angles found in OOWL, OWILD, and OTURN’s middle elevation. In total, this subset

consists of 212 objects, 3 domains, and 8 viewpoints, for a total of 212∗3∗8 = 5088 images and

212 meshes.
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Table 2.2: Ablation study of REFINE. Ltotal indicates that all losses are used; an asterisk
indicates results averaged over ShapeNetAsym instead of RerenderedShapeNet.

Configuration EMD↓ CD-l2 ↓ F-Score↑ Vol. IoU↑ 2D IoU
OccNet [63] 4.3 34.0 80 33 69

LSil 12.2 154.8 51 16 87
LSil,Dis,Nc,Lp 3.7 26.2 80 31 85

LSil,Dis,Nc,Lp,V sym 3.7 25.8 81 32 86
LLLtotal 3.3 22.5 84 35 85

E & G removed, Ltotal 3.5 24.5 82 33 87
E removed, Ltotal 3.4 24.1 82 34 87
E rand. init, Ltotal 3.4 23.1 83 35 85

OccNet* [63] 11.0 123.3 48 10 53
Ltotal , λSymB = 1.0* 8.9 89.1 52 10 72

LLLtotal∗∗∗ 7.8 85.9 55 12 76

2.5.2 Ablation Studies

Ablations were performed for different components of REFINE. Here we also measure

consistency between the reconstructed mesh’s render and the input image silhouette, using 2D

IoU. While not necessarily indicative of 3D accuracy, we use it in the following discussion to

better understand REFINE’s behavior.

The top section of Table 2.2 shows the effect of different REFINEments of Rerendered-

ShapeNet meshes originally reconstructed by OccNet. The first row is not refined. The second

row shows that, using the silhouette loss only (λSil = 10, all other λ = 0) improves input image

consistency (from 69 to 87 2D IoU), but the refined mesh severely overfits to the input view-

point, leading to decreased 3D accuracy. Adding the popular regularizers (third row, λDis = 100,

λNc = 10, λLp = 10) improves 3D reconstruction, but the gains over the baseline are small. The

fourth row shows that enforcing vertex symmetry (λV sym = 20,λSymB = 0.0005) has marginal

improvements by itself. However, when combined with render-based image symmetry (row five,

which further adds the image symmetry loss with λIsym = 80) it enables significant gains in all

metrics (e.g. from 34 to 22.5 CD-l2).

The middle section of the table uses all losses, ablating architectural components by

removing both encoder E and graph refiner G (directly optimizing the mesh deformation with

24



Input Image

Input Mesh

+ Smoothness+ DisplacementSilhouette + Symmetry

Figure 2.9: Leftmost column: input image and mesh. Other columns: REFINEment improves
with an increasingly larger set of losses (left to right).

Table 2.3: Reconstruction accuracies with no domain shift. Top: single view reconstruction
(SVR) networks. Bottom: test-time shape refinement (TTSR) methods. TTSR results presented
by accuracy before → after refinement, with gain shown in parenthesis.

EMD ↓ CD-l2 ↓ F-Score ↑ Vol. IoU ↑

SVR

AtlasNet [23] 8.0 13.0 89 30
Mesh R-CNN [20] 4.2 10.3 90 52

Pix2Mesh [104] 3.4 8.0 93 48
DISN [118] 2.6 9.7 91 57

TTSR
MeshSDF [76] 3.0→2.5 12.0→7.8 91→95 -(-0.5) (-4.2) (+4)

REFINEd OccNet [63] 2.9→2.3 12.2→7.5 91→96 57→59
(-0.6) (-4.7) (+5) (+2)

no network), removing only E, and randomly initializing E. These refinements improve on the

original mesh, but underperform the implementation of REFINE using G and E with ImageNet

weights (row 5). We hypothesize this is because E and G provide a useful high dimensional

projection for mesh deformation, similar to the inductive bias from architectural parameterization

studied in [99, 24].

The bottom three rows of Table 2.2 use ShapeNetAsym to study the effect of asymmetry

on REFINE performance. The sixth row is not refined. The seventh row shows that when

the confidence scores of (2.9) and (2.10) are removed (by setting λSymB = 1, in which case the

confidence scores become approximately 1) the refinement of asymmetrical meshes is significantly

less accurate than that of the default configuration (eighth row, λSymB = 0.0005). It can also be

seen that, when confidence scores are used, the reconstruction quality is significantly superior to
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Table 2.4: REFINEment in the presence of mild domain shift, namely RerenderedShapeNet
reconstructions by ShapeNet trained networks. Gains occur under all networks, classes, and
metrics.

EMD ↓ CD-l2 ↓ F-Score ↑ Vol. IoU ↑

REFINEd OccNet [63] 4.3 → 3.3 34.0 → 22.5 80 → 84 33 → 35
(-1.0) (-11.5) (+4) (+2)

REFINEd Pix2Mesh [104] 4.8 → 3.5 38.0 → 23.1 67 → 78 22 → 27
(-1.3) (-14.9) (+11) (+5)

REFINEd AtlasNet [23] 6.2 → 4.9 62.5 → 32.9 56 → 72 8 → 13
(-1.3) (-29.6) (+16) (+5)

REFINEd Pix2Vox [117] 4.5 → 3.3 37.3 → 21.8 70 → 80 27 → 34
(-1.2) (-15.5) (+10) (+7)

that of the original meshes. In summary, the proposed confidence mechanism enables effective

REFINEment of non-symmetric objects.

Figure 2.9 illustrates the contribution of each loss. The leftmost column shows the input

airplane image (top) and mesh (bottom). From the second column, we progressively add more

losses. With only the silhouette loss, degenerate solutions occur, severely overfitting to the input

viewpoint. The displacement loss helps regularize deformation magnitude; the smoothness losses

reduce jagged artifacts; the symmetry losses correct shape details (e.g. airplane tail) by enforcing

a symmetry prior. These operate intuitively and can be tweaked for target applications. For

example, if only symmetric objects are considered λSymB can be increased.

2.5.3 bbTTSR Results

We next consider the robustness of REFINE postprocessing to different levels of domain

gap. A first set of experiments was performed without domain gap, with reconstruction networks

trained and tested on the ShapeNet renders of [10]. Table 2.3 compares different reconstruction

networks and TTSR methods (full per-class results in Appendix). Since the weights used in the

state of the art method of [76] are not publicly available, we instead REFINEd OccNet1 [63]. The

1OccNet and the unrefined version of MeshSDF are comparable (both implicit based) and have nearly identical
performance prior to refinement.
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REFINE+OccNet combination beats the state of the art, despite a somewhat unfair comparison,

since REFINE performs black-box TTSR and is applicable to any network while the MeshSDF

refinement of [76] is specific to its network.

Several experiments were next conducted to evaluate the effectiveness of REFINEment in

the presence of domain gap. Table 2.7 gives reconstruction accuracy for RerenderedShapeNet

reconstructions, before and after REFINEment, of ShapeNet pretrained networks. Four rep-

resentatives of different reconstruction strategies are considered: OccNet (implicit functions

[63]), Pixel2Mesh (ellipsoid deformation [104]), AtlasNet (surface atlas elements [23]), and

Pix2Vox (voxel outputs, converted to mesh [117, 61]). A larger table with per-class results is

presented in the Appendix; REFINE provides gains for all classes. The pre-refinement results of

Table 2.7 are generally worse than those of Table 2.3. While the methods perform well on the

training domain, they struggle to generalize to out-of-distribution data. However, REFINEment

significantly recovers much of the lost performance for all networks, for relatively little extra

computational overhead. Gains are particularly large for the Chamfer distance (-11.5 for OccNet,

-14.9 for Pixel2Mesh, and -29.6 for AtlasNet) and increase with network sensitivity to domain

gap (e.g. largest for AtlasNet, which has the weakest performance).

We next considered real-world datasets, which have the largest domain gap and are more

interesting for applications. Table 2.5 shows that on Pix3D, REFINE gains are qualitatively

identical to those of Table 2.7. A comparison to the TTSR method of [76] on “Chair” shapes (the

only class considered in [76]) again shows that REFINE substantially improves on the state of the

art. This occurs even though performance prior to refinement is actually worse for OccNet than

MeshSDF (Chamfer Distance 110.7 vs 102).

Finally, we studied pose and domain invariance using the 3D-ODDS dataset. For sim-

plicity, we focused on OccNet and the F-score metric (as EMD and CD are unbounded). For

each object, we measured accuracy before and after REFINEment using its 24 images as input.

Boxplots of example results are shown in Figure 2.10 (larger version in Appendix). Averaged
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Table 2.5: REFINEment gain for large domain shifts, namely Pix3D reconstructions by
ShapeNet trained networks. REFINE achieves gains under all metrics and for all networks.
REFINE is even able to improve on classes not seen during training (asterisked).

EMD ↓ CD-l2 ↓ F-Score ↑ Vol. IoU ↑

MeshSDF [76] Chair 11.9 → 9.8 102.0 → 89.0 - -(-2.1) (-13.0)

REFINEd
OccNet [63]

Chair 11.0 → 8.5 110.7 → 74.5 57 → 62 18 → 20
Bed* 7.5 → 6.1 70.1 → 47.9 57 → 62 22 → 23

Bookcase* 7.4 → 4.1 72.0 → 38.5 56 → 65 9 → 12
Desk 7.6 → 6.7 60.6 → 43.7 71 → 72 26 → 27
Misc* 10.2 → 5.4 129.6 → 69.8 46 → 55 19 → 20
Sofa 3.2 → 3.1 30.8 → 25.5 75 → 76 50 → 51
Table 6.5 → 5.6 67.7 → 57.8 60 → 62 16 → 17
Tool* 10.8 → 8.6 140.8 → 118.6 51 → 60 11 → 14

Wardrobe* 5.9 → 3.7 49.9 → 29.3 65 → 68 54 → 55

Mean 7.9 → 5.8 81.4 → 56.2 59 → 65 23 → 28
(-2.1) (-25.2) (+6) (+5)

per-object mean accuracy before and after REFINE, over all objects, were 37.2 and 44.4 re-

spectively, while averaged per-object standard deviation were 16.2 and 14.3. This indicates that

REFINE improves both reconstruction accuracy and invariance. Figure 2.11 summarizes averaged

performance across pose angle, domain, and object class. REFINE improves reconstruction in all

cases.

These results provide insight on the limitations of current reconstruction networks. OOWL

(noisiest due to drone camera shake) is the hardest domain on average, followed by OWILD and

OTURN (least noisy). Viewpoints at 0 and 180 degrees are most challenging: it is generally

more difficult to infer object shape directly from the front or back. Geometrically simple classes

like bottles, cans, and bowls perform better than average, with some exceptions like remotes

(simple but do not do well). REFINE is beneficial for both classes seen and not seen during

training (the latter marked by asterisks). To quantify the relationship between the 3 factors (pose,

domain, class) and REFINEd accuracy, we used a 3-way ANOVA[17], with a blocked design to

account for object-specific variability. Details are given in the Appendix; all factors were found

statistically significant and total variability was decomposed into 13% class, 2% pose, 1% domain,
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Figure 2.10: 3D-ODDS objects have 24 images (3 domains, 8 viewpoints). Reconstruction
accuracies plotted before (after) REFINE as orange (green). REFINE improves performance &
invariance.

19% object instance, and 17% from interaction effects between pose/class/domain.

Overall, Tables 2.3 2.7, 2.5, and Figures 2.10, 2.11 show bbTTSR with REFINE achieves

state of the art reconstruction accuracies, consistently providing performance gains regardless of

metric, original base reconstruction network, class, viewpoint, domain, or dataset. Furthermore,

gains are consistent or slightly better as domain gap widens; for the best performing OccNet,

utilizing REFINE yields F-Score average improvements of 5, 4, 6, 5, 7, and 6 on ShapeNet,

RerenderedShapeNet, Pix3D, OTURN, OWILD, and OOWL. These improvements are illustrated

in Figure 2.4. REFINE can both sharpen details (i.e. airplane’s elongated nose) and create entirely

new parts (set of wings in the back). It can also recover from very poor reconstructions due to

significant domain shift, such as in the table and chair from Pix3D. It especially excels in unusual

“outlier” shapes, such as the phone’s antenna or convertible car from 3D-ODDS and is successful

even for classes on which the original reconstruction method was not trained, leading to poor

original meshes. This includes the spoon and bed in Figure 2.4; unseen classes marked by an

asterisk in Table 2.5 and Figure 2.11. Additional examples provided in the Appendix.
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Figure 2.11: Performance & standard deviation on 3D-ODDS across viewpoint, domain, &
class (asterisked unseen during training). Compared to original scores (orange), REFINEing
(green) generally improves accuracy while decreasing variability.

2.6 Discussion

In this paper, we demonstrated the effectiveness and versatility of black-box test-time

shape refinement (bbTTSR) for single view 3D reconstruction. The proposed REFINE method

enforces regularized input image consistency, and can be applied to any reconstruction network

in the literature. Experiments show systematic significant improvements over the state of the

art, for many metrics, datasets, and reconstruction methods. A new hierarchical multiview,

multidomain image dataset with 3D meshes, 3D-ODDS, was also proposed and shown to be

a uniquely challenging benchmark for SVR. We believe that the bbTTSR paradigm and the

3D-ODDS dataset will remain relevant as future reconstruction networks are introduced, inspiring

further work towards robust and accurate reconstruction methods.
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2.8 Appendix

2.8.1 Additional Notes on REFINE

2.8.1.1 Extended Figures and Tables

Several figures and tables are given in this Appendix to complement the main paper.

Figure 2.12 illustrates that although OccNet [63], Pix2Mesh [104], and AtlasNet [23] produce

very different failure cases and artifacts, REFINE improves the both the input image consistency

and 3D accuracy of all methods. For detailed per-class results on ShapeNet, please refer to Table

2.6. For per-class results on RerenderedShapeNet, refer to Tables 2.7 and 2.8. Figures 2.21

and 2.22 provides performance measurements visualized as a heatmap for 3D-ODDS across the

class/angle and domain/angle factors. Figure 2.30 plots reconstruction accuracies on a per-object

basis, for all objects in 3D-ODDS.

Figures 2.23 and 2.24 show more REFINE examples on real-world images (Pix3D and

3D-ODDS). Figure 2.25 is on RerenderedShapeNet, while Figure 2.26 is on ShapeNet. All these

figures use an OccNet to reconstruct the original mesh. For REFINEment examples using the

AtlasNet, Pix2Mesh, and Pix2Vox reconstruction methods, please refer to Figures 2.27, 2.28, and

2.29 respectively.

2.8.1.2 Scope, Limitations, and Future Work

Test-time shape refinement explores whether or not reconstructions can be improved by

the use of additional auxiliary test-time information. In the work of [76], this was performed

by optimizing the parameters of a SVR network given a coarsely reconstructed mesh, object

silhouette, and pose. We also follow this input setting, which allows us to focus on studying

REFINE independently without confounding factors. Research in automatic image segmenta-

tion [77, 26, 126, 2] and pose estimation [115, 94, 33] is beyond the scope of this paper, and

advancement in those tasks is left for future research. Additionally, we believe that the REFINE
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Figure 2.12: An airplane reconstructed by three different methods [63, 104, 23]. Since the
methods differ greatly, they exhibit very different failure cases and artifacts. Nevertheless,
REFINE improves all reconstructions.

(a) OTURN Domain
(In the lab, turntable & DSLR Camera to create 3D meshes.)

(b) OOWL Domain
(In the lab, �lying drone camera)

(c) OWILD Domain
(Real indoor/outdoor locations, smartphone camera)

Figure 2.13: Data collection differs for each domain of 3D-ODDS. OTURN uses a high
resolution camera turntable setup, generating 3D meshes using structure-from-motion. OOWL
is captured using a drone camera, mid-flight. OWILD depicts objects in diverse indoor/outdoor
locations with smartphone cameras.

paradigm and 3D-ODDS dataset provide an excellent foundation for future improvements in

test-time refinement and generalizable reconstruction. For example, it may be worthwhile to

explore more complex architectures, high level learned priors, topological modifications, and

generative/adversarial formulations. They may lead to more powerful refinements, but also

significantly increased challenges in avoiding degenerate solutions.
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2.8.1.3 Potential on Societal Impact

REFINE is a relatively lightweight instance-based, class-agnostic postprocessing step. It

does not rely on any dataset to train on; its effectiveness is due its formulation, designed architec-

ture, and proposed loss functions. Thus, we do not anticipate immediate negative environmental,

fairness, or privacy concerns directly resulting from REFINE. However, it requires a black-box

separate single view reconstruction network S which reconstructs the original meshes. In real

world deployments we encourage understanding the design and training procedure of S, especially

its potential biases and security/privacy concerns which may be problematic in some neural

networks [106, 103].

2.8.1.4 REFINE Architecture

The feature map encoder is based on the first two convolutional layers of ResNet-18

[28]. The dimension of all 8 graph convolution layers used is 128, and each is followed by a

ReLU nonlinearity. Vdis is predicted with a single fully connected layer, while VsCon f is predicted

with fully connected layers of sizes 32, 16, and 1 (a ReLU follows each except for the last,

which uses sigmoid). The feature map encoder is initialized using ImageNet [12] classification

pretrained weights, while all other weights are randomly initialized; no weights are frozen during

optimization. We use the PyTorch3D differentiable renderer [39], which is implemented based on

[56]. All hyperparameters were tuned with a small portion of RerenderedShapeNet, disjoint from

the test set.

2.8.1.5 Loss Functions

The weights chosen for the loss functions are λSil = 10, λIsym = 80, λV sym = 20, λSymB =

0.0005 λDis = 100, λNc = 10, and λLp = 10. We found that this configuration works well overall in

practice; however, they are not overly sensitive and changing them by ±25% didn’t change results

significantly. Beyond this range, we observed that these weights operate intuitively as one would
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Figure 2.14: A venn diagram of objects that can be found in the 3D-ODDS dataset’s three
domains: OTURN, OOWL, and OWILD. 232 objects can be found simultaneously in all three
domains.

expect (as illustrated in Figure 9 of the main paper). In general, they are not difficult to tune and

practitioners can modify them accordingly with their use case. For example, one might increase

the weight of λdis if they are confident that in their use case, input reconstructions are already

of relatively high quality. This would effectively apply a stronger prior towards minimizing the

displacements’ magnitudes. Alternatively, if only symmetric objects are considered λSymB can be

increased.

Additionally for the symmetry losses, there are methods to predict planes of object

symmetry [18, 125] but we found them to be unnecessary since most reconstruction methods

output semantically aligned meshes for objects of the same class. In general, the objects are

aligned so that Z is the vertical plane with n⃗ = [0,0,1]⊺. We adopt this convention in all our

experiments. For the image rendering based symmetry loss, we also tried to use differentiably

rendered normal maps and depth maps instead of only silhouettes. However, we found that this

increased the computational complexity, and resulted in nearly the same performance.
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Figure 2.15: Comparisons between ShapeNet renderings from Choy Et al. [10] and Rerendered-
ShapeNet. Both use the same 3D models, but a domain gap is intentionally created through
viewpoint, lighting, and rasterization implementation differences in the rendering process.

2.8.1.6 Time Efficiency

Ideally, test-time shape refinement postprocessing should support any mesh and be fast.

REFINE intrinsically satisfies the first requisite, since it is black-box, class-agnostic, and allows

variable number of vertices per mesh. Optimization from scratch converges in relatively few

iterations, approximately 400 (i.e. 400 forward and backward passes). This requires about 90

seconds on a GTX 1080Ti GPU. Moreover, because instances are treated independently, the

refinement is trivially parallelizable. Since 4 instances fit on a GPU, a two GPU server trivially

achieves a per-instance refinement time of 90/(4∗2)≈ 11 seconds, which is effective in terms of

the second requisite.

2.8.2 Dataset Additional Details

Three new datasets are proposed in this paper: 3D-ODDS, RerenderedShapeNet, and

ShapeNetAsym. All datasets will be publicly released upon publication. More details about these

datasets are provided as follows.
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Figure 2.16: Example images from the ShapeNetAsym dataset.

2.8.2.1 3D-ODDS

The proposed 3D-ODDS dataset contains multiview objects in 3 domains, as illustrated in

Figure 2.13. The first domain is the contribution of this paper, OTURN, which is taken in the

lab using a turntable and DSLR camera. 331 objects were imaged with dense pose coverage; 3

elevation angles and 72 azumuth angles (5◦ increments), for 331∗3∗72 = 71,496 total images

which are of high resolution with simple backgrounds. All the OTURN images for an example

airplane object is provided in Figure 2.20. These images were then used to reconstruct a mesh

for each object, using structure-from-motion software [60]. The second domain is OOWL [29],

with multiview (45◦ azimuth increments) images of objects collected in the lab using a drone

camera. These images have a green background and can be blurry, due to camera shake from

flight. The third domain is OWILD [30], which contains multiview images of objects (also 45◦

azimuth increments) in diverse real world indoor/outdoor locations. These images are taken with

a smartphone camera. A venn diagram of the objects found in these domains is given in Figure

2.14; 232 objects can be simultaneously found in OTURN, OOWL, and OWILD. More example

objects in the 3D-ODDS dataset are shown in Figures 2.18 and 2.19.

Note that some imperfections are present in the mesh scans, as a natural consequence

of real-world 3D data collection. This can be due to absence of texture or difficult material

reflectance properties. To account for this, we manually annotated each mesh’s quality; there

are 101 excellent quality meshes, 198 high quality meshes, and 32 low quality meshes. High

quality meshes are characterized by overall geometrical resemblance to the true shape; some

small superficial noise artifacts may exist. In all experiments, we only considered objects found
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in OTURN, OOWL, and OWILD with excellent/high quality meshes; this subset consists of 212

objects.

2.8.2.2 RerenderedShapeNet and ShapeNetAsym

RerenderedShapeNet matches the ShapeNet [7] models in the test set given by [10].

However, a small domain gap is intentionally induced compared to the images from [10] through

differences in the rendering process. This allows us to measure the robustness of SVR methods to

domain gaps of various sizes between training on [10] and inference (on RerenderedShapeNet,

ShapeNetAysm, Pix3D, or 3D-ODDS). In particular, [10] is rendered textured with Blender’s

Eevee engine [11] at distance 0.8, uses 2 sun light sources 180 degrees rotated from one another,

with specular and diffuse shading disabled. Meanwhile, RerenderedShapeNet is rendered tex-

tureless with PyTorch3D’s Hard Phong shading [39] at distance 1, uses a point light source at

(0,5,−10), with ambient intensity 0.3, specular intensity 0.2, and diffuse intensity 0.3. Images

in both have an elevation of 40◦ and randomly samples azimuths uniformly. An illustration of

differences between RerenderedShapeNet and renderings from [10] is shown in Figure 2.15. In

total, RerenderedShapeNet contains 8629 images and meshes.

We also introduced an asymmetric subset of RerenderedShapeNet called ShapeNetAsym

containing 1259 images and meshes. The meshes are all asymmetrical, in the sense that each

mesh has a symmetry loss LIsym < 0.01 for λSymB = 1 and σ j,k = 1. Some examples from

ShapeNetAsym can be found in Figure 2.16.

2.8.3 Evaluation Details

2.8.3.1 Analysis of Variance Results

Analysis of Variance (ANOVA) [17] is a commonly used statistical model and hypothesis

testing framework for splitting observed variability into systemic factors and random error.
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Figure 2.17: A 2D illustration of why a surface-based coarsely voxelized IoU metric (top) can
be inaccurate, compared to the standard volumetric IoU (bottom). Surface-based voxelized IoU
heavily underrepresents the intersection-based similarity of the two shapes compared to the
volume based approach.

In particular, it can be used to model the influence of categorical independent variables (i.e.

“factors”) on a continuous dependent variable, to check if they are statistically significant. Due to

its hierarchical structure, 3D-ODDS has 3 factors: class (14 levels, one for each class), domain (3

levels in OTURN, OOWL, OWILD) and pose (8 levels from 45◦ viewpoint azimuth increments).

This suggests a 3-way ANOVA with blocked design, to account for object-based variability

and dependencies (i.e. each object comprises a block). Our dependent variable in this case is

F-Score after REFINEment of an OccNet. All factors, pairwise interaction effects, and triplet

interaction effects were found to be statistically significant at the α = 0.05 level. total variability

was decomposed into 13% class, 2% pose, 1% domain, 19% object instance. Interaction effects

between (class,domain), (class, angle), (domain, angle), and (class, domain, angle) were found to

be 7.6% , 6.8% , 0.3%, and 2.5% respectively, for 17.2% in total attributed to interaction effects

between the factors.

Note that ANOVA has several assumptions. The dependent variable should be additively

influenced, and ideally errors should be independent, homoscedastic, and Gaussian (though

ANOVA is considered relatively robust to some departures [59, 21], due to the central limit

theorem). In light of this, we suggest viewing these ANOVA results as a simple summary

heuristic useful for gaining further intuition and insight into 3D-ODDS, rather than dogma.
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2.8.3.2 Metrics

We detail the metrics used in the main paper below. For Pix3D, we follow the practice

of [76] and exclude images where the object is truncated resulting in 5325 test instances. The

meshes used in this work have approximately 1500 vertices, although REFINE can handle much

larger meshes (the only limitation being GPU memory).

The Earth Mover Distance (EMD) measures distance between point clouds S1,S2

sampled from two meshes, by solving the assignment optimization problem given by

dEMD(S1,S2) = min
φ:S1→S2

∑
x∈S1

∥x−φ(x)∥2, (2.12)

where φ is an optimal bijection. Because exactly computing EMD is too expensive, we utilize the

approximation given by [16]. Like [76], we sample 2048 points from the reconstructed mesh and

target mesh, scaled so it fits in a sphere of radius 1. For this metric, lower is better.

Chamfer-l2 Distance (CD-l2) is a widely used metric in the 3D literature [63, 23, 104, 16].

It computes the average nearest neighbor distance between points sampled from two meshes.

Given these two sampled point clouds S1,S2, their Chamfer-l1 distance is

dCD−l2(S1,S2) = ∑
p∈S1

min
q∈S2

∥p−q∥2
2 + ∑

q∈S2

min
p∈S1

∥p−q∥2
2. (2.13)

Just like EMD, we follow [76] and sample 2048 points from the reconstructed mesh and target

mesh, scaled so it fits in a sphere of radius 1. For this metric, lower is better.

F-score is formulated as the harmonic mean between precision and recall at a distance

threshold between two shapes. Precision involves the number of points on the reconstruction

which lie a certain distance to ground truth; recall measures completeness by the number of points

on the ground truth which lie within a certain distance to the reconstruction. Like [76], we set

this distance threshold to be 0.05 and sample 10000 points after rescaling to a sphere of radius 1.
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Table 2.6: Extended, per-class results for reconstruction accuracy with no domain shift.

Metric Method Airplane Bench Cabinet Car Chair Display Lamp Speakers Rifle Sofa Table Telephone Watercraft Mean

EMD ↓

AtlasNet [23] 6.3 7.9 9.5 8.3 7.8 8.8 9.8 10.2 6.6 8.2 7.8 9.9 7.1 8.0
Mesh R-CNN [20] 4.5 3.7 4.3 3.8 4.0 4.6 5.7 5.1 3.8 4.0 3.9 4.7 4.1 4.2

Pix2Mesh [104] 3.8 2.9 3.6 3.1 3.4 3.3 4.8 3.8 3.2 3.1 3.3 2.8 3.2 3.4
DISN [118] 2.2 2.3 3.2 2.4 2.8 2.5 3.9 3.1 1.9 2.3 2.9 1.9 2.3 2.6

MeshSDF [76] 3.3→2.5 2.5→2.1 3.2→3.0 2.2→2.0 2.8→2.4 3.0→2.4 4.2→3.2 3.5→2.9 2.6→1.9 2.7→2.4 3.1→2.7 1.9→1.7 2.9→2.3 3.0→2.5
REFINEd OccNet [63] 3.0→2.4 2.4→2.0 3.1→1.9 2.3→1.9 2.8→2.6 2.4→2.3 5.4→3.4 4.8→2.7 2.5→2.4 2.8→1.7 3.4→2.3 1.3→1.2 2.9→2.4 2.9→2.3

CD-l2 ↓

AtlasNet [23] 10.6 15.0 30.7 10.0 11.6 17.3 17.0 22.0 6.4 11.9 12.3 12.2 10.7 13.0
Mesh R-CNN [20] 13.3 8.3 10.5 7.2 9.8 10.9 16.4 14.8 6.9 8.7 10.0 6.9 10.4 10.3

Pix2Mesh [104] 12.4 5.5 8.2 5.6 6.9 8.2 12.3 11.2 6.0 6.8 7.9 4.7 7.9 8.0
DISN [118] 6.3 6.6 11.3 5.3 9.6 8.6 23.6 14.5 4.4 6.0 12.5 5.2 7.8 9.7

MeshSDF [76] 10.6→6.3 9.5→5.4 8.8→7.8 4.2→3.5 8.2→5.9 12.4→7.3 25.9→14.9 20.4→12.1 8.9→3.4 11.5→7.8 14.6→10.7 6.2→3.9 17.1→10.0 12.0→7.8
REFINEd OccNet [63] 7.5→6.5 8.5→5.3 7.4→5.2 5.3→4.9 13.1→8.1 18.7→11.7 30.2→13.1 18.5→10.5 5.9→3.9 10.0→7.1 11.7→8.8 7.6→3.5 11.9→9.1 12.2→7.5

F-Score ↑

AtlasNet [23] 91 86 74 94 91 84 81 80 96 91 91 90 90 89
Mesh R-CNN [20] 87 91 90 95 90 89 83 85 93 92 90 95 91 90

Pix2Mesh [104] 88 95 94 97 94 92 89 89 95 96 93 97 94 93
DISN [118] 94 94 89 96 90 92 78 85 96 96 87 96 93 91

MeshSDF [76] 92→96 95→97 92→94 98→98 94→97 91→95 85→91 86→91 96→98 94→96 91→94 95→98 93→95 91→95
REFINEd OccNet [63] 94→96 95→97 94→97 93→95 90→94 89→96 81→92 86→92 95→95 92→95 92→95 96→96 90→94 91→96

Vol. IoU ↑

AtlasNet [23] 39 34 21 22 26 36 21 23 45 28 23 43 28 30
Pix2Mesh [104] 42 32 66 55 40 49 32 60 40 61 40 66 40 48

DISN [118] 58 53 52 74 54 56 35 55 59 66 48 73 56 57
REFINEd OccNet [63] 57→59 49→55 73→73 73→74 50→51 47→49 37→43 65→65 47→49 68→69 51→52 72→72 53→54 57→59

For more details, please refer to [93]. For this metric, higher is better.

Volumetric IoU is a standard metric [93] computed by the volume of two meshes’ union

divided by the volume of their intersection. Like [63], we obtain an unbiased estimate by

randomly sampling 100k points in the bounding volume and checking if points are inside the

meshes (scaled to radius 1). A higher score is better. Non-watertight meshes were made watertight

with ManifoldPlus [34]. Note that MeshSDF [76] reports scores for their non-standard version

of the 3D IoU which only accounts for coarsely 30×30×30 voxelized 3D surface, not internal

volume. As this can be highly misleading (see Figure 2.17), we instead use the conventional

definition of 3D IoU in all experiments.
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Figure 2.18: Additional example images and mesh for objects in the Airplane class of 3D-
ODDS.
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Figure 2.19: Additional example images and mesh for objects in 3D-ODDS.
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OTURN Elevation 1

OTURN Elevation 2

OTURN Elevation 3

Figure 2.20: All 216 images for an airplane object in the OTURN domain of 3D-ODDS. There
are 72 azimuth angles (increments of 5◦) for 3 elevation angles.
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Figure 2.21: F-score performance and standard deviation (in parenthesis) on the 3D-ODDS
dataset across the class and angle factors, before → after REFINEment. Colors correspond to
accuracy after REFINEment, normalized across the table. Red indicates lower accuracy, green
indicates higher.
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Figure 2.22: F-score performance and standard deviation (in parenthesis) on the 3D-ODDS
dataset across the domain and angle factors, before → after REFINEment. Colors correspond to
accuracy after REFINEment, normalized across the table. Red indicates lower accuracy, green
indicates higher.

Table 2.7: REFINEment in the presence of mild domain shift, namely RerenderedShapeNet
reconstructions by ShapeNet trained networks OccNet, Pix2Mesh, and AtlasNet. REFINE
achieves gains under all networks, classes, and metrics.

REFINEd OccNet [63] REFINEd Pix2Mesh [104] REFINEd AtlasNet [23]
EMD ↓ CD-l2 ↓ F-Score ↑ Vol. IoU ↑ EMD ↓ CD-l2 ↓ F-Score ↑ Vol. IoU ↑ EMD ↓ CD-l2 ↓ F-Score ↑ Vol. IoU ↑

Airplane 3.5 → 2.2 20.6 → 11.4 86 → 91 38 → 40 3.7 → 2.3 22.3 → 11.0 65 → 88 12 → 22 5.3 → 3.8 41.9 → 18.2 60 → 82 5 → 13
Bench 2.9 → 2.2 28.6 → 17.0 84 → 86 20 → 20 3.6 → 2.6 28.0 → 19.9 65 → 76 9 → 11 4.9 → 4.6 50.0 → 37.7 58 → 68 5 → 8

Cabinet 3.4 → 2.7 17.0 → 14.8 83 → 85 45 → 46 3.6 → 3.0 20.2 → 16.4 74 → 78 37 → 39 4.3 → 4.1 30.7 → 19.9 59 → 75 14 → 17
Car 2.9 → 2.5 19.9 → 12.9 86 → 87 30 → 31 2.7 → 2.3 10.8 → 7.8 85 → 90 24 → 27 7.6 → 4.8 98.8 → 27.0 44 → 72 6 → 12

Chair 6.5 → 5.4 48.5 → 39.4 72 → 76 29 → 32 6.3 → 4.5 35.4 → 25.2 60 → 73 17 → 22 6.8 → 5.0 49.5 → 27.3 53 → 71 8 → 13
Display 3.5 → 2.7 30.8 → 18.1 76 → 83 31 → 37 4.2 → 3.0 28.0 → 17.4 72 → 81 25 → 32 4.9 → 4.5 43.1 → 30.0 61 → 71 10 → 14
Lamp 8.9 → 6.3 90.5 → 59.1 68 → 73 22 → 23 9.2 → 7.0 71.6 → 40.6 50 → 66 11 → 14 10.2 → 7.5 102.4 → 51.1 44 → 62 5 → 10

Speakers 4.4 → 3.6 29.8 → 22.3 73 → 76 43 → 44 4.3 → 3.8 31.4 → 25.5 65 → 70 36 → 38 5.4 → 4.7 46.6 → 27.7 55 → 69 13 → 17
Rifle 6.5 → 3.9 37.7 → 14.6 86 → 91 30 → 30 3.5 → 3.4 18.1 → 10.1 76 → 91 12 → 21 6.3 → 4.5 61.4 → 28.6 70 → 84 7 → 14
Sofa 3.0 → 2.7 23.8 → 17.9 83 → 85 48 → 49 4.3 → 3.2 24.8 → 21.8 71 → 79 34 → 40 5.3 → 4.7 48.0 → 31.1 63 → 73 15 → 19
Table 4.5 → 3.9 40.6 → 34.3 72 → 77 17 → 20 9.3 → 6.2 159.3 → 81.8 30 → 44 6 → 8 8.9 → 7.4 129.6 → 82.7 36 → 47 4 → 8

Telephone 2.3 → 2.0 10.9 → 8.0 90 → 92 48 → 50 2.2 → 1.8 10.9 → 8.2 89 → 92 40 → 44 3.4 → 3.3 33.6 → 20.8 66 → 79 11 → 16
Watercraft 4.3 → 2.9 42.4 → 23.5 80 → 86 32 → 36 5.0 → 2.7 32.7 → 14.0 71 → 86 16 → 27 7.1 → 4.3 76.8 → 25.5 55 → 79 6 → 15

Mean
4.3 → 3.3 34.0 → 22.5 80 → 84 33 → 35 4.8 → 3.5 38.0 → 23.1 67 → 78 22 → 27 6.2 → 4.9 62.5 → 32.9 56 → 72 8 → 13

(-1.0) (-11.5) (+4) (+2) (-1.3) (-14.9) (+11) (+5) (-1.3) (-29.6) (+16) (+5)
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Table 2.8: REFINEment in the presence of mild domain shift, namely RerenderedShapeNet
reconstructions by a ShapeNet trained Pix2Vox Network. REFINE achieves gains under all
classes and metrics.

REFINEd Pix2Vox [117]
EMD ↓ CD-l2 ↓ F-Score ↑ Vol. IoU ↑

Airplane 4.5 → 2.3 19.7 → 7.3 71 → 93 19 → 38
Bench 2.9 → 2.5 25.3 → 16.5 72 → 80 12 → 16

Cabinet 2.8 → 2.8 17.0 → 15.5 79 → 80 43 → 43
Car 3.2 → 2.5 26.3 → 14.6 80 → 85 29 → 32

Chair 5.3 → 3.5 30.2 → 18.4 64 → 79 23 → 32
Display 3.9 → 3.2 33.1 → 20.4 71 → 80 28 → 34
Lamp 9.6 → 6.1 78.0 → 44.6 53 → 65 18 → 23

Speakers 3.5 → 3.5 27.5 → 22.0 72 → 75 42 → 44
Rifle 4.8 → 3.0 23.2 → 12.2 83 → 92 25 → 35
Sofa 4.1 → 3.2 32.4 → 20.2 72 → 82 43 → 50
Table 6.8 → 5.4 121.3 → 62.5 35 → 51 8 → 11

Telephone 2.1 → 2.1 20.3 → 14.6 79 → 85 34 → 38
Watercraft 5.1 → 2.7 30.3 → 15.2 75 → 87 26 → 42

Mean 4.5 → 3.3 37.3 → 21.8 70 → 80 27 → 34
(-1.2) (-15.5) (+10) (+7)
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Figure 2.23: Occupancy Network mesh REFINEments for Pix3D images in the bed, bookcase,
and chair classes.
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Figure 2.24: Occupancy Network mesh REFINEments for example 3D-ODDS images.
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Figure 2.25: Occupancy Network mesh REFINEments for RerenderedShapeNet images in the
airplane, bench, and cabinet classes.
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Figure 2.26: Occupancy Network mesh REFINEments for several ShapeNet images.

Input
Image

Original
Mesh

Re�ined MeshInput
Image

Original
Mesh

Re�ined Mesh

Figure 2.27: AtlasNet mesh REFINEments for several RerenderedShapeNet images.
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Figure 2.28: Pix2Mesh mesh REFINEments for several RerenderedShapeNet images.
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Figure 2.29: Pix2Vox mesh REFINEments for several RerenderedShapeNet images.
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Figure 2.30: 3D-ODDS objects have 24 images (3 domains, 8 viewpoints). Reconstruction
accuracies plotted before (after) REFINE as orange (green). Generally, REFINE improves
performance invariance. Extended version of Figure 10 in the main paper.
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Chapter 3

Evaluating Classification Robustness

Through Adversarial Attacks
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3.1 Introduction

Convolutional neural networks (CNNs) trained on large corpora such as ImageNet [12]

have enabled significant advances in computer vision in recent years. While initially popular

for recognition, these models have shown to be remarkably easy to train and transfer across

vision tasks, and are now almost universally used across computer vision. Recently, however,

this robustness has been questioned by some puzzling findings derived from adversarial CNN

attacks [48, 71, 66, 6, 65, 87]. Although CNNs have excellent, even superhuman [27], recognition

performance on randomly internet-collected test images, it is quite easy to generate images where

they fail dramatically [91, 22]. In fact, most images that a CNN classifies correctly can be trans-

formed into images that it cannot classify, by the addition of a very small adversarial perturbation.

Most interestingly, this perturbation can usually be made so small as to be imperceptible, i.e.

impossible to detect, by a human. This suggests that the space of images correctly classified by

most CNNs is, at most, a countable dense subset of the space of images recognizable by humans,

e.g. similar to the relationship between rational and real numbers.

This problem is of great concern for many applications. For example, smart cars depend

on CNNs to make decisions that could have life or death consequences, security and surveillance

systems rely on CNNs for identity verification, etc. The existence of many images capable

of fooling CNNs poses a significant challenge to such applications. This has spurred interest

in adversarial attacks [15, 48] and a literature has emerged in the area, with many variants of

the problem being proposed. In result, there are at least four fundamental dimensions along

which adversarial algorithms can differ: they can be 1) “white” [91, 22, 48, 71, 66, 6, 65] or

“black”-box [8, 123, 87, 14, 32], depending on whether knowledge of the CNN model to attack

is required, 2) “targeted” or “non-targeted,” depending on whether the goal is to induce the

network to make specific errors [91, 71, 6] or to simply make an error [22, 48, 66, 65, 123], 3)

“digital” or “real-world” depending on whether the examples used in the attack are produced by
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an algorithm [91, 22, 87] vs. object manipulation in the real world [48, 15, 1], and 4) “single

model” or “universal” depending on whether they aim to fool a single network [48, 66, 6, 123]

or many models [65]. Interestingly enough, the relative difficulty of these problems does not

always correlate with what would be intuitively expected. For example, it appears that most

of the attacks designed to fool a particular CNN, e.g. AlexNet [47], also fool most other

CNNs [70, 97, 49, 57, 120], e.g. VGG [82], Inception [90], or ResNet [28]. Similarly, some

“black-box” attacks involving simple image transformations [14, 32] appear to be much more

effective than “white-box” methods that require access to the CNN and optimization based on

backpropagation style of algorithms.

In general however, it can be quite difficult to compare the merits of different algorithms.

This is due to two main problems. First, most methods use perturbations that cannot be easily com-

pared. While many authors rely on the standard of an image that is “perceptually indistinguishable

from the original” to define a valid attack, it is not clear what the boundaries of “indistinguishable”

are and no attempts have been made to define this concept. Instead, the standard is usually met by

adoption of a very conservative attack strategy, e.g. the use of an “infinitesimally small step along

some gradient direction”. It is frequently unclear if the use of larger perturbations would enable

the same algorithm to produce more successful attacks. Second, most adversarial works do not

even attempt to compare performance with previous approaches. This is unlike most other areas

of computer vision, where the ability to compare algorithms is considered critical to evaluate

progress.

Recently, some works have started to address the second problem through a strategy that

we denote as the “arms race”. This exploits the fact that any attack procedure can be transformed

into a defense, by 1) augmenting the training set, e.g. ImageNet, with examples produced by

the procedure and 2) fine-tuning the network. While not guaranteeing full robustness against

the attack [49, 97, 35], this defense strategy renders most attacks much less effective. Under the

“arms race” paradigm, a new attack strategy is considered state of the art if it fools a network
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that implements defenses to previously known attacks [116]. The “arms race” captures the fact

that, for practical applications, the only significant attacks are those for which no defenses are

available. However, while knowing the attack procedure enables a defense, not all attacks are

equally easy to defend. An important variable is the defense’s cost. For example, attacks that

require more computation to defend against are more costly than attacks than can be thwarted

with little computation. Similarly, attacks have different costs. For example, white box attacks

can be rendered impractical by the simple use of a proprietary CNN. Overall, the most concerning

attacks are those easiest to execute and hardest to defend against.

In this work, we consider the design of such attacks. We argue that the most successful

attacks are those that leverage the limitations of computer vision, namely those based on pertur-

bations that are easily produced by people but cannot be replicated by computers. This exploits

the large imbalance between the cost of attack and defense in terms of the number of required

examples. While an attack requires a few well chosen examples, its defense requires augmenting

the training set with an extensive number of examples. Hence, while attacks can be generated

manually, those that cannot be defended with computer generated examples are impractical to

defend against. We then consider a set of image perturbations based on variation of object pose.

This is an operation that can be implemented by a child (simply by rotating an object) but is very

hard to defend against, due to the well known difficulty of synthesizing objects under different

poses [72, 110]. We consider attacks using both small and large perturbations, due to camera

shake (CS) and pose variations (PV). However, the study of such attacks requires a definition of

which perturbations are valid. After all, extreme poses can confuse even humans. Unfortunately,

common definitions, such as “infinitesimal gradient steps” or imperceptibility on side-by-side

image comparisons, are not suitable for large perturbations. We argue that these can only be

declared imperceptible given an attack context and seek definitions of imperceptibility suited for

the object recognition context. This suggests a distinction between imperceptible perturbations

(IPs), which survive image comparisons, and semantically imperceptible perturbations (SIPs),
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which are perceptible on image comparisons but have no impact on human ability to recognize

objects.

Overall, this work makes three contributions to the study of adversarial attacks on CNNs.

The first is a dataset of images of multiple object classes under camera shake and pose variation.

The object classes are a subset of ImageNet, to enable the attack of ImageNet trained CNNs,

and each object is imaged with extensive coverage of both small (camera shake) and large

(pose variation) view variability. The second contribution is a procedure to determine which

perturbations are imperceptible to humans, using Amazon Turk experiments. The procedure is

designed to support many attack contexts and could be used to characterize many other types

of attacks. We consider two contexts, image and object retrieval, that enable the differentiation

between imperceptible perturbations and semantically imperceptible perturbations for object

recognition; these can be thought of as small vs. large perturbations. A dataset containing camera

shake and pose variation perturbations of the two types is finally assembled, to support the study

of recognition attacks. A final contribution is an extensive experimental study of camera shake

and pose variation attacks’ performance, against multiple CNN models, trained on multiple

datasets, and augmented with multiple defenses from the literature. This shows that pose attacks

are highly successful against existing CNNs, previous defenses are ineffective against them, and

even data collection can have limited effectiveness. Thus, while easy to perform, pose attacks can

be difficult to defend.

3.2 Prior work

There is now a significant literature on adversarial attacks. The most popular setting is

a non-targeted white-box digital attack of a single model [22, 48, 66]. The attack is usually an

image perturbation based on an infinitesimal step along the gradient of the loss used to train the

model, evaluated at the image [22, 48]. The simplest attacks reduce to one back-propagation
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iteration, computing derivatives with respect to the input image, and require a forward and

backward pass through the network [22]. Many variants have been proposed, including different

algorithms [71, 6, 57] or slight variations on the problem. For example, [65] proposed similar

techniques for universal attacks, i.e. perturbations that fool many models, and [91, 71, 6]

considered targeted attacks. These aim to induce specific errors, e.g. the classification of “apples”

as “oranges”, using a somewhat more sophisticated optimization. All these methods are digital

and can, in principle, be defended against by using the attack algorithm to generate augmentation

data to retrain the CNN.

More recently, there has been interest in attacks based on object manipulation in the real

world [48, 15, 1]. Some of these address specific applications, such as recognition by smart cars.

For example, [15] investigated attacks based on the addition of stickers to traffic signs. This is

much less general than the attacks now proposed, which can be applied to any object. Others

have investigated the manipulation of images in the world, or the fabrication of objects with

certain properties. For example, [1] devised an interesting procedure to fabricate objects that

can consistently fool CNNs irrespective of viewing angle. While having some similarities to the

attacks now proposed, this setup is substantially more complex than the one presented, which

does not require object fabrication. Fabrication raises the cost of attack, by requiring access to

knowledge of object fabrication, and drastically reduces the cost of defense, since it relies on

algorithms that can be leveraged to produce defenses digitally. For example, because the objects

fabricated by [1] have digital textures, their images can be rendered by computer. This is unlike

real objects and textures, which are well known to be difficult to capture and render accurately

under pose variation [110].

Perhaps most related to this work are previous efforts based on image transformations.

For example, [14] has shown that black box attacks by simple image rotation can fool CNNs

more effectively than white-box attacks based on gradient optimization. A recent extension

of this idea uses spatial transformer networks to synthesize image transformation attacks more
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general than rotations [116]. This work again showed that image transformations are successful

even on networks that implement defenses against gradient attacks. However, all these methods

implement digital attacks, using algorithms that can in turn be exploited to defend against them.

We propose a setting that generalizes these procedures, relying on real world image manipulation.

This is much harder to defend against.

3.3 Using pose to attack recognition networks

There are several challenges to the study of adversarial attacks. A meaningful attack

requires two images: a true positive x, i.e. a successfully classified image, and a perturbation x′.

A first difficulty is that x′ should be, in some sense, “identical” to x. Otherwise, it is illogical

to ask the classifier to assign it to the same class, and the attack is ill-defined. We refer to this

as the problem of attack validity. Consider the popular framework of attacks based on additive

perturbations, x′ = x+ηδ, where δ is a function of the gradient of the classification loss with

respect to x [49]. In the absence of a criterion to test whether x and x′ are “identical”, validity

is sought by constraining η to be very small, so as to make x′ visually indistinguishable from x.

However, this is not a full guarantee of validity, since a person with infinite time can frequently

identify the perturbed image. There can also be moiré-like interference patterns that easily give

the perturbation away. Some methods attempt to address the problem by thresholding the gradient,

but this can produce salt-and-pepper artifacts. In general, it is difficult to guarantee that x and x′

are indistinguishable.

For these methods, the validity problem follows from the lack of realism in the perturba-

tions used for the attack. We refer to this as the realism problem. The difficulty is that δ is not

a natural image. Hence, the methods above simply produce images at the “edge” of the space

of natural images. While overly large steps along δ produce completely unrealistic images, a

small enough η guarantees they are acceptable. Yet, because the perturbed images do not occur
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(a) (b) (c)

Figure 3.1: (a) Drone capturing images during flight. (b) Examples of varying levels of camera
shake as the drone hovers. (c) Example images collected per viewing angle.

in the real world, the perturbations must be very small for the attack to remain valid. This leads

to a third problem, which is the small perturbation problem, i.e. exclusion of attacks that are not

immediate neighbors of the true positive. For most applications, such attacks are a much stronger

concern than infinitesimal steps towards the edge of image space. For example, the shake and

pose attacks proposed in this work can occur naturally during the operation of a vision system.

This also implies that they are much easier to perform and thus much more likely to be executed –

imagine a world where any child can hack a robot simply by showing it familiar objects in strange

poses.

In summary, because there is lack of realism, validity can only be guaranteed by small

perturbations. This has motivated a recent emergence of perturbations x′ = f (x) where f is

no longer additive. Various functions have been proposed, from affine transformations [14] to

affixing stickers on images [15, 4], to building 3D objects [1]. Because they are more realistic,

the perturbations can be larger. On the other hand, large realistic perturbations exacerbate

the difficulty of the validity problem since it is even harder to define an “indistinguishable”

transformation. For example, a simple in-plane rotation can turn a ‘6’ into a ‘9’. Similarly, if one

is allowed to affix fur to a traffic sign, or repaint it, it will eventually stop being a traffic sign.

While most works make an effort to select perturbations indistinguishable from the true positive

in some form, this is never quantified. Beyond potentially compromising the significance of these

studies, this makes it difficult to compare attacks.
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In this work, we avoid these problems by introducing a new attack strategy based entirely

on real-world object manipulations. This automatically eliminates the realism problem, since all

attacks are based on natural images. We then propose a protocol to guarantee the validity of all

attacks, by verifying that all perturbations are imperceptible to humans. Finally, we consider a

domain (view transformations) that enables the characterization of the size of a perturbation. This

enables the study of both small and large perturbations. We next discuss these contributions in

detail.

3.3.1 Camera shake and pose manipulations

The ultimate goal of this work is to explore the space of attacks that are easy to perform

(sometimes even arising naturally from real-world vision systems) but difficult to defend. The idea

is to exploit image transformations that can be easily performed in the real world but are hard to

replicate by computer. This leverages the fact that while an attack may be performed with a single

example, most attacks can only be defended by training the classifier with many examples. When

example collecting is costly, the defense becomes impractical. In this context, digital attacks

which use algorithms to produce examples are easier to defend than real world attacks involving

image manipulations not replicable by computer. Despite significant advances in photo-realistic

rendering, it is still not possible to synthesize truly realistic examples from most object classes,

at least without a significant investment in a sophisticated computer graphics infrastructure,

rendering experts, etc. Hence, attacks with examples of objects under novel views or novel

imaging conditions are difficult to defend. An additional benefit of these attacks is that they make

it relatively easy to manipulate perturbation size, which correlates with the degree of view change.

We illustrate this by introducing a family of attacks ranging from small transformations due to

“camera shake” (CS – small variations of camera position) to larger transformations due to “pose

variation” (PV – changes in viewing angle). These attacks are also particularly important because

they are trivial to perform. For example, a child can shake a camera or rotate an object. In fact,
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they are inevitable in certain domains of computer vision, such as robotics, where objects can

appear in many 3D orientations and the vision system is subject to nuisances such as shaking due

to robot movement.

The first contribution of this work is a dataset to enable replicable studies of camera shake

and pose variation attacks. For this, we relied on a drone-based imaging setup. A drone was flown

around an object, as illustrated in Figure 3.1a, using markings on the ground to define picture

taking stops at regularly spaced intervals. By collecting images at these stops under alignment

with the markings on the ground, the drone assembled a set of views of the object corresponding

to different orientations of the object in 3D. We refer to these as “object poses”. Examples of

multiple poses of an object are shown in Figure 3.1c. Within each stop, the drone was allowed to

hover and collect several images of the object, as shown in Figure 3.1b. Due to the small hovering

motion, many of these images are indistinguishable to the inattentive eye. They show the same

pose of the same object, varying by very small translations of the camera and some amount of

motion blur. We refer to this as “camera shake”. The procedure was repeated for 20 objects per

class from 23 different object classes. To facilitate attacks on existing object recognizers, these

are classes represented in the ImageNet dataset, where the recognizers are trained. Overall, the

dataset contains 30 camera shake images per pose and 8 poses for 460 objects, totaling 110,400

images. It is split into a defense dataset containing 16 objects per class and an attack dataset

containing 4 objects per class. The defense dataset can be used to learn defenses against the

proposed attacks. Each object is furthermore assigned a “frontal” pose by visual inspection, e.g.

the frontal pose of the telephone in Figure 3.1c is that in the upper left corner. It should be noted

that this setup is only necessary to enable replicable studies of the proposed attacks and to collect

data for defense purposes. The attacks themselves can be performed by simply rotating objects.
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(a) (b) (c)

Figure 3.2: Turk experiment. (a) True positive (TP) x, shown for 750 ms. (b) Distractor task:
count dots of some color. (c) After correctly counting, x′ shown for 750 ms. Then, turkers asked
if the image (object) has changed.

3.3.2 Characterizing indistinguishable perturbations

A difficulty of real world attacks, especially those involving larger perturbations, is to

guarantee their validity. After all, under extreme viewing angles, objects can be hard to recognize

even for humans. The second contribution of this work is a replicable procedure, based on

Amazon Turk experiments, to characterize indistinguishable perturbations (IP). We start by

proposing that perturbations can only be declared indistinguishable within a certain application

context. For object recognition, we identify two contexts of interest. The first is image retrieval

(IR). This addresses the question of whether a person can distinguish two images. However, we

do not pursue the forensic definition of distinguishability commonly used in the literature. Instead,

we limit the resources available to the person, by asking them to compare the perturbation to an

image they have committed to memory. This is more closely related to object recognition than

forensic comparisons.

The setup is illustrated in Figure 3.2. A turker is shown the true positive x for 750 ms (see

Appendix for details) and asked to memorize it. The object disappears and the turker is asked

to count the number of dots of some color in a 2x3 grid. This is a distractor task to prevent a

purely iconic matching of image details. A second image x′ is finally shown for 750 ms, and

the turker is asked to indicate if x′ was the image seen earlier. The second image can be of four

types: the true positive x (15% of the time), a perturbation of x due to camera shake (35%), a
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perturbation of x due to a pose variation (35%), or an image of a different object (15%). All

images used in this experiment are from the attack dataset of the previous section. From 30

frontal pose images, examples randomly sampled (with replacement) are used as the true positive

per object. Camera shake perturbations are also “frontal” poses. Given a true positive, an image

pair is created by sampling one of the 29 remaining frontal poses of the object. This procedure

was used to produce 70 camera shake pairs per object. Pose variation perturbations use images

from all object views. The set of perturbed images was created by randomly sampling 10 images

from each pose, excluding frontal. Finally, for different object, examples were sampled randomly

from frontal poses of other objects which belong to different classes. A probability of error was

recorded per type of x′. These are denoted pT P, pCS, pPV , and pDO, respectively. The values of

pCS and pPV are used as indistinguishable perturbation rates (IPR) for camera shake and pose

variation perturbations. A high indistinguishable perturbation rate implies that turkers are not

able to tell apart the perturbed x′ from the true positive x. pT P and pDO are upper and lower

bounds for the indistinguishable perturbation rate, respectively. For increased accuracy, each

image-perturbation pair was evaluated by 3 turkers. A final quality control threshold was imposed

per turker: those who scored above 10% for pDO and those who did not score at least 90% for

pT P were excluded, as evaluation is trivial in these cases. For the remaining image pairs, those

with less than two identical evaluations were eliminated. The indistinguishable perturbation rate

was finally determined from the remaining evaluations, by majority vote.

So far, the experiments test if turkers can distinguish perturbed images. This is informative

for image retrieval, but ultimately not the goal of object recognition. For example, the rotation of

a digit by 30o is a very perceptible image transformation. While most humans can easily tell the

image has been rotated, this makes little difference for recognition. An equally large percentage of

the population will be able to effortlessly recognize the rotated digit. In other words, recognition

is invariant to the perturbation. We argue that, for recognition, it is also important to define the

notion of semantically indistinguishable perturbations (SIPs). These are perturbations that may
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be noticeable but do not alter the image semantics. Semantically indistinguishable perturbations

differ from indistinguishable perturbations in that they are tied to the semantics of interest for an

application. For example, while a smart car only cares about the presence/absence of pedestrians

on the road, a face recognizer aims to determine the person’s identity. Hence, replacing the

true positive by an image of another person is a semantically indistinguishable perturbation for

pedestrian detection but not for face recognition.

An interesting property of the experimental setup above is that it can be extended to

semantically indistinguishable perturbations by simply modifying the context of the experiment.

This is done by changing the question asked to the turkers. Rather than asking them if x′ is the

same image as x, they can be asked if it is an image of the same person, object, animal, scene, or

whatever the semantics of interest are for the application. In this work, we consider the generic

object recognition (OR) context, asking the turkers if the two images are of the same object.

The probabilities pCS and pPV then become semantically indistinguishable perturbation rates

(SIPR) for camera shake and pose variation perturbations. They capture the degree to which the

perturbations are imperceptible for OR. Note that a large pose transformation, clearly perceptible

for image retrieval can easily be imperceptible for object recognition. This difference is captured

by the two questions (is this the same image? vs. is this the same object?) that set different

contexts for the experiment.

In summary, the probabilities pCS and pPV can be indistinguishable perturbation rates

(IPR) or semantically indistinguishable perturbation rates (SIPR), depending on the context

(image retrieval or object recognition respectively). Table 3.1 summarizes the rates observed on

the Turk experiments. Several conclusions can be taken from the table. First, turkers’ scores

were excellent when spotting replicas of the true positive (IPR > 99%) or rejecting images from

different objects (SIPR ≤ 1%). This suggests that the experimental protocol is robust. Second,

all rates were lower for pose variation than for camera shake. This was expected, because pose

variation induces larger image variations. These results confirm the hypothesis that camera shake

62



is a small perturbation, while pose variation is a larger perturbation. Note that only 7% of the

pose variation perturbations were indistinguishable perturbations, while this held for 72% of

the camera shake perturbations. Finally, it is clear that indistinguishability depends on context.

While only 72% of the camera shake perturbations were indistinguishable perturbations, 92%

were semantically indistinguishable perturbations. Similarly, while only 8% of the pose variation

perturbations were indistinguishable perturbations, 82% were semantically indistinguishable

perturbations.

3.3.3 Attacks and defenses

The third contribution of this work is a study of the difficulty of defending attacks based

on real-world object manipulations. This is based on the image pairs declared as indistinguish-

able by the Turk experiment 1. While experiments were performed for both indistinguishable

perturbations and semantically indistinguishable perturbations, we report semantically indistin-

guishable perturbations only, since these are the most relevant perturbations for object recognition.

Indistinguishable perturbation results are discussed in the Appendix. Three datasets were used to

implement all defenses: 1) a subset of ImageNet containing all object classes used for attacks,

denoted “ImageNet,” 2) a subset of the defense dataset of Section 3.3.1 containing only frontal

pose images, denoted “Frontal,” and 3) the entire defense dataset, denoted “All”. Every attack

was performed on AlexNet [47], ResNet34 [28], and VGG16 [82].

To evaluate the impact of different object manipulations, the attacks were implemented

with both camera shake and pose variation semantically imperceptible perturbations. For each true

positive x, the associated perturbation x′ was fed to the classifier and recognition rates (RR) rCS

and rPV are recorded. Defenses were evaluated under the “arms race” strategy, by synthesizing

examples with different attack methods and retraining the network on a dataset augmented with

1All data collected in this work is available at http://www.svcl.ucsd.edu/projects/OOWL/CVPR2019_
adversarial.html.
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Table 3.1: Turker imperceptibility rates for true positive (TP), camera shake (CS), pose variation
(PV), and different object (DO) pairs. For image retrieval task, indistinguishable perturbation
rates (IPR) is considered, while for object recognition task, semantic IPR (SIPR) is used.

IPR (%) SIPR (%)
(Image Retrieval) (Object Recognition)

pT P 99.7 99.8
pCS 72.4 91.6
pPV 7.5 81.5
pDO 0.2 1.0

these examples. We considered methods from the two broad categories discussed above: 1)

transformation based and 2) gradient based.

1. Transformation based

• Affine: Random affine transformations with rotation less than 15 degrees.

• Blur: Gaussian blur kernel with random standard deviation in [0,0.6].

• Blur-Affine: Combination of affine and blur.

• Worst-of: The worst-of-K method of [14]. Ten affine transformations are randomly

sampled and the one of highest loss is selected.

• Color Jitter: Image saturation and hue transformation according to [32].

2. Gradient based

• FGSM: The fast gradient sign method of [49].

• ENS: The ensemble adversarial training method of [97].

• IFGSM: The iterative fast gradient sign method of [49].

3. Standard training is also experimented as baseline for comparison. The standard training

method included random cropping and random horizontal flipping. The learning rate was

set to 0.001.
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Figure 3.3: Per class RR for CS/PV SIP attacks.

3.4 Experiments

3.4.1 Implementation

All experiments were conducted with Pytorch. For training process, we found that at most

20 epochs were enough for the classifier to converge, and the maximum number of epochs was

set to this value. Vanilla SGD was used as the optimizer and momentum was set to 0.9 for all

classifiers.

3.4.2 Qualitative results

Attack and defense efficiency: A preliminary observation was that the attacks had

similar effect on the three networks. While some models have higher accuracy than others, the

relative drop in accuracy due to the attacks were nearly identical. Hence, for brevity, we only

discuss average accuracy of the three models here. More detailed, per-model, results are given

in the Appendix. Table 3.2 presents the recognition rates of camera shake and pose variation

manipulation attacks, for networks with various defenses. Each defense was implemented on
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Table 3.2: Recognition rates for camera shake and pose variation semantically indistinguishable
perturbation attacks, under different defense methods and datasets. Recognition rates are
averaged over AlexNet, ResNet34 and VGG16.

Attack
CS PV CS PV CS PV CS PV

Defense ImageNet Frontal All Avg
None 73.7 47.2 82.0 63.7 87.1 79.1 80.9 63.3

Tr
an

sf
or

m
at

io
n Affine 71.8 45.1 83.4 58.8 85.2 76.5 80.1 60.1

Blur 74.2 45.2 84.8 64.1 86.9 78.3 82.0 62.5
Blur-Affine 75.4 47.5 83.5 60.0 88.0 76.6 82.3 61.3

Worst-of 73.0 47.1 83.8 63.0 86.4 76.1 81.0 62.0
Color Jitter 74.5 45.5 86.4 61.6 87.1 79.1 82.7 62.0

Avg 73.8 46.1 84.4 61.5 86.7 77.3 81.6 61.6

G
ra

di
en

t FGSM 72.9 49.2 84.7 61.1 83.2 74.3 80.3 61.5
ENS 75.7 46.3 83.6 58.1 81.9 72.8 80.4 59.0

IFGSM 71.8 47.0 82.8 55.5 83.3 70.0 79.3 57.5
Avg 73.5 47.5 83.7 58.2 82.8 72.3 80.0 59.3

the three defense datasets and recognition rates are presented per defense method and dataset.

Since all perturbations have been declared semantically indistinguishable perturbations by turkers,

the human recognition rate is 1 on these experiments (under the assumption that turkers could

correctly classify the true positive).

Various conclusions can be drawn. First, as expected, pose variation is the more dangerous

attack. For standard ImageNet classifiers the recognition rate drops to almost half (from 70s to

40s), independently of the defense implemented. Second, no defense method stands out. While

gradient methods achieve best performance for ImageNet training, transformations have superior

performance for Frontal and All training. Within each category, relative performance varies

with dataset and perturbation type. On average (as seen in the last column of the table), Color

Jitter is the top defense against camera shake. Third, none of the defense algorithms improves

significantly on no defense. In fact, the absence of defense is the best defense against pose

variation, and close to the best (80.9 vs. 82.7) against camera shake, on average. Fourth, data

collection is a much more effective defense than algorithms. Independently of the algorithm,

recognition rates increase significantly from ImageNet to Frontal (10+ points) and increase further

from Frontal to All (2 points). However, even the collection of data with camera shake and pose
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variation perturbations fails to fully defend against real-world object manipulations. The best

performance against pose variation (none) has a recognition rate of only 63.3%. For camera shake

the top recognition rate is 82.7%. All these observations support the hypothesis that real-world

manipulations are a very effective tool to attack CNNs. Besides being trivial to perform, they can

be very hard to defend. Since the collection of real data fails to produce a foolproof defense, it

is questionable that digital defenses could fully neutralize these attacks. Clearly, simple digital

defenses such as Affine or Blur transformations are ineffective.

In-depth comparisons of the table also challenge some common notions in the adversarial

literature. One striking effect is the reversal of performance between gradient and transformation

based methods with the defense dataset. Gradient methods work better on ImageNet, but are

not effective when camera shake and pose variation perturbations are added to the defense set.

This supports the hypothesis that they mostly push examples to the edge of the natural image

space. Better coverage of these regions, by camera shake and more camera views, eliminates

these methods’ gains. For example, the average recognition rate of the gradient methods on the

All defense dataset is 4 to 7 points weaker than using no defense algorithm at all. Transformation

based methods perform significantly better on this dataset. In the adversarial literature, IFGSM

and ENS have also been claimed to outperform FGSM. This is because IFGSM generates stronger

adversarial examples and ENS decouples the adversarial example generator for the defender (by

adding adversarial examples from a third party to the training set). However, this is nearly the

opposite of the results on Table 3.2. On average, FGSM outperforms IFGSM and ENS. Again,

this is likely due to the real world nature of the attacks. The fact that IFGSM and ENS are better

defenses against digital attacks, seems to translate into no benefits for real world attacks.

Objects: It is also pertinent to ask which types of objects lead to more successful attacks.

Figure 3.3 shows the recognition rate of camera shake and pose variation perturbations per object

class. While camera shake leads to higher recognition rates for all objects, the recognition rate

trend is similar for camera shake and pose variation. This suggests that attack efficiency is indeed
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Table 3.3: Examples of IPs and SIPs, for CS and PV perturbations, that fool many classifiers.
In all cases, TP is left, perturbation right. Also shown is ground truth class and # of classifiers
fooled (out of 81, see Appendix).

IPs
CS PV

TP: Hat Fools 16 TP: Bowl Fools 36

TP: Remote Fools 21 TP: Hat Fools 20

SIPs
CS PV

TP: Car Fools 13 TP: Plane Fools 20

TP: Keyb. Fools 13 TP: Car Fools 32

determined by object properties. Finally, a “lack of symmetry” seems to be the object property

most predictive of successful attacks – symmetric objects, such as bottles, lamps, and bowls are

less effective attackers than less symmetric objects like telephones, radios, and trains.

Universal attacks: A final question is which attacks fool a large number of classifiers.

Table 3.3 shows some examples of the most successful perturbations from this point of view

(more in Appendix). Some interesting observations can be made. First, perturbations that are

clearly noticeable under a forensic comparison (side-by-side images, infinite time) can become

indistinguishable under the memory recall paradigm of Figure 3.2. Take the “bowl” and “hat”

examples for instance, which were deemed indistinguishable perturbations by the turkers; the

fact that these perturbations were deemed the same image as the true positive shows that the

standard practice of determining attack validity by forensic comparisons is poorly suited for

object recognition. Second, it appears that perturbations of all sizes can fool a large number of

models. Note that the perturbations shown range from “insignificant” (almost imperceptible even
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Table 3.4: Classifier accuracy for crafted vs random attack examples.

Dataset ImageNet Frontal
Attack CS PV CS PV

Random 73.7 47.2 82.0 63.7
Crafted 51.3 33.0 66.2 49.3

on a forensic comparison, e.g. “remote”) to “large” (significant pose variations, e.g. “car” on

the bottom right). Overall, it appears that even very elementary natural perturbations can fool

state-of-the-art classifiers.

Crafted attacks: Since the proposed attack happens naturally in the real world, one might

criticize that this is different from Lp norm based attacks, which can be designed and crafted.

Inspired by [14], which generates attacks by rotating the image and proposes a worst-of-K method

to pick the most adversarial transformation , we implemented this for our attacks with K = 5

similar to the set up in [14]. Table 3.4 presents the results for no defense algorithm on random

and crafted attack examples. These CS/PV attacks are intentionally crafted, by picking the CS/PV

instance most likely to fool the network. They are more effective than the random attacks as

expected.

3.5 Discussion

This work makes several contributions to the study of adversarial attacks that are easy to

execute but difficult to defend, using a new setup based on real-world object manipulations. Unlike

the standard practice in the literature, we considered both small and large perturbations, generated

by camera shake and pose variation, and introduced a procedure for systematic collection of such

perturbations. This was complemented by a replicable procedure to measure the imperceptibility

of perturbations, using Turk experiments. These contributions enabled the creation of a dataset of

small and large perturbations, imperceptible under two contexts of interest for object recognition.

Experimental results comparing defenses based on many datasets, CNN models, and algorithms

69



from the literature elucidated the difficulty of defending these attacks. None of the existing

defenses were effective against them, and while better results were achieved with real world

data augmentation, this is costly and not foolproof. These results suggest that more research is

needed on defenses against “easy to perform” attacks and that the data now assembled can play

an important role in this regard.
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3.7 Appendix

3.7.1 Amazon Turk test times

One of the variables in the experimental protocol used to measure perturbation percep-

tibility is the time for which images are shown to the subjects. Several works have shown that

neural activity exhibits signs of object recognition within about 200 ms of an image stimulus,

with reaction times about 150 ms later. Preliminary experiments with a 350 ms viewing time

showed that this was too little, at least for Turk experiments. Turkers only identified the TP as

being the same image 55 percent of the time. While they did much better at rejecting different

objects, this time was considered overall too aggressive. Subsequent experiments with a longer

limit of 750 ms suggested that this was enough time. The IPRs obtained with the two settings are

shown in Table 3.5.
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Table 3.5: Preliminary Amazon Turk A/B testing results; turkers given 350 ms or 750 ms to
remember images. Average imperceptibility scores in the the context of image recognition
reveal similar trends relative to their respective upper bound pT P and lower bound pDO.

pT P pCS pPV pDO

350 ms 0.551 0.404 0.258 0.059

750 ms 0.977 0.798 0.106 0.010

3.7.2 Recognition rates (RR) for IP and SIP

Tables 3.6-3.7 summarize the RRs of IP and SIP attacks per model, defense dataset, and

defense algorithm. While, in general, ResNet outperformed the other models, the effect of the

attacks on the three models was quantitatively similar. Defense algorithms were more effective

for IPs than SIPs. This is not surprising, since the former tend to be smaller perturbations. The

largest gains were obtained by using defense datasets augmented with CS and PV perturbations

(’All’).

3.7.3 Example adversarial samples

Additional adversarial samples of CS-IP, PV-IP, CS-SIP and PV-SIP are provided in Tables

3.8, 3.9, 3.10 and 3.11 respectively.
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Table 3.6: Recognition rate (RR) for IP.

ImageNet Frontal All
Defense Alex ResNet VGG Avg Alex ResNet VGG Avg Alex ResNet VGG Avg

Camera shake attack

None 76.0 78.5 69.2 74.6 82.3 88.2 88.5 86.3 83.0 92.3 92.5 89.3

Aug.

Affine 77.8 76.6 74.5 76.3 85.4 86.2 89.8 87.1 84.0 93.8 88.0 88.6
Blur 76.5 80.1 72.5 76.4 83.0 84.2 90.5 85.9 81.4 94.9 89.8 88.7

Blur-Affine 78.0 72.8 76.1 75.7 86.8 86.0 87.2 86.7 83.7 91.2 88.2 87.7
Worst 68.0 77.2 72.0 72.4 88.7 88.8 88.5 88.7 84.0 91.8 90.0 88.6

Color Jitter 77.3 78.5 70.3 75.4 87.4 90.4 91.9 89.9 89.9 92.6 88.4 90.3
Avg 75.5 77.1 73.1 75.2 86.3 87.1 89.6 87.7 84.6 92.9 88.9 88.8

Adv.

FGSM 76.1 83.0 70.7 76.6 84.3 90.9 84.5 86.6 86.1 84.8 91.0 87.3
ENS 74.1 82.0 78.2 78.1 87.6 83.7 86.7 86.0 82.5 81.2 89.6 84.4

IFGSM 70.7 77.1 73.6 73.8 85.1 88.1 88.3 87.2 82.8 86.7 88.0 85.8
Avg 73.7 80.7 74.2 76.2 85.7 87.6 86.5 86.6 83.8 84.2 89.5 85.8

Pose variation attack

None 79.5 81.1 72.2 77.6 80.6 79.7 80.9 80.4 78.3 91.8 84.5 84.9

Aug.

Affine 62.2 83.0 54.5 66.6 89.5 67.8 81.0 79.4 83.1 88.7 85.9 85.9
Blur 78.4 85.5 63.8 75.9 80.0 77.4 75.4 77.6 83.6 91.9 83.3 86.3

Blur-Affine 71.8 80.4 61.7 71.3 70.0 83.6 80.0 77.9 87.7 81.9 86.8 85.5
Worst 56.8 84.2 65.3 68.8 85.2 86.2 81.8 84.4 81.4 86.1 77.6 81.7

Color Jitter 78.9 88.9 73.8 80.5 79.3 85.5 87.3 84.0 84.4 94.5 88.9 89.3
Avg 69.6 84.4 63.8 72.6 80.8 80.1 81.1 80.7 84.0 88.6 84.5 85.7

Adv.

FGSM 83.8 90.7 57.8 77.4 83.6 82.3 84.1 83.3 80.7 83.1 83.3 82.4
ENS 66.7 78.2 57.9 67.6 88.9 79.7 83.8 84.1 72.7 83.3 78.3 78.1

IFGSM 34.4 71.8 60.0 55.4 72.2 76.9 75.0 74.7 85.7 88.1 78.5 84.1
Avg 61.6 80.2 58.6 66.8 81.6 79.6 81.0 80.7 79.7 84.8 80.0 81.5
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Table 3.7: Recognition rate (RR) for SIP

ImageNet Frontal All
Defense Alex ResNet VGG Avg Alex ResNet VGG Avg Alex ResNet VGG Avg

Camera shake attack

None 78.3 72.5 60.3 73.7 77.5 84.4 84.0 82.0 83.5 90.3 87.5 87.1

Aug.

Affine 68.7 75.5 71.4 71.8 80.4 83.1 86.7 83.4 82.1 89.0 84.5 85.2
Blur 76.2 79.6 66.8 74.2 81.9 85.5 86.9 84.8 82.7 90.7 87.2 86.9

Blur-Affine 79.2 72.4 74.4 75.4 81.1 85.1 84.4 83.5 84.5 90.4 89.0 88.0
Worst 70.0 75.8 73.3 73.0 84.3 84.1 82.8 83.8 80.8 90.4 88.1 86.4

Color Jitter 79.5 73.3 70.9 74.5 84.0 87.3 87.8 86.4 84.3 91.2 85.9 87.1
Avg 74.7 75.3 71.4 73.8 82.3 85.0 85.7 84.4 82.9 90.3 87.0 86.7

Grad.

FGSM 75.4 77.1 66.2 72.9 81.4 87.1 85.5 84.7 79.6 81.7 88.2 83.2
ENS 74.0 80.9 72.2 75.7 82.9 82.2 85.7 83.6 79.5 80.2 85.9 81.9

IFGSM 66.2 75.4 73.8 71.8 78.1 85.1 85.3 82.8 81.4 84.5 83.9 83.3
Avg 71.9 77.8 70.8 73.5 80.8 84.8 85.5 83.7 80.2 82.1 86.0 82.8

Pose variation attack

None 40.0 52.3 49.2 47.2 58.4 67.9 64.8 63.7 72.1 82.8 82.5 79.1

Trans.

Affine 36.5 52.2 46.7 45.1 53.3 61.1 62.1 58.8 68.5 81.6 79.6 76.5
Blur 36.4 56.1 43.2 45.2 58.3 67.9 65.9 64.1 72.4 83.6 78.9 78.3

Blur-Affine 41.5 54.7 46.4 47.5 53.0 65.3 61.8 60.0 69.1 80.1 80.4 76.6
Worst 40.6 53.8 46.7 47.1 58.1 68.1 62.9 63.0 67.0 81.7 79.6 76.1

Color Jitter 39.7 50.6 46.3 45.5 52.5 67.3 65.1 61.6 73.1 83.7 80.5 79.1
Avg 38.9 53.5 45.9 46.1 55.0 65.9 63.6 61.5 70.0 82.1 79.8 77.3

Adv.

FGSM 41.3 59.5 46.8 49.2 55.4 65.4 62.6 61.1 70.5 72.8 79.6 74.3
ENS 41.5 52.4 45.0 46.3 59.2 54.5 60.7 58.1 71.3 71.0 76.0 72.8

IFGSM 47.6 49.9 43.4 47.0 54.3 51.6 60.6 55.5 66.7 68.8 74.4 70.0
Avg 43.5 53.9 45.1 47.5 56.3 57.2 61.3 58.2 69.5 70.9 76.7 72.3

Table 3.8: Adversarial samples for CS IP

TP – Hat Fools 16 TP – Lamp Fools 14

TP – Piano Fools 27 TP – Remote Fools 21

TP – Clock Fools 19 TP – Shoe Fools 19

TP – Clock Fools 15 TP – Backpack Fools 12
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Table 3.9: Adversarial samples for PV IP

TP – Bowl Fools 36 TP – Hat Fools 20

TP – Piano Fools 19 TP – Remote Fools 17

TP – Toaster Fools 15 TP – Bowl Fools 12

TP – Book Fools 21 TP – Bowl Fools 12

Table 3.10: Adversarial samples for CS SIP

TP – Book Fools 19 TP – Car Fools 13

TP – Keyboard Fools 13 TP – Boat Fools 12

TP – Clock Fools 47 TP – Remote Fools 20

TP – Hat Fools 13 TP – Radio Fools 11

Table 3.11: Adversarial samples for PV SIP

TP – Airplane Fools 20 TP – Car Fools 32

TP – Laptop Fools 19 TP – Train Fools 24

TP – Piano Fools 15 TP – Shoe Fools 14

TP – Bottle Fools 42 TP – Monitor Fools 22
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Chapter 4

Conclusion
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In this thesis, we have detailed a new hierarchical multiview, multidomain image dataset

with 3D meshes called 3D-ODDS. Its application was studied on two different vision tasks: single

view 3D reconstruction and image classification.

In the case of single view 3D reconstruction, we rigorously showed that current methods

were not sufficiently pose and domain invariant, both for 3D-ODDS and other datasets. To address

this we proposed REFINE, a postprocessing mesh refinement step easily integratable into the

pipeline of any black-box method in the literature. At test time, REFINE optimizes a network per

mesh instance, to encourage consistency between the mesh and the given object view. This, with

a novel combination of losses addressing degenerate solutions, reduces domain gap and restores

details to achieve state of the art performance.

For image classification, we considered adversarial attacks that are trivial to perform but

difficult to defend. A framework for the study of such attacks was proposed, using real world

object manipulations. Unlike most works in the past, this framework supports the design of

attacks based on both small and large image perturbations, implemented by camera shake and

pose variation from the 3D-ODDS dataset. Experiments using defenses based on many datasets,

CNN models, and algorithms from the literature elucidate the difficulty of defending these attacks

– in fact, none of the existing defenses is found effective against them.

Overall, these works show that robust generalization across domain, viewpoint, and

class remains a significant challenge for computer vision. Furthermore, curated datasets with

hierarchical levels of variability like 3D-ODDS are a powerful indicator and diagnostic tool. We

believe that the 3D-ODDS dataset will remain relevant moving forward, inspiring future works

towards robust and invariant methods in computer vision.
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