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Is Real-Time Pricing Green?: The Environmental
Impacts of Electricity Demand Variance

Stephen P. Holland and Erin T. Mansur∗

August 11, 2004

Abstract

Economists have long advocated for electricity pricing that accurately reflects
time-varying production costs. In particular, real-time pricing (RTP) would im-
prove the efficiency of electricity consumption and investment and would lessen the
potential harm from market power. Conventional wisdom has claimed that RTP has
an additional benefit, namely, reduced emissions from reduced peak demand. We
argue that RTP will reduce variance of electricity load and estimate the short-run
impacts of a reduction in variance on emissions of SO2, NOx, and CO2. According
to our estimates, a reduction in within-day load variance would decrease emissions
of some pollutants in some NERC regions (FRCC in Florida, MAAC in the Mid-
Atlantic, and MAIN in the Illinois area). However, a reduction in within-day variance
would actually increase emissions of all three pollutants in the Eastern Mid-West
(ECAR) and the Southeast (SERC) and of two of three pollutants in Texas (ER-
COT), the Great Plains (MAPP), and the West (WSCC). The effects are relatively
small as the elasticity greatest in magnitude is 0.042. We further analyze reductions
in across-day variance and find similar results. The results are also robust to al-
ternate measures of within-day variance and to a nonparametric specification of the
model. To understand our results, we note that changes in emissions are similar to
changes in generation from power plants using fossil fuels. Furthermore, we observe
that emissions reductions occur in regions with more hydroelectric capacity than
oil-fired capacity. This supports the hypothesis that the environmental benefits of
RTP come from reducing peak demand, but only if peak capacity is oil fired rather
than hydroelectric.

∗Holland: Department of Economics, University of North Carolina, Greensboro, NC 27402-6165.
Email: sphollan@uncg.edu. Mansur: School of Management and School of Forestry and Environmen-
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We would like to thank Severin Borenstein, Jim Bushnell, Kevin Forbes, Jun Ishii, Nat Keohane, Al
Klevorick, Frank Wolak, and seminar participants at the University of California Energy Institute and
Yale University for comments. Thanks also to Meredith Fowlie and Nalin Sahni for excellent research
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1 Introduction

Economists have long advocated for electricity pricing that accurately reflects time-varying

production costs.1 In particular, they have argued that real-time pricing of electricity

(RTP) would improve the efficiency of electricity consumption and investment and would

lessen the potential harm from market power.2 However, these recommendations have met

serious political opposition despite advances in real-time metering and in technology for

responding to real-time prices.3 Recently some environmental groups have supported real-

time pricing for its potential to reduce pollution.4 Indeed, the conventional wisdom seems

to be that RTP will yield environmental benefits by reducing peak demand.5 This paper

estimates the short-run impacts of real-time pricing on the emissions of sulfur dioxide

(SO2), nitrogen oxides, (NOx), and carbon dioxide (CO2).6

RTP may affect pollution by changing the distribution of electricity load. The demand

for electricity varies throughout the day due to hourly changes in, for example, temperature

and economic activity. If the retail prices do not vary, customers conserve less than would

be efficient during peak periods, but conserve more than would be efficient during off-

peak periods. For example, during a peak period (e.g., on a hot afternoon in Texas),

the wholesale price of electricity is higher than the flat retail price. If customers faced

1See, for example, the peak-load pricing literature pioneered by Steiner (1957) and Boiteaux (1960).
More recently, time-varying pricing under regulation has been discussed by Borenstein, Jaske and Rosen-
feld (2002), and Borenstein and Holland (forthcoming) study real-time pricing in competitive electricity
markets.

2Real-time pricing can be defined for the purposes of this paper as prices that vary hour by hour (or
half hour by half hour). See Borenstein, Jaske, and Rosenfeld (2002) for further discussion of constructing
discrete prices from continuously varying electricity load.

3Currently RTP is offered in just a few small pilot programs in the U.S., primarily in Georgia and
New York. Time-of-Use pricing is more widely available but does not reflect hour-by-hour variation in
production costs.

4An environmental group in California has proposed a real-time pricing scheme to remove the need for
construction of additional generation capacity in the city of San Francisco. Another environmental group,
Environmental Defense (2001) argued for RTP in California citing its environmental benefits.

5Hirst and Kirby (2001), Swofford (2001), Kiesling (2002), Smith and Kiesling (2003), and Nevada
Power (2003) claim environmental benefits in their arguments for RTP.

6Since the work by Lipsey and Lancaster (1956) on the theory of the second best, economists have
known that correcting for one market failure might perturb another. Optimal regulation may include a set
of policies that allow for real-time pricing and also tax pollution directly. However, the aim of this paper
is not normative: we do not argue that RTP need be “green” for implementation. Rather, we address a
positive question in order to clarify the likely environmental implications of RTP.
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the higher real-time price, each would use less electricity, and the system load would be

smaller. Conversely, in an off-peak period (e.g., late at night), the wholesale price is lower

than the flat retail price, and the system load would be greater under RTP. Since real-time

pricing decreases load in the peak periods and increases load off-peak, real-time pricing

would decrease the variance of load.7

Decreasing the variance of load can increase or decrease pollution. Firms generally use

generating units in order of their marginal costs.8 Since fuel costs are a large component

of marginal costs, low-cost generating units of a given fuel type generally are newer, use

fuel more efficiently, and pollute less per megawatt-hour (MWh). In this case, decreasing

the variance of load then causes the more efficient, cleaner units to generate more and

the less efficient, dirtier units to generate less, thereby reducing total emissions.9 On the

other hand, real-time pricing may increase pollution. This occurs, for example, if base-load

generation is met by coal-fired units while peak load generation is met by more expensive,

but cleaner, gas-fired units.

These different effects imply that the environmental impact of real-time pricing will be

heavily dependent upon the relative cleanliness of the production technologies available in

each region. For example, if a region has peak load generation with low emissions rates,

e.g., hydro or gas-fired, a reduction in load variance may increase emissions. However, in a

region with dirty peak capacity (e.g., oil-fired), a reduction in load variance may decrease

emissions. For this reason, we estimate the effects separately for various regions of the

U.S.

We divide the issue of measuring the environmental consequences of real-time pricing

into two questions: (i) How will RTP change demand and the market equilibrium? and

(ii) How will these equilibrium changes affect firms’ choices of production and pollution?

The answer to the first question depends on the relevant own- and cross-price elasticities

7RTP may also change the average daily load depending on the relative demand elasticities. In this
paper, we focus on changes in the variance of load holding average load constant.

8“Generating units” typically consist of boilers, turbines, and generators. A power plant may have
several units.

9In addition to changing the technology used to generate electricity at different times of day, RTP can
reduce emissions by reducing the frequency of restarting units and ramping their production up and down.
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of demand.10 While beyond the scope of this paper, Holland and Mansur (2004) simulate

the effect of real-time pricing on load.

This paper analyzes the second question (namely, the effect of the distribution of load

on emissions) by exploiting exogenous variation in load. Daily changes in temperature and

economic activity lead to differences in the hourly demand for electricity and to significant

variation in the distribution of load across days. This variation also leads to variation

in emissions for a variety of pollutants. By estimating the relationship between the load

distribution and emissions, we can analyze the environmental impacts of policies that

reduce load variation such as real-time pricing.

One advantage of dividing the question into two steps is that the results of analyzing

the environmental impacts of altering load variance have applicability beyond real-time

pricing. In fact, the results are applicable to any policy, such as demand-side management

or critical peak pricing, which would lead to a change in load variance.

This paper directly estimates the environmental effects of a reduction in load variance

for various U.S. electricity regions. Section 2 describes the environmental impacts of real-

time pricing. Section 3 compares generation technologies in the various regions. Section 4

presents the empirical model and Section 5 describes the data. In Section 6, we discuss

the empirical results for the parametric approach. Section 7 tests the robustness of these

findings using a nonparametric model. The empirical results are analyzed in Section 8

using the production technologies in each region. Section 9 concludes.

2 A Theory of the Environmental Impacts of Real-
Time Pricing

To understand the effects of RTP on emissions, we sketch a simple model of real-time

pricing in electricity markets.11 For each period t, wholesale demand, Dt(pt, p, α), depends

10Demand elasticities have been estimated for various industries and retail pricing programs; see, for
example, Patrick and Wolak (2001), Train and Mehrez (1994), Herriges et al. (1993), Taylor and Schwartz
(1990), and Caves and Christensen (1980). Demand response varies greatly across industries and customer
classes.
11This model follows Borenstein and Holland (forthcoming) and is described in more detail there.
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on the wholesale price, pt, the flat (time-invariant) retail price, p, and the proportion of

customers who are on RTP, α. In each period, given the market supply curve, St(pt),

equilibrium in the wholesale market is determined by St(pt) = Dt(pt, p, α). This wholesale

market equilibrium is illustrated in Figure 1 for two time periods, peak or high demand

(h) and off-peak or low demand (l).

Increasing the proportion of customers on RTP rotates the wholesale demand around

the flat retail price, p̄. For real-time prices below the flat price, increasing the proportion

of customers on RTP increases wholesale demand since more customers face the lower

real-time price. For high real-time prices, i.e., prices above the flat rate, pt > p̄, increasing

customers on RTP decreases demand, since more customers face the higher real-time prices.

These demand rotations can be illustrated in Figure 1. If no customers were on RTP, the

high demand would be perfectly inelastic through qh. With some customers on RTP, the

wholesale demand is elastic (rotates around p̄) and the equilibrium quantity q0h is less than

qh. Similarly in the low demand period, putting some customers on RTP makes demand

elastic and increases the equilibrium quantity from ql to q0l.

By rotating the wholesale demand in each period, an increase in the proportion of

customers on RTP changes the distribution of electricity loads across the day. Since

peak loads are decreasing and off-peak loads are increasing, the effect on average load is

ambiguous and depends on the relative slopes of supply and demand. The effect on the

variance of load, however, is not ambiguous: if peak loads decrease and off-peak loads

increase, then variance must decrease.12

The effects on average load and load variance can be illustrated with Figure 1. As

illustrated, the increase in off-peak load, q0l − ql, is larger than the decrease in peak load,

qh−q0h, so the average load increases in this example. Since q0h/q0l < qh/ql, the load variance

has decreased in this Figure.13

The effect of RTP on emissions can also be illustrated in Figure 1. With RTP, q0l − ql

12Demand variance would likely decrease even if all of the real-time prices in a given day were below
the flat rate. To see this, note that the loads would be bounded above by St(p̄) and that the smallest load
would increase. However, counter examples can be constructed.
13In the analysis below, we use a similar ratio of the maximum load to the minimum load as one measure

of load variance.
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additional electricity is generated off-peak, but qh − q0h less power is generated on peak.

However, the supply curve implies nothing about the emissions from generating the ad-

ditional electricity off-peak relative to generating it on peak. Since emissions rates vary

substantially across power plants, emissions may increase or decrease.

3 Comparisons of Technologies

The preceding theory suggests that the environmental effects of RTP adoption will de-

pend on the technologies available in each region. In this section, we first analyze the

effects of different technologies for one region. Then, we describe the relative differences in

technology across U.S. electricity regions.

The different technologies for one region are illustrated in Figures 2 and 3. Figure

2 shows the market supply curve for the Mid-Atlantic region, where the PJM wholesale

electricity market operates. Firms in PJM use a mix of fuel sources and technologies to

produce electricity. Fossil fuel sources are coal, natural gas, and oil. Non-fossil power

sources are nuclear and hydropower. By marginal production cost, fuel sources are gen-

erally ordered hydroelectric, nuclear, coal, natural gas, and oil. In this market, when

quantity supplied is less than 30,000 MWh the marginal unit is coal. Above 30,000 MWh,

the marginal unit is usually natural gas or oil.

Figure 3 shows the SO2 emissions rates for each of the fossil fuel sources in PJM. The

fossil-fired units are ordered by marginal cost along the horizontal axis, and their SO2 emis-

sions rates (expressed in pounds per MWh) are plotted. The base-load coal-fired units have

an average SO2 emissions rate of 20.3 with a range from 1.2 to 44.6 lbs/MWh.14 Note that

emissions rates are generally increasing in marginal cost for the coal-fired units.15 Peak

demand is met with many types of fuels. Note that the emissions rates vary dramatically

both within and between fuel types. The more expensive units within each fuel type gen-

erally have higher emissions rates. However, the variation in emissions rates between fuel

14The corresponding SO2 emission factors (lbs/mmBTU) for these primarily coal-fired units average 1.9
and range from 0.1 to 4.3. Cost data are from the PROSYM model (Kahn, 2000). Emissions data are
from the EPA Continuous Emissions Monitoring System (CEMS).
15The correlation between units’ marginal costs and the SO2 emissions rates is 0.08.
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types is much more dramatic since coal- and oil-fired generation generally has much higher

emissions rates than the gas-fired generation. Gas fired units only have trace elements of

SO2 (unless the unit uses some oil, say for starting up). The emissions rates of the oil-fired

plants are high on average and have a large variance, e.g., SO2 emissions rates average

7.0 but can range as high as 47.8 lbs/MWh for oil-fired units.

The NOx emissions rates for the coal units average 5.8 and range from 2.6 to 18.9

lbs/MWh.16 The NOx emissions rates exhibit less variance across production technologies

than the SO2 emissions, but the gas-fired units have much lower NOx emissions than the

coal-fired units (NOx emissions from gas-fired units average 0.9 and range from 0.2 to 3.1

lbs/MWh). NOx emissions from oil-fired units are higher than the gas-fired units, but not

necessarily higher than the coal-fired units (they average 3.5 and range from 0.2 to 16.3

lbs/MWh).

The distribution of CO2 emissions rates are similar. Coal CO2 emissions rates have

a mean of 2198 lbs/MWh (with a range of 1798 to 3383). Natural gas plants’ average is

1423 lbs/MWh (with a range of 1137 to 1903). Oil plants average 1790 lbs/MWh (with a

range of 384 to 2990). These rates are increasing in marginal cost within a fuel type, but

exhibit substantial variance across fuel types. Since emissions rates are not monotonic in

marginal costs, a reduction in the load variance can increase or decrease pollution.

We expect the environmental impact of a reduction in load variance to be sensitive

to the production technologies available in a each region. The North American Electric

Reliability Council (NERC) defined regions in order to ensure a reliable, adequate, and

secure electric system. Figure 4 illustrates the NERC regions. The regions are defined as:

16The corresponding NOx emission factors (lbs/mmBTU) for these primarily coal-fired units average
0.5 and range from 0.3 to 1.7.
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NERC Region Description
ECAR Eastern Mid-West
ERCOT Texas
FRCC Florida
MAAC Mid-Atlantic
MAIN Illinois, Wisconsin, and Missouri
MAPP Great Plains
NPCC Northeast
SERC Southeast
SPP Kansas and Oklahoma
WSCC17 West

Table 1 describes the fuel shares of installed capacity and generation for each of the

ten NERC regions. Because coal and nuclear power tend to have low marginal costs,

their shares of generation are larger than their shares of capacity. Conversely, since oil

and gas have high marginal costs, their shares of capacity are higher than their shares of

generation.

The share of hydroelectric capacity tends to be greater than its share of generation.

This does not suggest that hydropower has high marginal costs (marginal production costs

of hydroelectricity are typically low) but rather that there are two types of hydropower.

First, run-of-river dams generate based on the natural flows of the river. Second, storage

reservoirs (predominantly in the West) capture seasonal run-off and use this fixed stock

of water to generate power throughout the year. The marginal opportunity cost of these

units thus includes the scarcity cost of the exhaustible stock. These units are also valuable

for their ability to start and ramp quickly and cheaply.

Coal is the dominant fuel source in many regions and has the largest share of generation

in all of the regions except WSCC and NPCC. Of the other fuels, capacity is dominated

by: natural gas in ERCOT; hydroelectric in WSCC; nuclear in MAAC, MAIN, and SERC;

and oil in FRCC and NPCC. As noted above, coal is typically the dirtiest of the fossil fuels

though some oil-fired units emit similar levels of some pollutants. Gas-fired generation has

effectively no SO2 emissions and much lower NOx emissions rates than coal. Nuclear and

hydroelectric do not emit SO2, NOx, or CO2.

17After our sample, the WSCC merged with another organization (Southwest Regional Transmission
Association) to form the Western Electricity Coordinating Council (WECC).
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ECAR depends almost exclusively on coal-fired generation and has higher emissions

rates than other regions. Approximately 80% of ECAR capacity is coal fired whereas less

than 50% of the capacity is so in most of the other regions. This reliance on coal in

ECAR is shown more dramatically in the generation shares. About 90% of the electricity

generated in ECAR in 2000 was from coal. At the other extreme, WSCC is the least

reliant on fossil fuels with approximately 40% of its generation from hydroelectric and

nuclear power plants. In the WSCC, only 22% of the capacity and 32% of the utility

generation in 2000 was coal fired.

4 Estimating Pollution Implications of Demand Vari-
ance

As described above the environmental impact of a reduction in load variance can be positive

or negative depending on the underlying production technologies. These environmental ef-

fects could be estimated by a production cost model.18 However, a production cost model

would not capture the effects of nonconvexities in costs, and the estimates potentially

could be misleading.19 Even a dynamic production cost model that adequately modeled

nonconvexities would not capture actual firm behavior given regional constraints on pro-

duction. For these reasons, we follow an alternate econometric approach. In this section,

we present an empirical model to directly test this environmental impact using exogenous

variation in load variance.

Our test to determine the expected short run environmental impacts of a reduction in

load variance examines the relationship between the distribution of load and emissions.

The resulting equation, which will be estimated separately for each region, is of the form:

ln(Et) = −β · ln(V ARt) + γ1[ln(MEANt)] + γ2[ln(MEANt)]
2 (1)

+
S∗12X
s=1

δsTEMPst + φt + �t,

18See Holland and Mansur (2004) for production cost simulation of the environmental effects of RTP in
PJM.
19Nonconvexities in costs include start up costs, no load costs, ramping rate constraints, and minimum

up time constraints.
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where Et is the pollution emitted in the region on day t; V ARt is a measure of the

variance of the region’s load on day t;20 MEANt is the region’s mean daily load on day t;

and TEMPst is a function of the temperature for one of the S states bordering the region.

The parameters β, γ1, γ2, δs, and φt are estimated with φt being modeled as month-year

fixed effects. The error term, �t, models the idiosyncratic shock.

The variable V ARt, measuring the within-day variance of load, describes the load shape

on day t. This parameter could be defined in many ways. We report results primarily for

the coefficient of variation of hourly load, but explore the robustness of our results to five

other possible measures of variance.21 This functional form allows β to be interpreted as

the elasticity of pollution with respect to a reduction in the variance measure.

The variable MEANt, measuring the mean daily load, measures the nonlinear rela-

tionship between pollution and production across days. To capture this, the equation is

estimated using logarithms and higher order terms. The elasticity of pollution with re-

spect to mean daily load is therefore γ1+2γ2 ln(MEANt). Below we use this elasticity to

simulate the environmental effects of a reduction in across-day variance.

The estimating equation controls for other factors that explain daily emissions for

a region. The production decisions (and therefore pollution levels) depend on outside

opportunities. To control for imports and exports, the equation includes measures of

temperature in nearby states. For each neighboring state, daily mean, minimum, and

maximum temperature variables enter as quadratic functions with coefficients allowed to

differ for cooling degree days (when temperature measure is above 65◦F) and for heating

degree days (when temperature measure is below 65◦F). For each month in the sample, a

month-year fixed effect captures differences in costs and abatement technologies across the

different time periods. Finally, the error term is tested and corrected for heteroskedasticity

and first-order autocorrelation.
20We include the negative sign for consistency with later simulations. The β is interpreted as the effect

on emissions of a reduction of within-day variance.
21Coefficient of variation is the ratio of standard deviation to mean. The other measures include the

relative mean deviation, the standard deviation of logarithms, and the Gini coefficient as in Atkinson
(1970). In addition, we analyze the max/min ratio (daily maximum to minimum ratio of load) and the
inverse load factor (daily maximum to mean ratio of load).
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We define the level of analysis at a NERC region. Alternatively, we could have examined

the relationship at the utility level, which historically were self contained. However, now

substantial trading occurs among utilities. We could attempt to control for all of these

outside opportunities, though such an approach would likely be subject to an omitted

variables bias. For this reason, we analyze at the NERC level where there is substantial

transmission and communication. Further aggregation to the interconnection level (all

of the U.S. but the WSCC and ERCOT are one interconnection) would understate the

importance of transmission congestion across regions.

To address potential concerns about the functional forms of both V ARt and MEANt,

we also include a nonparametric analysis, which is independent of the specific functional

forms. Instead of aggregating the hourly data to the daily level, we determine whether

each hour is a high or low demand hour on a high or low demand day. Using deciles, this

defines a ten by ten matrix of bins into which each hour is sorted. For example, if the rows

are based on the decile of mean daily load and the columns are based on the decile of the

hourly load for that type of day, then the upper left bin would contain the low demand

hours on low demand days and the upper right bin would contain the high demand hours

on low demand days. Specifically, for each hour τ , we let the dummy variable BINdh
τ

equal one if hour τ occurs on a day which is in the dth decile of mean daily load and in

the hth decile of hourly load on dth decile days.

For hour τ , the model estimated is:

Eτ

qτ
=

10X
d=1

10X
h=1

βdh ·BINdh(qτ) +
S∗12X
s=1

δsTEMPst + φt + �t, (2)

where qτ is the hourly load. We define the system emissions rate as Eτ
qτ
. As above, the

temperature variables control for imports and exports and the month-year fixed effects

control for changes in relative costs. With the systems emissions rate as the dependent

variable, we can simulate the effect of RTP by analyzing how the emissions rate changes

by moving an hour from a high-load hour to a low-load hour for a given decile of average

load.
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5 Data

This analysis requires data on load, temperatures, and emissions. The load data are from

the Federal Energy Regulatory Commission (FERC) Form 714. For each of more than 200

U.S. electric utilities, the 714 data report hourly load over the time period of our sample:

January 1, 1997 to December 31, 2000. We aggregate these utility data to the NERC

region level.22

Table 2 shows summary statistics (the average and the standard deviation) of each

region’s mean and maximum daily load. The largest regions are the WSCC (the Western

U.S.) and SERC, which is located in the Southeast. On average, the load in the WSCC

is the largest in the country. It averages 87 GW (a gigawatt is 1000 MW) compared to

SERC with 75 GW. The across-day variance is greatest in the Southeast (the standard

deviation of the mean daily load in SERC is 10.7 GW versus WSCC’s 7.6 GW).23 Load

in these two regions is more than four times that in some of the smallest regions: MAPP

(13.8 GW), SPP (20.2 GW), and FRCC (20.5 GW). The regions with the most variation

across days, normalized by mean, are SPP (Kansas and Oklahoma) and ERCOT (Texas).

The coefficient of variation of mean daily load for SPP, ERCOT, and WSCC are 0.194,

0.193, and 0.088, respectively. Note that the coefficient for SPP is 2.2 times that of the

coefficient for WSCC.

Table 2 also summarizes the coefficient of variation that captures within-day load vari-

ation. The regions with the greatest variation are FRCC (Florida with an average coef-

ficient of variation of 0.2) and NPCC (the Northeast) while ECAR and MAIN are those

with the smallest within-day variation. The differences between these regions are not quite

as substantial as in the across-day variation measures: the FRCC coefficient of variation

is approximately 1.8 times that of ECAR.

The National Oceanic and Atmospheric Administration provides temperature data

on daily mean, minimum, and maximum temperature for hundreds of weather stations

nationally. We calculate statewide daily averages of each of these variables. Table 2

22Our aggregation data are consistent with NERC monthly load data.
23The maximum daily loads have similar relative magnitudes.
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reports the summary statistics for the daily mean temperature in each region.24 The

hottest regions on average are FRCC, ERCOT, and SERC while MAPP and NPCC are

the coldest. The regions with the most temperature variation are MAPP, MAIN, and SPP

while FRCC and ERCOT have the least.25

Pollution data are from the Environmental Protection Agency’s Continuous Emissions

Monitoring System (EPA’s CEMS). For almost all of the fossil power plants in the U.S.,

the CEMS data report hourly emissions of SO2, NOx, and CO2.26 By region, Table 3

summarizes the pollution data. A daily system emissions rate is calculated as the ratio

of mean daily pollution to mean daily load. ECAR is clearly the dirtiest region with the

highest emissions per MWh of SO2 and NOx, and second highest levels of CO2 (MAPP

has the largest system CO2 rate). On the other hand, WSCC is the cleanest region in all

pollutants. The WSCC SO2 system emissions rate is less than a tenth that of ECAR and

even a third of the next cleanest region, ERCOT. To a lesser extent, this is also seen in

the system emissions rates for NOx and CO2. Each region’s rates vary substantially day

to day. The coefficient of variation for the SO2 system emissions rate is 0.24 for MAIN,

which is 3.4 that of the neighboring region of MAPP.

To understand the differences in system emissions rates, we also compare the share of

load met by fossil fuel generation across regions.27 The CEMS data report hourly gross

generation at each unit.28 Table 3 presents summary statistics on the daily gross generation

as a share of total load. In the dirtiest region, ECAR, the average ratio is 0.98 while the

cleanest region, WSCC, has an average ratio of 0.36. The other regions have average ratios

ranging from 0.51 to 0.96.29

24We report statistics on the unweighted average daily temperatures for states in each region.
25Regions with high temperature variation are not necessarily those regions with high within-day or

across-day load variation.
26All units over 25 megawatts and new units under 25 megawatts that use fuel with a sulfur content

greater than .05% by weight are required to measure and report emissions under the Acid Rain Program.
CEMS data are highly accurate and comprehensive for most types of fossil units (Joskow and Kahn, 2002).
27The remainder of load is met by nuclear, hydroelectric, and imports (net of exports).
28Gross generation differs from net generation because of the discrepancy between electricity generated

by a unit and the amount of electricity sold onto the grid. This discrepancy arises from internal power
usage for water pumps, conveyor belts, etc. Informal data on gross to net ratios suggest an average ratio
of 1.05 to 1.1.
29These ratios can exceed one since a region may export electricity and since electricity is used internally

at power plants.
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To visualize the unconditional correlations in the pollution and load data, we use

kernel regressions to estimate a smooth relationship between emissions and demand in

each region. Figure 5 graphs kernel regression estimates for hourly pounds of SO2 on

hourly load for each of the ten regions. For some of the regions, there appears to be a

general linear relationship between pollution and generation suggesting little impact of

variance on pollution. However, for regions like ERCOT, SPP, and WSCC, the concave

shape of the kernel estimates imply that reducing the likelihood of both extreme high

and low demand hours will result in higher pollution. However, simply analyzing the

shape of these estimates may be misleading since the kernel regressions do not control for

covariates.30

6 Results of Parametric Estimation

To estimate the effect of a change in load variance on emissions, Equation 1 is estimated

separately for each NERC region and for each of the three pollutants. Before presenting

results for all the regressions, we first present the estimation results in detail for SO2

emissions in ECAR. We then present the regression results for one measure of within-day

variance and discuss their robustness to other measures of within-day variance. Next we

use the regression results to simulate changes in across-day variance. Finally we analyze

changes in gross fossil generation.

6.1 SO2 Emissions in ECAR

Table 4 presents all the coefficients from the regression where the dependent variable is the

log of SO2 emissions in ECAR. Equation 1 is estimated using generalized least squares to

account for an AR(1) error structure using the Prais-Winsten method. Robust standard

errors using the White correction are reported.31

30Our nonparametric analysis below does control for covariates. The kernel regressions here could be
adjusted to account for these other factors. However, these graphs are intended to display the unconditional
correlations.
31Breusch-Godfrey LM test rejects no serial correlation (χ2 = 534). A Cook-Weisberg test rejects

homoskedasticity (χ2 = 51). Both are significant at the one percent level.
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The coefficient on the measure of variation reduction is 0.025 and is significant at the

one percent level. This implies that a ten percent reduction in the coefficient of variation

(e.g., reducing the average coefficient of variation from its sample mean of 0.11 to 0.10)

would result in an increase in SO2 of 0.25 percent.

The log of mean daily load enters in a polynomial specification: the linear term has a

coefficient of 11.7 and the squared term’s coefficient is -0.49 (both are significant at the

one percent level). Since the log of mean daily load ranges from 10.68 to 11.31, we can

calculate the range of elasticities of SO2 emissions with respect to mean daily load. This

implies that the elasticity is positive throughout the range and decreases from 1.3 to 0.7

as mean daily load increases. These elasticities imply that emissions are increasing in

mean daily load but the percentage change is decreasing. In regressions for other regions

and other pollutants, this elasticity is always positive but may be increasing or decreasing

across the relevant range.32

The month-year fixed effects are defined relative to January 1997. The fixed effects

during winter of 1997-1998 are significant and positive. The emissions fall fairly continu-

ously throughout the rest of the sample (conditional on temperature and load). Overall,

SO2 emissions fall by approximately 17 percent (see Figure 6). This could result from

improvements in operation or from switching to lower sulfur coal in order to comply with

the Clean Air Act.33

Figure 6 also graphs the fixed effects from similar regressions on NOx and CO2 emis-

sions in ECAR. There is also a drop in NOx emissions in later years, but CO2 emissions

remain fairly constant over the sample. In other regions, the fixed effects capture differ-

ent phenomena. For example, in WSCC, there are strong seasonal effects likely driven

by hydroelectricity availability. Thus, the fixed effects control for important unexplained

variation.

The temperature variables include quadratic functions of the mean, minimum and

32RTP might be expected to reduce the across-day variation as well as the within-day variation. We
simulate the effect of decreasing the variance of mean daily load below.
33While flue-gas desulfurization (i.e., scrubbers) also reduce emissions, very few plants installed this

technology during our sample.
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maximum temperatures in each of six states surrounding the ECAR region: IL, NC, PA,

TN, VA, and WI. The coefficients are allowed to differ for heating and cooling days–based

on whether the temperature is below or above 65 degrees. The temperature variables

control for electricity demand outside ECAR and the availability of imports. The weather

variables are highly correlated and only two of the 72 coefficients are significant at the five

percent level. However, a Wald test of the joint significance of the weather variables is

significant (F( 72, 1330) = 1.67, (Prob > F = 0.001)). For all regions and pollutants, the

temperature variables are jointly significant at the 6% level.

6.2 Within-Day Variation

Within-day variation is measured by the coefficient of variation. Table 5 presents the

coefficient estimates and standard errors for the negative logarithm of the coefficient of

variation for all three pollutants in all ten regions.34 Each coefficient is from a regression

described in Equation 1 where the dependent variable is the log of SO2 pounds emitted in

column (i), the log of NOx pounds emitted in column (ii), and the log of CO2 tons emitted

in column (iii).35 As above, these coefficient estimates are conditional on mean daily load,

fixed effects, and temperature. Also, the coefficients are estimated using GLS accounting

for a heteroskedastic, AR(1) error structure.

The estimates for SO2 vary across all regions. For four of the ten regions–ECAR,

ERCOT, SERC, and WSCC–the coefficient estimates are positive and significant at the

five percent level. In these regions, we estimate that a reduction in within-day load variance

would increase SO2 emissions. In one region, MAIN, the negative coefficient indicates that

a reduction in within-day load variance would decrease SO2 emissions. The coefficient

estimates in the other five regions are not significant. Note that even in the regions with

statistically significant effects, the estimates are quite small. The largest effect, in WSCC,

implies that a 10% reduction in the coefficient of variation would imply only a 0.4% increase

in SO2 emissions.

34As described above, we use the negative of the logarithm to be consistent with later simulations. The
coefficients are interpreted as the effect on emissions of a reduction of within-day variance.
35Column (iv) will be discussed below.
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The estimates for NOx are similar to the SO2 estimates, but are slightly more negative.

Two regions, ERCOT and WSCC, have a positive coefficient for SO2 but have insignificant

coefficients for NOx. One region, MAAC, has an insignificant coefficient for SO2 but a

negative coefficient for NOx. Only one region, MAPP, has a more positive coefficient for

NOx than for SO2, and it is significantly positive for NOx. In summary, for NOx three of

the regions (FRCC, MAAC, and MAIN) have negative effects and three (ECAR, MAPP,

and SERC) have positive effects. These estimates are generally more negative than the SO2

estimates for which four coefficients were positive and only one coefficient was negative.

The CO2 estimates are similar to the SO2 estimates. Five regions, the same four

plus MAPP, have positive coefficients, and two regions, MAAC and MAIN, have negative

coefficients. The coefficients are generally more negative than the SO2 coefficients (MAPP

again is the exception) but are more precisely estimated. As with SO2 and NOx, the

estimated elasticity with the largest magnitude is -0.04.

These coefficient estimates show positive effects for all three pollutants in two regions,

ECAR and SERC, and for two pollutants in three regions, ERCOT, MAPP, and WSCC.

For these five regions, the estimates imply that a reduction in within-day variance, for

example, from RTP adoption, would increase emissions. However, this effect is not univer-

sal. Three regions had negative coefficient estimates including MAIN for which estimates

are negative for all three pollutants. These regions would expect to see a reduction in

emissions from a reduction in within-day variation for at least one pollutant. Finally, two

regions show no effect. In SPP, the coefficients are not significant despite being very pre-

cisely estimated. This implies that there would be no effect on emissions from a reduction

in within-day variation. In NPCC, the coefficients are not significant but are less precisely

estimated.

6.3 Other Measures of Within-Day Variation

Table 5 reports the regression results using the coefficient of variation as the within-day

measure of variance. Since these results could be specific to the coefficient of variation, we

explore five other measures of within-day variance: the max/min ratio, inverse load factor,
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relative mean deviation, standard deviation of logarithms, and Gini coefficient.

These six measures do capture different aspects of within-day variance since they are

not perfectly correlated. Calculating the correlations of these six measures for the ten

regions shows that all but one of the 150 possible correlations are positive and the average

correlation is 0.72. The smallest correlation (-0.01) is between the Gini coefficient and

the inverse load factor in FRCC. In general, the Gini coefficient is less correlated with the

other measures (an average correlation of 0.46) while the standard deviation of logarithms

is correlated the most with the other measures (an average correlation of 0.82).

Despite the imperfect correlations, the coefficient estimates on the measures of variance

are very robust to the different measures. We estimate Equation 1 for each of the six

measures of variance for each of the three pollutants for each of the ten regions. The SO2

results are particularly robust. For nine of the ten regions, the coefficients on the measure

of variance agree in sign and significance for all six measures of variance. In the remaining

region, WSCC, four of the six estimates are positive and significant while the other two

estimates are positive but not significant. For NOx, in eight of the ten regions, all the

coefficients had either the same sign or the same significance.36 For CO2, in nine of the

ten regions, all the coefficients had either the same sign or the same significance.37 Note

that no region has coefficients on any of the measures of variance that are significant but

of opposite sign.

6.4 Across-Day Variation

We now return to the coefficients on the log of mean daily load. As described above,

these coefficients can be used to compute the elasticity of emissions with respect to mean

daily load. This elasticity is linear in the log of mean daily load. The elasticities are

positive if emissions are increasing in load and unity if emissions are proportional to load.

36In MAAC, four coefficients are negative and significant but one coefficient (on the inverse load factor)
is positive but insignificant. In MAPP, four coefficients are positive and significant but one coefficient (on
the inverse load factor) is negative but insignificant.
37In MAPP, four coefficients are positive and significant but one coefficient (on the inverse load factor)

is negative but insignificant.
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The elasticities are increasing (decreasing) in mean daily load if larger mean loads have

proportionally more (fewer) emissions.

Table 6 presents the elasticities over the observed ranges of mean daily load for each of

the three pollutants (and for fossil generation) for each region. The estimated elasticities

are all positive indicating that emissions, as expected, are increasing in system load. Most

of the elasticities are decreasing in system load, indicating that a change in system load

has a much larger proportional effect on small load days than at large load days.38 For

example, in the WSCC, a percent increase in system load on the lowest-load day leads to

a 1.4% change in SO2 emissions, whereas a percent increase on the highest-load day leads

to a small increase in SO2 emissions (0.04%).

Although these elasticities are suggestive of the effect of a reduction in load variation

across days, they show only the proportional effect. To describe the effect of a reduction

in load variation across days, we use the elasticities to simulate the change in emissions

from a marginal change in the extremes of the load distribution. Specifically, we use the

elasticities to calculate the percentage change in emissions from shifting one percent of

the average load from the highest-load day to the lowest-load day. The results of this

simulation, which can be interpreted as elasticities, are presented in Table 7.39

For a given pollutant, the simulations do not have the same effect across all regions.

However, for several regions, the impacts are consistent across pollutants. In ECAR,

MAPP, and SERC, this reduction in across-day load variance leads to statistically signif-

icant increases in all three pollutants. In the WSCC, the reduction leads to significant

increases in SO2 and NOx, but not in CO2. Recall that these regions also show positive

effects from a reduction in within-day variance.

In other regions, the reduction in across-day variance can decrease emissions. NPCC

and MAAC have reductions in emissions of all three pollutants while MAIN and SPP

38The estimated elasticities decrease significantly in load in ECAR, FRCC, MAPP, SERC, and WSCC
for all pollutants and in NPCC for some pollutants. Elasticities only increase significantly for some
pollutants in MAAC and SPP. We determine significance based on the significance of the coefficient on
the log of daily demand squared in Equation 1.
39The standard errors are calculated from the covariance matrix of the parameter estimates using the

delta method.
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have reductions in two of the three pollutants. Finally, the results for ERCOT and FRCC

are mixed: FRCC has a negative effect in SO2 but positive effects in NOx and CO2, and

ERCOT has a negative effect in NOx but a positive effect in CO2.

One final point can be noted about the simulation results. Since the results can be

interpreted as elasticities, we can compare them across regions as above. In addition, we

can compare the results to the elasticities measuring changes in emissions from within-day

variation. A rough comparison of the within-day elasticities with the across-day elasticities

indicates that the latter are often much larger. This suggests that a marginal change in

across-day variation will have a larger effect than amarginal change in within-day variation.

We will make this comparison more precise in the non-parametric analysis below.

6.5 Variance Effects on Fossil Generation

To understand the effects on emissions described above, we analyze the effects of changes

in within- and across-day variation on gross fossil generation. We estimate an equation

similar to Equation 1 where the dependent variable is now the log of gross fossil generation

in MWh–instead of emissions.40 The independent variables are identical to those in the

regressions reported in columns (i) to (iii) of Tables 5 and 7. The proportion of load met by

fossil generation varies by region. Load not met by fossil generation is served by imports

or other fuel sources such as nuclear, hydropower, renewables, or small peaking units.41

Column (iv) of Table 5 reports the estimates of the coefficients on the coefficient of

variation for the regressions with gross fossil generation as the dependent variable. We

find statistically significant effects (positive or negative) on fossil generation in five of the

ten regions: positive coefficients in ECAR, MAPP, and WSCC and negative coefficients

in MAAC and MAIN. Several coefficients deserve note. First, the ERCOT coefficient is

not statistically significant despite being very precisely estimated. This is reassuring since

ERCOT is not interconnected with other regions and thus has limited imports. Since
40These regressions analyze the gross fossil generation and cannot be used to analyze changes in the

gross to net ratio separately from changes in net fossil generation.
41Certain small peaking units under 25 MW are not regulated under the Clean Air Act and thus do

not appear in the CEMS data on gross fossil generation. Transmission line losses and internal plant usage
might also account for some of the discrepancy between gross generation and load.
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Texas has quite limited hydroelectric resources and since nuclear power cannot respond

to within-day load variation, fossil generation must follow load directly.42 Second, the

positive coefficient for WSCC likely reflects the significant hydro capacity in the West.

Decreasing within-day load variance thus would decrease the demand for peak-shaving

hydroelectricity. Finally, the four regions with significant effects in the East are closely

interconnected and neighboring regions have coefficients with opposite signs. Thus, as the

coefficients of variation are correlated across regions, the decreased fossil generation in

ECAR likely is offset by the increased fossil generation in either MAAC or MAIN.43

In summary, we find that reducing within-day variance results in more gross fossil pro-

duction in ECAR, in MAPP, weakly in SERC, and in WSCC. Note that these are the

regions where we estimate increases in emissions.44 In two regions, MAAC and MAIN,

higher within-day variance is associated with less gross fossil production. These are the

regions where reductions in emissions are seen.45 Although two regions, ERCOT and

FRCC, show some environmental effects but have no change in fossil generation, the ma-

jority of the environmental effects from changes in within-day variance seem to be driven

by changes in fossil generation.

We now turn to the across-day variance effects on fossil generation. Column (iv) of

Table 6 reports the elasticity ranges for fossil generation with respect to mean daily load.

If fossil generation were a fixed proportion of load, then these elasticities would be unity.

Since most (seven of ten) of these elasticities are decreasing, fossil generation accounts for

a smaller proportion of load on the highest-load day than on the lowest-load day in most

regions.

Column (iv) of Table 7 reports the simulated effects of the percentage change in gross

42Since the electrical grid must be balanced at all times, generation must equal load. If fossil generation is
positively correlated with the coefficient of variation, then either imports or hydropower must be negatively
correlated with the coefficient of variation since nuclear power cannot respond to within-day changes in
load.
43The correlations among these coefficients of variation are high: corr(ECAR, MAAC)=0.78,

corr(ECAR, MAIN)=0.87, and corr(MAIN, MAPP)=0.87.
44For these regions, the point estimates for all the pollutants are positive, and ten of the twelve are

significantly positive.
45For these regions, the point estimates for all the pollutants are negative, and five of the six are

significantly negative.
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fossil generation of shifting one percent of the average load from the highest-load day to

the lowest-load day. Five of the effects are positive and four of the effects are negative.

The most important thing to note about these effects is that they coincide closely with the

environmental effects. Thus, as with the within-day environmental effects, the across-day

environmental effect seem to be driven largely by changes in the fossil generation.

7 Robustness using Nonparametric Model

Since the estimates of Section 6 depend on specific functional forms, we test the robustness

of these results using the nonparametric model described in Section 4. We estimate Equa-

tion 2 and correct the standard errors for serial correlation and heteroskedasticity.46 With

ten regions, three pollutants (plus generation), and 100 bins each, there are thousands

of coefficients. Instead of presenting all of these coefficients, we simulate the impacts of

real-time pricing.

Figure 7 depicts the coefficients for ECAR SO2 emissions rates. All of the other co-

variates have been demeaned and the regression does not include a constant. Therefore,

each coefficient equals the average emissions rate for the hours in a given bin. Consistent

with the sample mean in Table 3, the average of the emissions rate coefficients is 14.9 lbs

per MWh. The rates range from 13.6 to 15.5 lbs per MWh. The lowest rate occurs when

demand is in the bin with the highest decile of mean daily load and the highest decile

of hourly demand for that type of day. The greatest emissions rate occurs in the highest

decile of mean daily load but in the lowest decile bin of hourly demand for that type of

day. Generally in ECAR, the SO2 emissions rate decreases with hourly demand. Across

regions and pollutants, we find substantially different patterns.

We simulate a reduction in within-day variance by comparing the various coefficient

estimates of emissions rates. For each mean daily load decile, we move one MWh from the

lowest decile of hourly load to the second lowest decile, and also move one MWh from the

46As this section attempts to estimate the impacts of real-time pricing using a nonparametric approach,
we use a nonparametric technique to correct for serial correlation and heteroskedasticity as well. We use
the Newey-West method assuming a six hour lag structure.
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highest hourly load decile to the second highest decile. Then, we average these impacts

over the ten mean daily load deciles. Therefore, the coefficients represent the average

change in emissions given one fewer MWh in the first and tenth deciles of hourly load and

one more MWh in the second and ninth hourly load deciles.47 Table 8 reports the findings

of this simulation.48

We compare the within-day effects of the parametric method (Table 5) with those of

the nonparametric method (Table 8). About half (24 of 40) of the parametric estimations

are significant across the ten regions and four dependent variables (SO2, NOx, CO2, and

gross fossil generation). The nonparametric simulations support these findings qualita-

tively in 17, or 71%, of these regressions. However, of the 34 significant effects that the

nonparametric simulations predict, only half of them are also predicted by the parametric

models.

Next, we use the nonparametric estimates to simulate the impact of reducing across-

day variation. For each hourly load decile, we move one MWh from the lowest decile of

mean daily load to the second lowest decile, and we move one MWh from the highest mean

daily load decile to the second highest decile. Then, we average these impacts over the ten

hourly load deciles. Table 9 reports the findings of this simulation.

For the across-day effects, the parametric models predict significant effects in 35 of

the 40 models. Of these 35 effects, the nonparametric simulations are qualitatively sim-

ilar in 21, or 60%. The nonparametric simulations are significant in only 27 regressions.

Therefore, 78% of these regressions are supported by the parametric models.

We conclude that the nonparametric model supports our findings in Section 6. For most

regions and pollutants, the parametric and nonparametric simulations are qualitatively

similar. There were a total of 80 tests. In 38, both the parametric and nonparametric

results agree in sign and significance. Seven of the tests were insignificant using both

methods. For 26 tests, one method found significant results while the other did not.

Finally, nine tests reached opposing significant conclusions.

47This is equivalent to calculating a change in the weighted average emissions rates by giving less weight
to extreme events.
48The standard errors in Tables 8 and 9 are estimated using the delta method.
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Furthermore, we find that the across-day variance effects are larger than the within-

day effects. The manner in which we simulate RTP using the nonparametric coefficients

allows us to compare the outcomes in Tables 8 and 9. We note that the impact of reducing

across-day variance is about twice as large as the impact of reducing within-day variance.

For example, in ECAR, moving one MWh from both the lowest and highest deciles towards

the median results in an average increase of 0.45 pounds of SO2 per hour when reducing

across-day variance, but an average increase of only 0.11 pounds per hour when reducing

within-day variance.

8 Discussion of the Environmental Impacts

The results of Section 6 imply that a reduction in within- or across-day load variance,

whether through RTP or some other means, would have different environmental impacts

in different regions. In particular, we found that the results were correlated with changes

in fossil generation, i.e., emissions tended to increase in a region if fossil generation in that

region also increased with a reduction in load variance. In this section, we attempt to

understand these changes in emissions and fossil generation by analyzing the production

technologies and capacities in each region.

To understand the differences in how load variance affects the mix of fossil and non-

fossil generation (and thus emissions) across regions, recall the capacity shares from Table

1. On days with more within-day variation, firms are likely to use technologies that ramp

up and down quickly rather than slower base-load technologies. The peaking units are

either fossil fired–typically burning either natural gas or oil–or are hydroelectric plants.

Table 10 reports the shares of peaking capacity, which we define as hydroelectric, oil, and

natural gas generation.

If hydro generation is a significant share of peak capacity, then a reduction in load

variance will reduce peak hydro and may increase dirtier base-load fossil generation. On

net this would increase emissions. Oil-fired peaking units have relatively high emissions

rates (see Figure 3). In regions where oil-fired generation is a significant share of peak
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capacity, a reduction in within-day variance may reduce emissions if base-load generation

is relatively clean.49

The regions with hydro shares larger than oil shares are ECAR, ERCOT, MAPP,

SERC, SPP, and WSCC. In all of these regions except SPP, we find that a reduction in

within-day variance leads to an increase in emissions (see Table 5). We find no effect in

SPP. For most pollutants in these regions, the results are consistent with the hypothesis

that reducing load variance leads to less peak hydro and, therefore, more emissions.

The regions with large oil shares, relative to hydro shares, are FRCC, MAAC, MAIN,

and NPCC. These relatively large oil shares would suggest that a reduction in within-day

variance should reduce emissions. This is consistent with our results for all of these regions

except NPCC in which we find no effect.

The relative capacity shares of hydroelectricity and oil-fired generation help understand

the different effects that we estimate for the various regions. Note, however, that the hydro

effect has an interesting implication for the environmental impacts of a reduction in load

variance. Since hydropower has low marginal cost and quick ramping rates, it can be used

either as base load or to adjust to rapid changes in load. A reduction in load variance

would imply that less hydropower is needed to follow load and can be used instead for base

load. This suggests that the adverse environmental effects estimated here for some regions

may be mitigated by using peak hydropower to offset dirty fossil base-load generation.

Understanding the implications of reducing across-day variance is less straightforward.

For this measure of variance, most regions with relatively large hydro shares are predicted

to see an increase in emissions. However, in SPP we predict a reduction in emissions and

in ERCOT the effects are mixed. We estimate that most regions with relatively large oil

shares will see a reduction in emissions if across-day variance is reduced. However, FRCC

has mixed results.
49Natural gas typically has lower emissions rates than oil though is dirtier than hydroelectric.
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9 Conclusion

Economists have advocated for real-time pricing in an attempt to improve the efficiency

of investment and the allocation of electricity. Conventional wisdom, previously untested,

has claimed that RTP has an additional benefit, namely, reduced emissions from reduced

peak demand. This paper analyzes the environmental impacts of real-time pricing by

estimating the effect of load variation on emissions of SO2, NOx, and CO2. We argue

that RTP will reduce load variance and estimate the effect of changes in load variation on

emissions in all NERC regions. We find that the environmental impacts of a reduction in

load variance are different for different regions. In particular, contrary to the conventional

wisdom, RTP may actually increase emissions in some regions.

We estimate a reduction in within-day load variance would decrease emissions of some

pollutants in three of the ten regions (FRCC, MAAC, and MAIN). However, a reduction

in within-day load variance would actually increase emissions in most of the rest of the

US. In fact, for ECAR and SERC, emissions of all three pollutants would increase and for

ERCOT, MAPP, and WSCC, emissions would increase for two of the three pollutants.

We further argue that RTP will reduce the across-day variance of load and analyze the

effect of a reduction in across-day load variance on emissions. Similar to our results for

within-day variance we find that a reduction in across-day load variance would lead to a

reduction in emissions in some regions (MAAC, MAIN, NPCC and SPP) but would lead

to an increase in emissions in other regions (ECAR, MAPP, SERC, and WSCC). The final

two regions show mixed effects: increases for some pollutants and decreases for others.

Our results are robust to alternate empirical specifications. We measure within-day

variance using five other measures of variance and find very similar results. We also test

a nonparametric specification of the model and find similar results. The stability of our

results does not support the conventional wisdom that RTP will reduce emissions and even

suggests that RTP will increase emissions in many regions.

To understand the different effects across regions, we test the effects of a reduction in

load variance on fossil generation and compare the generation technologies in the various

25



regions. We find that changes in emissions are similar to changes in fossil generation. In

particular, if a reduction in load variance leads to an increase (decrease) in fossil generation,

then it also leads to an increase (decrease) in emissions for most pollutants.

Since changes in emissions are driven by changes in fossil generation, we compare the

generation technologies across the regions. We find that the results are consistent with the

relative shares of hydroelectric and oil-fired capacity. In particular, a reduction in within-

day load variance leads to an increase in emissions only for regions with more hydroelectric

capacity than oil-fired capacity. This supports the hypothesis that the environmental

benefits of RTP come from reducing peak demand, but only if peak capacity is oil fired

rather than hydroelectric.

Several points should be noted in interpreting our results. First, SO2 and NOx are

regulated in many regions by cap-and-trade programs. If the total amount of emissions

is capped, then emissions cannot increase following a policy shift. However, our results

reflect the demand for emissions. For example, if our coefficient estimate is positive (i.e., an

“increase in emissions”) we are predicting that RTP would lead to an increase in demand

for emissions permits and that the permit price would increase.

Second, hydroelectric power sometimes can be used either as baseload or as peakload.

If an increase in emissions arises because of decreased demand for peak hydropower, then

that hydropower can be used to offset off-peak emissions. In this case, actual emissions

may not increase as much as our estimates predict.

Third, our estimates hold average load constant. If the average load increases or de-

creases substantially with RTP adoption, the environmental effects may be quite different.

Holland and Mansur (2004) calculate an increase in average load from RTP adoption in

one region. However, other regions may show decreases in average load depending on the

relevant demand and supply elasticities.

Fourth, our estimates are not applicable to long-run questions of investment. Reduced

investment may benefit the environment if the siting of new power plants causes environ-

mental damage. Since investment under regulation is based on peak capacity requirements

and RTP reduces the peak load, RTP may reduce investment in regulated markets. In
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competitive wholesale markets, investment is based on profit opportunities. Borenstein

and Holland (forthcoming) show that investment could theoretically increase with RTP

adoption in competitive markets. Thus the long-run environmental benefits of RTP adop-

tion are unclear. Finally, our results are not in any way specific to RTP and apply equally

to any regulatory program or market mechanism that affects the variance of the electricity

load.
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Tables and Figures 
 

Table 1 
 

Shares of Installed Capacity and Generation by Fuel Type 
 

Panel A: Installed Capacity (MW) 
 Shares  
NERC Total Coal Gas Hydro Nuclear Oil
ECAR 123,381 79% 9% 3% 7% 1%
ERCOT 72,583 24% 67% 1% 7% 0%
FRCC 43,880 29% 26% 0% 4% 38%
MAAC 64,512 44% 17% 4% 21% 13%
MAIN 64,238 54% 17% 2% 23% 3%
MAPP 36,244 63% 10% 10% 8% 5%
NPCC 67,841 13% 32% 14% 15% 23%
SERC 195,989 47% 21% 10% 18% 2%
SPP 47,440 48% 41% 5% 3% 2%
WSCC 144,046 22% 30% 36% 7% 1%
 
Panel B: Net Generation (GWh) 
 Shares  
NERC Total Coal Gas Hydro Nuclear Oil
ECAR 590,666 87% 3% 0% 8% 1%
ERCOT 313,659 35% 51% 0% 12% 1%
FRCC 181,322 36% 23% 0% 18% 19%
MAAC 264,901 45% 9% 1% 40% 3%
MAIN 294,155 56% 3% 1% 39% 0%
MAPP 178,980 76% 1% 9% 12% 0%
NPCC 254,617 17% 25% 13% 26% 13%
SERC 861,033 55% 10% 2% 29% 1%
SPP 186,976 68% 23% 2% 5% 0%
WSCC 667,187 32% 23% 28% 11% 1%
 
Notes:  

a) Source: EPA eGRID for 2000 (http://www.epa.gov/cleanenergy/egrid/index.htm). 
b) Shares are of total capacity or total generation for utilities and non-utilities. Renewables are the 

missing share. 
c) Net generation equals electricity produced excluding that which is used internally at power plants. 
d) GWh are gigawatt-hours, or 1000 MWh. 
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Table 2 
 

Summary Statistics of Quantity Demanded (MWh) and Mean Temperature (in degrees 
Fahrenheit) by Region 

 
 Mean Max Coefficient Mean  Daily 
Region Daily  Load Daily  Load of Variation Temperature 

ECAR 59,
[6,

578 
481] 

67,
[8,

500 
201] 

0.
[0.

111 
030] 

52.
[17.

6 
2] 

ERCOT 30,
[5,

648 
913] 

36,
[8,

593 
451] 

0.
[0.

137 
042] 

68.
[14.

1 
1] 

FRCC 20,
[3,

556 
355] 

25,
[4,

899 
623] 

0.
[0.

199 
033] 

72.
[9.

6 
5] 

MAAC 28,
[3,

844 
881] 

33,
[5,

590 
029] 

0.
[0.

136 
032] 

55.
[16.

2 
2] 

MAIN 26,
[3,

510 
473] 

30,
[4,

366 
605] 

0.
[0.

119 
032] 

52.
[18.

1 
5] 

MAPP 13,
[1,

815 
713] 

15,
[2,

833 
174] 

0.
[0.

124 
028] 

46.
[20.

9 
5] 

NPCC 24,
[3,

244 
041] 

28,
[3,

600 
728] 

0.
[0.

153 
024] 

47.
[17.

6 
3] 

SERC 75,
[10,

240 
710] 

87,
[14,

992 
908] 

0.
[0.

126 
039] 

62.
[14.

7 
6] 

SPP 20,
[3,

237 
927] 

23,
[5,

642 
542] 

0.
[0.

125 
041] 

58.
[18.

6 
3] 

WSCC 86,
[7,

759 
611] 

100,
[9,

396 
737] 

0.
[0.

121 
022] 

53.
[14.

3 
4] 

 
Notes:  

a) For each variable, the table displays the sample mean with standard deviation in 
brackets. 

b) The sample period is from January 1997 to December 2000, except MAPP does not 
include 2000. All days of daylight savings transitions are dropped. 

c) Sources: Load data are from FERC Form 714. Temperature data are from NOAA.  
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Table 3 
 

Pollution Summary Statistics by Region 
 

 SO2 NOX CO2 Fossil Sample 
Region Rate Rate Rate Share Size 

ECAR 14.
[1.

871 
149] 

5.
[0.

793 
701] 

1.
[0.

040 
039] 

0.
[0.

984 
033] 

1,453 
 

ERCOT 3.
[0.

957 
681] 

2.
[0.

422 
227] 

0.
[0.

694 
028] 

0.
[0.

791 
044] 

1,453 
 

FRCC 6.
[1.

082 
292] 

2.
[0.

766 
344] 

0.
[0.

556 
044] 

0.
[0.

590 
044] 

1,453 
 

MAAC 8.
[1.

748 
183] 

2.
[0.

384 
431] 

0.
[0.

514 
058] 

0.
[0.

509 
051] 

1,453 
 

MAIN 9.
[2.

106 
147] 

3.
[0.

783 
586] 

0.
[0.

754 
051] 

0.
[0.

678 
042] 

1,453 
 

MAPP 8.
[0.

753 
614] 

5.
[0.

301 
438] 

1.
[0.

154 
073] 

0.
[0.

958 
067] 

1,089 
 

NPCC 4.
[0.

974 
871] 

1.
[0.

525 
294] 

0.
[0.

471 
073] 

0.
[1.

594 
170] 

1,453 
 

SERC 9.
[0.

338 
937] 

4.
[0.

223 
688] 

0.
[0.

758 
042] 

0.
[0.

740 
040] 

1,453 
 

SPP 5.
[0.

513 
795] 

3.
[0.

753 
620] 

0.
[0.

899 
122] 

0.
[0.

908 
099] 

1,453 
 

WSCC 1.
[0.

358 
179] 

1.
[0.

295 
107] 

0.
[0.

351 
033] 

0.
[0.

363 
043] 

1,453 
 

 
Notes:  

a) For each variable, the table displays the sample mean with standard deviation in 
brackets. 

b) Emissions rates are system-wide averages of total pollution (SO2 and NOX in lbs 
and CO2 in tons) to total demand (in MWh).  

c) The sample period is from January 1997 to December 2000, except MAPP does not 
include 2000. All days of daylight savings transitions are dropped. 

d) Source: EPA Continuous Emissions Monitoring System. 
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Table 4 
 

Parametric Estimation of SO2 Emissions in ECAR 
Dependent variable is log of daily sulfur dioxide emissions (in pounds) 

 

Variable C 
(s 

oef 
.e.) Variable C

(s
oef 
.e.) Variable C 

(s 
oef 
.e.) 

constant -52. 
(6. 

750* 
074) MY199803 -0.

(0.
018 
019) MY199908 -0. 

(0. 
058* 
023) 

- lncoefvar 0. 
(0. 

025* 
005) MY199804 0.

(0.
014 
019) MY199909 -0. 

(0. 
094* 
024) 

lndmd 11. 
(1. 

689* 
110) MY199805 0.

(0.
021 
022) MY199910 -0. 

(0. 
050* 
022) 

lndmd2 -0. 
(0. 

487* 
051) MY199806 0.

(0.
007 
021) MY199911 -0. 

(0. 
066* 
021) 

MY199702 -0. 
(0. 

031 
019) MY199807 0.

(0.
028 
022) MY199912 -0. 

(0. 
115* 
022) 

MY199703 -0. 
(0. 

008 
019) MY199808 0.

(0.
003 
023) MY200001 -0. 

(0. 
132* 
017) 

MY199704 0. 
(0. 

011 
018) MY199809 -0.

(0.
007 
023) MY200002 -0. 

(0. 
140* 
019) 

MY199705 0. 
(0. 

000 
021) MY199810 -0.

(0.
005 
023) MY200003 -0. 

(0. 
163* 
018) 

MY199706 -0. 
(0. 

033 
022) MY199811 -0.

(0.
048* 
021) MY200004 -0. 

(0. 
145* 
020) 

MY199707 -0. 
(0. 

024 
020) MY199812 -0.

(0.
044* 
018) MY200005 -0. 

(0. 
163* 
019) 

MY199708 -0. 
(0. 

021 
022) MY199901 -0.

(0.
051* 
017) MY200006 -0. 

(0. 
179* 
020) 

MY199709 -0. 
(0. 

004 
021) MY199902 -0.

(0.
073* 
017) MY200007 -0. 

(0. 
177* 
021) 

MY199710 0. 
(0. 

069* 
021) MY199903 -0.

(0.
055* 
018) MY200008 -0. 

(0. 
160* 
022) 

MY199711 0. 
(0. 

042* 
020) MY199904 -0.

(0.
039# 
020) MY200009 -0. 

(0. 
186* 
021) 

MY199712 0. 
(0. 

038# 
020) MY199905 -0.

(0.
042* 
019) MY200010 -0. 

(0. 
113* 
019) 

MY199801 0. 
(0. 

038* 
018) MY199906 -0.

(0.
060* 
019) MY200011 -0. 

(0. 
147* 
020) 

MY199802 0. 
(0. 

045* 
018) MY199907 -0.

(0.
043* 
021) MY200012 -0. 

(0. 
169* 
020) 

Notes: 
a) Table presents GLS coefficients accounting for a common AR(1) error structure using the Prais-Winsten method.  
b) Robust standard errors are in parentheses. We note significance at 5% level using (*) or at 10% level using (#). 
c) The variables are: the log of the coefficient of variation (lncoefvar); a quadratic function of the log of daily demand (lndmd); 

month-year fixed effects, and temperature variables. For each neighboring state, daily mean (mn), min (mi), and max (ma) 
temperature variables enter as quadratic functions with coefficients allowed to differ for cooling degree days (when 
temperature measure is above 65°F) and for heating degree days  (when temperature measure is below 65°F). We multiplied 
coefficients and standard errors by 10^6. State codes are IL (6), NC(7), PA (8), TN(9), VA(10), and WI(11). 

d) Sample of 1453 includes daily observations from 1997 to 2000. All days of daylight savings transitions are dropped. AR(1) 
coefficient is 0.69, R2 is 0.987, and joint F test of weather variables is F( 72,  1330) =  1.67 (Prob > F =    0.0005). 

 
(continued) 
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Table 4 continued 

Variable C 
(s 

oef 
.e.) Variable C

(s
oef 
.e.) Variable C

(s
oef 
.e.) 

mn6heat -0. 
(0. 

472 
778) mn8heat 1.

(1.
652 
249) mn10heat -2.

(2.
153 
353) 

ma6heat -0. 
(0. 

930 
974) ma8heat -1.

(1.
043 
309) ma10heat -1.

(2.
380 
352) 

mi6heat 0. 
(0. 

268 
600) mi8heat -0.

(0.
996 
768) mi10heat 1.

(1.
386 
438) 

mn6heat2 0. 
(0. 

002 
008) mn8heat2 -0.

(0.
014 
013) mn10heat2 0.

(0.
012 
023) 

ma6heat2 0. 
(0. 

014 
010) ma8heat2 0.

(0.
010 
013) ma10heat2 0.

(0.
013 
022) 

mi6heat2 -0. 
(0. 

005 
007) mi8heat2 0.

(0.
016# 
010) mi10heat2 -0.

(0.
012 
017) 

mn6cool2 0. 
(0. 

015* 
008) mn8cool2 -0.

(0.
019# 
010) mn10cool2 0.

(0.
017 
014) 

ma6cool2 -0. 
(0. 

003 
007) ma8cool2 0.

(0.
014# 
008) ma10cool2 -0.

(0.
009 
013) 

mi6cool2 0. 
(0. 

003 
014) mi8cool2 0.

(0.
012 
032) mi10cool2 0.

(0.
022 
028) 

mn6cool -1. 
(0. 

409# 
741) mn8cool 1.

(1.
947# 
068) mn10cool -2.

(1.
523 
788) 

ma6cool 0. 
(0. 

068 
788) ma8cool -1.

(1.
256 
029) ma10cool 0.

(1.
037 
789) 

mi6cool -0. 
(1. 

316 
036) mi8cool -0.

(2.
785 
185) mi10cool -0.

(2.
891 
044) 

mn7heat 4. 
(2. 

432# 
541) mn9heat -1.

(1.
488 
540) mn11heat -0.

(0.
708 
696) 

ma7heat 2. 
(2. 

876 
848) ma9heat 0.

(1.
205 
590) ma11heat -0.

(0.
755 
705) 

mi7heat -0. 
(1. 

603 
589) mi9heat -0.

(0.
025 
977) mi11heat 0.

(0.
441 
418) 

mn7heat2 -0. 
(0. 

039# 
023) mn9heat2 0.

(0.
014 
016) mn11heat2 0.

(0.
008 
008) 

ma7heat2 -0. 
(0. 

028 
026) ma9heat2 -0.

(0.
002 
015) ma11heat2 0.

(0.
008 
008) 

mi7heat2 0. 
(0. 

004 
018) mi9heat2 -0.

(0.
002 
011) mi11heat2 -0.

(0.
005 
006) 

mn7cool2 -0. 
(0. 

014 
017) mn9cool2 0.

(0.
023* 
011) mn11cool2 -0.

(0.
006 
008) 

ma7cool2 0. 
(0. 

001 
015) ma9cool2 0.

(0.
008 
009) ma11cool2 -0.

(0.
005 
006) 

mi7cool2 -0. 
(0. 

007 
027) mi9cool2 -0.

(0.
032 
021) mi11cool2 0.

(0.
025 
028) 

mn7cool 2. 
(2. 

885 
088) mn9cool -1.

(1.
994 
237) mn11cool 0.

(0.
291 
726) 

ma7cool 1. 
(2. 

032 
140) ma9cool -0.

(1.
423 
196) ma11cool 0.

(0.
056 
612) 

mi7cool 0. 
(2. 

225 
039) mi9cool 1.

(1.
913 
493) mi11cool -1.

(1.
492 
892) 
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Table 5 
 

Parametric Estimation of Regional Environmental Effects of Within-Day Variation 
 

Dependent variable: Columns (i-iii) log of daily emissions in daily pounds of emissions, 
column (iv) log of daily gross fossil generation in MWh. 

Independent variable: Negative log of the coefficient of variation (std. dev. over mean). 
 

 (i) (ii) (iii) (iv) 
Region SO2 NOX CO2 Gen 

ECAR 0.
(0.

025* 
005) 

0.
(0.

020* 
005) 

0.
(0.

016* 
003) 

0.
(0.

021* 
003) 

ERCOT 0.
(0.

036* 
008) 

-0.
(0.

008 
005) 

0.
(0.

009* 
003) 

-0.
(0.

002 
003) 

FRCC 0.
(0.

028 
023) 

-0.
(0.

033* 
013) 

0.
(0.

013 
010) 

-0.
(0.

005 
007) 

MAAC -0.
(0.

009 
014) 

-0.
(0.

035* 
017) 

-0.
(0.

041* 
015) 

-0.
(0.

041* 
016) 

MAIN -0.
(0.

027* 
010) 

-0.
(0.

037* 
010) 

-0.
(0.

031* 
006) 

-0.
(0.

033* 
006) 

MAPP 0.
(0.

012 
010) 

0.
(0.

022* 
010) 

0.
(0.

022* 
007) 

0.
(0.

030* 
007) 

NPCC 0.
(0.

015 
019) 

-0.
(0.

047 
036) 

-0.
(0.

001 
013) 

-0.
(0.

010 
032) 

SERC 0.
(0.

028* 
006) 

0.
(0.

015* 
007) 

0.
(0.

010* 
005) 

0.
(0.

008# 
005) 

SPP 0.
(0.

001 
014) 

-0.
(0.

005 
010) 

-0.
(0.

001 
007) 

0.
(0.

001 
007) 

WSCC 0.
(0.

042* 
015) 

0.
(0.

027 
016) 

0.
(0.

024* 
010) 

0.
(0.

025* 
009) 

 
Notes:  

a) Table presents GLS coefficients accounting for a common AR(1) error structure using the 
Prais-Winsten method. 

b) Robust standard errors are in parentheses. We note significance at 5% level using (*) or at 
10% level using (#). 

c) Regression includes month-year fixed effects, quadratic function of log of daily mean 
quantity demanded, and daily mean, minimum, and maximum temperatures for all states 
bordering each region. 

d) Data are from January 1997 to December 2000 except MAPP does not include 2000. All 
days of daylight savings transitions are dropped. 
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Table 6 
 

Parametric Estimation of Elasticity Range over Mean Daily Load 
 

 (i) (ii) (iii) (iv) 
Region SO2 NOX CO2 Gen 

ECAR [1.
0.

279, 
662]* 

[1.
0.

400, 
712]* 

[1.
0.

093, 
615]* 

[1.
0.

146, 
629]* 

ERCOT [0.
0.

520, 
535] 

[1.
1.

374, 
291] 

[0.
0.

970, 
922] 

[1.
1.

288, 
098]* 

FRCC [2.
1.

313, 
408]* 

[1.
1.

996, 
255]* 

[1.
0.

590, 
987]* 

[1.
0.

680, 
947]* 

MAAC [0.
0.

740, 
776] 

[0.
1.

692, 
470]* 

[0.
1.

642, 
346]* 

[0.
1.

672, 
574]* 

MAIN [1.
1.

057, 
069] 

[1.
1.

146, 
128] 

[1.
0.

003, 
948] 

[1.
1.

027, 
049] 

MAPP [0.
0.

823, 
554]* 

[0.
0.

960, 
578]* 

[0.
0.

826, 
579]* 

[0.
0.

908, 
603]* 

NPCC [1.
1.

376, 
225] 

[1.
1.

339, 
337] 

[1.
1.

581, 
195]* 

[1.
1.

765, 
306]* 

SERC [1.
0.

552, 
481]* 

[1.
0.

512, 
606]* 

[1.
0.

352, 
637]* 

[1.
0.

354, 
736]* 

SPP [0.
0.

646, 
763] 

[1.
1.

085, 
199] 

[0.
1.

831, 
031]* 

[0.
1.

972, 
088] 

WSCC [1.
0.

420, 
042]* 

[1.
0.

408, 
491]* 

[1.
0.

249, 
552]* 

[1.
0.

521, 
707]* 

 
Notes:  

a) The elasticities are reported over the observed ranges of mean daily load. 
b) Based on the significance of the coefficient on the log of daily demand squared, we note 

significant differences in the elasticities across the range at 5% level using (*) or at 10% 
level using (#). 
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Table 7 
 

Parametric Simulation of Regional Environmental Effects of Across-Day VariationΨ 
 

 (i) (ii) (iii) (iv) 
Region SO2 NOX CO2 Gen 

ECAR 0.
(0.

256* 
031) 

0.
(0.

398* 
037) 

0.
(0.

467* 
022) 

0.
(0.

509* 
022) 

ERCOT -0.
(0.

040 
051) 

-0.
(0.

242* 
036) 

0.
(0.

046* 
020) 

-0.
(0.

052* 
019) 

FRCC -0.
(0.

710* 
095) 

0.
(0.

398* 
037) 

0.
(0.

252* 
039) 

0.
(0.

364* 
036) 

MAAC -0.
(0.

288* 
085) 

-1.
(0.

198* 
099) 

-1.
(0.

362* 
119) 

-1.
(0.

260* 
113) 

MAIN -0.
(0.

623* 
060) 

-0.
(0.

326* 
056) 

-0.
(0.

047 
037) 

-0.
(0.

132* 
038) 

MAPP 0.
(0.

338* 
052) 

0.
(0.

414* 
054) 

0.
(0.

241* 
042) 

0.
(0.

298* 
046) 

NPCC -0.
(0.

638* 
088) 

-3.
(0.

383* 
252) 

-0.
(0.

370* 
061) 

-0.
(0.

795* 
075) 

SERC 0.
(0.

908* 
042) 

0.
(0.

603* 
048) 

0.
(0.

570* 
031) 

0.
(0.

451* 
030) 

SPP -0.
(0.

112 
069) 

-1.
(0.

022* 
097) 

-0.
(0.

176* 
054) 

0.
(0.

042 
050) 

WSCC 1.
(0.

016* 
070) 

0.
(0.

624* 
075) 

-0.
(0.

033 
074) 

0.
(0.

260* 
052) 

 
Notes:  
Ψ: We simulate a reduction in across variation in the following manner. First we 
measure a one percent change in average load (deltaload). We then increase the 
minimum mean daily load by deltaload and decrease the maximum mean daily load by 
deltaload. The resulting change in pollution is normalized by the average daily 
pollution in that region. The estimates can be interpreted as elasticities. Standard errors 
are in parentheses and are computed using the delta method. We note significance at 
5% level using (*) or at 10% level using (#). 
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Table 8 
 

Non-Parametric Simulation of Regional Environmental Effects of Within-Day Variation 
 

 (i) (ii) (iii) (iv) 
Region SO2 NOX CO2 Gen 

ECAR 0.
(0.

107* 
027) 

0.
(0.

082* 
012) 

0.
(0.

006* 
001) 

0.
(0.

011* 
001) 

ERCOT 0.
(0.

060* 
015) 

-0.
(0.

017* 
006) 

0.
(0.

002# 
001) 

0.
(0.

007* 
001) 

FRCC 0.
(0.

228* 
029) 

0.
(0.

078* 
010) 

0.
(0.

008* 
002) 

0.
(0.

013* 
001) 

MAAC 0.
(0.

182* 
035) 

0.
(0.

036* 
011) 

0.
(0.

009* 
002) 

0.
(0.

012* 
002) 

MAIN 0.
(0.

008 
037) 

-0.
(0.

028# 
015) 

0.
(0.

003 
002) 

0.
(0.

006* 
002) 

MAPP 0.
(0.

031 
028) 

0.
(0.

050* 
017) 

0.
(0.

008* 
003) 

0.
(0.

012* 
003) 

NPCC 0.
(0.

101* 
023) 

0.
(0.

015 
014) 

-0.
(0.

002 
002) 

0.
(0.

017* 
002) 

SERC 0.
(0.

276* 
023) 

0.
(0.

128* 
010) 

0.
(0.

016* 
001) 

0.
(0.

019* 
001) 

SPP 0.
(0.

059* 
022) 

0.
(0.

064* 
024) 

0.
(0.

003 
002) 

0.
(0.

005* 
002) 

WSCC 0.
(0.

017* 
006) 

0.
(0.

019* 
004) 

0.
(0.

003* 
001) 

0.
(0.

008* 
001) 

 

Notes:  
a) Table presents simulations based on OLS coefficients. 
b) Standard errors, in parentheses, have been corrected for heteroskedasticity and serial 

correlation using the Newey-West method assuming a six-hour lag structure. We note 
significance at 5% level using (*) or at 10% level using (#). 

c) Regression includes month-year fixed effects, quadratic function of log of daily mean 
quantity demanded, and daily mean, minimum, and maximum temperatures for all states 
bordering each region. 

d) Data are from January 1997 to December 2000 except MAPP does not include 2000. All 
days of daylight savings transitions are dropped. 
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Table 9 
 

Non-Parametric Simulation of Regional Environmental Effects of Across-Day Variation 
 

 (i) (ii) (iii) (iv) 
Region SO2 NOX CO2 Gen 

ECAR 0.
(0.

447* 
051) 

0.
(0.

190* 
021) 

0.
(0.

020* 
002) 

0.
(0.

018* 
002) 

ERCOT -0.
(0.

044 
027) 

-0.
(0.

008 
014) 

0.
(0.

003 
003) 

0.
(0.

007# 
003) 

FRCC 0.
(0.

213* 
062) 

0.
(0.

059* 
022) 

0.
(0.

014* 
003) 

0.
(0.

014* 
003) 

MAAC 0.
(0.

158* 
074) 

-0.
(0.

035 
024) 

-0.
(0.

003 
004) 

-0.
(0.

012* 
005) 

MAIN 0.
(0.

026 
066) 

0.
(0.

087* 
027) 

0.
(0.

010* 
003) 

0.
(0.

004 
003) 

MAPP 0.
(0.

238* 
051) 

0.
(0.

159* 
030) 

0.
(0.

022* 
005) 

0.
(0.

021* 
005) 

NPCC -0.
(0.

054 
043) 

-0.
(0.

032# 
016) 

-0.
(0.

000 
003) 

-0.
(0.

002 
003) 

SERC 0.
(0.

509* 
043) 

0.
(0.

173* 
019) 

0.
(0.

028* 
003) 

0.
(0.

024* 
003) 

SPP -0.
(0.

067 
056) 

-0.
(0.

145* 
038) 

-0.
(0.

005 
005) 

-0.
(0.

006 
004) 

WSCC 0.
(0.

047* 
010) 

0.
(0.

042* 
007) 

0.
(0.

007* 
002) 

0.
(0.

006* 
002) 

 
Notes:  

a) Table presents simulation based on OLS coefficients. 
b) Standard errors, in parentheses, have been corrected for heteroskedasticity and serial 

correlation using the Newey-West method assuming a six hour lag structure. We note 
significance at 5% level using (*) or at 10% level using (#). 

c) Regression includes month-year fixed effects, quadratic function of log of daily mean 
quantity demanded, and daily mean, minimum, and maximum temperatures for all states 
bordering each region. 

d) Data are from January 1997 to December 2000 except MAPP does not include 2000. All 
days of daylight savings transitions are dropped. 
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Table 10 
 

Peak Capacity Shares from Fossil Power Plants 
 

        Share of Peak Capacity 
NERC Hydro Oil Gas
ECAR 23% 8% 69%
ERCOT 1% 0% 99%
FRCC 0% 59% 41%
MAAC 12% 38% 50%
MAIN 9% 14% 77%
MAPP 40% 20% 40%
NPCC 20% 33% 46%
SERC 30% 6% 64%
SPP 10% 4% 85%
WSCC 54% 1% 45%

 
Notes:  

a) Source: EPA eGRID for 2000 (http://www.epa.gov/cleanenergy/egrid/index.htm). 
b) Peak includes oil, gas, and hydroelectric. 
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Figure 1: Example of switching from fixed retail price to real-time pricing for the high peak period (H) and 

low off-peak period (L) of demand. 
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Figure 2: Supply curve for all PJM firms, April 1, 1999.  
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Figure 3: Example of sulfur dioxide emission rates varying along a supply curve. Source: EPA’s CEMS. 
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Figure 5. Kernel regressions of pounds of sulfur dioxide on MWh of electricity demanded. 
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