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Abstract

Many reports in different populations have demonstrated linkage of the 10q24–q26 region to schizophrenia, thus
encouraging further analysis of this locus for detection of specific schizophrenia genes. Our group previously reported
linkage of the 10q24–q26 region to schizophrenia in a unique, homogeneous sample of Arab-Israeli families with multiple
schizophrenia-affected individuals, under a dominant model of inheritance. To further explore this candidate region and
identify specific susceptibility variants within it, we performed re-analysis of the 10q24-26 genotype data, taken from our
previous genome-wide association study (GWAS) (Alkelai et al, 2011). We analyzed 2089 SNPs in an extended sample of 57
Arab Israeli families (189 genotyped individuals), under the dominant model of inheritance, which best fits this locus
according to previously performed MOD score analysis. We found significant association with schizophrenia of the TCF7L2
gene intronic SNP, rs12573128, (p = 7.0161026) and of the nearby intergenic SNP, rs1033772, (p = 6.5961026) which is
positioned between TCF7L2 and HABP2. TCF7L2 is one of the best confirmed susceptibility genes for type 2 diabetes (T2D)
among different ethnic groups, has a role in pancreatic beta cell function and may contribute to the comorbidity of
schizophrenia and T2D. These preliminary results independently support previous findings regarding a possible role of
TCF7L2 in susceptibility to schizophrenia, and strengthen the importance of integrating linkage analysis models of
inheritance while performing association analyses in regions of interest. Further validation studies in additional populations
are required.
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Introduction

Chromosome 10q is remarkably rich in linkage findings for

schizophrenia and bipolar disorder [1]. Seven reports in different

populations have demonstrated linkage of the 10q24–q26 region

to schizophrenia [2,3,4,5,6,7,8]. The studies, demonstrating

significant and suggestive schizophrenia linkage to 10q24-q26,

greatly encourage a search for specific schizophrenia susceptibility

genes in this region. Given the difference between studies in

localization of linkage peaks and the fact that peaks in this region

were not always the best detected ones in the cited studies, it is

reasonable that the region may harbor multiple schizophrenia

susceptibility genes with differential contributions to the phenotype

in terms of variant frequency, effect size and mode of inheritance

rather than a single schizophrenia susceptibility gene [9].

Lerer and collaborators (2003) [4] previously performed a

genome-wide linkage study of schizophrenia in a unique,

homogeneous sample of Arab-Israeli families with multiple

schizophrenia affected individuals and found suggestive linkage

to schizophrenia of the 10q24–q26 region, spanning from

D10S583 (94 Mb) to D10S217 (129 Mb). In a follow-up

publication (Alkelai et al, 2009) [1] we further explored this

region in exactly the same Arab sample, by genotyping additional

markers and applying additional analytic approaches. While

calculating the best-fitting penetrance for the 10q24–q26 locus

by maximization of parametric LOD scores over genetic model

parameters (MOD score analysis by varying penetrances and

disease allele frequency), we showed that the 10q24–q26 locus had

a dominant mode of inheritance in the studied Arab-Israeli

sample. We refined the linkage region to D10S222 (105.3 Mb) -

D10S587 (125.2 Mb) and also demonstrated genetic interaction of

this locus with an additional locus, 6q23.3, which was significantly

linked to schizophrenia [1]. Although the 10q24–q26 region

harbors a large number of protein coding genes (,130), many of

them expressed in the CNS, specific schizophrenia susceptibility

genes have not been identified in our sample.

Schizophrenia is a multifactorial, polygenic disorder. A large

number of genetic variants may be involved in its genetic
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background, some of them common, and others rare [10]. The

inheritance model of schizophrenia is unknown and the correct

model probably differs between risk markers. Our group recently

performed a genome-wide association study (GWAS) for schizo-

phrenia in an extended sample of Arab-Israeli families incorpo-

rating the families from our original report [11]. In the GWAS we

used the additive model of inheritance for the analysis of the data,

but none of the SNPs in the 10q24–q26 candidate region reached

genome-wide significance. The additive model is one of the most

common methods to analyze GWAS data when no previous

assumption about mode of inheritance is known. However, as

explained above, we showed (by MOD score analysis) that the

10q24–q26 locus had a dominant mode of inheritance in the

studied Arab-Israeli sample [1]. We raised the hypothesis, that in

this region the genetic contribution to schizophrenia should be

tested under a dominant model. Therefore, to be consistent with

our previous studies, we have chosen the dominant model for re-

analysis of the 10q24–q26 region in the current work. We

performed an association study of 2089 region positioned SNPs

with schizophrenia using the best-fitting dominant model of

inheritance, while appropriately correcting for multiple testing.

Methods

Ethics Statement
All participants gave written informed consent. The study was

approved by the Helsinki Committee (Internal Review Board) of

Hadassah – Hebrew University Medical Center, Jerusalem, Israel.

Sample
The studied sample was drawn from an ethnically homogenous

Arab population, recruited at the Taibe Regional Mental Health

Center in Israel, and included 58 nuclear families with 198

genotyped individuals of whom 95 are affected [4]. Additional

information about the studied sample may be found in ‘Detailed

description of the clinical sample and diagnostic methods’

(Information S1). The relatively small sample size in our study is

balanced by the unique nature of the population and decreased

genetic heterogeneity. Subjects with medical records of hospital-

izations and clinic care were questioned for psychiatric symptoms

in the family according to the Family History Research Diagnostic

Criteria (FH-RDC) [12] and were interviewed with the Schedule

for Affective Disorders and Schizophrenia- Lifetime Version

(SADS-L) [13] to establish psychiatric diagnosis. Research

Diagnostic Criteria (RDC) [14] and the Diagnostic and Statistical

Manual of Mental Disorders, Fourth Edition (DSM-IV) [15] were

used for establishment of lifetime diagnoses using a best estimate

consensus procedure [16].

Genotyping
The Arab-Israeli sample was genotyped at the Platform of

Genomics and Bioinformatics, University of Milan on the

HumanCNV-370 BeadArrays (Illumina, San Diego, USA).

Normalized bead intensity data obtained for each sample were

analyzed with Illumina GenomeStudio 1.0.2 software [17,18].

PLINK version 1.06 software [19] was used to perform Quality

Control (QC) of the data. The procedure included: evaluation of

call rate; check of SNPs with (1) no calls, (2) genotyping rate less

than 0.9, (3) MAF less than 0.05; Hardy-Weinberg equilibrium

(HWE) testing (p,0.00001) in parents; and exclusion of

individuals with missing genotyping .10%. We also checked for

the assessment of genetic homogeneity according to the family,

sex-check and Mendelian transmission rate. SNPs with more than

10% and families with more than 5% Mendelian error rate were

discarded. The sex for each subject was estimated by the

GenomeStudio software. After QC procedure 57 nuclear families

with 189 genotyped individuals and 307472 autosomal SNPs

remained available for the association analysis [11].

Statistical analysis
For statistical analysis, we used PBAT Version 3.6 [20] which is

suitable for analysis of samples made up of different family-types.

PBAT statistics were calculated under the null hypothesis of

‘‘linkage-and-no-association’’ and using the sandwich option (sw)

for robust estimation of the variance, conditioning on traits and

parental genotypes. After restricting the number of informative

families to ten and QC procedure, 2089 SNPs located in the

10q24–q26 linkage region were available for analysis. As explained

in introduction, we used the dominant inheritance model in our

transmission disequilibrium test (TDT). Since this data was

previously analyzed by the additive model (as part of the GWAS

[11]), we calculated Bonferroni correction value for multiple

testing in relation to two analysis models per SNP (262089 tests).

We used PLINK [19] to estimate effect sizes for the implicated loci

in a subset of the sample that included only trios (since this option

is not available with PBAT).

To calculate power for dominant model, under a family-based

association framework, we used the approach suggested by Lange

and Laird (2002) [21] for FBAT, using the program PBAT. The

risk for schizophrenia according to the genotypes was modeled by

implementing a dominant model. We assumed that the marker

locus and the disease locus are different, and power was evaluated

for different marker allele frequencies ranging from 0.05 to 0.5.

Assuming a region-wide significance level, our analysis indicated

that the sample has a power of 30%2100% to detect significant

association of alleles with frequencies ranging from 0.05 to 0.5

under a transmission disequilibrium test (TDT) design and a

dominant model.

Results

We focused on the 10q24–q26 linkage region and re-analyzed

the available genotype data of 2089 SNPs positioned in this area

(taken from our previous GWAS (Alkelai et al, 2011) [11]) in order

to study association with schizophrenia under the dominant

model. We found two significant associations with schizophrenia

that survived region-wide correction for multiple testing (208962

tests , p-value,1.19761025), under the dominant model: TCF7L2

intronic SNP rs12573128 (p = 7.0161026) and the intergenic

SNP, rs1033772 (p = 6.5961026) (Figure 1, Table 1). rs1033772 is

located 318 kb from TCF7L2 and 65 kb from HABP2. The R-

square and D9 between these two SNPs are 0 and 0.14

respectively; therefore these two SNPs are not in linkage

disequilibrium (LD) (Figure 2). Information regarding nominal

association of all SNPs in this region (p,0.001) under the

dominant model is supplied in Table S1. The dominant and the

additive models are partially correlated to each other, and not

independent. Therefore, it is expected that at least partial overlap

between the top results of the two models will be observed.

Information regarding nominal association of all SNPs in this

region (p,0.001) under the additive model previously used in the

GWAS (Alkelai et al, 2011, [11]) is supplied in Table S2.

Overlapping positive results (p,161023) regarding the two

models, were found for a number of SNPs located within or near

different genes, including TCF7L2 SNP of interest, as well as for

additional SNPs in other genes (SORCS3, NRAP, GFRA1, TACC2,

and HMX3).

Schizophrenia and TCF7L2
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Figure 1. The 10q24-26 region. (a) Graphical representation of the linkage region including the genes within it. The map of the linkage region
was adapted from UCSC Genome Browser (http://genome.ucsc.edu/) (Mar. 2006 (NCBI36/hg18) assembly) (b) -log10(p-values) of all the SNPs
analyzed in the 10q24-26 region, employing the dominant model and according to the position of the SNPs on the chromosome.
doi:10.1371/journal.pone.0029228.g001

Schizophrenia and TCF7L2
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Discussion

In the current study, we sought to identify novel schizophrenia

susceptibility variants within the 10q24–q26 region. The starting

point of this work was the prior Alkelai et al. (2009) linkage study

which used MOD score analysis to explore this region. This area

was reported by our [1,4] and other linkage studies [2,3,4,5,6,7,8]

to harbor schizophrenia susceptibility genes. Based on previous

linkage results supporting the relevance of a dominant model of

inheritance to this particular sample [1,4], we performed a region

specific association study of 2089 SNPs covering the area (for

which genotype data was available from our previous GWAS

Table 1. Significant results for association with schizophrenia.

SNP Bp Allele Freq Gen_rate Mend_err HW_parents OR p-value Gene

rs1033772 115235922 A 0.49 0.96 0 0.68 0.65 6.5961026 TCF7L2-HABP2

rs12573128 114720787 G 0.17 1 0 0.47 0.35 7.0161026 TCF7L2

P-values, allelic frequencies, and Hardy Weinberg equilibrium were obtained using PBAT. Genotyping rate, Mendelian errors, and OR were obtained using PLINK.
Abbreviations: HW = Hardy Weinberg equilibrium; allele = minor allele; freq = allele frequency; Gen_rate = genotyping rate, Mend_err = Mendelian errors.
doi:10.1371/journal.pone.0029228.t001

Figure 2. The TCF7L2 gene region. (a) The map of the genomic region adapted from UCSC Genome Browser (http://genome.ucsc.edu/) (Mar. 2006
(NCBI36/hg18) assembly) (b) Haploview representation of the LD structure between two TCF7L2 significant SNPs (rs12573128 and rs1033772). (c)
-log10(p-values) of all the SNPs analyzed between rs12573128 and rs1033772.
doi:10.1371/journal.pone.0029228.g002

Schizophrenia and TCF7L2

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e29228



study (Alkelai et al, 2011) [11]) in a family based sample of Arab

Israeli origin, applying a dominant model of inheritance. We

found region-wide significant associations of two SNPs, one of

them located within TCF7L2 intron 4 (rs12573128,

p = 7.0161026) and the other an intergenic SNP (rs1033772,

p = 6.5961026), positioned 318 kb downstream to this gene and

65 kb from the HABP2 gene. Although both associations withstand

region-wide correction for multiple testing (208962 tests), the

findings should be regarded as preliminary and ‘‘hypothesis

generating’’ rather than definitive, and require further confirma-

tion in additional samples and populations.

Recently, several converging studies reported association of

different and independent genetic variants within or flanking

TCF7L2 with schizophrenia (data summarized in Table 2). Ben-

David and colleagues [22] showed association of the rs17746501

SNP (61 kb upstream to TCF7L2) with schizophrenia in a large

meta-analysis. An additional nearby intergenic SNP, rs11595716,

was associated with schizophrenia in an independent sample from

Germany, as reported by Need et al (2009) [23], although not in a

dominant model. Hansen and collaborators identified significant

association of a different TCF7L2 intronic variant (rs7903146) with

schizophrenia in a Danish sample, and this association was

replicated in a large multinational European sample of approx-

imately 4,000 schizophrenia patients and 17,500 controls [24].

Interestingly, this particular SNP was also genotyped and analyzed

in our Arab sample, but was not associated with schizophrenia.

Therefore, evidence is emerging to support involvement of several

independent SNPs within or flanking TCF7L2 in schizophrenia

susceptibility; some of them may be population specific.

The intergenic SNP rs1033772 is not in LD with the TCF7L2

gene or with rs12573128, and it is not clear if it exerts a biological

influence on this gene. Moreover, since this SNP is closer to

another gene, HABP2, we should not ignore the possibility that our

10q24–q26 region harbors more than one schizophrenia suscep-

tibility gene, acting independently: TCF7L2 and HABP2. More-

over, a third susceptibility gene for schizophrenia, FGFR2, was

found in this genomic area by O’Donovan et al (2009) [25].

HABP2 (hyaluronan binding protein 2), named also FSAP (serine

protease FVII activating protein) is an extracellular serine protease

that binds hyaluronic acid [26]. It is predominantly produced in

the liver, circulates in plasma and could cleave pro-urokinase,

coagulation factor VII, and platelet-derived growth factor [27].

Due to the current knowledge of biological role of this gene,

HABP2 seems to us as less attractive potential schizophrenia

susceptibility gene, compared to TCF7L2, although this may not

necessarily be true. Nevertheless since intergenic SNPs may

potentially influence expression of nearby genes (located 1 Mb

from the transcription start site) [28,29,30], we cannot exclude the

option that the intergenic SNP rs1033772 may affect TCF7L2

expression. This option should be tested experimentally.

Several limitations should be bear in mind when interpreting

our results. As in previous association studies in psychiatric

genetics published in recent years, it is possible that our findings

are false positive, particularly given the relatively small sample size.

Since the true mode of inheritance of schizophrenia is unknown,

and use of MOD score analysis could inflate the type I error, it is

possible that approximated model parameters do not reflect the

real mode of schizophrenia inheritance and the reported results

could be spurious. In addition, the correction for multiple testing

applied here is suited for a region-wide correction (required to

study the a priori research hypothesis) although genotype data

were taken from a much larger pool of 307472 autosomal SNPs

(originally analyzed under the additive model of inheritance). In

this regard the current analysis should be seen as complementary

to the original GWAS study, already published (Alkelai et al, 2011)

[11]. Last, we do not present here a replication trial in an

independent sample, which could have assist (if positive and

supports the association) in addressing this issue.

Nevertheless, these substantial limitations are balanced by

several factors, supporting the probability of a true positive. First,

our homogeneous family-based design is robust against false-

positive associations resulting from population stratification.

Second, we used strict correction for multiple testing (Bonferroni,

applied to the specific region of interest) in spite of the fact that the

existence of linkage disequilibrium (LD) in this area may render it

overly conservative. Even if multiple testing correction is taken for

all three main possible inheritance models used in the literature in

the context of schizophrenia (including the recessive model), the

results still pass the correction threshold. Third, the specific

inheritance model studied here (dominant) was chosen based on

evidence provided from the Arab Israeli families. The dominant

model of inheritance is acceptable and widely used in schizophre-

nia genetics research, both in candidate gene studies (eg. Kim et al,

2010; Xu et al, 2010; Okochi et al, 2009; Kim et al, 2008)

[31,32,33,34] and in GWASs (eg. Shifman et al, 2008) [35]. At the

molecular biology level, the implication of a TCF7L2 effect on

schizophrenia under the dominant model, is not clear and should

be further investigated. Fourth, our data are in line with the results

of other groups [22,23,24].

It is presumable that the identified intronic association signal is

in linkage disequilibrium with a schizophrenia causative variant,

which is specific to our particular Arab study sample. The family

based sample belongs to an ethnically homogeneous group that

has a high birthrate, an unusually high level of consanguinity and a

low rate of intermarriage with other population groups [36,37];

therefore a founder effect may exist in this population. On the

other hand, additional reported associations of TCF7L2 with

schizophrenia, described above (Table 2) probably represent more

generalized risk variants. Further studies including sequencing, in

this specific sample (whole TCF7L2 sequencing, searching for a

point mutations) and in independent samples, are required to

Table 2. Summary of positive association findings near the TCF7L2 gene (10q25.2-q25.3).

Study SNP Position on chromosome 10 Location P-value

Need et al. 2009 rs11595716 114633926 intergenic 261023

Ben-David et al. 2010 rs17746501 114639457 intergenic 761023

Hansen et al. 2011 rs7903146 114748339 intronic 561023

Current study rs12573128 114720787 intronic 761026

Current study rs1033772 115235922 intergenic 761026

doi:10.1371/journal.pone.0029228.t002

Schizophrenia and TCF7L2
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properly address the issue of generalizability of the association to

other populations. In this regard, we are encouraged by our

previous success in verifying results following fine mapping in

another linkage region (6q23) in the same unique sample of Arab

Israelis. This led to identification of AHI1 as schizophrenia

susceptibility gene [37] which was further replicated in an

Icelandic case control sample [38] and recently in a large

European and Spanish/German samples [39,40]. AHI1 is located

in the linkage region which was previously shown to genetically

interact with the 10q24–q26 locus in our sample [1].

TCF7L2 is a confirmed type 2 diabetes (T2D) susceptibility gene

and is now a major focus of T2D genetic and molecular research.

Following the first report of Grant and colleagues [41] of

association of TCF7L2 gene variants with T2D, a large number

of studies in various populations have replicated the original

findings [42,43,44,45,46,47,48,49,50,51,52,53]. Several meta-

analyses further supported this robust finding [54,55]. Polymor-

phism within TCF7L2 was also associated with increased risk for

T2D among schizophrenia patients, in whom the disease is

relatively prevalent, as discussed below [56]. The functional role of

this gene in humans is under intense investigation [57,58].

Increased attention is now being given to a possible genetic basis

for comorbidity of T2D and schizophrenia [59]. The risk of T2D

is higher among schizophrenia patients than in the general

population of the same age group, mainly among young males

[60,61]. This is true even if schizophrenia patients are drug naı̈ve

[62]. First episode, drug naı̈ve schizophrenia patients had higher

fasting plasma glucose levels than controls [63] and a higher

incidence of T2D [64]. Nevertheless, it is difficult to determine if

diabetes and other glucose metabolism abnormalities stem from

schizophrenia itself or from treatment with antipsychotic medica-

tion [65]. Lin and Schuldiner [59] proposed that the co-

occurrence of the two disorders may be explained, at least

partially, by shared genetic risk variants. TCF7L2 may contain

independent variants for both disorders, or variants that exert

pleiotropic effect (the same variant causes the two different

pathological conditions).

Although much attention had been given to TCF7L2 function

in diabetes related organs such as pancreas, adipocytes and

intestine, its role in the brain is largely unknown. Lee and

collaborators reported high TCF7L2 expression in thalamic and

tectal adult mouse brain structures, with lower expression level in

the hypothalamus and additional areas [66]. Further studies

showed that TCF7L2 expression in the CNS is characterized by a

variety of splice variants. Nazwar et al [67] detected a

differentiation in TCF7L2 splice variant expression among post-

mitotic neurons, immature neural precursors and intestinal

epithelia in a murine model. At the primate level, TCF7L2 is

expressed in excitatory neurons in adult male rhesus monkeys

[68]. In humans, a unique splice variant was found in the brain,

islet and gut and therefore named the ‘‘neuroendocrine form’’.

This splice variant is highly expressed in the thalamus, occipital

lobe and hypothalamus [69]. Functionally, TCF7L2 is a

transcription factor involved in the Wnt/beta-catenin signaling

[70]. The Wnt signaling pathway plays role in the CNS

development [71,72], and has been also associated with schizo-

phrenia in a number of studies [73].

In conclusion, we performed re-analysis of the 10q24-q26

region association with schizophrenia. The results demonstrated

region-wide significant association of the T2D susceptibility gene,

TCF7L2 with the disease. This report strengthens the importance

of integrating several model of inheritance when analyzing

association studies in regions of interest. Validation studies in

other samples are warranted.
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