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ABSTRACT OF THE DISSERTATION

Stability and asymptotic analyses of

effects of buoyancy on reactive flows

by

Daniel Moreno Boza

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2017

Professor Antonio L. Sánchez, Chair

Asymptotic methods and experimental techniques have been used in combination with

direct numerical simulations and stability analyses to investigate effects of buoyancy-driven motion

in two different reactive problems, namely, flickering of nonpremixed diffusion flames in open at-

mospheres and slowly reacting combustion of confined mixtures. A brief description of these two

separate topics is given below.

Part I of this dissertation deals with the flickering of jet diffusion flames and the puffing

of liquid-fuel pool fires. Both phenomena are a manifestation of an axisymmmetric global hydro-

dynamic instability driven by the interactions of the buoyancy force with the density differences

induced by the chemical heat release, which occurs in the flame sheet separating the fuel and ox-

idizer domains. For these flows, the predictive capability of local quasi-parallel stability analyses

is limited by the non-slender character of the resulting eigenmodes, so that a biglobal analysis

is needed to accurately determine marginal instability conditions and resulting frequencies. The

results for jet diffusion flames, including the Froude number/Reynolds number instability bound-

aries for different fuel-feed dilutions, are compared with direct numerical simulations, giving good

xv



agreement for the range of conditions explored in our study. For liquid-fuel pool fires, the stability

analysis provides the critical value of the Rayleigh number at the onset of the puffing instabil-

ity. The predictions for different liquid fuels are compared with the results obtained in small-scale

laboratory experiments.

Part II is concerned with the “slowly reacting” mode of combustion, and its thermal-

explosion limits, of an initially cold gaseous mixture enclosed in a spherical vessel with a constant

wall temperature, a relevant problem in connection with the safe storage and transportation of

reactant gas mixtures. Following Frank-Kamenetskii’s seminal analysis of this problem, the strong

temperature dependence of the effective overall reaction rate is taken into account by using a single-

reaction model with an Arrhenius rate having a large activation energy, resulting in a critical value

Dac of the controlling Damköhler number above which the slowly reacting mode of combustion no

longer exists. A Rayleigh number Ra based on the relevant density difference is seen to measure the

relative effect of natural convection. Our numerical computations indicate that the value of Dac

increases with Ra as a result of the enhanced heat-transfer rate. Specific consideration is given to

the flow structure in the asymptotic limits Ra � 1 and Ra � 1, which yield accurate predictions

of critical explosion conditions. For completeness, the application of Frank-Kamenetskii’s ideas to

the problem of flow of a reactive mixture in a pipe is presented in an appendix for the case of

buoyancy-free conditions.
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Part I

Global instabilities of buoyant

diffusion flames in open atmospheres

1



Brief overview

Because of their relevance in combustion applications, there is interest in understanding

the stability characteristics of low-Mach number gaseous flows with significant density changes for

moderately large values of the relevant Reynolds number in the presence of gravity. For particular

flow configurations, quasi-parallel linear, spatiotemporal stability analyses suffice to clarify the

stability properties of the resulting flows, including their convective/absolute instability character.

In other occasions, the predicted wavelength of the eigenmodes (perturbations) is comparable to

the flow-development length itself and therefore the perturbation does not see the flow as slender

anymore. A global linear stability analysis is thus required to ascertain the stability characteristics

of such flows.

In Chapters 1 and 2, we apply the latter technique to the analysis of the periodic flow

state that characterizes buoyancy-dominated jet diffusion flames, often referred to as flame flick-

ering; and pool-fire puffing, a similar periodic behaviour found in vaporizing combustible pools,

respectively. While early theoretical work assumed a convective instability, later experimental ob-

servations suggested that the flame flickering phenomenon was associated instead with a globally

excited oscillation forced by a region of absolutely unstable flow near the base of the jet exit, a

statement confirmed in Chapter 1 by numerical results. The same underlying instability mech-

anisms are present in the case of buoyancy-dominated pool-fire combustion, which is evidenced

experimentally and assessed numerically through Chapter 2.

2



Chapter 1

Diffusion-flame flickering as a

hydrodynamic global mode

In the present chapter we employ a linear global stability analysis to investigate buoyancy-

induced flickering of axisymmetric laminar jet diffusion flames as a hydrodynamic global mode. The

instability-driving interactions of the buoyancy force with the density differences induced by the

chemical heat release are described in the infinitely fast reaction limit for unity Lewis numbers of the

reactants. The analysis determines the critical conditions at the onset of the linear global instability

as well as the Strouhal number of the associated oscillations in terms of the governing parameters

of the problem. Marginal instability boundaries are delineated in the Froude-number/Reynolds-

number plane for different fuel-jet dilutions. The results of the global stability analysis are compared

with direct numerical simulations of time-dependent axisymmetric jet flames and also with results

of a local spatio-temporal stability analysis.

1.1 Introduction

At sufficiently low Froude numbers, jet diffusion flames undergo a bifurcation to a periodic

flow state referred to as flame flicker (Chamberlin & Rose, 1948). The associated frequencies

observed in laboratory-scale experiments are in the range of 10 to 20 Hz (Chen et al., 1988).

The role of buoyancy as the driving mechanism was recognized in the early theoretical analysis of

Buckmaster & Peters (1986), who postulated that the flickering was associated with a modified

Kelvin-Helmholtz instability of the annular flow induced by buoyancy in the envelope of hot gases

surrounding the jet flame. By performing an inviscid, parallel flow stability analysis of a simplified

self-similar model problem (the so-called infinite candle) they were able to determine an expression

for the flicker frequency, which was predicted to vary with the one fourth power of the streamwise
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distance. This dependence, although weak, was readily recognized as a weakness of the results

(Mahalingam et al., 1991). As pointed out by Buckmaster & Peters (1986), a “detailed viscous

stability analysis of the complete flow field” could help to examine the validity of the results of

their simplified study, although they recognized that the suggested analysis was “a formidable

undertaking” at the time. As a result of the increase in computer power and of the development

of robust numerical techniques that have occurred in the intervening time, such an analysis can

be performed nowadays with reasonable computational cost, that being the main purpose of the

present work.

While the early theoretical work assumed a convective instability (Buckmaster & Peters,

1986), later experimental observations by Lingens et al. (1996b) and Maxworthy (1999) suggested

that the flame flickering phenomenon was associated instead with a globally excited oscillation

forced by a region of absolutely unstable flow near the base of the jet exit (see also Cetegen & Dong,

2000). These findings were later supported by experiments (Juniper et al., 2009), direct numerical

simulations (DNS) (Jiang & Luo, 2000; Juniper et al., 2009; Boulanger, 2010) and by local linear

stability analyses assuming nearly parallel flow (Lingens et al., 1996a; See & Ihme, 2014). The

present work is different from these previous attempts, in that it employs a linear global stability

analysis to study the problem. The method has been used successfully in recent years to investigate

the stability of nonbuoyant jet flows, including constant-density jets (Garnaud et al., 2013a,b),

compressible high-speed jets (Nichols & Lele, 2011), and light jets at low Mach numbers (Lesshafft

et al., 2015; Coenen et al., 2016). The global instability of reacting jets has been considered recently

by Qadri et al. (2015), who studied the buoyancy-free lifted flame investigated earlier by Nichols

& Schmid (2008) and Nichols et al. (2009) using a combination of DNS and local linear stability

analysis. All of the previous linear global stability analyses of jet flows have considered buoyancy-

free conditions. The method is to be employed below to examine buoyancy-induced flickering of

axisymmetric laminar jet diffusion flames. The study provides the critical conditions at the onset

of the linear global instability as well as the Strouhal number of the associated oscillations in terms

of the governing parameters of the problem.

An important aspect of jet-flow instability concerns the applicability of spatio-temporal

linear stability analyses for the predictions of the critical conditions at the onset of the global

instability. When the flow is sufficiently slender, in that the resulting eigenmodes are much shorter

than the jet development region, then the assumption of nearly parallel flow becomes accurate and

the critical conditions can be identified from the analysis of the region where the flow is absolutely

unstable, as shown by Lesshafft et al. (2007). This slenderness condition is satisfied in buoyancy-

free jet flows, for which the eigenmodes scale with the jet radius, which is much smaller than the jet

development length for the moderately large values of the Reynolds number that characterize the
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onset of the instability. For instance, local linear stability analyses of light gaseous jets (Coenen

et al., 2008; Coenen & Sevilla, 2012) have shown to give predictions in agreement with those of

DNS (Lesshafft & Huerre, 2007) and of global stability analyses (Lesshafft et al., 2015; Coenen

et al., 2016). This is in contrast with the buoyancy-induced flickering flames investigated below, for

which the eigenmodes will be seen to scale with the flame length, rather than with the jet radius.

Under those conditions, the quasi-parallel assumption no longer holds and predictions based on the

local linear stability analysis become necessarily inaccurate, with resulting critical Froude numbers

at the onset of the instability that are off by a factor exceeding two, as shown below.

As observed clearly in flow visualizations of jet flames with nearly uniform exit velocity

profiles (Chen et al., 1988), the flickering mode, characterized by large toroidal vortices surrounding

the flame, is accompanied by a Kelvin-Helmholtz instability of the shear layer surrounding the fuel

jet leading to the formation of an inner train of small discrete vortices. To focus attention on the

flickering phenomenon, our analysis will purposely preclude the emergence of these shear instabil-

ities by considering only cases in which the fuel-feed velocity profile is parabolic, an appropriate

boundary condition for sufficiently long fuel injectors. Also, unlike previous authors (See & Ihme,

2014), who used in their stability analysis a detailed flow field description including finite-rate

chemistry and advanced molecular-transport models, we choose to employ instead a simplified flow

model that retains all relevant aspects involved in the hydrodynamic instability leading to flame

flicker while neglecting secondary effects that complicate unnecessarily the description, thereby fa-

cilitating both development of fundamental physical understanding and extraction of parametric

dependences. For instance, since the variations of density and transport properties in combustion

flows are mainly associated with the temperature changes induced by the chemical heat release,

a constant average molecular weight will be employed when writing the equation of state and the

different transport coefficients will be assumed to be independent of the composition, while their

temperature dependence will be approximated by a power law. A Fickian description with unity

Lewis numbers will be used for the diffusion velocity of the reactants. Furthermore, we shall con-

sider nonpremixed jet-flame configurations in which the rates of the chemical reactions involved in

the fuel-oxidation process are sufficiently fast for the burning rate to be diffusion controlled (Liñán

et al., 2015). Under these conditions, the resulting nonpremixed flame remains anchored in the

vicinity of the injector rim and the interaction between the envelope of hot gases surrounding the

jet flame and the gravitational acceleration leading to the onset of the flickering mode can be

investigated by using the limit of infinitely fast reaction, with the composition and temperature

described in terms of a single passive scalar, the so-called mixture-fraction variable. Consideration

of finite-rate chemistry is necessary in stability analyses of lifted flames, such as that performed

recently by Qadri et al. (2015).
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The Chapter is structured as follows. The nondimensional equations and boundary con-

ditions are presented in § 2.2, which is followed in § 1.3 by relevant numerical results, including

sample spectra and transition diagrams in the controlling-parameter plane. Comparisons of the

predictions of the global stability analysis with results of DNS of unsteady axisymmetric flows are

presented in § 1.4. A local spatio-temporal stability analysis of the transverse profiles of the base

flow is performed in § 1.5; the results are seen to significantly overpredict the critical Froude num-

ber, thereby underscoring the limited predicting capability of local analyses for buoyancy-induced

flickering. Finally, concluding remarks will be offered in § 2.5.

1.2 Problem formulation

As indicated in figure 1.1, the configuration analyzed includes a vertical fuel jet discharging

upwards through an injector of inner radius a into an infinite air atmosphere. The specific geometry

investigated here involves a thin injector of thickness e � a. To minimize wake effects, the rim

of the injector is knife-like sharpened as indicated in the inset of figure 1.1. For the numerical

integrations shown below the injector wall thickness and the slenderness ratio of the wedge tip were

selected to be e/a = 10−3 and d/e = 20, respectively. Smaller values of e/a and larger values of d/e

were used in sample integrations to ensure that the results were independent of these two geometric

parameters, so that the solution given below is representative of infinitesimally thin injectors.

For generality, the analysis considers dilution of the fuel with an inert gas, with YF,0

denoting the fuel mass fraction in its feed stream, while YO2,A
= 0.232 is the oxygen mass fraction

in air. In the description, focused on the fluid mechanical aspects of the flow, we adopt the one-

step irreversible overall reaction F + sO2 → (1 + s) Products + q, according to which the unit

mass of fuel reacts with a mass s of oxygen, releasing in the process an amount of energy q. The

above representation of the underlying stoichiometry for the oxidation of the fuel embodies the two

fundamental thermochemical parameters involved in nonpremixed combustion (Liñán et al., 2015),

S =
sYF,0

YO2,A

and γ =
qYF,0

cpT ′0(1 + S)
, (1.1)

the former representing the mass of air that one needs to mix with the unit mass of the gaseous fuel

stream to generate a stoichiometric mixture and the latter being the corresponding dimensionless

temperature increment resulting from the adiabatic combustion of that mixture. Here, T ′0 is the

initial temperature of the feed streams, assumed to be equal for the fuel jet and for the surrounding

air atmosphere, and cp represents the specific heat at constant pressure, taken to be constant in the

following analysis. Typical values for undiluted hydrocarbon-air flames initially at normal ambient

temperature are Su = s/YO2,A
' 15 and γu ' 6− 7. Diluting the fuel stream with an inert gas to
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give a fuel mass fraction YF,0 < 1 in its feed stream has a direct effect on the value of S = YF,0Su,

but a much more limited effect on the heat-release parameter, as can be seen by writing the second

expression in (1.1) for Su � 1 in the approximate form (γu−γ)/γu ' (1+YF,0Su)−1, which indicates

that significant variations of γ require extremely dilute fuel mixtures such that YF,0 ∼ S−1
u .

In the limit of infinitely fast reaction adopted here the reaction takes place in an infinites-

imally thin layer, outside of which the chemical-equilibrium condition ŶFŶO2
= 0 applies, with

ŶF = YF/YF,0 and ŶO = YO2
/YO2,A

representing the fuel and oxygen mass fractions normalized with

their values in their respective feed streams. The reaction-rate terms in the conservation equations

for energy and species appear as Dirac-delta distributions located at the flame, which becomes

in this limit an infinitesimally thin surface attached to the injector separating a near-axis region

without oxygen from a fuel-free outer atmosphere (Burke & Schumann, 1928). For equidiffusive

reactants, Shvab (1948) and Zel’dovich (1949) showed how the computation can be facilitated by

the introduction of conserved scalars satisfying transport equations, obtained by combinations of

the species and energy conservation equations that eliminate the chemical-source terms. Two con-

veniently normalized forms of these passive scalars are the mixture fraction and the excess enthalpy,

defined as

Z =
SŶF − ŶO + 1

S + 1
and H = T − 1 + γ(ŶF + ŶO − 1), (1.2)

where the nondimensional temperature T has been scaled with T ′0. The mixture fraction is defined

to be zero in the air stream and unity in the fuel stream, respectively, whereas at the flame, where

both reactants appear in zero concentrations, Z takes the stoichiometric value ZS = 1/(S + 1).

On the other hand, the excess enthalpy is defined to be zero in both feed streams, so that when

the injector walls are adiabatic, the case considered here, the solution for the associated transport

equation reduces to H = 0 everywhere in the flow field, thereby facilitating the description. The

piecewise-linear expressions

ŶF = 0, ŶO = 1− Z

ZS
, T − 1 = γ

Z

ZS
; for 0 ≤ Z ≤ ZS , (1.3a)

ŶO = 0, ŶF =
Z − ZS
1− ZS

, T − 1 = γ
1− Z
1− ZS

; for ZS ≤ Z ≤ 1, (1.3b)

obtained from the definitions (1.2) with use made of the equilibrium condition ŶFŶO2
= 0 and of

the result H = 0, provide the reactant mass fractions and temperature in terms of Z. Evaluation of

the expressions for T at Z = ZS indicates that the temperature at the flame surface is everywhere

equal to the stoichiometric adiabatic flame temperature T = 1 + γ, a known result of the infinitely

fast reaction limit that holds in adiabatic configurations with unity Lewis numbers of the reactants.

The problem reduces to that of integrating the continuity and momentum equations to-
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Figure 1.1: Base-flow isocontours of Z̄ (left-hand side) and streamlines (right-hand side) to-
gether with radial profiles of v̄x (solid curves) and T̄ /(γ + 1) (dashed curves) at x =
(0, 5, 10, 15, 20, 25, 30, 35) for Pr = 0.7, S = 4.62, γ = 6, Re = 100 and Fr = 300. The dot on the
velocity profiles indicates the location of the inflection points. The thick solid line represents the
stoichiometric flame surface Z̄ = ZS , where T̄ = 1 + γ.
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gether with the transport equation for Z, which are written in the dimensionless form

∂ρ

∂t
+∇ · (ρv) = 0, (1.4)

ρ
∂v

∂t
+ ρv · ∇v = −∇p+

1

Re
∇ · ¯̄τ +

1

Fr
(1− ρ)ex, (1.5)

ρ
∂Z

∂t
+ ρv · ∇Z =

1

Re Pr
∇ · [ρDT∇Z] , (1.6)

where Pr = 0.7 is the Prandtl number and

Re =
ρ′0U0a

µ′0
and Fr =

U2
0

ga
(1.7)

are the Reynolds number and the Froude number for the jet flow, respectively, with ρ′0 and µ′0

representing the density and shear viscosity in the feed streams. The jet radius a and the average

jet velocity U0 = ṁ/(πa2ρ′0) based on the fuel mass flow rate ṁ are used to scale the problem. The

development employs cylindrical coordinates x = (x, r) centered at the injector exit plane with an

associated velocity vector v = (vx, vr); the streamwise coordinate x pointing against the gravity

vector g = −gex.

In the low-Mach number approximation utilized here, the pressure variations can be ne-

glected in the first approximation when writing the equation of state, which therefore reduces

to ρT = 1 when the additional assumption of constant molecular weight is adopted to achieve

maximum simplification, with ρ = ρ′/ρ′0 denoting the dimensionless density. Furthermore, in this

low-Mach number limit, the viscous-stress term proportional to the second viscosity coefficient can

be incorporated in the definition of the variable p that represents in (1.5) the pressure difference

from the unperturbed ambient distribution. Correspondingly, the resulting viscous-stress tensor

reduces to ¯̄τ = µ (∇v +∇vT), with both p and ¯̄τ scaled with the characteristic value of the dy-

namic pressure ρ′0U
2
0 . The power-law expressions µ = ρDT = T σ, with σ = 0.7, are employed for

the temperature dependence of the shear viscosity µ and thermal diffusivity DT, both scaled with

their feed-stream values.

Equations (1.4)–(1.6) must be integrated with appropriate conditions on the boundaries of

the computational domain, which includes an outer cylindrical boundary with radius rmax � 1, with

downstream and upstream boundaries located at x = xd and at x = xu. The results corresponding

to the most unstable mode were tested to be independent of the size of the computational domain,

with the values rmax = 45, xd = 450, and xu = −10 selected for the computations shown below.

The injector is assumed to be sufficiently long for the fuel flow to be fully developed, thereby giving

v = 2 (1 − r2)ex and Z = 1 in the fuel boundary upstream from the injector exit (i.e. at x = xu

for 0 ≤ r ≤ 1). On the injector walls the solution satisfies the nonslip condition v = 0, together

with the condition n ·∇Z = 0 corresponding to an impermeable wall, with n representing here the
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normal unit vector. To let the air enter or leave the computational domain as required to satisfy

the development and the entrainment needs of the jet, a stress-free condition −pn + ¯̄τ · n/Re = 0

is applied all around the outer air boundary. Air enters the flow field through the lateral boundary

and through the upstream boundary, so that the condition Z = 0 applies there, whereas n ·∇Z = 0

must be used on the downstream boundary to allow for the evacuation of the combustion products.

1.3 The global linear stability analysis

1.3.1 The eigenvalue problem

Introduction of the temporal normal-mode decomposition

(v, p, Z) = (v̄, p̄, Z̄) + ε(v̂, p̂, Ẑ)e−iωt, (1.8)

involving the steady base flow (v̄, p̄, Z̄)(x), the eigenfunctions (v̂, p̂, Ẑ)(x) multiplied by an arbi-

trarily small factor ε, and the complex angular frequency ω = ωr + iωi, leads to a set of nonlinear

equations for the base flow (i.e. the steady counterpart of (1.4)–(1.6)), to be integrated with the

boundary conditions stated in the last paragraph of the preceding section. The associated linear

equations for the perturbed flow

−iωρ̂+∇ · ρ̂v̄ +∇ · ρ̄v̂ =0, (1.9)

−iωρ̄v̂ + ρ̂v̄ · ∇v̄ + ρ̄v̂ · ∇v̄ + ρ̄v̄ · ∇v̂ =−∇p̂− 1

Fr
ρ̂ex

+
1

Re
∇ ·
[
µ̂(∇v̄ +∇v̄T) + T̄ σ (∇v̂ +∇v̂T)

]
, (1.10)

−iωρ̄Ẑ + ρ̂v̄ · ∇Z̄ + ρ̄v̂ · ∇Z̄ + ρ̄v̄ · ∇Ẑ =
1

RePr
∇ ·
[
(µ̂∇Z̄ + T̄ σ∇Ẑ)

]
, (1.11)

arise from linearization of (1.4)–(1.6); these must be supplemented with ρ̂/ρ̄ = −T̂ /T̄ and µ̂ =

σT̄ σ−1T̂ , which follow from the equation of state and from the transport description, and with

T̂ = γẐ/ZS for 0 ≤ Z̄ ≤ ZS and T̂ = −γẐ/(1 − ZS) for ZS ≤ Z̄ ≤ 1, which follow from (1.3).

Boundary conditions for (1.10)–(1.11) are v̂ = Ẑ = 0 in the fuel stream and v̂ = n · ∇Ẑ = 0 on

the injector wall. On the air boundary, the stress-free condition for the perturbed flow reduces

to −p̂n + (∇v̂ +∇v̂T) · n/Re = 0 on the upstream and lateral air boundaries, where Ẑ = 0,

and to σγ [(p̄/T̄ )(Ẑ/ZS)− p̂]n + T̄ σ (∇v̂ +∇v̂T) · n/Re = 0 on the downstream boundary, where

n · ∇Ẑ = 0. Nontrivial solutions (v̂, p̂, Ẑ) 6= 0 are found for a discrete set of values of ω, which is

determined as an eigenvalue. The real part of ω is the frequency of the perturbation, defining a

Strouhal number St = ωr/π (the ratio of the residence time 2a/U0 to the period of the oscillation);

the imaginary part is the growth rate, which dictates whether the flame is globally stable (ωi < 0)

or unstable (ωi > 0).
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1.3.2 Sample numerical results

The base flow was integrated using a finite-element method with P1 elements for the

pressure field and P2 elements for the remaining variables, combined with a Newton-Raphson root-

finding algorithm; details of the discretization method, used for instance by Garnaud et al. (2013b),

can be found in Hecht (2012). The same finite-element formalism was employed to discretize the

perturbed equations, resulting in a generalized eigenvalue problem that was solved using a shifted

inverse power method (Lehoucq et al., 1997).

The integrations explored in particular configurations with 2.08 ≤ S ≤ 9.66 and mod-

erately large values of Re, for which the resulting flame height is much larger than the injector

radius, as shown in figure 1.1 for the case S = 4.62, Re = 100, and Fr = 300. A thick solid curve is

used to denote the flame location, where Z̄ = ZS ' 0.178 and T̄ /(γ + 1) = 1. Besides isocontours

of Z̄, the plot includes streamlines, which serve to illustrate the motion of the air induced by the

entrainment of the mixing layer surrounding the flame envelope.

Radial profiles of axial velocity v̄x and normalized temperature T̄ /(γ + 1) are represented

in figure 1.1 at different axial locations. Even for this relatively large Froude number, buoyancy

is seen to accelerate the flow in the flame envelope, leading to the appearance of two inflection

points in the velocity profile near the flame, additional to the inflection point associated with the

shape of the initial velocity profile (the location of these inflection points is marked with a dot).

As shown previously for mixing layers (Soteriou & Ghoniem, 1995) and low-density jets (Lesshafft

& Huerre, 2007), the action of the baroclinic torque, induced in jet flames by the radial density

gradient present in the near-flame region where the velocity profile displays inflection points, plays

a key role in the development of a region of absolute stability (Lingens et al., 1996a), which in turn

triggers the global oscillations. The rate at which the induced perturbations are convected away

from this wave-maker region depends on the local value of the axial velocity, with smaller velocities

favouring the development of absolute instabilities (Lesshafft & Marquet, 2010).

Figure 1.2(a) shows the eigenvalue spectra computed for Re = 100 and different values of

Fr . For all cases, the most unstable eigenmode is indicated with a bigger symbol in red. Decreasing

the Froude number is seen to destabilize the flow, so that for Fr = 300 the growth rate ωi of the

most unstable mode is still negative, but it is already positive for Fr = 250. For completeness,

eigenmodes corresponding to the subcritical case Fr = 300 are plotted in figure 1.2(b). As can be

seen, both the radial extent of the eigenmodes and their wavelength scale with the flame dimensions.

Although the length xd = 450 of the computational domain was not long enough to capture the

downstream decay of the eigenmodes, the associated values of ω for the most unstable mode were

seen to be independent of xd provided that xd > 400, as verified in a series of computations.
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Figure 1.2: (a) Eigenvalue spectra for Pr = 0.7, S = 4.62, γ = 6, Re = 100, and Fr =
(250, 300, 400, 550, 625). (b) Real part of the streamwise velocity v̂x (left) and mixture fraction
Ẑ (right) for the eigenfunctions of the most unstable mode with Re = 100 and Fr = 300.

1.3.3 Transition diagrams

Marginal conditions were determined by linear interpolation of the results of stability

spectra computed for given values of S and Re and decreasing values of Fr (including stable and

unstable cases), giving the transition diagrams and accompanying frequencies shown in figure 1.3.

The resulting marginal curves serve to assess effects of fuel-feed dilution and of molecular transport.

Increasing Re for a given value of S is seen to have a destabilizing effect, in that the global instability

sets in at a higher value of Fr , in agreement with recent observations for low-density jets (Coenen

et al., 2016). Conversely, fuel-feed dilution (i.e. decreasing values of S) tends to stabilize the flow,

a result that can be explained by noticing that dilute flames sit closer to the axis, where the

downstream convective rate of the perturbations is higher, thereby hindering the development of a

region of absolute instability and resulting in smaller critical values of Fr .

The large variations in critical values of Fr observed in figure 1.3 would be considerably

reduced should the characteristic scales of the flame, rather than those associated with fuel injection,

be used in defining the relevant Froude number (Liñán et al., 2015). Thus, with Re � 1 and S � 1

the flame length is of order SRea. At these distances, the jet velocity has decreased to values of

order U0/S, which must be compared with the buoyancy-induced velocity gSRea, the square of

their ratio giving Fr/(S3Re) as the relevant Froude number for jet flames. Inspection of the results

in figure 1.3 reveals that this alternative definition would result in a transition diagram with less

pronounced variations of the critical Froude number over the range of conditions explored.

For the range of Reynolds numbers explored in figure 1.3, the effective Froude number

accounting for the residence time in the flame region Fr/(S3Re) is somewhat smaller than unity,
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Figure 1.3: (a) Transition diagram in the Re−Fr parametric plane for different values of S, with the
(b) accompanying panel showing the variation with Fr of the nondimensional frequency Fr1/2St =
(ωr/π)/

√
g/a at the margin of instability and the empty symbols in both plots representing DNS

predictions for Re = (50, 100, 150). As explained in the text, (c) a comparison for S = 4.62,
Re = 100, and Fr = 261.40 of the eigenmode T̂ (x) (right-hand side) with a snapshot extracted
from the DNS results (left-hand side).

corresponding to jet flames with significant buoyancy effects. Consequently, the dynamics of the

resulting oscillations at the margin of stability is characterized by the buoyancy time
√
a/g, rather

than by the residence time a/U0 employed initially in nondimensionalizing the problem. This scaling

is tested in figure 1.3, where the frequency is represented in terms of (ωr/π)/
√
g/a = Fr1/2St . As

can be seen, for each value of S the resulting frequencies change only by about 10% over the

whole range of Froude numbers explored in the figure, thereby demonstrating the prevalence of the

buoyancy scaling. This is in agreement with the experimental observations of Durox & Villermaux

(1997) and Sato et al. (2000), who found that St ∼ Fr−1/2.

The buoyancy-dominated flickering mode observed here is markedly different from that

corresponding to buoyancy-free light jets and flames, for which the resulting frequencies scale with

a/U0, with associated eigenmodes scaling with the jet radius, rather than with the flame length.
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This alternative buoyancy-free mode, which must become dominant at sufficiently high Froude

numbers (and sufficiently high accompanying Reynolds numbers), was not observed in the compu-

tations carried out here. For the Poiseulle exit-velocity profile considered in our work, preliminary

computations for Fr =∞ and S = 6.10 indicated that nonbuoyant flames are globally stable up to

the largest Reynolds number considered (Re = 1000). A critical Reynolds number exceeding 1000

for buoyancy-free jet flames is consistent with previous results concerning the influence of the exit

velocity profile on the stability of light jets (Hallberg & Strykowski, 2006). Smaller critical values

of the Reynolds number are expected, for instance, for nearly uniform profiles, encountered with

shorter fuel injectors.

1.4 Comparison with DNS results

The predictions of the stability analysis at the margin of stability were compared with

DNS results obtained with a time-dependent axisymmetric code (Carpio et al., 2016) using the

same grid employed in the global stability computations. The numerical simulations at three

different points along the marginal curve for S = 4.62, namely, (Re,Fr) = (50, 26.60), (Re,Fr) =

(100, 261.40), and (Re,Fr) = (150, 745.64), yielded periodic solutions with small amplitude. The

associated Strouhal numbers, St = (0.0628, 0.0200, 0.0132), obtained by fitting the oscillations of

the numerical solutions to a sinusoidal function, were seen to be in excellent agreement with the

values St = (0.0638, 0.0190, 0.0134) predicted by the stability analysis. The agreement extends to

the morphology of the flickering mode, as can be seen in the inset of figure 1.3, which compares the

eigenmode T̂ (x) corresponding to (Re,Fr) = (100, 261.40) with the near-critical DNS results, the

latter obtained by subtracting the time-averaged temperature from the instantaneous distribution

T (x; t∗), with the time t∗ appropriately selected to minimize the observed differences. As can be

seen, there exist excellent agreement not only in the predicted wavelength but also in the shape of

the cells representing the traveling rollers.

As mentioned above, for the parametric values corresponding to the marginal conditions

of the stability analysis, the DNS results were seen to exhibit small oscillations of nonnegligible

amplitude. Additional computations for increasing values of Fr , resulting in periodic solutions

with decreasing amplitude, were performed to determine the marginal curve predicted by the DNS

results. The transition to the flickering state is governed by a supercritical Hopf bifurcation. Cor-

respondingly, with the Froude number being the relevant bifurcation parameter for fixed values

of S and Re, the amplitude of the oscillations near the margin of stability is expected to exhibit

the proportionality A2 ∼ (Fr − Fr∗) (Landau & Lifshitz, 1959, § 27), where Fr∗ is the criti-

cal value of Fr . This is illustrated in figure 1.3(a), which shows the squared amplitude of the
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Figure 1.4: DNS computations of the (a) squared amplitude of oscillations, A2, and (b) Strouhal
numbers St , measured at different downstream axial locations, x = 20, 25, 30 and 35 for Re = 50
and S = 4.62. The solid lines in the upper part of the plot represent linear fits of the points
(Fr , A2) in order to determine the critical Froude number, Fr∗, for which the amplitude of the
oscillations is zero. Upon extrapolation, a critical value Fr∗ = 33.065 was found, with an associated
Strouhal number St∗ = 0.0544, marked with a cross, whereas the Strouhal number for the conditions
predicted by the global stability analysis was found to be St = 0.0628.

mixture-fraction oscillations along the axis at four different downstream locations, as obtained in

numerical simulations for Re = 50, S = 4.62, and decreasing values of Fr . Extrapolating the

corresponding results to zero amplitude provides the critical value Fr∗ of Fr , giving for instance

Fr∗ = (33, 305, 940) for Re = (50, 100, 150). These values are compared in figure 1.3 with the values

Fr∗ = (26.60, 261.40, 745.64) corresponding to the linear stability analysis.

The direct numerical simulations also indicate that near the margin of stability there exists

a linear dependence of the oscillation frequency on the Froude number. As shown in figure 1.3(b),

the observed frequency is identical at all four locations—confirming the global nature of the flicker

instability—with the critical value St∗ = 0.054 approached as Fr → Fr∗ ' 33. This is to be

compared with the value St = 0.0628 predicted by the global stability analysis at the corresponding

critical Froude number Fr = 26.60. The differences observed, for both critical Froude numbers and

associated frequencies, whose relative magnitude is on the order of 20% in the range of Reynolds

numbers investigated, may be attributed to the fact that disturbances experience very large gains

in slightly subcritical settings, leading to a substantial amplification of small numerical noise in the

DNS integrations that results in the larger critical values of Fr shown in figure 1.3. Clearly, the

origin of the observed discrepancies warrants further investigation in future work.
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1.5 Comparison with a local stability analysis

As explained in Huerre & Monkewitz (1990), for slender flows there exists a close rela-

tionship between the evolution of the local stability characteristics at each streamwise position x,

and the global instability properties of the flow. However, this relationship depends crucially on

the requirement that the wavelength λ be much smaller than the typical evolution length scale

L of the basic flow; and, quoting Huerre & Monkewitz (1990), “A breakdown of this assumption

would preclude any possible connection between local and global instability properties”. For the

diffusion flame presented in figure 1.3, it can be seen that the wavelength λ of the global instability

is comparable to the flame height, which characterizes the spatial evolution of the base flow. There-

fore, the conditions needed for applicability of the local spatio-temporal analysis are not satisfied,

which may result in significant inaccuracies in inferred predictions of global instability properties.

This aspect of the problem is to be investigated here. Specifically, we shall study the downstream

evolution of the local spatio-temporal stability properties of the base flow used earlier for the global

stability analysis. We begin by formulating the local stability analysis, and then show results for

the case S = 6.1 and Re = 75, with Fr = 375 and Fr = 800. In analyzing the results it is worth

bearing in mind that the global instability analysis predicts a critical Froude number Fr = 368 for

S = 6.1 and Re = 75, so that the flow should be globally stable under these conditions.

At each downstream position x, the basic flow is assumed to be locally parallel, with

radial profiles of velocity v̄(r) = (v̄x(r), 0) and mixture fraction Z̄(r); small perturbations are in-

troduced as normal modes [v̂x(r), iv̂r(r), p̂(r), Z̃(r)] exp[i(kx−ωt)], with complex axial wavenumber

k = kr + iki and complex angular frequency ω = ωr + iωi. Here k, ω, and t are nondimensionalized

using a and U0. In section 1.5.1 it is shown how substitution of the normal modes into the equations

of motion (1.4)–(1.6), linearized around the steady base flow, yields the system of ordinary differ-

ential equations (1.12)–(1.15) that, together with the boundary conditions (1.22)–(1.23), provides a

generalized eigenvalue problem. The local stability properties can be obtained by solving the latter,

whereby eigenfunctions v̂x(r), v̂r(r), p̂(r), Z̃(r) only exist if k and ω satisfy a dispersion relation

D(k, ω; Re,Fr , S, γ, . . . , v̄x, v̄r, p̄, Z̄) = 0. In the present section we are concerned with the absolute

or convective character of the instability. Therefore we need to find the spatio-temporal instability

modes with zero group velocity, i.e. modes for which dω/dk = 0. The growth rate ω0,i of these is

called the absolute growth rate and determines whether the instability is convective, ω0,i < 0, or

absolute, ω0,i > 0. The condition dω/dk = 0 is equivalent to the existence of a double root, or

saddle point, in the complex k-plane, ∂D/∂k|k=k0
= 0. Among all the saddle points that may exist,

only the one with the largest value of ω0,i, while satisfying the Briggs–Bers criterion, determines

the large-time impulse response of the flow (see, for instance, Huerre, 2000, and references therein).
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Figure 1.5: (a)–(d) Downstream evolution of the local spatio-temporal stability properties for
S = 6.1 and Re = 75, with Fr = 800 (solid line) and Fr = 375 (dashed line). (e) Location of the
saddle point (ω0, k0) in the complex k-plane at the downstream position x = 28.4, as indicated in
figures (a)–(d) by the dots; the solid lines are spatial branches with a constant value of ωi; the
dashed lines are lines of constant ωr = ω0,r.

Somme remarks on the numerical method used to determine (ω0, k0) are given in section 1.5.2.

Figures 1.5(a)–(d) show the downstream evolution of the spatio-temporal stability prop-

erties for the case S = 6.1 and Re = 75, with two values of the Froude number: Fr = 800 (solid

lines), and Fr = 375 (dashed lines). The location of the saddle point k = k0 in the complex k-plane

is shown in figure 1.5(e), where the solid lines indicate spatial branches of constant ωi, and the

dashed lines have a constant value of ωi = ω0,i. It can be seen how for Fr . 800 a pocket of

absolute instability emerges around x = 28, with absolute frequency ω0,r = 0.02 (St = 0.006) and

wavelength λ0 = 2π/k0,r = 63. In numerical simulations of weakly nonparallel heated jets, the

appearance of such a pocket of absolute instability was shown to destabilize the nonlinear global

mode responsible for the self-excited behaviour (Lesshafft et al., 2007). Moreover, at criticality, the

corresponding global frequency was found to coincide with the value given by the local stability

analysis at the downstream position where the character of the instability changes from convective

to absolute, in agreement with the theory developed by Pier et al. (1998) for weakly nonparallel

flows.

The spatio-temporal stability analysis therefore predicts the flow to be globally unstable

for Fr . 800, with a frequency at the margin of instability such that St = 0.006. These predictions

differ significantly from those of the global stability analysis, which gives a critical Froude number
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Fr = 368 with an associated Strouhal number St ' 0.014. These departures can be attributed to

the failure of the condition λ � L needed for applicability of the quasi-parallel analysis. Similar

overpredictions in the growth rate of the perturbations have been reported in previous comparative

studies of local/global stability analyses for wakes (Juniper et al., 2011).

A pocket of absolutely unstable flow, away from boundaries, was also found by Qadri et al.

(2015) in the context of nonbuoyant flames for their “mode B”. As in the present work, they found

this region of local absolute instability to lie at the basis of the excitation of a global low-frequency

flickering mode. In the buoyancy-free configuration analyzed by Qadri et al. (2015) the density

of the fuel jet upstream from the lifted flame is significantly lower than that of the surrounding

atmosphere, causing a second instability mode (“mode A”) to be present in their analysis, with a

region of absolute instability that starts at the outlet of the jet, similar to that found by Coenen

& Sevilla (2012) in the context of light jets.

1.5.1 The local stability equations

To obtain the stability equations, the normal modes

{v̂x(r), iv̂r(r), p̂(r)Z̃(r)} exp[i(kx− ωt)]

are substituted into the equations of motion (1.4)–(1.6), linearized around the base flow {v̄x(r),

v̄r(r), p̄(r), Z̄(r)}, yielding the system of ordinary differential equations

− ωρ̃+ kρ̄v̂x + ρ̄(v̂′r + v̂r/r) + ρ̄′v̂r + kv̄xρ̃ = 0, (1.12)

iρ̄
(
−ωv̂x + kv̄xv̂x + v̄′xv̂r

)
= −ikp̂− Fr−1ρ̃

+ Re−1
[
µ̄(v̂′′x + v̂′x/r − k2v̂x) + µ̄′(v̂′x − kv̂r) + (v̄′′x + v̄′x/r)µ̃+ v̄′xµ̃

′] , (1.13)

iρ̄ (−ωv̂r + kv̄xv̂r) = ip̂′

+ Re−1
[
µ̄(v̂′′r + v̂′r/r − v̂r/r2 − k2v̂r) + µ̄′(v̂′r − v̂r/r − kv̂x) + kv̄′xµ̃

]
, (1.14)

iρ̄
(
−ωZ̃ + kv̄xZ̃ + Z̄ ′v̂r

)
=

+ (Re Pr)−1
[
µ̄(Z̃ ′′ + Z̃ ′/r − k2Z̃) + µ̄′Z̃ ′ + (Z̄ ′′ + Z̄ ′/r)µ̃+ Z̄ ′µ̃′

]
, (1.15)

where the prime indicates differentiation with respect to r. Note that

T̄ =

1 + γZ̄/ZS for 0 ≤ Z̄ ≤ ZS,

1 + γ(1− Z̄)/(1− ZS) for ZS ≤ Z̄ ≤ 1,
(1.16)

ρ̄ = T̄−1, (1.17)

µ̄ = T̄ σ, (1.18)

18



and

T̃ =

γZ̃/ZS for 0 ≤ Z̄ ≤ ZS,

−γZ̃/(1− ZS) for ZS ≤ Z̄ ≤ 1,
(1.19)

ρ̃ = −T̄−2T̃ , (1.20)

µ̃ = σT̄ σ−1T̃ . (1.21)

The stability equations are accompanied by suitable boundary conditions. In the far field,

all perturbations must vanish,

(Z̃, v̂x, v̂r, p̂)→ 0 as r →∞, (1.22)

whereas at the centerline, a vanishing azimuthal dependence of the perturbations as r → 0 may be

imposed (Batchelor & Gill, 1962), leading to

v̂r = v̂′x = 0 and (Z̃, v̂x, p̂) finite at r = 0. (1.23)

Note that a Taylor expansion of (1.13)–(1.15) around the centerline yields

µ̄v̂′x + µ̃v̄′x = 0, (1.24)

Re−1k(µ̄v̂′x + µ̄′v̂x)− 3Re−1µ̄v̂′′r/2− ip̂′ = 0, (1.25)

Z̄ ′µ̃+ µ̄Z̃ ′ = 0. (1.26)

1.5.2 Numerical method

The numerical method that is employed to obtain the saddle point (ω0, k0) is identical to

that of Coenen & Sevilla (2012). A quadratic Taylor expansion of ω(k) around (ω0, k0) permits the

employment of a Newton-Raphson root-finding algorithm, whereby at each iteration the temporal

eigenvalue problem must be solved (Deissler, 1987). To that end, a spectral collocation method is

used with a function ξ = [rc − r(1 + 2rc/rmax)]/(rc + r) that maps the N collocation points from

the Chebyshev interval −1 ≤ ξ ≤ 1 to the physical domain 0 ≤ r ≤ rmax (Khorrami et al., 1989).

Values rc = 3, rmax = 50000 and N = 300 are found to be adequate. For more details on the

numerical method, we refer to Coenen & Sevilla (2012, Appendix B).

1.6 Concluding remarks

The present investigation has employed, for the first time, a global stability analysis to

study the buoyancy-induced flickering of jet diffusion flames as a hydrodynamic global mode. It

also provides the parametric dependence of the critical conditions at the onset of instability as
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well as the morphology and frequency of the resulting oscillatory modes, giving predictions in fair

agreement with results of direct numerical integrations.

While the simplified model employed here contains the fundamental underlying physics

involved in the flickering phenomenon, additional effects should be investigated in future work.

For instance, influences of shapes of jet-velocity profiles, including interactions of the different

instabilities observed previously (Chen et al., 1988), could be investigated by incorporating the

boundary-layer thickness as an additional parameter, as done in previous spatio-temporal stability

analyses of light jets (Coenen et al., 2008). Preferential diffusion effects, associated with light and

heavy fuel molecules, could be addressed in the infinitely fast reaction limit by using coupling-

function formulations accounting for reactant Lewis numbers that differ from unity (Liñán, 1991).

Consideration of finite-rate effects would be needed to examine the stability characteristics of lifted

flames, studied in previous work (Qadri et al., 2015) under buoyancy-free conditions. While the

present work pertains to laminar flames, the global instability analysis could also be applied to

turbulent conditions, with the steady base flow obtained for instance by time averaging results

of large-eddy simulations, as done earlier in connection with local spatiotemporal analyses of jet

flames (See & Ihme, 2014).

While the mode identified here is buoyancy-dominated, resulting in frequencies that scale

with (g/a)1/2, the dynamics at sufficiently large Froude numbers is expected to be controlled by

a different mode, with frequencies that scale with U0/a, similar to those observed in light jets

(Hallberg & Strykowski, 2006). Our preliminary computations indicate that the investigation of

the transition between the buoyancy-dominated and the momentum-dominated instabilities will

require consideration of much higher Froude numbers, with associated critical Reynolds numbers

exceeding Re = 1000. The associated global instability computation is expected to experience

difficulties associated with the existence of resonance modes caused by spurious feedback from the

outflow boundary, encountered earlier in the analysis of jets (Garnaud et al., 2013a).

Our analysis indicates that the streamwise wavelength of the dominant instability mode

scales with the flame height. Correspondingly, the assumption of quasi-parallel flow, necessary to

ensure the predictive capability of local stability analyses, does not hold in buoyant jet diffusion

flames, resulting in associated predictions of critical Froude numbers at the margin of instability that

are off by a factor exceeding two. This finding further underscores the utility of global instability

analysis for investigation of buoyancy-induced flickering instabilities.

This Chapter, in part, has been published in the Journal of Fluid Mechanics, “Diffusion-

flame flickering as a hydrodynamic global mode”, by D. Moreno-Boza, W. Coenen, A. Sevilla, J.

Carpio, A. L. Sánchez and A. Liñán (2016) 798, 997-1014. The dissertation author is the primary

investigator in this publication.
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Chapter 2

The onset of puffing of pool fires

Pool fires are known to undergo a bifurcation to a globally unstable puffing state caused

by baroclinic and buoyant vorticity production. Although the supercritical puffing regime has been

studied extensively in the literature, no detailed account has been given of the critical conditions for

its onset, that being the purpose of the present chapter. For the relevant canonical case of round

liquid pools, apart from the inherent thermochemical parameters, pool-fire puffing is governed

by a single dimensionless number, the Rayleigh number, which scales with the cube of the pool

diameter. Consequently, for a fixed fuel and under fixed ambient conditions, there is a critical fuel

pool diameter, associated with a critical Rayleigh number, above which the fire starts puffing. This

chapter provides a detailed analysis of the onset of pool-fire puffing, using both a global linear

stability analysis that accounts for the axisymmetry of the instability, and laboratory experiments.

The former is facilitated by a mathematical formulation of the dynamics of small laminar pool fires

that takes advantage of the simplifications associated with the limit of infinitely fast reaction Liñán

et al. (2015), but accounts for the nonunity Lewis number and vaporization characteristics of typical

liquid hydrocarbon fuels.

2.1 Introduction

Pool fires are known to exhibit a self-sustained oscillatory behavior, shedding large toroidal

coherent structures at a well established frequency, a phenomenon referred to in the literature as

“puffing”. This behavior influences the rate of air entrainment, soot production, the radiated

heat output Smyth et al. (1993), and also the spreading of the flame Sibulkin & Hansen (1975);

Finney et al. (2015). Pool-fire puffing has been studied extensively in the literature, by means

of experiments Blinov & Khudyakov (1961); Sibulkin & Hansen (1975); Hertzberg et al. (1978);

Zukoski et al. (1984); Schönbucher et al. (1985); Weckman & Sobiesiak (1988); Hamins et al.
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(1992); Cetegen & Ahmed (1993); Yuan et al. (1994); Malalasekera et al. (1996); Most et al. (1996),

numerical simulations Ghoniem et al. (1996); Mell et al. (1996); Tieszen et al. (1996); Prasad et al.

(1999); Sinai (2000); Ma & Quintiere (2003); Chatterjee et al. (2015), and scale modeling Byram

& Nelson (1970); Emori & Saito (1983); Pagni (1990); Delichatsios (1996). Extensive reviews on

pool fires can be found in Emmons (1980); Heskestad (1998); Joulain (1998); Tieszen (2001). It

is well established that under normal conditions of temperature and pressure typical hydrocarbon

fuel pools of a few centimeters in diameter puff with a frequency on the order of 10 Hz, and that

this frequency decays with the square root of the pool radius a∗ as f∗ ∼
√
g∗/a∗, as is readily

obtained from a balance between the unsteady, convective and buoyancy terms in the Navier–

Stokes equations. Viscous effects may enter as a stabilizing mechanism for small-scale pool fires,

but these have been given little attention in the literature. More importantly, no detailed account

has been given of the critical conditions for the onset of puffing.

For the physically similar problem of flickering jet diffusion flames, the authors have

recently shown that it corresponds to a hydrodynamic global instability of the flow, the onset of

which can successfully be predicted with a global stability analysis Moreno-Boza et al. (2016). Such

an analysis takes into account the axisymmetric two-dimensional nonparallel character of the flow,

the spatial structure of the instability being comparable in length to the flame itself. Since pool

fires are typically even less slender than jet diffusion flames, and since the physical mechanisms

producing vorticity—hence instability—in both flows are identical, it can be anticipated that the

formalism will also yield satisfying results for the onset of pool-fire puffing. In a jet diffusion flame,

momentum is injected with the fuel, and consequently the jet Reynolds number plays a role in the

flame dynamics, along with the Froude number. In a pool fire however, the momentum that is

transferred to the flow by the evaporation of fuel is negligible. Therefore, apart from the inherent

thermochemical parameters, a single dimensionless parameter, expressed as a Rayleigh number

Ra = g∗a∗3/(ν∗AD
∗
T,A), characterizes the flow. Here a∗ is the radius of the fuel pool, ν∗A and D∗T,A

are the kinematic viscosity and thermal diffusivity of the ambient air, and g∗ is the gravitational

acceleration. Puffing occurs when the Rayleigh number exceeds a critical value. Note that for given

burning conditions the latter is directly equivalent to a critical pool diameter.

The objective of the present work is to determine the critical Rayleigh number for pool-fire

puffing, using the simplest possible description that still retains the essential physical ingredients.

In particular, we employ the limit of infinitely fast chemical reaction, but account for the nonunity

Lewis number and vaporization characteristics of typical liquid hydrocarbon fuels. It is known that

radiation can play an important role in luminous sooting flames, lowering the peak temperature,

and increasing the heat transfer to the liquid fuel Hertzberg et al. (1978); Sher (1982); Akita &

Yumoto (1965). Nevertheless, because it is a volumetric effect, it is expected to be small for the
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flame sizes associated with the onset of puffing, which, as our analysis will reveal, are on the order

of a centimeter. Details of the specific design of the burner, such as the pan lip height, the thermal

properties of the pan and its surrounding wall, and the height of the fuel level with respect to

the pan rim, can also have a considerable influence on small-scale pool fires Emmons (1961). In

our analysis, to eliminate the need for solving the complete coupled heat transfer problem for the

solid elements, we purposely focus on a canonical configuration in which the surrounding wall is

either an adiabatic surface or an isothermal surface at the ambient temperature, and the fuel level

is flush with this wall. Although our description is aimed to be generally valid for all typical liquid

fuels—through an adequate choice of the thermochemical parameters—in this work all results are

presented for heptane.

The chapter is structured as follows. In section 2.2 a detailed mathematical formulation

is given to describe the dynamics of canonical laminar pool fires. A global stability analysis and

its predictions for the critical Rayleigh number are presented in section 2.3. Section 2.4 is devoted

to an experimental characterization of the onset of puffing. Finally, concluding remarks are given

in section 2.5.

2.2 Mathematical description of laminar pool fires

2.2.1 Governing equations

We give below the equations and boundary conditions for the description of the burning

of a round pool of liquid fuel with radius a∗ in a quiescent air atmosphere with temperature T ∗A and

density ρ∗A. In the presence of buoyancy, the density differences of order unity associated with the

temperature increase caused by the chemical heat release induce velocities of order v∗g = g∗a∗2/ν∗A,

where g∗ is the gravitational acceleration, ν∗A = µ∗A/ρ
∗
A is the ambient kinematic viscosity and

µ∗A is the dynamic viscosity coefficient at ambient temperature. The Reynolds number based on

this velocity is the Grashof number Gr = g∗a∗3/ν∗A
2, measuring the relative effects of convective

acceleration and viscous forces, with the accompanying Rayleigh number

Ra = PrGr =
g∗a∗3

ν∗AD
∗
T,A

, (2.1)

based on the thermal diffusivity of the ambient air D∗T,A, being the corresponding Péclet number

that measures the ratio of convective and diffusive energy transport rates. These two parameters,

related through the Prandtl number Pr = ν∗A/D
∗
T,A ' 0.7, characterize the structure and dynamics

of pool fires. In particular, the onset of puffing occurs at a critical value Gr c = Rac/Pr , to be

determined below.
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The pool radius a∗ and the characteristic velocity v∗g will be used as scales for the dimen-

sionless axisymmetric cylindrical coordinates x = (x, r) and velocity v = (vx, vr). With the time

and the pressure differences from the quiescent ambient hydrodynamic distribution scaled with

t∗g = a∗/v∗g and ρ∗Ag
∗a∗ to give the variables t and p, respectively, the continuity and momentum

equations become

−1

ρ

Dρ

Dt
=∇ · v, (2.2)

Ra

Pr
ρ

Dv

Dt
= −∇p+ (1− ρ)ex +∇ · [µ(∇v +∇vT )], (2.3)

where D/Dt = ∂/∂t + v · ∇ denotes the substantial derivative and ρ and µ are the density and

viscosity scaled with their ambient values. The reaction between the fuel and the oxygen of the air

will be considered to occur according to the global irreversible step

F + sO2 → (1 + s)P + q∗, (2.4)

where s and q∗ are the mass of oxygen consumed and the amount of heat released per unit mass

of fuel burnt. The associated conservation equations for reactants and energy are

Ra ρ
DYF

Dt
=

1

LeF

∇ · (ρDT∇YF)− wF, (2.5)

Ra ρ
DYO

Dt
=∇ · (ρDT∇YO)− SwF, (2.6)

Ra ρ
DT

Dt
=∇ · (ρDT∇T ) + qwF, (2.7)

where T is the temperature scaled with T ∗A, and YF and YO = YO2
/YO2A

are the mass fraction of

fuel vapor and oxygen, the latter normalized with its value YO2A
' 0.232 in air. The dimensionless

reaction rate wF is the mass of fuel consumed by the chemical reaction per unit volume per unit time

scaled with ρ∗A/t
∗
g. The thermochemical parameters s and q∗ defined above appear in the reaction-

rate factors S = s/YO2A
and q = q∗/(c∗pT

∗
A) in (2.6) and (A.8), respectively, where c∗p denotes the

specific heat at constant pressure, assumed to be constant in the following analysis. The parameter

S, of order S = 15 in hydrocarbon combustion, represents the amount of air needed to burn the

unit mass of fuel. The other parameter, q, is the heat release per unit mass of fuel scaled with the

ambient enthalpy, which takes fairly large values for typical fuels, such that q/S ∼ 7.

Similarly to the other transport properties, the thermal diffusivity DT is scaled with its

ambient air value D∗T,A. The presumed power laws

µ = ρDT = T σ (2.8)

will be used below for the temperature variation of the transport properties, with σ = 0.7 used in

the numerical integrations. A Fickian model is used for the diffusion velocities of the reactants, a
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sufficiently accurate approximation in fuel-air combustion, where the dominant presence of nitrogen

molecules simplifies the description of molecular transport. While a unity Lewis number has been

employed for oxygen, an excellent approximation under most conditions, a non-unity Lewis number

LeF > 1 is used for the fuel, as is needed for accuracy in computations of most hydrocarbon and

alcohol fuels.

The motion induced is very slow, and involves small spatial pressure variations that can

be neglected in the first approximation when writing the equation of state

ρT =

[
YF

(
W ∗A
W ∗F
− 1

)
+ 1

]−1

. (2.9)

The molecular mass of most liquid fuels W ∗F is significantly larger than that of the air W ∗A, so that

the density differences induced by the presence of the fuel vapor have been considered for increased

accuracy in (2.9).

The boundary conditions in the surrounding air atmosphere can be written in the form

vx = vr = p = T − 1 = YF = YO − 1 = 0 (2.10)

as |x| → ∞ for x 6= 0. The surface r > 1, x = 0 that surrounds the fuel pool is assumed to be

impermeable and chemically inert, thereby providing the additional boundary conditions

vx = vr =
∂YF

∂x
=
∂YO

∂x
= 0. (2.11)

The thermal properties of this surface can have a significant influence on the flame, with realistic

cases falling in between the limits corresponding to either an adiabatic surface,

∂T

∂x
= 0, (2.12)

or an isothermal surface at the ambient temperature,

T = 1. (2.13)

Fuel vaporization occurs with a prescribed dimensionless boiling temperature TB and dimensionless

latent heat of vaporization Lv = L∗v/(c
∗
pT
∗
A). The energy invested in raising the temperature of the

liquid fuel, with specific heat c∗l , from the ambient to the boiling temperature is taken into account

by defining an effective heat of vaporization lv = Lv + (TB − 1)c∗l /c
∗
p. The resulting boundary

conditions on the vaporizing fuel surface (i.e. at x = 0 for r < 1) become

vr = T − TB = 0 (2.14)

Ra ρvxYF −
T σB
LeF

∂YF

∂x
= Ra ρvx (2.15)

Ra ρvxYO − T σB
∂YO

∂x
= 0 (2.16)

Ra ρvxT − T σB
∂T

∂x
= −lvRa ρvx. (2.17)
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2.2.2 Conserved scalars from coupling functions in diffusion flames

Our analysis employs the fast-reaction limit in which the chemical-reaction terms in (2.5)–

(A.8) appear as Dirac delta distributions along a flame surface separating an outer ambient region

with no fuel vapor from an inner region surrounding the pool surface with no oxygen. To facilitate

the analysis of the fast-reaction limit it is convenient to replace two of the equations (2.5)–(A.8)

by two chemistry-free conservation equations, obtained by eliminating the reaction terms through

appropriate linear combinations Liñán et al. (2015). We follow the derivation given in Liñán et al.

(2016) for the analysis of counterflow gaseous diffusion flames. Thus multiplying (2.6) by q/S and

adding (A.8) leads to a chemistry-free conservation equation involving a single coupling function

(T + qYO/S), which can be conveniently expressed as a normalized excess thermal and chemical

enthalpy

ξ =
T − 1 + (q/S)(YO − 1)

TB − 1− q/S
, (2.18)

with transport equation

Ra ρ
Dξ

Dt
=∇ · (ρDT∇ξ) . (2.19)

With the normalization employed in (2.18) the excess enthalpy ξ is zero in the air atmosphere and

unity on the fuel surface.

The reaction term can also be eliminated by subtracting (2.6) from (2.5) times S. When

the Lewis number LF is different from unity, the resulting transport equation shows a coupling

function (SYF − YO) in the accumulation and convective terms that is different from the coupling

function (SYF/LeF − YO) appearing in the diffusion term. When these coupling functions are

normalized we obtain a diffusion-weighted mixture fraction

Z̃ =
SYF/LeF − YO + 1

S/LeF + 1
, (2.20)

arising from the diffusion term, in addition to the classical mixture fraction

Z =
SYF − YO + 1

S + 1
, (2.21)

with resulting conservation equation

Ra ρ
DZ

Dt
=

1

Le
∇ · (ρDT∇Z̃), (2.22)

where Le = (S + 1)/(S/LeF + 1).

To solve (2.19) and (2.22) coupled with (2.2) and (2.3) and supplemented with (2.8)

and (2.9) we need to relate T , YF, and Z with ξ and Z̃. These relations can be obtained using the

fast-reaction condition

YFYO = 0 (2.23)
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of non-coexistence of YO and YF, which are simultaneously zero at the flame, given by the iso-surface

Z = ZS = 1/(1 + S), or Z̃ = Z̃S = 1/(1 + S/LeF), as follows from the definitions (2.20) and (2.21).

For Z̃ ≥ Z̃S

YO = 0, (2.24)

YF =
Z − ZS

1− ZS

=
Z̃ − Z̃S

1− Z̃S

, (2.25)

T − 1 =
(
TB − 1− q

S

)
ξ +

q

S
, (2.26)

whereas for Z̃ ≤ Z̃S

YF = 0, (2.27)

1− YO =
Z

ZS

=
Z̃

Z̃S

, (2.28)

T − 1 =
(
TB − 1− q

S

)
ξ +

q

S

Z̃

Z̃S

. (2.29)

Equations (2.24)–(2.29) provide piecewise linear relations for the evaluation of YF, YO, and Z in

terms of Z̃. In addition, the last relation in the equations gives T in terms of Z̃ and ξ.

The boundary conditions (A.12)–(2.17) become

vx = vr = p = ξ = Z̃ = 0 as |x| → ∞ for x 6= 0, (2.30)

together with

vx = vr =
∂Z̃

∂x
= 0, at x = 0 for r > 1, (2.31)

and

vr = ξ − 1 = 0,

−T σB
∂ξ

∂x
= αRa ρvx

−T σB
∂Z̃

∂x
= LeFRa ρvx(1− Z̃)


at x = 0 for r < 1, (2.32)

where

α =
lv + TB

q/S + 1− TB

. (2.33)

The definition of the problem is completed by specifying the thermal boundary condition at the

surrounding wall x = 0, r > 1, which, for the case of an adiabatic surface may be written as

∂ξ

∂x
= 0 (2.34)

whereas, for the case of an isothermal surrounding wall at ambient temperature,

ξ =


q/S

q/S + 1− TB

for Z̃ ≥ Z̃S,

q/S

q/S + 1− TB

Z̃

Z̃S

for Z̃ ≤ Z̃S.

(2.35)

31



2.2.3 Numerical methods

Steady solutions of the governing equations (2.2), (2.3), (2.19) and (2.22), supplemented

with relations (2.8), (2.9), (2.24)–(2.29), and subject to the boundary conditions (2.30)–(2.35), are

computed with a Newton-Raphson root-finding technique. The discretization of the problem is

carried out with use made of the software FreeFem++ using Taylor-Hood elements (P2 for velocity

and passive scalars and P1 for the pressure field to satisfy the Ladyzhenskaja-Babus̆ka-Brezzi

condition). Details of the discretization method, used for instance by (Garnaud et al., 2013b), can

be found in (Hecht, 2012). The grid is adapted to the solution using a Delaunay triangulation of

the computational domain x ∈ [0, xmax] × [0, rmax]. The size of the computational box and the

grid refinement level are varied until convergence is achieved, being (xmax, rmax) = (150, 50) typical

values used in the results presented below. The finite size of the domain demands replacement

of (2.30) by stress-free boundary conditions at the lateral r = rmax, x ≥ 0 and outflow x = xmax,

r ≥ 0 computational boundaries for the flow field (see, for instance, (Moreno-Boza et al., 2016) for

details). The condition ¯̃Z = ξ̄ = 0 at the lateral boundary, and n ·∇ ¯̃Z = n ·∇ξ̄ = 0 at the outflow

boundary complete the numerical description of the steady problem.

On the other hand, unsteady solutions of the governing equations have been obtained

with the numerical code presented in Carpio et al. (2016). The numerical code uses as space

discretization a local anisotropic h-adaptive algorithm in a finite element framework. The finite

element spaces are the same employed in the steady computations, described before (quadratic

finite elements for coupling functions and velocity, and linear finite elements for pressure). As time

discretization scheme the code uses a semi-Lagrange-Galerkin method in combination with second

order BDF schemes. The semi-Lagrange-Galerkin method allows to treat the convective terms in a

stable way, and to decouple the momentum and mass conservation equations from the conservation

equations for the passive scalars Z, Z̃ and ξ. Moreover, this time discretization has the ability to

transform the nonlinear momentum and mass conservation equations into a linear Stokes problem

which is solved with a preconditioned conjugate gradient Uzawa algorithm. Equations for the

passive scalars Z, Z̃ and ξ are solved with a fixed-point iteration to treat the weak nonlinearity

induced by nonunity Lewis number and the dependence of the density and diffusion coefficients

with Z, Z̃ and ξ.

2.2.4 Choice of parameters and sample results for a steady heptane flame

The formulation presented previously is generally valid for any fuel, given an adequate

choice of the thermochemical parameters. In the present work, attention is focused on heptane;

table 2.1 summarizes the numerical values for all the parameters that appear in the description. It
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Figure 2.1: Steady solutions for Ra = 10000 with (a) isothermal, and (b) adiabatic boundary
conditions on the surrounding surface. The left part of each plot shows equispaced isotherms along
with their corresponding temperature values; sample streamlines are shown on the right hand sides.
The solid line indicates the stoichiometric line Z̃ = Z̃S.

must be noted that the Lewis number of the fuel varies considerably throughout the flame, with

values ranging from 1.1 on the vaporizing fuel surface to 2.6 at the flame front. As our formulation

assumes a constant Lewis number, an intermediate value of 1.8 is chosen.

Soot production causes heptane flames to be luminous, and consequently lose heat through

radiation. As this effect is anticipated to be small for the flame size associated with the onset of

puffing, it is here modeled in a simplistic manner by lowering the value of the heat release parameter

q/S from 7 to qeff/S = 6, such that the resulting peak flame temperatures are on the order of 1900 K,

in accordance with measurements of similar flames in the literature Reimann et al. (2010).

The governing equations (2.2), (2.3), (2.19) and (2.22), supplemented with relations (2.8),
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Table 2.1: Values for heptane of the thermochemical parameters used in the description.

W ∗F/W
∗
A 3.45 S 15.2

TB 1.24 q/S 7
lv 1.14 qeff/S 6

LeF 1.8

(2.9), (2.24)–(2.29), and subject to the boundary conditions (2.30)–(2.35), are to be integrated

numerically. Given an initial condition, they can be mar-ched in time as described in 2.2.3. Al-

ternatively, steady solutions may be computed using a Newton–Raph-son algorithm the details of

which also can be found in 2.2.3. Figure 2.1 shows the structure of a steady heptane flame at

Ra = 10000 distinguishing between (a) an isothermal, and (b) an adiabatic surrounding surface.

In each plot the left hand side shows equispaced isotherms along with their corresponding values,

whereas on the right hand side sample streamlines are drawn. The heat loss to the isothermal wall

at temperature T = 1 causes the flame to be considerably shorter than in the adiabatic case.

2.3 Puffing as a hydrodynamic global mode

It has recently been shown that the flickering of low-density jets Coenen et al. (2017)

and jet diffusion flames Moreno-Boza et al. (2016) is the manifestation of a hydrodynamic global

instability, the onset of which can be computed with a linear global stability analysis. In the present

work, we employ said analysis to predict the onset of puffing of laminar pool fires. Let us recast

the equations of motion (2.2), (2.3), (2.19) and (2.22), supplemented with relations (2.8), (2.9),

(2.24)–(2.29), and subject to the boundary conditions (2.30)–(2.35), in the compact form

∂q

∂t
= F(q), (2.36)

where q = (v, p, Z̃, ξ) is the state vector and F is a nonlinear differential operator, represent-

ing the steady part of the continuity (2.2), Navier–Stokes (2.3) and passive scalars conservation

equations (2.19) and (2.22).

As a base state for the stability analysis, a steady solution of (2.36) is employed, i.e.

q̄ = (v̄, p̄, ¯̃Z, ξ̄) such that F(q̄) = 0, as described in section 2.2.4. Small unsteady axisymmetric

perturbations are added to the steady base flow as q = q̄+εq′. The evolution of these perturbations

(primed quantities) is then governed to leading order by (2.36), linearized around the base flow.

Assuming temporal eigenmodes q′ = q̂e−iωt, the linearized equations of motion with corresponding

boundary conditions can be written in the form of a generalized eigenvalue problem

(A− iωB) q̂ = 0. (2.37)
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Figure 2.2: (a) Growth rate of the leading eigenvalue as a function of the Rayleigh number for
a heptane pool fire surrounded by an isothermal surface. Associated (normalized) eigenfunctions
for (b) the temperature T̂ and (c) the axial velocity v̂x at the onset of instability, Ra = Rac =
24000, highlighted in red in (a); the thick black line indicates the stoichiometric surface of the
corresponding steady base flame.

Nontrivial solutions exist for a discrete set of complex values of ω = ωr + iωi. The real part of ω

determines the frequency of the perturbation, with corresponding Strouhal number St = ωr/π. The

growth rate ωi dictates whether the flow is globally unstable (ωi > 0) or globally stable (ωi < 0).

The same finite-element formalism is employed to discretize the perturbed equations but in a split

mesh with twice as much nodes than that used for the base flow. The shift-inverse power method
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Table 2.2: Critical Rayleigh number Rac and corresponding Strouhal number Stc obtained from
the global stability analysis.

Surrounding surface Rac Stc
Adiabatic 11600 0.0040
Isothermal at temperature T = 1 24000 0.0034

Lehoucq et al. (1997) is employed to solve the eigenvalue problem.

The global eigenvalue spectra for buoyant pool fires share the characteristics of those en-

countered in diffusion flames Moreno-Boza et al. (2016) and low-density jets Coenen et al. (2017):

an isolated, physically significant, leading eigenvalue, and a stable arc-branch of eigenmodes with

lower growth rates. Whereas the latter modes are heavily dependent on the numerical implemen-

tation such as the choice of domain size, the leading eigenvalue is robust. Figure 2.2(a) shows for

the canonical case of a heptane pool fire surrounded by an isothermal surface how the growth rate

of the physically significant leading eigenvalue increases with the Rayleigh number. The margin

of instability, separating globally stable fires (negative growth rates) from globally unstable fires

(positive growth rates) lies at Ra = Rac = 24000. At the onset, the dimensionless frequency of the

global mode is St = ωr/π = 0.0034, and the spatial structures of its corresponding temperature

and axial velocity eigenfunctions are given in figures 2.2(b) and (c), respectively.

When the surface surrounding the fuel pool is adiabatic instead of isothermal, the resulting

flame is considerably larger (see figure 2.1). This causes the flame to be more unstable, and thus

have a smaller critical Rayleigh number. Indeed, the global stability analysis predicts a value of

Rac = 11600, with a corresponding frequency Stc = 0.0040. Table 2.2 summarizes the results for

both canonical cases.

2.4 Comparison with an experiment

2.4.1 Setup

To determine the critical conditions for the onset of pool-fire puffing, controlled ex-

periments were carried out, in which, for a fixed fuel (heptane) and under fixed ambient con-

ditions, the flame dynamics were characterized for different fuel pool sizes. Note that the fuel

pool radius a∗ is related to the Rayleigh number as Ra = g∗a∗3/(ν∗AD
∗
T,A) with g∗ = 9.807 m/s2,

ν∗A = 1.597× 10−5 m2/s, and D∗T,A = 2.256× 10−5m2/s.

The experimental setup is depicted in figure 2.3. It consists of a 90 cm× 90 cm× 12.7 mm

PVC table that in its center holds a removable liquid fuel burner. This burner is composed of

a 20 cm × 20 cm × 6.35 mm aluminum plate, a 6 cm-diameter conical polypropylene fuel holder
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Figure 2.3: Schematics of the experimental setup. The upper diagram shows the general setup,
whereas the lower part shows a more detailed side and top view of the liquid fuel burner.

mounted underneath, and a small interchangeable 7.5 cm × 7.5 cm × 3.175 mm brass plate placed

within a recess in the upper side of the former. The interchangeable plate has a circular hole of a

certain radius a∗ in its center, filled up to a small distance of 0.75 ± 0.25 mm from the rim with

a layer of glass beads (0.5 mm in diameter) that rests on a thin stainless steel mesh. This porous

layer prevents convective currents in the fuel from affecting the observations. When assembled, all

elements form a large flush surface around the circular hole. The fuel holder is connected to an

external fuel tank with a cross-sectional area of approximately 350 cm2 � πa∗2. In this manner,

once the height of the tank is adjusted so that the burner is filled up to the desired level with fuel,

this level remains quasi-constant during the course of an experiment (typically about ten minutes).

To prevent external perturbations to the flame, the complete experiment is enclosed by a

3 m × 2 m × 2 m chamber. After closing the chamber, we waited approximately 10 minutes for all

air currents to die out before starting the experiment. To ignite the fuel remotely, a surface ignitor
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Figure 2.4: Steady subcritical heptane flames for different pool diameters. Superposed on the
photographs are numerical computations following the simplified description given in section 2.2;
the thick red line indicates the flame front, and the thin gray lines indicate equispaced isotherms
T = 2, 3, 4, 5, 6. Note that, in order to mimic the experimental conditions, the axial location of the
vaporizing fuel surface in the numerical computations is set to x = −0.75 mm/a∗.

mounted on a motorized arm was slowly brought close to the fuel and retracted afterwards. The

flame dynamics were recorded with a Panasonic Lumix FZ300 camera at a frame rate of 120 fps.

For unstable flames, the puffing frequency can be determined from the image sequence by selecting

a region of the image near the flame tip and computing the power spectral density of the temporal

evolution of the average intensity in that region. The length of the sequency was typically taken to

be one minute, containing 600 puffing cycles at an expected puffing frequency of 10 Hz. In addition

to visible light photographs, shadowgraph images were taken by placing a 3 W led light in the focal

point of a convex lense, situated 150 cm in front of the flame, and projecting the image on a white

paper screen 70 cm behind the flame.

2.4.2 Results and discussion

For sufficiently small pool diameters, steady flames were obtained. Figure 2.4 shows pho-

tographs of such steady flames for 2a∗ = 15.6, 17.1, 17.6, and 19.1 mm (Ra = 13677, 17013, 18550,

and 23708). Dimensionless length scales are used in the axes, so that r = 1 corresponds to the

border of the fuel pool. Superposed on the photographs are steady numerical computations follow-

ing the simplified description given in section 2.2. The thick red line indicates the stoichiometric
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Figure 2.5: (top) Visible light, and (bottom) shadowgraph sequence of three puffing cycles for
a supercritical heptane pool fire with diameter 2a = 20.1 mm (Ra = 27631). The time interval
between the images is 1/120 s. The measured puffing frequency for this case is f∗ = 12.8 Hz
(St = 0.0041). Note that the top and bottom sequence do not correspond to the same puffing
events, and that both have different length scales.

line, and the thin gray lines are equispaced isotherms. Two aspects must be considered in the

comparison between experiments and theory. First, the conductive heat transfer inside the brass

plate that surrounds the fuel pool in the experiments is very effective compared to the combined

convective and conductive heat transfer in the adjacent gaseous fuel or air. Therefore, from the

two canonical cases considered in the theoretical description, namely the pool fire surrounded by

an adiabatic wall, and that surrounded by an isothermal wall, the latter is expected to be most

similar to the experiments, and is hence used in the computations. Secondly, to avoid fuel spilling

in an uncontrolled fashion, a very small offset of 0.75 ± 0.25 mm is maintained between the fuel

level and the rim in the experiments. In the numerical computations of figure 2.4, this is taken

into account by setting the axial location of the fuel level to x = −0.75 mm/a∗, while keeping the

surrounding isothermal surface at x = 0.

When the pool diameter is increased to 2a∗ = 20.1 mm (Ra = 27631), the steady character

of the flow is lost and the flame start puffing in a periodic manner. Figure 2.5 shows three oscillation

cycles, the top panel in the form of visible light photographs, and the bottom panel in the form of

shadowgraph images. The shadowgraph images show the large vortical structures that characterize

the flame envelope. These are in qualitative agreement with the eigenmodes near criticality obtained

from the global stability analysis (figures 2.2(b) and (c)). A quantitative comparison is not pertinent,

as it is clear from the large oscillation amplitudes in figure 2.5 that at Ra = 27631 nonlinear effects

already play a role in the flow dynamics. The shadowgraph images confirm that the perturbation

wave length is comparable to the flame height, and emphasize the need for a global stability analysis
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Figure 2.6: Dimensionless puffing frequency as a function of the Rayleigh number. Triangles
correspond to experimental results; circles are computed from time-dependent direct numerical
simulations of the governing equations. The frequency of the leading eigenvalue from the global
stability analysis (GSA) is indicated with a solid line in the unstable regime, and a dashed line
in the stable regime. The solid vertical line designates the onset Ra = Rac = 24000 predicted
by the GSA, whereas the shaded interval corresponds to the experimentally obtained threshold of
instability, 23708 < Rac < 27631.

that takes into account this intrinsic nonparallelism of the flow field.

The critical Rayleigh number in the experiment lies between Ra = 23708 and Ra = 27631.

This is in good quantitative agreement with the prediction Rac = 24000 of the global stability

analysis for the canonical case in which the fuel level is flush with the surrounding surface, and the

latter is assumed to be isothermal at the ambient temperature. If the experimental conditions are

mimicked in the global stability computations by lowering the fuel level with respect to the rim a

small distance of 3.25% of the pool diameter (0.75 mm/20.1 mm), the predicted critical Rayleigh

number increases to Rac = 28000.

When interpreting the numerical value of the critical Rayleigh number, one must take

into account that it was defined in 2.1 using the ambient values of the thermal diffusivity and the

kinematic viscosity. Taking into account that both increase with the temperature as T 1+σ, and

that the peak flame temperatures are approximately six times larger than that of the ambient, the

numerical value of the corresponding Rayleigh number scaled with the peak properties at the flame

would be approximately 440 times smaller.

The puffing frequency for the 2a∗ = 20.1 mm fuel pool (Ra = 27631) is f∗ = 12.8 Hz,

corresponding to a Strouhal number St = f∗2a∗/(g∗a∗2/ν∗A) = 0.0041—based on the diameter to

follow the convention in the literature. To explore the supercritical regime, three additional larger

pool sizes were considered (2a∗ = 22.6, 23.4, and 32.1 mm), yielding periodically puffing pool fires
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with a frequency that decreases with the pool size (figure 2.6, triangles). The error in the frequency

measurement was estimated to be less than 0.75 Hz, which was the largest observed variation in the

measured puffing frequency over different one-minute sequences, yielding error bars in 2.6 that are

smaller than the symbols. For comparison, the frequency of the leading eigenvalue obtained from

the linear global stability analysis (GSA) is also included in figure 2.6 (solid and dashed line), as

well as the oscillation frequency obtained from fully nonlinear direct numerical simulations of the

governing equations (circles). The agreement between the GSA and the nonlinear computations is

good in the vicinity of the bifurcation. Note that outside this region, the results from the global

stability analysis are not to be expected to be in good quantitative agreement with the full nonlinear

behavior of the flow. For example, for the well known flow around a cylinder, the vortex shedding

frequency quickly differs from the frequency of the unstable leading eigenvalue as the bifurcation

parameter—the Reynolds number in that case—is increased Barkley (2006). It is known that in

such flows, a global stability analysis around the mean flow instead of the steady solution of the

governing equations does give good agreement Beneddine et al. (2016).

The growth and frequency selection mechanisms governing the global instability of buoyant

diffusion flames act primarily in the flame envelope characterized by large density and velocity

gradients Moreno-Boza et al. (2016). Therefore, on theoretical grounds, a scaling law for the

frequency associated with the instability can be derived from a balance between the unsteady

and convective terms in the momentum equation, i.e. f∗ ∼ V ∗/X∗, where V ∗ ∼ (g∗X∗)1/2 is the

velocity induced by buoyant acceleration of the flow, and X∗ is the characteristic size of this region.

For sufficiently large fuel pools, X∗ is typically on the order of the pool size a∗, and consequently

f∗ ∼ g∗1/2a∗−1/2. For smaller fuel pools on the contrary, buoyancy starts entering the problem

at a distance X∗ ∼ ν∗A
2/3g∗−1/3, larger than a∗, leading to f∗ ∼ g∗2/3ν∗A

−1/3. In dimensionless

terms, using the scales introduced at the beginning of this section, both regimes can be written as

St ∼ Ra1/2 and St ∼ Ra1/3, respectively, and are indicated in figure 2.6 by the dotted lines.

2.5 Conclusions

In this chapter, a simple mathematical description for the structure of liquid-fuel pool fires

has been provided. The onset of puffing of heptane flames is described using global stability tech-

niques, providing the critical Rayleigh number (critical pool diameter) and associated frequencies.

The results are assessed by small-scale laboratory experiments and direct numerical computations.

Good agreement is found between both steady computations of the flame shape for stable flames

and the critical conditions for the onset of instability. It is worth mentioning that the description

is sensitive to the choice of the numerical values of the relevant thermochemical parameters. For
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instance, whilst most of them are well known physical parameters, there remains some arbitrariness

in the choice of the apparent Lewis number of the fuel LeF and of the effective nondimensional heat

release parameter qeff/S, necessary to model radiative heat losses.

Future prospects

In this section, a brief description of some unresolved research problems related to the

work presented in Chapters 1 and 2 is given.

Perhaps the most immediate extension of the work pressented in Chapter 2 is the alterna-

tive choice of fuels and the consideration of planar flame configurations. The formulation proposed

in section 2.2, accounting for the nonunity Lewis number of the fuel, provides a simple yet useful

mathematical framework for the study of both the structure and the stability of pool fires. Predic-

tions on the onset of instability and flame structure remain accurate as long as the thermochemical

properties of the fuel are chosen properly. While heptane has been used through the analysis, it is

worth clarifying the role of using a different fuel on the stability properties of the subsequent flow

field.

Regarding its structure, pool fires are known to transition from the oscillating state of

puffing to a more destructive regime, known as fire whirl. Fire whirls, often visualized as huge

swirling columns of fire, are present, for instance, in the spread of wildfires and the combustion of

oil spills. Their swirl properties and thus higher combustion efficiency has raised recent interest on

clarifying the transition from the puffing regime to fire whirl. Experimental evidence has confirmed

that a fire whirl may develop subsequently to the axisymmetric puffing regime, characterized by

the triggering of an unstable axisymmetric mode, where symmetry is broken in favour of a helical

motion induced by air entrainment from the surrounding ambient. Upon further increasing the

swirling intensity, vortex breakdown may occur in the inner core of the flow, producing a transition

to the recently discovered regime of blue whirl (Xiao et al., 2016). Most of what is known about

fire whirls comes from scale modeling experiments in the laboratory and therefore a full theoretical

description of the underlying mechanisms responsible for these transitions remains yet unknown

and poses a challenging problem. An borad overview of the structure and dynamics of fire whirls

can be found, for instance, in (Tohidi et al., 2017).

The global linearized approach opens up a range of possibilities for further studies. For

instance, the computation of the adjoint modes—with the discretized Navier–Stokes operators at

one’s disposal, the discrete adjoint can be obtained in a straightforward manner by solving the

conjugate-transposed eigenvalue problem—readily permits a structural sensitivity analysis in the

sense of Giannetti & Luchini (2007). There, the sensitivity of the eigenvalue with respect to ‘internal
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feedback’ mechanisms is obtained by measuring the local overlap between the direct and the adjoint

eigenfunctions. It is argued that flow regions where this measure is large contribute strongly to

the eigenvalue selection and thus represent the ‘wavemaker’ of the eigenmode. The analysis of the

adjoint problem can be for instance based upon the strategy known as the adjoint of the discrete

system, in which the discrete adjoint eigenvector q̃+ is the solution of the adjoint eigenvalue problem

associated to (2.37). Following the formalism introduced in (Giannetti & Luchini, 2007), such an

analysis requires first the definition of an inner product. Assuming q̂1 and q̂2 are two (not necessarily

different) perturbed states, our definition of the inner product is as follows

〈q̂1, q̂2〉 :=

∫
Ω

(
ṽ∗x1

ṽx2 + ṽ∗r1 ṽr2 + ˆ̃Z
∗
1

ˆ̃Z2 + ξ̂
∗
1ξ̂2

)
dΩ ' q̃H1 Qq̃2, (2.38)

where Ω is the computational domain, ∗ denotes complex conjugate and H denotes conjugate

transpose. The diagonal, positive definite hermitian N×N matrix Q contains the metric coefficient

associated to the spatial discretization, where N is the number of degrees of freedom. With the

definition (2.38), the discrete adjoint eigenvalue problem is given by(
A+ − iω+B+

)
q̃+ =

(
Q−1AHQ− iω+Q−1BHQ

)
q̃+ = 0, (2.39)

which is solved employing the same iterative technique for the direct problem. As a result, one

obtains the adjoint eigenvector q̂+, normalized according to q̂+H QB q̂ = 1, and its associated

eigenvalue ω+ = ω∗. The structural sensitivity, as defined by Giannetti & Luchini (2007),

λ(x) = ||Qq̃+|| ||q̃||, (2.40)

where pressure is excluded from q̃ and q̃+, gives a scalar measure of where introduction of a

feedback-forcing proportional to the local direct global mode may affect the most on the eigenvalue

drift. Indeed, the definition given in (2.40), stems from a sensitivity analysis in which changes on

the eigenvalue are obtained as a function of changes—introduced as a feedback forcing proportional

to q̃—in the linearized operator A, giving rise to the definition of the structural sensitivity tensor

S = Qq̃+ ⊗ q̃. Therefore, the structural senstivity is also the Frobenius norm of the structural

sensitivity tensor, λ = ||S||F. The region in which λ(x) is maximum represents the so-called

wavemaker and is referred to as the core (or origin) of the instability (Schmid & Brandt, 2014).

A sample numerical result is provided for a methanol flame with Ra = 10000 in Fig. 2.7 (the

thermochemical properties of this fuel are presented in the caption), where the structural senstitivity

is shown for the adjoint mode associated to the most unstable global direct mode.

Another interesting concept that can be readily applied is the sensitivity to a steady body

force or to modifications in the base flow (Marquet et al., 2008). This is particularly relevant in the

context of passive control techniques, such as the introduction of an adequately positioned control
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Figure 2.7: Colorplot of the structural sensitivity λ (white means λ = 0 and red indicates the
maximum value of λ) for a methanol flame for Ra = 10000. The thermochemical parameters of
this fuel are taken as WF/WA = 1.1, Lv = 2.70, TB = 1.12, LeF = 1.20, q/S = 7.7 and S = 6.47.

cylinder to stabilize the flame flicker (see, for instance Toong et al., 1965). These sensitivity analyses

have been recently applied to nonbuoyant lifted flames (Qadri et al., 2015). On the other hand,

linear nonmodal stability techniques may also be applied to investigate the discrepancy between

the onset of instability predicted by the global stability analysis and that obtained by DNS. A

similar difference has recently been encountered by Coenen et al. (2016) in low-density jets when

comparing the results of a global stability analysis with the experimental observations of Hallberg &

Strykowski (2006). In that regard, the computation of the pseudospectrum (Trefethen & Embree,

2005) of the linearized Navier–Stokes operator can show if non-normality plays a role. For the

low-density jet, a very large gain in the frequency response (see also Garnaud et al., 2013a) was

found, even for Reynolds number substantially smaller than the critical value. These aspects should

be investigated for buoyant jet diffusion flames in future work.
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Part II

Effects of buoyancy on the slowly

reacting mode of combustion of

confined gaseous mixtures and its

explosion limits
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Brief overview

The seminal investigation of thermal explosions of confined reactive mixtures due to Frank-

Kamenetskii is revisited in Chapter 3. He studied the “slowly reacting” mode of combustion and

its thermal explosion limits of a reacting mixture undergoing an exothermic chemical reaction in

a centrally symmetric closed vessel with constant wall temperature. In his analysis, an overall

irreversible reaction with an Arrhenius rate having a large activation energy was employed, an

appropriate model to represent the strong temperature dependence of the rate-controlling oxidation

reactions in typical fuel-air mixtures. The analysis predicts a critical value Dac of the controlling

Damköhler number above which the slowly reacting mode of combustion no longer exists.

The extension of Frank-Kamenetskii’s ideas to the case of buoyancy-dominated situations

is presented in the subsequent chapters. The mathematical framework for the study of the slowly

reacting mode of combustion accounting for buoyancy-induced motion, measured by a relevant

Rayleigh number Ra, and the nonnegligible effect of the temporal pressure variations in enclosed

environments is presented in Chapter 4. This is used in Chapter 5 to study the deviations in the

thermal explosion limits in the limit Ra � 1 using asymptotic techniques. In Chapter 6, Frank-

Kamenetskii explosion curves in the opposite limit Ra � 1 are determined over a wide range of

Rayleigh numbers, wherein the flow remains laminar. Special attention is given to the boundary-

layer structure of the flow, examined by means of an approximate integral method, providing an

accurate prediction of the explosion limits.

The dissertation ends with the application of Frank-Kamenetskii’s theory of thermal ex-

plosions to the reactive flow of a cold gaseous mixture in a pipe whose walls are kept at a greater

constant temperature, where buoyancy effects are neglected. The evaluation of ignition distances

for supercritical cases and downstream fuel consumption for subcritical cases is carried out by

asymptotic methods and assessed by numerical computations.
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Chapter 3

On Frank-Kamenetskii’s analysis of

thermal explosions

In this Chapter we revisit Frank-Kamenetskii’s analysis of thermal explosions, using also

a single-reaction model with an Arrhenius rate having a large activation energy, to describe the

transient combustion of initially cold gaseous mixtures enclosed in a spherical vessel with a constant

wall temperature. The analysis shows two modes of combustion, including a flameless slowly

reacting mode for low wall temperatures or small vessel sizes, when the temperature rise due to the

reaction is kept small by the heat-conduction losses to the wall, so as not to change significantly

the order of magnitude of the reaction rate. In the second mode of combustion the slow reaction

rates occur only in the first ignition stage, which ends abruptly when very large reaction rates cause

a temperature runaway, or thermal explosion, at a well-defined ignition time and location, which

triggers a flame that propagates across the vessel to consume rapidly the reactant. We define the

explosion limits, in agreement with Frank-Kamenetskii’s analysis, by the limiting conditions for

existence of the slowly reacting mode of combustion. In this mode, a quasi-steady temperature

distribution is established after a transient reaction stage with small reactant consumption. Most

of the reactant is burnt, with nearly uniform mass fraction, in a second long stage, when the

temperature follows a quasi-steady balance between the rates of heat conduction to the wall and of

chemical heat release. The changes in the explosion limits due to the enhanced heat transfer rates

by the buoyant motion are described in Chapters 5 and 6.

3.1 Introduction

Among many other important contributions to science, Frank-Kamenetskii is responsi-

ble for providing the basic understanding of the role of the strong temperature sensitivity of the
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chemical heat release rate in the dynamics of combustion processes, and also for setting the foun-

dations of the methods for the analysis of these processes taking advantage of the large value of

the activation energy of the relevant controlling chemical reaction. Many of the key ideas were

developed in connection with his “stationary theory of thermal explosions”, published in 1939

(Frank-Kamenetskii, 1939), which deals with the explosion limits of reactive mixtures in vessels

with constant wall temperature (Frank-Kamenetskii, 1955). These ideas were soon applied to other

problems in combustion, notably by the Russian school led by Zel’dovich (Zel’dovich et al., 1985).

Especially noteworthy in this connection are Grisha Sivashinsky’s contributions to flame dynamics

and instability using in a masterful way large-activation-energy asymptotic techniques.

In this and in the following three chapters we revisit FK’s analysis of the explosion limits,

accounting for the effects of the initial conditions and the fuel consumption, when a reacting mixture

is introduced in a rigid vessel and allowed to settle before the wall temperature is rapidly increased

to a prescribed constant value. In Chapters 5 and 6, account is taken of the effects of buoyancy on

the explosion limits.

As FK did in his seminal work (Frank-Kamenetskii, 1939), we model the chemical reaction

as an irreversible global reaction with an Arrhenius rate, having a large activation energy to mimic

the strong temperature dependence of the chemical heat release rate. Two different modes of

combustion are encountered when the activation energy is moderately larger than the thermal

energy at the wall temperature. For a fixed wall temperature, when the vessel size is smaller than

a critical value the heat losses to the wall can limit the rise of the gas temperature in such a way

that the reaction rate does not exceed in order of magnitude its near-wall value. This corresponds

to a flameless slowly reacting mode of combustion that persists until the reactant is depleted.

However, for vessel sizes larger than the critical value, we find a localized temperature runaway, at

a well-defined thermal-explosion time, after an ignition stage with negligible changes of the reactant

concentration; the location of the thermal explosion serves as origin for a thin premixed flame that

propagates across the vessel consuming the reactant, with a significant temperature rise, at a rate

considerably higher than that corresponding to the wall temperature.

Frank-Kamenetskii neglected the change in reactant concentration in his analysis of the

thermal-explosion limits (Frank-Kamenetskii, 1939), defined as the critical conditions for existence

of a steady mode of combustion. With the constant-density approximation used in the early work,

heat transfer to the wall occurred only by conduction and, correspondingly, the temperature dis-

tribution was only dependent on the value of a Damköhler number Da, defined as the ratio of

the time of heat conduction to the wall to the homogeneous thermal-explosion time. The curve

giving the variation of the peak temperature with Da was found to exhibit a first turning point

at a critical order-unity value Dac of the Damköhler number, which identifies the explosion limit.
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Centrally symmetric vessels were considered in the early analyses, including spheres, infinite cylin-

ders, and infinite slab regions between two infinite flat walls (Frank-Kamenetskii, 1955; Zel’dovich

et al., 1985). The predictions of limiting vessel radii, or wall temperatures, based on the critical

Damköhler number were found to be in close agreement with experimental observations; a truly

notable achievement of the early theory, given the many different simplifying assumptions involved

in its derivation (Frank-Kamenetskii, 1955).

Our focus will be on the slowly reacting mode of combustion, found for the subcritical

cases Da < Dac, to describe the initial heat-conduction and ignition-transient stage after the wall-

temperature rise, which is followed by a long stage of slow reactant consumption, with a quasi-steady

balance of conduction and heat release by the reaction. The transient analysis will also be carried

out for the ignition stage of the supercritical cases Da > Dac, which ends abruptly with a thermal

runaway. We shall emphasize the role played in these transient stages by the time variations of the

pressure in the confined environment of the vessel.

After this introduction § 3.1, we begin in § 3.2 by identifying the two chemical times

that control the slowly reacting mode of combustion. Transient heating and reaction following

the wall-temperature rise are investigated in § 3.4, where the case of chemically frozen heating is

treated separately in section § 3.3. The quasi-steady FK temperature distribution is investigated

in detail in § 3.5 and the results are used in § 3.6 to describe reactant consumption in the flameless

combustion mode. Finally, concluding remarks are given in § 3.7. Effects of buoyancy on the

slow-reaction mode, not yet considered here, are to be treated in the following chapters.

3.2 Relevant heat-release and fuel-consumption rates

As in the work of Frank-Kamenetskii (1939), we employ an overall Arrhenius reaction, of

first order for simplicity in the presentation, with a rate given by

ṁ/ρ = Y B exp[−E/(RT )], (3.1)

where ṁ is the mass of reactant consumed per unit volume per unit time, which, when divided

by the density ρ, is a function of the temperature T and of the reactant mass fraction Y . Here

B is a frequency factor, E is the activation energy, and R is the universal gas constant. In this

overall-reaction model the heat release rate of the reaction per unit volume is given by qṁ, where

q denotes the amount of heat released per unit mass of reactant consumed

An important realistic consideration of the FK analysis is that the activation energy E of

the overall reaction is large compared with the thermal energy RTo based on the wall temperature

To; so that the nondimensional activation energy β = E/(RTo), a kinetic parameter, is large
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compared with unity. Small temperature increments T −To, of the order of the Frank-Kamenetskii

temperature RT 2
o /E = To/β, suffice to increase the reaction rate (3.1) by a factor of order unity,

as can be seen by writing this factor in the form

B exp[−E/(RT )]

B exp[−E/(RTo)]
= exp

[(
E

RTo

)
(T − To)

T

]
= exp

(
φ

1 + φ/β

)
(3.2)

in terms of the nondimensional temperature increase φ = β(T − To)/To. This variable will be used

below in the description of the slowly reacting mode of combustion, when φ maintains a value not

large compared with unity. Then, for β � 1, the dependence on φ of the Arrhenius rate follows

the FK approximation, exp[φ/(1 + φ/β)] ' exp(φ).

If the fuel consumption rate (3.1), evaluated at To with the initial fuel mass fraction Yo,

is maintained during most of the fuel-consumption time to, this would be given by

1/to = B exp[−E/(RTo)]. (3.3)

However, a much smaller time te would be needed for the heat release rate of the reaction, given by

qYoB exp[−E/(RTo)], to increase the enthalpy by an amount cpTo/β, proportional to the Frank-

Kamenetskii temperature RT 2
o /E. Then te is given by

1

te
=

qYo
cpTo

E

RTo
B exp[−E/(RTo)], (3.4)

where cp is the specific heat at constant pressure, which for simplicity will be taken as constant.

The ratio of both times is to/te = αβ, where the exothermicity parameter α = (qYo)/(cpTo), of

order or larger than unity, is the dimensionless temperature rise, based on To, for constant-pressure

combustion.

For spatially uniform combustion at constant pressure, the self-acceleration of the chem-

ical reaction results in a precipitous temperature rise—or thermal runaway—occurring at a finite

explosion time. When, as shown in Zel’dovich et al. (1985), this time is calculated by equating the

rates of enthalpy accumulation and heat release, after linearization for large β, of the Arrhenius

exponent, we obtain, exactly, the estimated value te given in (3.4) 1. Reactant consumption, mea-

sured by the parameter αβ � 1, has been neglected in the first approximation in this calculation

because only a small fraction, of order (Yo − Y )/Yo ∼ te/to ∼ 1/(αβ)� 1, is consumed during the

ignition stage.

1The explosion time for combustion at constant volume is also exactly equal to te = to/(αβ) but with the specific
heat at constant volume cv replacing cp when evaluating α
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3.3 Heating of a cold gas mixture in a spherical vessel with sud-

denly increased wall temperature

We consider in this section the heating of a gas with initial temperature TI , pressure pI ,

and density ρI contained in a spherical vessel of radius a after the rapid increase of the vessel

wall temperature to a value To, such that To − TI ∼ To, in a time small compared with the

characteristic heat-conduction time across the vessel, tc = a2/DT , where the thermal diffusivity

DT is evaluated with the density ρI and temperature To. Transient heating by heat conduction

from the wall is accompanied by gas expansion, inducing a radial flow with characteristic velocities

v′c = a/tc = DT/a dictated by the continuity equation

∂ρ̃

∂t
+

1

r2

∂

∂r
(r2ρ̃ṽ) = 0, (3.5)

written in nondimensional form using tc, a, v′c, and ρI as scales for the time t, radial coordinate r,

velocity ṽ, and density ρ̃. Since the total mass contained in the vessel is constant, the mean density

also remains constant, equal to its initial value according to

3

∫ 1

0
ρ̃r2dr = 1, (3.6)

obtained by radial integration of (3.5), after multiplication by r2, subject to the condition of

vanishing velocity at r = 0 and at r = 1, followed by integration in time of the resulting equation

with initial condition ρ̃ = 1 at t = 0.

The Peclet number v′ca/DT associated with the characteristic gas-expansion velocity v′c =

a/tc = DT/a is, as the Reynolds number, of order unity during the heating time, so that the

convective transport and the molecular transport must be accounted for. The spatial pressure

variations involved in the flow are of order ∆sp ∼ ρIv
′2
c , as can be seen from the momentum

balance equation, yielding ∆sp/pI ∼ (a/tc)
2/(pI/ρI) ∼ (λm/a)2, where λm ∼ DT/(pI/ρI)

1/2 is the

mean free path. Since in all cases of practical interest λm � a, the pressure remains nearly uniform

during the heating process, although it increases with time as the gas is heated as dictated by the

equation of state (p/pI) = (ρ/ρI)(T/TI), to reach its asymptotic value po = (To/TI)pI when the gas

temperature grows to To and the density recovers its initial value ρI for large times.

The values of To and po can be used to define the dimensionless variables T̃ (r, t) = T/To

and p̃(t) = p/po, reducing the energy equation to

ρ̃

(
∂T̃

∂t
+ ṽ

∂T̃

∂r

)
− γ − 1

γ

dp̃

dt
=

1

r2

∂

∂r

(
r2T̃ σ

∂T̃

∂r

)
, (3.7)

where γ = cp/cv is the specific heat ratio and σ is the exponent for the presumed temperature

dependence of the thermal conductivity. The term involving the pressure gradient has been omitted
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in (3.7), as justified by the previous estimates. Since the viscous dissipation term can be estimated

to be a factor (λm/a)2 smaller than the enthalpy accumulation term, its contribution has also also

been discarded when writing (3.7). The problem therefore reduces to that of integrating (3.5)

and (3.7), supplemented with the equation of state

p̃ = ρ̃T̃ , (3.8)

subject to the initial conditions ρ̃ − 1 = T̃ − T̃I = 0 at t = 0 and the boundary conditions

ṽ = T̃ − 1 = 0 at the constant-temperature wall surface r = 1 and ṽ = ∂T̃ /∂r = 0 at the

center r = 0, the latter needed for analyticity. As can be seen, for given values of γ and σ the

solution depends only on T̃I = TI/To. For this centrally symmetric case, the momentum equation,

not written here, is not needed to determine the evolution of T̃ , p̃, ρ̃, and ṽ; it could be used, a

posteriori, to compute the small spatial variations of the pressure associated with the gas expansion.

The solution can be simplified by using (3.5) to write (3.7) in the conservative form

∂

∂t
(ρ̃T̃ )− γ − 1

γ

dp̃

dt
+

1

r2

∂

∂r

[
r2

(
ρ̃ṽT̃ − T̃ σ ∂T̃

∂r

)]
= 0. (3.9)

Using the equation of state (3.8) to eliminate ρ̃ and integrating radially from the center yields

p̃ṽ = T̃ σ
∂T̃

∂r
− r

3γ

dp̃

dt
(3.10)

as an expression for the induced velocity ṽ in terms of T̃ and p̃. This last equation can be substituted

into (3.5) to give

p̃
∂T̃

∂t
−

[
γ − 1

γ
T̃ +

r

3γ

∂T̃

∂r

]
dp̃

dt
=
T̃ 2

r2

∂

∂r

(
r2T̃ σ−1∂T̃

∂r

)
(3.11)

for the evolution of the temperature, with the pressure evaluated from

p̃ =

(
3

∫ 1

0

r2

T̃
dr

)−1

(3.12)

obtained by using (3.8) in (3.6). Integrating (3.11) supplemented with (3.12) in 0 ≤ r < 1 for t > 0

with initial condition T̃ = T̃I at t = 0 and boundary conditions ∂T̃ /∂r = 0 at r = 0 and T̃ = 1 at

r = 1 determines the evolution of the temperature in the vessel.

Of interest for the ignition analysis given in § 3.4 are the small perturbations from the final

equilibrium solution T̃ − 1 = ρ̃− 1 = p̃− 1 = ṽ = 0 encountered for large times, when the enthalpy

equation (3.7), with negligible convective transport as a result of the small velocity, reduces to

∂Θ

∂t
− γ − 1

γ

dΘ̄

dt
=

1

r2

∂

∂r

(
r2∂Θ

∂r

)
, (3.13)
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involving the temperature perturbation Θ = T̃ −1 = (T −To)/To. The temporal pressure variation

has been written in (3.13) in terms of the average temperature Θ̄ by using

p̃− 1 = Θ̄(t) = 3

∫ 1

0
(T̃ − 1)r2dr, (3.14)

a result that follows from substitution of the linearized equation of state ρ̃−1 = (p̃−1)−Θ in (3.6).

Separation of variables in (3.13) yields solutions of the form Θ ∝ [sin(λnr)/(r sinλn) −
1] exp(−λ2

nt), where the eigenvalues λn are determined as the roots of the nonlinear equation

tanλn
λn

[
λ2
n

3(γ − 1)
+ 1

]
= 1. (3.15)

giving for instance λn = (3.4478, 6.4618, 9.5482, . . . ) for γ = 1.4. The term associated with the

first eigenvalue λ1 = 3.4478 becomes dominant for sufficiently large times, for which the solution

to (3.7) simplifies to
T − To
To

= −C
[
1− sin(λ1r)

r sinλ1

]
exp(−λ2

1t), (3.16)

where minus sign is added to emphasize that the temperature increases towards the wall value.

The value of the positive constant C(T̃I), a function of T̃I , must be determined from the numerical

integration of (3.11) supplemented with (3.12).

3.4 Transient heating and reaction in rigid spherical vessels

The ignition stage ending with a thermal runaway is modified in non-homogeneous cases.

For example, in the ideal realistic experiment analyzed below, the gas is introduced into a rigid

spherical vessel, of radius a and wall temperature TI , and allowed to settle to this temperature and

a uniform density ρI . We shall consider that at this initial temperature the fuel-consumption time,

given by (3.3) with To replaced by TI , is too long, so that, in order to decrease it conveniently,

we raise the wall temperature by an amount To − TI ∼ TI to a constant value To in a time short

compared with the heat-conduction time across the vessel, which is of the order of tc = a2/DT in

terms of the thermal diffusivity DT evaluated with the density ρI and temperature To.

We shall analyze below the time evolution of the temperature and fuel concentration

profiles, taking advantage of the simplifications associated with the realistic, moderately large values

of the nondimensional activation energy β and its product αβ with the exothermicity parameter

α. Hence we can use an asymptotic analysis for large values of β and αβ, i.e. for

E

RTo
= β � 1 and

qYo
cpTo

E

RTo
= αβ � 1, (3.17)

and order-unity values of the Damköhler number Da, defined as the ratio tc/te of the heat-

conduction time to the explosion time, which we expect to be of order unity in the distinguished
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regime

Da =
tc
te

=
a2

DT

qYo
cpTo

E

RTo
B exp[−E/(RTo)] ∼ 1 (3.18)

of transition, at a well-defined value Dac of Da, from the slowly reacting (subcritical) mode of

combustion to the explosive mode for larger values of Da. In this distinguished regime we can

expect to encounter variations in temperature from To of order To/β—or values of φ of order

unity—everywhere across the vessel at the end of the transient stage, also scaled with the heat-

conduction time, of heating of the gas from TI to To.

3.4.1 Asymptotic analysis for the distinguished regime β � 1, α ∼ 1, and Da ∼
1.

Before formulating the problem, it is important to take into account that when combustion

of a gas occurs in an unconfined environment, with velocities small compared with the sound

velocity, even with variations of temperature of the order of the temperature itself, we can neglect

the spatial changes in pressure in the equation of state, so that the changes in density are related to

the changes in temperature and mean molecular mass. On the other hand, when combustion occurs

in a rigid confined vessel, the changes of density are restricted to ensure that the mean spatial value

of the density must keep its initial value, so that to ensure this important time variations of the

pressure must be taken into account, additional to the much smaller spatial variations associated

with the gas motion.

As indicated earlier, the critical vessel radius that defines, for a given wall temperature,

the transition between the two different combustion modes described above can be determined,

for large values of β, in the distinguished regime when α and Da are both of order unity. As a

consequence of the exponential dependence with φ of the reaction rate, in this limiting case the

heating of the mixture by heat conduction from the wall occurs in this first stage, scaled with tc,

without significant effects of the chemical reaction. This is so because in the reacting gas, outside a

thin near-wall layer of characteristic thickness a/β, we find that the gas temperature is lower than

the wall value by an amount To − T � To/β, so that the chemical reaction is effectively frozen.

This is so even though nonnegligible reaction heat release occurs from the beginning in the thin

near-wall layer where To − T ∼ To/β. This heat does not affect significantly, for Da ∼ 1, the rate

of heat transfer from the wall to the cold gas. As a result, the reaction can be entirely neglected,

as long as −φ� 1 in most of the vessel, when studying the heating of the gas mixture for times of

order tc.

The description of the chemically frozen heating of the gas after the sudden rise of the wall

temperature is given in section 3.3, where account is taken of the effects of the gas motion induced
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by the local thermal expansion and of the temporal pressure variation in the enthalpy equation.

Since the total mass contained in the vessel is constant, the mean density also remains constant,

equal to its initial value ρI . At the end of the chemically frozen stage the gas thermodynamic

variables approach the uniform values To and ρI (and po = (To/TI)pI , as related to the initial

pressure pI by the equation of state) with small variations that decrease exponentially with time

with a scale λ2
1tc ∼ tc/12.

This rapid exponential decay of the relative changes of T , ρ, and p from To, ρI , and po, is

slowed down when φ = β(T −To)/To ceases to be negative and large, and the effects of the reaction

then shape the reactive stage. The equation of state shows that the relative changes in T , of order

β−1, are accompanied by relative pressure and density changes from po and ρI , also of order β−1.

As a result, in the transient reactive stage, corresponding to the distinguished regime Da ∼ 1 with

β � 1, defining the transition between the slow reaction and the explosive mode of combustion,

the appropriate nondimensional thermodynamic variables are given by

φ = β(T − To)/To, ρ̂ = β(ρ− ρI)/ρI , and p̂ = β(p− po)/po, (3.19)

which, with errors of order β−1, satisfy the linearized form

φ+ ρ̂ = p̂ (3.20)

of the equation of state. These variables are to be determined in terms of the nondimensional time

t, scaled with tc, and the nondimensional radial coordinate r, scaled with the radius a.

As indicated above, the time variations in density from ρI , of order ρI/β during the time tc,

induce characteristic radial gas expansion velocities vc, which, according to the continuity equation,

are given by vc = β−1a/tc = β−1DT/a. This results in a Peclet number for the induced motion

vca/DT of order β−1 � 1, also the order of magnitude of the Reynolds number in this stage,

while in the previous heating stage these numbers were of order unity, as explained in section 3.3.

Therefore, the effects of the convective terms in the conservation equations can be neglected, in the

first approximation for large β, during the slowly reacting stages.

The balance between the local flow acceleration and the pressure gradient in the momen-

tum equation indicates that the spatial pressure variations needed to accelerate the flow are of order

∆sp ∼ ρIavc/tc. These spatial variations can be compared with the temporal pressure changes,

of order po/β, to give ∆sp/(po/β) ∼ (a/tc)
2/(po/ρI) ∼ (λm/a)2, where λm ∼ DT/(po/ρI)

1/2 is

the mean free path. The viscous dissipation term when compared with the enthalpy accumulation

term is smaller than this ratio (λm/a)2 by a factor 1/β. The small value of the ratio (λm/a)2 � 1

(required also to guarantee the validity of the continuum description), which is encountered in all

cases of practical interest, allows us to neglect, with very small errors, the viscous-dissipation term

60



in the enthalpy equation, along with the spatial pressure variations, so as to consider p̂ a function

only of the time. Then we can integrate the linearized equation of state (3.20) from r = 0 to r = 1,

after multiplication by 3r2dr, and use the condition of constant total mass 3
∫ 1

0 r
2ρ̂dr = 0 to give

p̂ = φ̄ = 3

∫ 1

0
φr2dr (3.21)

for the evolution of the uniform pressure in the vessel, equal to the mean spatial average φ̄(t) of

the temperature increase φ(r, t).

The temperature and reactant mass fraction are then determined by the energy and re-

actant conservation equations, which in the distinguished regime Da ∼ 1, β � 1, simplify to the

form

∂φ

∂t
− γ − 1

γ

dφ̄

dt
=

1

r2

∂

∂r

(
r2∂φ

∂r

)
+ Da Ŷ eφ (3.22)

∂Ŷ

∂t
=

1

Le

1

r2

∂

∂r

(
r2∂Ŷ

∂r

)
− 1

βα
Da Ŷ eφ, (3.23)

if we are willing to accept errors of order β−1 � 1 when describing the evolution of Ŷ and φ, as

long as the latter remains of order unity. Here Da is the Damköhler number defined in (3.18),

Ŷ = Y/Yo is reactant concentration normalized by its initial value, and Le = DT/D is the reactant

Lewis number, the ratio of the thermal and molecular diffusivities, evaluated for the density ρI

and temperature To. The temporal pressure variation has been written in (3.22) in terms of the

average temperature (3.21), with the ratio of specific heats γ = cp/cv appearing in the multiplying

factor. The Frank-Kamenetskii linearization of the Arrhenius exponential exp[−E/(RT )] ' e−βeφ,

following from (3.2) when β � 1 and φ ∼ 1, appears in the temperature dependence of the reaction

rate, which is the only non-linear term in (3.22) and (3.23).

The description of the combustion process in the distinguished regime Da ∼ 1, β � 1, is

obtained—when we neglect terms, and thereby accept small errors, of order β−1—by integrating

(3.22) and (3.23) in the domain 0 ≤ r < 1, supplemented by (3.21), with boundary conditions

for t > 0 given by φ = ∂Ŷ /∂r = 0 at r = 1, as corresponds to a non-reacting wall with constant

temperature, and ∂φ/∂r = ∂Ŷ /∂r = 0 at r = 0, needed to guarantee the analyticity of the solution.

The initial conditions to be considered in the integration depend on the magnitude of

(To − TI)/To. Thus when the initial gas temperature TI is close to the wall temperature, i.e. for

To − TI � To, the simplifications leading to (3.22) and (3.23) hold also during the heating stage,

so that one may start the integration, right after the wall temperature is raised, with the initial

conditions

φ = φI and Ŷ = 1 at t = 0, (3.24)
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involving the initial temperature φI = β(TI − To)/To. Notice that in this simplified formulation

of the slowly reacting mode of combustion the parameters α and β appear only combined in a

fuel-consumption parameter 1/(αβ)� 1 as a factor of the reaction rate in (3.23).

Specific consideration of the initial heating stage is required for configurations with To −
TI ∼ To. The initial conditions for integration of (3.22) and (3.23) are then obtained by matching

with the solution found at the end of the chemically frozen heating stage, before significant chemical

reaction has occurred. The initial value of the reactant mass fraction is simply Ŷ = 1, while the

corresponding temperature distribution, determined in section 3.3, is given by

T − To
To

= −C
[
1− sin(λ1r)

r sinλ1

]
exp(−λ2

1t), (3.25)

where λ1 ' 3.4478 and C is a positive constant of order unity that depends on TI/To. To facilitate

the matching, it is convenient to write (3.22) and (3.23) in terms of the translated time t̂ = t− tR,

where tR ∼ ln(β)/λ2
1, defined from

C exp(−λ2
1tR) = β−1, (3.26)

is the characteristic time at which the temperature drop To − T shown in (3.25) decays to values

of the order of the FK value To/β, small enough to enable the chemical reaction to proceed at a

significant rate. Substituting (3.26) into (3.25) and expressing the result in terms of φ finally yields

φ = −
[
1− sin(λ1r)

r sinλ1

]
exp(−λ2

1t̂) and Ŷ = 1 as t̂→ −∞, (3.27)

as the initial conditions corresponding to values of To − TI ∼ To.
The problem of describing the combustion of the gaseous reactive mixture in the near-

critical regime Da ∼ 1, β � 1, has been reduced to the integration of (3.22) and (3.23)—in which

the time has thus been scaled with the heat-conduction time tc—with the initial and boundary

conditions indicated above. A large parameter αβ � 1 is present in second of these equations,

as a small factor 1/(αβ) in the fuel-consumption rate. Then, this equation allows us to conclude

that for t ∼ 1 the changes in Ŷ from its initial value Ŷ = 1 are small, of order 1/(αβ), and can

be neglected in this stage when solving (3.22). The factor 1/(αβ) plays an essential role in the

fuel-consumption stage for both subcritical and supercritical combustion.

3.4.2 The first reaction stage

The chemical reaction begins to modify the temperature distribution after the non-reacting

heating substage, changing the heat transfer from the wall from positive to negative. As indicated

above, in the distinguished regime Da ∼ 1, β � 1, the temperature evolution in this first reaction
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stage can be determined, with small errors of order 1/(αβ), by integrating

∂φ

∂t
− γ − 1

γ

dφ̄

dt
=

1

r2

∂

∂r

(
r2∂φ

∂r

)
+ Da eφ, (3.28)

involving the average value φ̄ given in (3.21), with boundary conditions φ = 0 at r = 1 and

∂φ/∂r = 0 at r = 0 and initial conditions given either in (3.24) (when φI = (TI − To) ∼ To/β) or

in (3.27) (when To − TI ∼ To), with the translated time t̂ = t − tR replacing t in the latter case.

Results corresponding to both initial conditions are shown in Figs. 3.1 and 3.2 for several values of

Da.

Figure 3.1 shows results corresponding to values of To − TI ∼ To. In the integrations, the

initial temperature distribution (3.27) must be evaluated at a given negative value of t̂. It was seen

that, because of the strong exponential dependence present in (3.27) (note that λ2
1 ' 11.89), for all

values of Da tested in the integrations the results were independent of the selection of initial time

provided that t̂ ≤ −0.05, with the value t̂ = −0.1 employed in the computations of Fig. 3.1.

The figure shows, in particular, the variation with t̂ = t − tR of the temperature at the

vessel center φo = φ(0, t) for selected values of Da. Since (3.27) is an exact solution of (3.28) for

Da = 0, the evolution of φo for Da � 1 shows only small departures from the chemically frozen

solution φo = −[1−λ1/ sin(λ1)] exp(−λ2
1t̂) ' −12.44 exp(−11.89t̂) obtained by evaluating (3.27) at

r � 1.

The computations show that if Da is smaller than the critical value Dac ' 3.322 the

temperature evolves for moderately large values of t̂ to approach the asymptotic steady distribution,

given by the solution of the FK problem, representing the steady conduction-reaction balance,

1

r2

∂

∂r

(
r2∂φ

∂r

)
+ Da eφ = 0, (3.29)

subject to the boundary conditions ∂φ/∂r = 0 at r = 0 and φ = 0 at r = 1. The resulting peak

value φo, at r = 0, increases for increasing Da < Dac to approach the critical value φo ' 1.607 for

Da = Dac.

No steady solution if found for Da > Dac. Instead, the transient stage ends with a thermal

runaway at a finite ignition time t̂i(Da), as corresponds to a thermal explosion, with t̂i decreasing

for increasing Da and t̂i →∞ for Da → Dac, as can be seen in the inset of Fig. 3.1.

The location of the thermal runaway depends on Da, as illustrated in the left-hand side

plots of this figure. The numerical results show that for values of Da in the range 3.322 < Da <∼
13.42 the thermal runaway occurs, with a rapidly shrinking core, at the center, as seen in the

temperature profiles for Da = 10, whereas for Da >∼ 13.42 the thermal runaway occurs in an

increasingly thinner reacting layer at an intermediate radius, not far from the wall, while the gas in

the center is still cold, as shown for Da = 40. In both cases, the rapid increase of the temperature
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Figure 3.1: The growth with time of the temperature at the center of the vessel φo = φ(0, t) for
Da = (1.58, 2.63, 3.15, 3.32, 3.68, 4.21, 6.32, 10) as obtained from integration of (3.28) with the initial
temperature distribution given in (3.27). The thick curve Da = 0 represents the chemically frozen
solution φo = −[1 − λ1/ sin(λ1)] exp(−λ2

1t̂) while the dot-dashed curve represents the evolution
of the maximum temperature for Da = 40. The inset shows the variation of the explosion time
t̂i = ti − tR with Da > Dac. The left-hand side plots show radial temperature profiles for Da =
10 and t̂ = (0.2857, 0.3343, 0.3348, 0.3495, 0.3508, 0.351068, 0.351114) and for Da = 40 and t̂ =
(0.1067, 0.1488, 0.1690, 0.1705, 0.170661, 0.170686, 0.170697).
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Figure 3.2: The variation of the ignition time ti with Da for different values of φI ≤ 0 obtained
from integrations of the ignition equation (3.28) with initial conditions (3.24); the inset shows the
resulting variation of Dac with φI .

occurs in a localized region, while the temperature profile outside remains approximately constant

during the final development of the singularity when φ is growing to infinity. The ignition transient

in Fig. 3.1 is represented by the evolution of the temperature at the center φo for Da ≤ 10, while

for Da = 40 it is represented by the time evolution of the maximum temperature with a dot-dashed

curve.

Results corresponding to the effect of the initial temperature φI = (TI − To)/(To/β) ∼ 1

are shown in Fig. 3.2. The plots show the variation of the ignition (or explosion) time ti with

Da > Dac for different values of φI , and exhibit the divergence as Da → Dac identified before in

Fig. 3.1. The value Dac ' 3.322 for the critical Damköhler number found earlier is also encountered

in these computations for all values of φI ≤ 0. The location of the thermal runaway depends on

the Damköhler number. Thus for a given φI there exists a value of Da(φI) > Dac below which

the thermal runaway occurs at the center, whereas for larger value of Da the thermal runaway

occurs at an intermediate radial location not far from the wall, giving corresponding temperature

evolutions similar to those shown on the left-hand-side plots of Fig. 3.1.

The domain of attraction of the steady solution (3.29) was tested by considering in the

computations also cases with φI > 0. As can be seen in the inset of Fig. 3.2, even cases with

moderately positive values φI <∼ 1 result in the same critical value Dac ' 3.322, thereby further

validating the applicability of the prediction Dac ' 3.322.
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When analyzing the ignition stage the changes in fuel mass fraction can be neglected before

the thermal runaway leads to values of φ large compared with unity. The subsequent evolution

of the hot kernel was analyzed by Dold (1985, 1989) to describe the generation of the premixed

flame, with temperatures close to αβ, when scaled with the FK temperature. The analysis of Dold

is applicable to the case Da <∼ 13.42 when the hot-spot appears in the center, but not for larger

Damköhler numbers, when the thermal runaway occurs with an increasingly thinner—and hotter—

reaction layer, shrinking towards a surface, similar to that encountered by Liñán & Crespo (1976)

in their ignition analysis in a mixing layer; who guessed that, after local depletion of the limiting

component of the reactant mixture, two premixed flames were generated at the thermal-runaway

surface to propagate across the mixture to burn the reactant.

3.4.3 Preliminary conclusions

The results presented above provide the explosion time as a function of TI/To and Da.

Heating from the wall and chemical reaction occur simultaneously when (TI − To) ∼ To/β, giving

the ignition times shown in Fig. 3.2 as a function of the initial rescaled temperature φI = (TI −
To)/(To/β) ∼ 1 and Da. In contrast, when To − TI ∼ To, ignition is seen to proceed in two stages

with associated durations that can be computed separately to give

ti = tR(TI/To) + t̂i(Da) (3.30)

where tR is a function of TI/To, determined from (3.26) with use of the values of C obtained as

indicated in section 3.3 from analysis of the heating stage, and t̂i is a function of Da, given in the

inset of Fig. 3.1. Since tR ∼ ln(β)/λ2
1, with λ2

1 = 11.89, while t̂i ∼ 1, both terms in (3.30) can be

expected to be comparable for realistic values of β, except for near-critical cases with Da−Dac � 1,

when t̂i � 1 becomes the dominant term.

Our computations also show that the critical value of the Damköhler number defining the

explosion limit is Dac ' 3.322, independent of the initial temperature for all values of TI ≤ To. The

value of Dac can be determined from integrations of the transient equation (3.28) or, alternatively,

from investigation of the existence of solutions to the weakly reactive steady equation (3.29), which

neglects effects of reactant consumption during the preceding transient stage.

Our ignition study therefore demonstrates that the quantitative approach proposed by

Frank-Kamenetskii in his seminal paper (Frank-Kamenetskii, 1939), based on the analysis of solu-

tions to (3.29), provides the leading-order description for the explosion limits for large activation

energies. The asymptotic analysis also reveals that the modifications to the critical Damköhler

number resulting from effects of reactant consumption, not computed here, would be of order

(βα)−1 � 1, as the relative amount of reactant consumed (Yo − Y )/Yo ∼ 1/(αβ) � 1 during the
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transient stage, with characteristic time tc. In this stage the heat transfer from the wall to the

gas changes from positive to negative, thus making possible the quasi-steady Frank-Kamenetskii

balance (3.29). For values of Da ≤ Dac, reactant consumption occurs in the flameless slow-reaction

mode of combustion with a characteristic time of order to ∼ αβte. This second stage is to be con-

sidered in § 3.6, following the detailed analysis of the Frank-Kamenetskii temperature distribution

given in § 3.5. Modifications to the quasi-steady temperature distribution resulting from buoyancy

and their effect on the explosion limits are to be investigated in Chapters 5 and 6.

3.5 The Frank-Kamenetskii temperature distribution

As shown above, consideration of the steady reaction-conduction balance (3.29) determines

the critical value Dac that defines the explosion limits of combustible mixtures in spherical vessels.

The associated FK problem, which determines the FK temperature distribution φFK(r) for Da ≤
Dac, is repeated here for convenience

1

r2
(r2φ′FK)′ = −Da eφFK , φ′FK(0) = φFK(1) = 0, (3.31)

where the prime denotes differentiation with respect to r, and the boundary conditions correspond

to constant-zero-value of the FK temperature at the vessel surface and the analyticity condition,

imposing φ′FK = 0 at r = 0. Of particular interest is the peak temperature φo = φFK(0), a function

φo(Da) of the Damköhler number.

Unlike the centrally symmetric planar and cylindrical cases, whose solutions can be written

in explicit analytic form (Frank-Kamenetskii, 1955), the computation of the temperature distribu-

tion in spherical vessels requires numerical integration. The FK problem (3.31) has no solution for

Da larger than a critical value Dac = 3.322, because of a bending bifurcation leading to multiple

solutions for Da < Dac. Of these, it is known that only the solution corresponding to the lower

branch of φo(Da) is stable. The value Dac is thus associated with the explosion limit, because for

larger values of Da a thermal runaway, with rapid local reactant consumption, occurs at r = 0 after

an ignition time ti(Da), as previously mentioned.

As shown by Chambre (1952), the two-point boundary-value problem (3.31) can be re-

duced by an appropriate change of variables2 to a problem arising in Astrophysics in the early

description of the hydrostatic equilibrium of isothermal gas stars, under their own gravitation

2Introduction of the temperature drop λ = φo − φFK(r), defined in (3.36), along with the stretched coordinate ξ,
defined by the relation ξ2 = r2Daeφo , reduces the energy equation (3.31) to ξ−2(ξ2λξ)ξ = e−λ, to be integrated with
initial conditions λ = λξ = 0, as required by the analyticity of the temperature distribution at ξ = 0. The problem,
arising in Astrophysics (Chandrasekhar, 1939), was solved numerically (Chandrasekhar & Wares, 1949) to determine
the so-called isothermal function λ = λ(ξ). Note that ξ = Daeφo when ξ is evaluated at r = 1, where λ = φo because
φFK = 0 there. Thus, the universal function λ = λ(ξ) allows us to calculate directly Daeφo = ξ(φo); the resulting
function Da(φo) has a maximum Da ' 3.322 at φo ' 1.607 (Chambre, 1952).
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(Chandrasekhar, 1939); see also the discussion on pp. 158–161 of (Zel’dovich et al., 1985). We shall

show below how to use the invariance properties of the equation to provide directly Da(φo), which

is the inverse of the curve φo(Da), suggesting a more convenient way to handle the multiplicity or

non-existence of solutions to the FK problem. As seen later in Part 2 (Sánchez et al., 2016), an

advantage of this method is that it can be readily extended to describe in a systematic way the

incipient effects of buoyancy for low Rayleigh numbers.

3.5.1 A phase-plane analysis of the FK problem

Equation (3.31) is invariant under the transformation group

φFK → φFK + C1 and r → C2r, (3.32)

when the constants C1 and C2 satisfy the relation C2
2eC1 = 1. Taking advantage of this invariance,

we introduce as dependent variables

u = Da r2eφFK and w = −rdφFK

dr
, (3.33)

also invariant under the transformation group (3.32). Our choice is dictated by the consideration

that at r = 1, where φFK = 0, u = Da and w = −φ′FK(1) = −φ′w (the dimensionless heat

loss rate from the gas to the wall, which will play an important role when describing the fuel-

consumption stage), to be calculated in terms of Da. Using these alternative variables, the second-

order equation (3.31) reduces to the autonomous system of equations

r
du

dr
= (2− w)u and r

dw

dr
= u− w (3.34)

to be integrated with the initial conditions

u = w = 0 at r = 0 (3.35)

and the condition φFK(1) = 0. However, in order to handle the problem of non-existence or

multiplicity of solutions of the FK problem it is more convenient to pose the problem as that of

determining the Damköhler number, and also the temperature distribution, leading to a given,

peak value φo of the temperature φFK at r = 0. Therefore, we shall use as independent variable the

temperature drop from its peak value at the center of the vessel

λ = φo − φFK(r). (3.36)

The relation dr/r = dλ/w derived from (3.33), can be used to rewrite (3.34) and (3.35) in the

alternative form

du

dλ
=

(2− w)u

w
and

dw

dλ
=
u− w
w

, u = w = 0 at λ = 0, (3.37)

more convenient to handle the singularity of (3.34) at r = 0.
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Figure 3.3: The universal FK functions u(λ) and w(λ) obtained by integration of (3.37).

3.5.2 The universal description of the temperature field

The system of equations (3.37) has the phase plane shown in Fig. 3.3(a), where we show

some of the straight lines crossed by the trajectories with a constant slope, as given by the equations.

There are two critical points on the phase plane, namely, the origin u = w = 0, a saddle point,

and u = w = 2, a spiral point. The solution to (3.37) is the integral curve leaving the origin with

u = 3w as a separatrix that ends at the spiral point. The numerical integration of (3.37) starting

with u = 3w = 6λ for λ� 1 yields the universal functions u(λ) and w(λ) represented in Fig. 3.3(b).

These functions provide the solution to the original FK problem (3.31). This is so because

they take the initial values u = w = 0 at r = 0, where λ = 0, and when λ grows to the value λ = φo,

when r = 1, u and w take the values u = Da and w = −φ′FK(1) = −φ′w. Therefore, the function

u(λ) provides directly Da = u(φo), whereas the function w(λ) gives the variation of the reduced

heat-loss rate to the wall −φ′w = w(φo).

The curves u(λ) and w(λ) display a non-monotonic behavior for increasing values of λ,

with both curves oscillating about the spiral point u = w = 2 for λ� 1, and the asymptotic values

Da = 2 and −φ′w = 2 for φo � 1. This oscillating behavior, found by Steggerda (1965), is related

to the existence of multiple branches of solutions to the FK problem (Frank-Kamenetskii, 1955;

Zel’dovich et al., 1985), with the first maximum of the curve u(λ) corresponding to the first turning

point of the classical explosion curve, associated with the well-known critical ignition conditions

Da = Dac ' 3.322 at φo ' 1.607 indicated in Fig. 3.3. Only the solutions corresponding to the

lower branch are stable and reached in the transient analysis given before in § 3.4.2. The solutions
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Figure 3.4: The radial temperature distribution φFK(r) evaluated from (3.38) for the conditions
corresponding to the five points indicated along the explosion curve φo(Da).

after the first turning point, for φo > 1.607, are known to be unstable (Zel’dovich et al., 1985). Once

the value of φo associated with a given Da is identified as indicated above, the corresponding radial

temperature distribution φFK(r) can be obtained for 0 ≤ λ ≤ φo with the parametric representation

φFK = φo − λ and r2 =
u(λ)eλ

Daeφo
, (3.38)

corresponding to the definitions of u and λ given in (3.33) and (3.36).

Figure 3.4 displays the resulting radial temperature distributions for five different points

along the classical Da(φo) curve shown at the left, derived from the u(λ) curve of Fig. 3.3. Besides

the critical turning point of that curve, these points are for Da = 1 and for Da = 2 along the lower

branch, as well as for the two indicated points at Da = 3, both below and above the turning point.

The expected monotonic variations of these temperature profiles are evident. This figure serves

to demonstrate explicitly the efficiency and utility of the approach to the analysis that has been

developed here for the steady-state problem.

3.6 Flameless combustion

For subcritical values of the Damköhler number Da ≤ Dac the temperature in the vessel

evolves towards the quasi-steady balance (3.29) in a transient stage with characteristic time te. Most
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of the reactant consumption, small during the transient stage, occurs at times large compared with

tc, of order to ∼ αβte, such that the rescaled time τ = t/(βα) is of order unity, when (3.22)

and (3.23) become

1

βα

(
∂φ

∂τ
− γ − 1

γ

dφ̄

dτ

)
=

1

r2

∂

∂r

(
r2∂φ

∂r

)
+ Da Ŷ eφ (3.39)

∂Ŷ

∂τ
=

βα

Le

1

r2

∂

∂r

(
r2∂Ŷ

∂r

)
−Da Ŷ eφ (3.40)

to be solved with the boundary conditions given earlier. Equation (3.40) indicates that during this

second stage diffusion of the reactant is so fast that its mass fraction remains spatially uniform at

leading order, so that Ŷ ' Ȳ (τ) with errors of order 1/(αβ), while the temperature evolves in a

quasi-steady manner as dictated by

1

r2

∂

∂r

(
r2∂φ

∂r

)
+ Da Ȳ eφ = 0, (3.41)

the limiting form of (3.39) for βα� 1.

Clearly, the results given in § 3.5 for the Frank-Kamenetskii problem (3.31) can be em-

ployed to evaluate the solution to (3.41) by simply replacing Da with the instantaneous Damköhler

number Da Ȳ . In particular, the curve u(λ) given in Fig. 3.3 provides the peak temperature φo(τ)

as a function of the normalized reactant mass fraction Ȳ (τ) according to Da Ȳ = u(φo).

The evolution of Ŷ (τ) is given by

dȲ

dτ
= −3

∫ 1

0
Da Ȳ eφr2dr, Ȳ (0) = 1, (3.42)

obtained by integrating (3.40) multiplied by r2, with use made of the non-permeability condition

∂Ŷ /∂r = 0 at r = 1. Since the energy balance is quasi-steady, the volume integral in (3.42),

representing the overall rate of reactant consumption in the vessel, is proportional to the rate of

heat transfer to the wall, as can be seen by using (3.41) to write (3.42) in the alternative form

1

3

dȲ

dτ
=

∫ 1

0

∂

∂r

(
r2∂φ

∂r

)
dr =

(
∂φ

∂r

)
r=1

, Ȳ (0) = 1, (3.43)

involving the reduced heat-loss rate to the wall −(∂φ/∂r)r=1 = −φ′w, The value of −φ′w can be

evaluated in terms of Da Ȳ by using w = −φ′w and Da Ȳ = u together with the curve w(u) of

Fig. 3.3, which can be used in (3.43) to yield

Da τ =
t

αβte
=

1

3

∫ Da

Da Ȳ

du

w(u)
(3.44)

as an implicit representation for Ȳ (τ).
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3.7 Concluding remarks

We have tried to show in this work how the asymptotic techniques based on the strong

sensitivity with temperature of the combustion reactions, as reflected in the large activation en-

ergy of some of the controlling elementary reactions, are a useful tool to gain a good scientific

understanding of combustion phenomena. We have considered a simple idealized experiment of the

reaction of a gaseous mixture introduced in a spherical vessel whose wall temperature is raised to a

final constant value To in order to initiate the Arrhenius reaction with large activation energy. We

have tried to show how to identify the main parameters and the orders of magnitude of the variables

that describe the main stages of the combustion process. For example, in this ideal experiment the

initial temperature TI and the wall temperature To are important parameters, along with the FK

temperature RT 2
o /E and the flame temperature, the latter larger than the former by a factor αβ,

where α = (qYo)/(cpTo) is of order unity (or moderately larger than unity) and β = E/(RTo)� 1.

An important role is played by the frequency factor B of the Arrhenius reaction which defines a

fuel-consumption time to, to be compared with the heat-conduction time tc and the explosion time

te, shorter than to by a factor αβ.

We have shown the important role played by the Damköhler number Da = tc/te in the

evolution of the reactive mixture. In the distinguished regime Da ∼ 1, β � 1, the reaction is

chemically frozen in an initial stage of heating of the gas to temperatures that differ from To by an

amount of the order of the FK temperature To/β. Then the reaction begins and the temperature and

reactant concentration evolve with time as described by the simplified equations (3.22) and (3.23),

when we accept small errors of order 1/β, not significant in this evolution. As shown in § 3.2,

during the first reaction stage, characterized by the heat-conduction time, there is no significant

change in the reactant concentration from its initial value. For Da ≤ Dac this stage ends for times

moderately larger than tc with a steady distribution of temperature given by the FK conduction-

reaction balance. FK defined the thermal explosion limits as the limiting condition for existence of

solutions to his problem. For Da > Dac the slowly reacting first stage ends with a local thermal

runaway, which triggers a flame that propagates across the vessel, not analyzed here.

It is important to add that, although for simplicity our analysis was restricted to spherical

vessels, the treatment can be generalized to non-symmetrical vessels, using (3.22) and (3.23) along

with the linearized form of the continuity and momentum equations, with the latter including a term

associated with the spatial variations of the pressure, which although small compared with po/β,

play an important role in establishing the gas motion. It is also worth mentioning that the analysis

presented here can be readily extended to determine explosion lengths and critical explosion radii

of pipes carrying combustible gaseous mixtures, a problem analyzed later in Appendix A.
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This chapter, in part, has been published in Combustion Theory and Modelling, “The

slowly reacting mode of combustion of gaseous mixtures in spherical vessels. Part 1: Transient

analysis and explosion limits”, by A. Liñán, D. Moreno-Boza, I. Iglesias, A. L. Sánchez and F.

A. Williams (2016) 20(6), 1010-1028. The dissertation author is the primary investigator in this

publication.
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Chapter 4

The slowly reacting mode of

combustion in spherical vessels:

formulation accounting for

buoyancy-induced motion

This Chapter serves as a presentation of the complete set of equations for the slowly

reacting mode of combustion with natural convection, with account taken of the nonnegligible

effect of the temporal pressure variations in the energy equation. As in Frank-Kamenetskii’s seminal

analysis, the strong temperature dependence of the effective overall reaction is modeled with a single

irreversible reaction with an Arrhenius rate having a large activation energy. Besides the classical

Damköhler number Da, measuring the ratio of the heat-release rate by chemical reaction evaluated

at the wall temperature to the rate of heat removal by heat conduction to the wall, the solution

is seen to depend on the Rayleigh number Ra, measuring the effect of buoyancy-induced motion

on the heat-transport rate. For values of Da below a critical value Dac the system evolves in a

slowly reacting mode where the heat losses to the wall limit the temperature increase associated

with the chemical reaction, whereas for Da > Dac the initial stage of slow reaction ends abruptly

at a well-defined ignition time, at which a thermal runaway occurs.

Transient numerical integrations of the initial stage of slow reaction, formulated in the

distinguished limit Da ∼ 1 and Ra ∼ 1 with account taken of the effects of the temporal pres-

sure variation, will be used to investigate influences of natural convection on thermal-explosion

development, including changes in ignition times for Da > Dac and modified explosion curves.

Our analysis reveals that Frank-Kamenetskii’s criterion for the determination of critical explosion
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conditions, based on the investigation of existence of steady solutions, provides values of Dac(Ra)

that are identical to those extracted from the transient computations.

4.1 Introduction

In developing the excellent stationary theory of thermal explosions, Frank-Kamenetskii

(FK) investigated the role of the strong temperature sensitivity of the reaction rate in the combus-

tion of enclosed reactive mixtures (Frank-Kamenetskii, 1939). Explosion limits were defined as the

critical conditions for existence of a steady, slowly reacting mode of combustion in which the heat-

conduction losses to the wall limit the temperature rise in such a way that the reaction rate does not

exceed in order of magnitude its near-wall value. With the constant-density approximation used

in the early work, heat transfer to the wall occurred only by conduction, its effect being measured

by a Damköhler number Da, defined below in (4.2) as the ratio of the time of heat conduction to

the wall to the homogeneous thermal-explosion time. The curve giving the variation of the peak

temperature with Da exhibits a first turning point at a critical value Da = Dac of order unity

(e.g., Dac = 3.32 for spherical containers), which identifies the explosion limit in FK theory. Using

the value of Dac together with the definition of the Damkhöhler number leads to explicit expres-

sions for critical explosion sizes, giving results in close agreement with experimental observations,

a remarkable achievement of the early theory, given the many different simplifying assumptions

involved in its derivation (Frank-Kamenetskii, 1955). This success has motivated recent extensions

of the early theory incorporating realistic chemistry in descriptions of hydrogen-oxygen systems

that have been shown to predict explosion conditions in spherical vessels in excellent agreement

with experiments (Sánchez & Williams, 2014), including critical pressures along the so-called third-

explosion limit (Sánchez et al., 2014). The FK problem was recently revisited in (Liñán et al., 2016)

to investigate influences on ignition times of initial conditions and of temporal pressure variations

in spherical vessels with fixed walls.

For gaseous mixtures under normal gravity the small temperature differences character-

izing the slowly reacting mode of combustion are known to generate a convective motion that

promotes heat transfer to the wall, measured by a relevant Rayleigh number Ra, defined below

in (4.3). Influences of buoyancy on the resulting critical Damköhler numbers, discussed in early

references (Frank-Kamenetskii, 1955), have been investigated numerically for simplified vessel ge-

ometries, as referenced below, including the infinite slab, the infinite horizontal cylinder, and the

sphere, the last one being the configuration considered here.

The problem for a slab configuration, with a reactive gas bounded by two isothermal infi-

nite horizontal walls, has been addressed in numerous theoretical analyses (Jones, 1973; Kolesnikov,
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1992; Joulin et al., 1996; Kagan et al., 1997; Shtessel’ et al., 1971). As in the closely related case of

the Rayleigh-Bénard problem of convection produced by wall-temperature differences, a motionless

quasi-steady combustion mode may exist for values of the Rayleigh number below a critical value,

at which a bifurcation occurs to a convective state, as described by linear stability analyses (Jones,

1973; Kolesnikov, 1992). A noteworthy feature of the slab geometry is that, contrary to widespread

expectations, convection does not always hinder the development of the thermal explosion (Joulin

et al., 1996). While sufficiently small eddies with widths on the order of or smaller than the slab

height raise the explosion threshold by enhancing heat removal from the reaction region, long-wave

convection rolls favor explosions by promoting the formation of hot spots (Joulin et al., 1996), an

aspect of the problem further investigated in (Kagan et al., 1997) with use made of a prescribed

velocity field. The closely related problem of a horizontal cylindrical container of square section

with adiabatic vertical walls has been also considered by different researchers (Merzhanov & Sht-

essel’, 1973; Massot et al., 2002; Belk & Volpert, 2004). For this geometry, the critical Damkhöhler

number Dac was found to increase in the presence of buoyancy-induced motion (Merzhanov &

Shtessel’, 1973). The rich nonlinear dynamics of weakly reactive solutions for subcritical values of

the Damkhöhler number Da < Dac has now been investigated in more recent bifurcation analy-

ses (Massot et al., 2002; Belk & Volpert, 2004).

Unlike the horizontal infinite slab, for reactive gases in cylindrical and spherical vessels

any gravity force at all establishes buoyant motion because the horizontal variations of the density

that are present in these configurations generate forces that cannot be counteracted by a vertical

pressure gradient. The case of a horizontal circular cylinder has been investigated both experi-

mentally (Merzhanov & Shtessel’, 1973) and numerically (Jones, 1974). This last work includes

transient computations for Rayleigh numbers up to 104, for different initial temperatures both

above and below the wall value. Influences of buoyancy on thermal explosions in spherical vessels

have also been considered in the past. In connection with the present work, the most closely related

investigations are the numerical computations of Hayhurst and coworkers (Campbell et al., 2007;

Liu et al., 2008, 2010). To enable comparisons with previous experimental results (Archer, 1977)

to be made, the thermal decomposition of azomethane vapor was considered in (Campbell et al.,

2007) when selecting the specific chemical-rate parameters, for values of the Rayleigh numbers up

to 21900. Resulting values of Dac were found to differ by only a few percent from those of the

buoyancy-free predictions for values of Ra as large as a few hundred, in agreement with earlier

results (Shtessel’ et al., 1971; Merzhanov & Shtessel’, 1973; Jones, 1974). Larger values of the

Rayleigh numbers were considered in subsequent direct numerical simulations (Liu et al., 2008,

2010) addressing transient problems with the initial gas temperature equal to the vessel wall tem-

perature. The flow was found to remain laminar for values of Ra < 106. More recent numerical
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work by this same research group includes investigation of combined natural and forced convection

on thermal explosions (Liu & Cardoso, 2013) as well as consideration of non-isothermal walls by

use of a Robin condition including a heat-transfer coefficient (Campbell, 2015).

4.2 Conservation equations for the slowly reacting mode of com-

bustion accounting for buoyancy-induced motion

4.2.1 Formulation for the transient near-explosion regime

Following (Liñán et al., 2016), the reaction-rate expression selected is

ṁ/ρ = Y B exp[−E/(RT )], (4.1)

where ṁ is the mass of reactant consumed per unit volume per unit time, which, when divided by

the density ρ, is a function of the temperature T and of the reactant mass fraction Y (variations

of which were shown in (Liñán et al., 2016) to be negligible), with B the frequency factor, E the

activation energy, and R the universal gas constant; correspondingly, the heat-release rate per unit

volume is qṁ, where q denotes the amount of heat released per unit mass of reactant consumed.

In terms of the wall temperature To, the nondimensional activation energy β = E/(RTo) again is

the large parameter of expansion, with variations of the temperature from the wall value and of

the density from its mean value ρI small, of order To/β and ρI/β, respectively, so that the non-

dimensional temperature increase φ = β(T − To)/To is of order unity in this distinguished limit.

Leaving out terms of order 1/β as before, departures of transport coefficients from their values

evaluated for T = To and ρ = ρI can be neglected. The principal non-dimensional parameters of

the problem are the Damköhler number of order unity,

Da =
a2

DT

qY

cpTo

E

RTo
B exp[−E/(RTo)], (4.2)

where a is the radius of the sphere and DT the thermal diffusivity, and the Rayleigh number (based

on the ordering of the temperature difference),

Ra =
β−1ga3

νDT
, (4.3)

where g is the acceleration of gravity and ν the kinematic viscosity. This Rayleigh number measures

the convective transport in the energy equation, while the Grashof number, Ra/Pr , involving the

Prandtl number Pr = ν/DT , similarly measures convective transport in the momentum equation.

The formultion is entirely non-dimensional, lengths being scaled with a and time with a2/DT .

Irrespective of the shape of the vessel, the equations describing the distributions of tem-

perature and velocity of the reacting gas at the beginning of the transient reaction stage in the
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distinguished near-explosion regime corresponding to the limit of large activation energies with

fixed values of Da and Ra of order unity are the continuity, momentum, and energy conservation

equations for the slowly reacting mode of combustion, which take the form

∇ · v = 0, (4.4)

1

Pr

(
∂v

∂t
+ Ra v · ∇v

)
= ∇2v −∇p′ + φ ez, (4.5)

∂φ

∂t
− γ − 1

γ

dp̂

dt
+ Ra v · ∇φ = ∇2φ+ Da eφ, (4.6)

in the non-dimensional variables. In the momentum equation (4.5), ez is the unit vector pointing

upwards (against gravity), and p′ represents the pressure differences from the hydrostatic value

scaled with ρIga/β. The velocity vector v is scaled with the characteristic velocity vg = β−1ga2/ν,

resulting from a balance between the viscous and buoyancy forces, associated with density variations

of order ρI/β. Introduction of this characteristic velocity into the definition of Ra shows that this

Rayleigh number also can be interpreted as a Peclet number, vga/DT . In this near-explosion regime,

associated with small density differences of order ρI/β, the contribution of the temporal density

variation in mass conservation gives a higher-order correction, of order (βRa)−1, and therefore it

does not appear in (4.4). In the equation for energy conservation, γ, denoting the specific-heat

ratio, is present in the term arising from the time derivative of the pressure.

The spatial variations of the pressure p′ appearing in (4.5) are small compared with the

uniform temporal variation of the pressure from po, of order po/β, as given by p̂ = β(p− po)/po of

order unity, required by the equation of state, with ρ̂ = β(ρ − ρo)/ρo, to ensure, in its linearized

form

ρ̂+ φ = p̂(t) (4.7)

that the spatially mean density is ρI, thus leading to the relation

p̂ = φ̄ (4.8)

between p̂ and the non-zero mean value φ̄ of the temperature.

The slowly reacting mode of combustion accounting for buoyancy-induced motion is ex-

pected to have analytical solutions of (4.4)–(4.6) inside the vessel with boundary conditions

v = φ = 0 (4.9)

at the vessel walls. Computation of the transient evolution requires specification of the initial

conditions. For instance, for a stagnant gas mixture at temperature TI , with To − TI ∼ To/β, the

conditions at the initial instant, when the wall temperature is raised to To, are simply given by

v = φ− φI = 0 at t = 0, (4.10)
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where φI = β(TI − To)/To < 0. The analysis is somewhat more complicated when the wall-

temperature rise is larger, such that To − TI ∼ To, in which case the heating of the gas by heat

conduction from the wall, which proceeds initially with negligible chemical reaction, involves relative

variations of the density, temperature, and pressure of order unity. The initial conditions for (4.4)–

(4.6) then must be obtained by matching with the distributions of temperature and velocity found

at the end of this chemically frozen heating period, similar to the discussion in (Liñán et al., 2016).

As discussed in (Liñán et al., 2016) for the buoyancy-free case Ra = 0, the transient

evolution depends fundamentally on the Damköhler number. Thus if Da is smaller than a critical

value Dac(Ra) the temperature and velocity evolve to approach a steady distribution for moderately

large values of t, whereas for Da > Dac(Ra) the transient stage ends with a thermal runaway at

a finite ignition time. The explosion limits can be obtained either by computing the transient

problem or, as proposed by Frank-Kamenetskii, by investigating the existence of steady solutions,

the latter being the quantitative approach pursued below for the specific case of a spherical vessel.

It may be worth mentioning here that, for subcritical values of Da ≤ Dac(Ra), the above

system of equations (4.4)–(4.6) can be used to describe the quasi-steady evolution of the tem-

perature and velocity during the second much longer reactant-consumption stage occurring for

t ∼ αβ � 1, where α = (qYo)/(cpTo). As explained in (Liñán et al., 2016), the reactant mass

fraction in this stage is nearly uniform and appears only as a factor of Da, equal to its spatially

mean value, which evolves on the time scale t/(αβ) through the mean consumption rate.

4.2.2 Steady conservation equations in spherical vessels

For spherical vessels with axisymmetric flow, introduction of spherical coordinates with

origin at the vessel center reduces the continuity equation (4.4) to

∂

∂r
(r2 sin θ vr) +

∂

∂θ
(r sin θ vθ) = 0, (4.11)

where r is the radial distance and θ is the angle measured with respect to the vertical direction ez.

Introducing the stream function ψ, such that

∂ψ

∂θ
= r2 sin θ vr and

∂ψ

∂r
= −r sin θ vθ, (4.12)

reduces energy conservation (4.6) to

Ra

r2 sin θ

(
∂ψ

∂θ

∂φ

∂r
− ∂ψ

∂r

∂φ

∂θ

)
=

1

r2

∂

∂r

(
r2∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+ Da eφ. (4.13)

The momentum equation can be written conveniently in terms of the vorticity, which is azimuthal,

of magnitude ω, given in terms of the stream function by

−r sin θ ω =
∂2ψ

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
. (4.14)
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The vorticity distribution then is described by the equation

Ra/Pr

r2 sin θ

(
∂ψ

∂θ

∂

∂r
− ∂ψ

∂r

∂

∂θ
+ 2

cos θ

sin θ

∂ψ

∂r
− 2

r

∂ψ

∂θ

)
(r sin θ ω) =[

∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)]
(r sin θ ω)− r sin2 θ

∂φ

∂r
− sin θ cos θ

∂φ

∂θ
, (4.15)

obtained by taking the curl of (4.5), where the temperature gradient serves as the source term.

The boundary conditions for (4.13)–(4.15),

ψ =
∂ψ

∂r
= φ = 0 at r = 1 for 0 ≤ θ ≤ π, (4.16)

correspond to a vessel with an isothermal wall with non-slip flow. The solutions, bounded and

symmetric with respect to the vertical axis of the sphere, must be analytical, so that additional

boundary conditions are

ψ =
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
=
∂φ

∂θ
= 0 at θ = 0, π for 0 ≤ r ≤ 1. (4.17)

The integration of this set of partial differential equations will be seen to provide the thermal

explosion limits of the slowly reacting mode of combustion with natural convection. The two

separte limits of small Ra � 1 and strong Ra � 1 buoyancy effects will be addressed in Chapters 5

and 6, respectively, using asymptotic and numerical techniques.

This chapter, in part, has been published in Combustion Theory and Modelling, “The

slowly reacting mode of combustion of gaseous mixtures in spherical vessels. Part 2: Buoyancy-

induced motion and its effect on the explosion limits”, by A. L. Sánchez, I. Iglesias, D. Moreno-

Boza, A. Liñán and F. A. Williams (2016) 20(6), 1029-1045. The dissertation author is the primary

investigator in this publication.
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Chapter 5

The slowly reacting mode of

combustion in spherical vessels:

solution for small Rayleigh numbers

The influence of buoyancy on the critical ignition Damkhöhler number Dac for small and

moderate values of Ra is examined in this chapter by asymptotic methods. At leading order in the

limit Ra � 1, the analysis reveals that the spherically symmetrical temperature field corresponding

to the buoyancy-free FK solution is accompanied by a toroidal vortex, which may be called the

Frank-Kamenetskii vortex, resulting from the balance between buoyancy and viscous forces. The

modifications to the explosion curve, determined by extending the perturbation analysis to a higher

order, are found to scale with Ra2, but the numerical factors in the expansion for Dac are extremely

small, so that the corrections associated with buoyancy remain smaller than 10% even at Ra = 300.

5.1 The Frank-Kamenetskii vortex

The temperature distribution φ = φFK(r) obtained from the Frank-Kamenetskii problem

1

r2
(r2φ′FK)′ = −Da eφFK , φ′FK(0) = φFK(1) = 0, (5.1)

corresponds to the leading term in the perturbation analysis for small Rayleigh numbers. As shown

in the previous chapter, the solution can be determined most conveniently in terms of u = Da r2eφFK

and w = −r(dφFK)/(dr) with the temperature drop from its peak value at the center of the vessel

λ = φo − φFK(r) used as a new independent variable, such that

r2 =
u(λ)eλ

Daeφo
. (5.2)
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The spherically symmetric temperature field φ = φFK(r) generates a convective flow with

toroidal vorticity. This FK vortex, determined at leading order by the balance ∇2v−∇p′+φez = 0

between buoyancy and viscous forces, has a simple dependence on θ, given by

ωFK = − sin θ ΓFK/r and ψFK = sin2 θ FFK, (5.3)

the latter implying

vr = 2 cos θFFK/r
2 and vθ = − sin θF ′FK/r, (5.4)

with the radial variations ΓFK(r) and FFK(r), to be determined below. Thus, (4.14) and (4.15), for

Ra = 0, reduce to the ordinary differential equations

Γ′′FK −
2

r2
ΓFK = w (5.5)

and

F ′′FK −
2

r2
FFK = ΓFK, (5.6)

to be integrated with the boundary conditions

|FFK(0)/r2| 6=∞ and FFK(1) = F ′FK(1) = 0, (5.7)

resulting from the boundedness of the velocity at the center of the vessel and from the no-slip

condition at the wall.

Similar to the approach taken in (Liñán et al., 2016) when solving (5.1), it is convenient

to employ as variables Γ̃FK = ΓFK/r
2 and F̃FK = FFK/r

4, invariant under the radial dilatation used

when defining w, yielding the equations

r2Γ̃′′FK + 4rΓ̃′FK = w, (5.8)

r2F̃ ′′FK + 8rF̃ ′FK + 10F̃FK = Γ̃FK (5.9)

with boundary conditions

|r2F̃FK(0)| 6=∞ and F̃FK(1) = F̃ ′FK(1) = 0. (5.10)

The homogeneous equation associated with (5.8) has solutions proportional to 1/r3, which

must be disregarded as incompatible with the boundedness condition stated in (5.10), because they

would lead to solutions F̃FK ∝ 1/r3. Therefore, the general solution to (5.8) is of the form

Γ̃FK = Γ̃o + Γ̂FK(r), (5.11)

where the constant Γ̃o, to be determined later using the condition F̃FK(1) = 0, represents the value

of Γ̃FK at the center, and Γ̂FK is a particular solution satisfying Γ̂FK(0) = 0. The latter can be
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Figure 5.1: The upper plot shows the variation with λ of the functions γ and f obtained by integra-
tion of (5.12) and (5.14), respectively, and the accompanying constants vo(φo) and Γ̃o(φo) evaluated
from (5.15). The lower plots show the variation of the temperature-perturbation gradient ho(φo)
evaluated from (5.29) along with the Damköhler-number correction δ2(φo) obtained from (5.35).

obtained by defining γ(λ) = Γ̂FK(r) and σ(λ) = rΓ̂′FK(r), with λ and r related by (5.2), and then

writing (5.8) in the alternative form

dγ

dλ
=
σ

w
and

dσ

dλ
=
w − 3σ

w
, γ(0) = σ(0) = 0. (5.12)

The numerical integration with the behaviors γ = σ/2 = λ/5 and w = 2λ for λ� 1 give

results shown in Fig. 5.1, with other curves exhibited there to be derived and discussed later.

The analysis continues by discarding singular solutions of the form F̃FK ∝ 1/r5 when

solving the homogeneous problem associated with (5.9), so that the general solution for the stream
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function reduces to

F̃FK =
vo
2r2

+
Γ̃o
10

+ F̂FK, (5.13)

where Γ̃o/10 and F̂FK(r) are the particular solutions associated with Γ̃o and Γ̂FK, respectively. The

first term in (5.13), arising from the solution to the homogeneous problem, represents a uniform

vertical velocity, as can be seen by using FFK = r4F̃FK = r2vo/2 to yield vr = vo cos θ and vθ =

−vo sin θ. Since the other two terms in (5.13) give a vanishing velocity at r = 0, the constant vo,

to be determined below from the no-slip condition at the wall, turns out to be the velocity induced

at the center, which is the peak velocity in the vessel.

The function F̂FK can be determined by introducing f(λ) = F̂FK(r) and g(λ) = rF̂ ′FK(r)

and integrating the autonomous problem

df

dλ
=
g

w
and

dg

dλ
=
γ − 7g − 10f

w
, f(0) = g(0) = 0, (5.14)

obtained by rewriting (5.9) with λ replacing the radial coordinate. Since λ = 0 is a singular point,

the numerical integration must be initiated using the approximations 2f = g = λ/70 for λ� 1.

The functions f(λ) and g(λ), shown in Fig. 5.1, increase with λ and with the radial

distance from the center, as dictated by (5.2). Their higher values at λ = φo, corresponding to

r = 1, are given by f(φo) = −(vo/2 + Γ̃o/10) and g(φo) = vo, as resulting from the boundary

conditions F̃FK(1) = F̃ ′FK(1) = 0 and (5.13). Therefore, the functions f(λ) and g(λ) can be used to

compute the variation with φo of

vo = g(φo) and − Γ̃o
10

= f(φo) +
1

2
g(φo), (5.15)

given in Fig. 5.1. The range of values of λ, or φo, considered extends beyond the first turning point

of the explosion diagram, associated with the value λ = 1.607, marked in Fig. 5.1 with a vertical

dotted line.

Once the values of Γ̃o and vo corresponding to a given Da are identified from Fig. 5.1

(complemented with the curve Da(φo) shown in Fig. 3.4), the functions γ(λ) and f(λ) can be used

to obtain the functions

ΓFK/r = r(Γ̃o + Γ̂FK) and FFK = r4

(
vo
2r2

+
Γ̃o
10

+ F̂FK

)
, (5.16)

with (5.2) employed to relate λ and r. The resulting profiles are shown in Fig. 5.2(b) for five

different values of φo along the explosion curve of Fig. 5.2(a), including the critical turning point

φo = 1.607 (with Da = 3.322), the points Da = 1 and Da = 2 along the lower branch, and the

points corresponding to Da = 3 both below and above the turning point. The curves in Fig. 5.2(a)

for the three non-zero Rayleigh numbers are to be discussed later.
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Figure 5.2: The functions ΓFK/r and FFK obtained from (5.16) for the conditions corresponding to
the five points indicated along the FK explosion curve on the left-hand side, where the thin curves
represent the Damköhler-number prediction obtained from (5.36) for Ra = (100, 200, 300) and the
small dots represent the variation of the temperature at the vessel center obtained by integration
of (4.13)–(4.16) for different values of Da.

The results can be used to evaluate the vorticity and stream function given in (5.3), with

sample streamlines and isovorticity lines given in Fig. 5.3 for the critical case Da = Dac = 3.322.

A distinctive quantitative feature of the solution is that, as a result of geometrical effects of the

spherical vessel, the resulting nondimensional values of the peak velocity vo, which are scaled

with our original estimate vg = β−1ga2/ν (resulting from the balance between viscous forces and

buoyancy forces), are very small, of the order of 10−2, as shown in Fig. 5.1. This unexpectedly

slow motion has a weak effect on the temperature field through the convective transport of heat,

leading to modifications of the explosion limits that remain small even for moderately large values

of Ra of order 102, as found in numerical integrations of the original equations (Shtessel’ et al.,

1971; Merzhanov & Shtessel’, 1973; Jones, 1974).
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Figure 5.3: Streamlines and isocontours of vorticity for Da = 3.322 evaluated from (5.3) and (5.16).
Increments of the streamfunction ∆ψ = 1.5×10−4 are considered in plotting the streamlines, with a
peak value ψ = 0.001744 at r = 0.5648 on the equatorial plane θ = π/2. The vorticity isocontours
are plotted in increments ∆ω = 0.01 from the zero value ω = 0 found at the spherical surface
r = 0.8358, vorticity being positive (negative) inside (outside).

5.2 Effect of convection on the critical ignition conditions

5.2.1 Perturbation scheme

The small deviations from the FK solution resulting from the presence of slow fluid motion

for Ra � 1 can be addressed formally by expanding the different fluid variables in powers of Ra.

The slow motion found at leading order, as represented by the small value vo ' 1/30 for φo = 1.607,

is due to geometrical effects, not taken into account in the rough estimate vg = (g/β)(a2/ν) of the

buoyant velocity. The resulting corrections to the explosion limits, although formally applicable

only for small values of Ra, in fact become significant only for moderately large values of Ra ∼
102, and they remain accurate even for these large values, as occurs occasionally in perturbation

expansions, although seldom ever to so great an extent.

Since the Rayleigh-number correction modifies the value of the critical Damköhler number

above which FK solutions no longer exist, from its value at zero Rayleigh number, in the vicinity of

the critical point, it is inconvenient to seek solutions for φ(r) by specifying Da. Instead, it is better

to prescribe the temperature at the center of the vessel φo as known and then pose the problem

as that of finding the perturbed Damköhler number Da that, for a given value of Ra, results in a

temperature at the center of the vessel equal to φo. The monotonic variation of Da with φo, plotted

in figure 4 of (Liñán et al., 2016), shows that the leading-order solution exists for all values of φo,

so that the problem is well-posed when formulated in this manner.
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In order to calculate the dependence Da(φo,Ra) for fixed φo and small Ra, the expansions

Da = DaFK[1 + Raδ1 + Ra2δ2 +O(Ra3)] (5.17)

and

φ− φFK = Raφ1 + Ra2φ2 +O(Ra3)

ω − ωFK = Raω1 + Ra2ω2 +O(Ra3) (5.18)

ψ − ψFK = Raψ1 + Ra2ψ2 +O(Ra3)

are introduced. The terms in these expansions are determined by solving sequentially the different

problems that arise at different orders in powers of Ra when (5.17) and (5.18) are introduced

into (4.13)–(4.15), as indicated below, with the condition φj = 0 applied at all orders j = 1, 2, . . .

for the temperature perturbations from φo at the center r = 0. Although a term proportional to Ra

is included in (5.17) for consistency with (5.18), it will be found that δ1 = 0, so that the corrections

to the explosion curve Da(φo) are of order Ra2; they will be seen to be important only for Ra ∼ 103

because of the result that δ2 ' 10−6.

5.2.2 First-order temperature perturbation

When the expansions (5.17) and (5.18) are used in (4.13), the terms of order Ra yield a

linear equation for φ1, to be integrated with boundary conditions φ1 = 0 at r = 0 and at r = 1.

The resulting equation includes perturbations proportional to cos θ, arising from the convection

term, along with perturbations independent of θ, that are proportional to the Damköhler-number

perturbation δ1, consistent with a perturbed temperature of the form φ1 = cos θH1(r) + H1(r).

The function H1, however, and its accompanying Damköhler-number perturbation δ1, which are

determined from the problem

r2H′′1 + 2rH′1 + u(H1 + δ1) = 0, H1(0) = H1(1) = 0, (5.19)

derived from (4.13) and (4.16), must be identically zero. This can be seen readily by comparing

the above equation with

r2w′′ + 2rw′ + u(w − 2) = 0, (5.20)

equivalent to the autonomous system giving u and w in terms of r in (22) of (Liñán et al., 2016).

Specifically, since H1 + δ1 and w − 2 satisfy the same second-order linear equation, the solution

to (5.19) can be expressed in general as

H1 + δ1 = CAYA + CBYB, (5.21)
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involving two integration constants CA and CB and the two independent solutions

YA = w − 2 and YB = (w − 2)

(∫ r

0

w(4− w)

r̂2(w − 2)2
dr̂ − 1

r

)
(5.22)

of (5.20). Because of the term 1/r, the function YB is singular at the origin, so that the condition

H1(0) = 0 requires that CB = 0, and also determines the value CA = −δ1/2, as follows from (5.21)

with H1(0) = 0 and YA(0) = w(0) − 2 = −2. The solution therefore reduces to H1 = −δ1w/2.

Since, however, w is positive for r > 0 (see Fig. 2 of (Liñán et al., 2016)), the boundary condition

H1 = 0 at r = 1 can be satisfied only if δ1 = H1 = 0. This completes the proof. With δ1 = 0, the

perturbations to the Damköhler number emerge only at the following order in the expansion (5.17).

The resulting form of the temperature perturbation, φ1 = cos θH1(r) indicates that at this

order the presence of convection does not modify the mean temperature in the vessel, nor does it

perturb the total heat-loss rate to the wall. Instead, the main effect of buoyancy is that of breaking

the spherical symmetry of the problem, which was observed to be broken in previous numerical

studies (Campbell et al., 2007), causing the appearance of regions of hotter fluid in the upper half

of the vessel and, correspondingly, regions of colder fluid in the lower half. The associated function

H1 is determined from the problem

H ′′1
r

+ 2
H ′1
r2

+ (u− 2)
H1

r3
= −2w

(
vo/2

r2
+

Γ̃o
10

+ F̂FK

)
, H1(0) = H1(1) = 0, (5.23)

the solution to which is given in general by the sum of a linear combination of the solutions to

the homogeneous problem and three particular solutions, associated with the three terms on the

left-hand side of (5.23). As can be seen by inspection, in view of (5.20), the particular solution

associated with vo is given simply by H1 = −(2 − w/2)vor. The other two particular solutions,

associated with the terms involving Γ̃o and F̂FK, can be expressed more conveniently in terms of

alternative variables ĤΓ and ĤF , defined from H1 = −(Γ̃o/10)r3ĤΓ and H1 = −r3ĤF , which are

introduced to preserve the invariance of (5.23) under a radial dilatation. The general procedure

followed above then leads in this case to the problems

dhΓ

dλ
=
kΓ

w
and

dkΓ

dλ
= −7kΓ + (u+ 10)hΓ − 2w

w
, hΓ(0) = kΓ(0) = 0 (5.24)

and

dhF
dλ

=
kF
w

and
dkF
dλ

= −7kΓ + (u+ 10)hΓ − 2wf

w
, hF (0) = kF (0) = 0, (5.25)

where hΓ(λ) = ĤΓ(r), kΓ(λ) = rĤ ′Γ(r), hF (λ) = ĤF (r), and kF (λ) = rĤ ′F (r), respectively. Near

the origin, which is a singular point, the asymptotic behaviors 2hΓ = kΓ = 2λ/7 and 4hF = kF =

2λ2/945 arise, which must be accommodated by the numerical solutions of (5.24) and (5.25).
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The homogeneous equation associated with (5.23) admits diverging solutions H1 ∝ r−2

near the origin, incompatible with the boundary condition H1(0) = 0, along with linearly increasing

solutions H1 ∝ r, which can be described more conveniently in terms of H1 = rĤ1, where Ĥ1(r)

satisfies r2Ĥ ′′1 + 4rĤ ′1 + uĤ1 = 0. The problem reduces to that of integrating, for h(λ) = Ĥ1(r)

and k(λ) = rĤ ′1(r), the equations

dh

dλ
=
k

w
and

dk

dλ
= −3k + uh

w
(5.26)

with the boundary values near the origin evaluated from

h = 1− 3

5
λ+ · · · and k = −6

5
λ+ · · · at λ� 1, (5.27)

the convenient normalization of h having been selected to be unity at r = 0.

The solution to (5.23), constructed by collecting the different contributions listed above,

reads

H1 = r
[
(ho + 2vo)Ĥ1 −

(
2− w

2

)
vo

]
− r3

(
Γ̃o
10
ĤΓ + ĤF

)
, (5.28)

where the integration constant appearing as a factor of the homogeneous solution has been written

in terms of ho = H ′1(0), the magnitude of the temperature gradient at the center. Its value can be

evaluated for a given φo from

ho = −2g(φo) +

(
2− w(φo)

2

)
g(φo)

h(φo)
−
(
f(φo) +

g(φo)

2

)
hΓ(φo)

h(φo)
+
hF (φo)

h(φo)
, (5.29)

obtained by using the boundary condition H1 = 0 at r = 1 in (5.28). As expected, the result-

ing value, plotted in Fig. 5.1, is found to be quantitatively small in the range of values of φo

corresponding to the first turning point of the explosion curve.

5.2.3 Modified explosion curve

As discussed above, corrections to the Damköhler number emerge only at order Ra2.

The factor δ2 in the expansion (5.17) is obtained from consideration of higher-order terms in the

expansions (5.18). The vorticity and stream-function perturbations take the form

ω1 = − sin θ cos θ Γ1/r and ψ1 = sin2 θ cos θ F1, (5.30)

in terms of functions Γ1(r) and F1(r), as follows when collecting terms of order Ra in (4.14)

and (4.15). Similarly, the temperature perturbation φ2 can be seen from inspection of (4.13) to

involve two different terms, according to φ2 = cos2 θH2 + H2. The functions H2(r) and H2(r)

satisfy

r2H ′′2 + 2rH ′2 + (u− 6)H2 = 2FFKH
′
1 − F ′FKH1 − 3F1w/r −

1

2
uH2

1 (5.31)
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and

r2H′′2 + 2rH′2 + uH2 = −δ2u− 2H2 + F ′FKH1 + F1w/r, (5.32)

subject to H2(0) = H2(1) = H2(0) = H2(1) = 0.

The above homogeneous problem determines δ2 as an eigenvalue. Although F1 appears in

both equations, the resulting value of δ2 is independent of the corrections to the fluid motion (and,

therefore, independent of the Prandtl number). This can be seen by considering

r2(H2 + 1
3H2)′′ + 2r(H2 + 1

3H2)′ + u(H2 + 1
3H2 + δ2) = F , (5.33)

obtained from a linear combination of (5.31) and (5.32), with F = 2
3(FFKH1)′ − 1

6uH
2
1 . As can be

inferred from (5.20), the general solution to (5.33) can be expressed in the form

H2 +
1

3
H2 + δ2 = BAYA +BBYB + 1

4YB
∫ r

0
YAFdr − 1

4YA
∫ r

0
YBFdr, (5.34)

involving the integration constants BA and BB and the independent solutions YA and YB of the

homogenous equation, given in (5.22). Since the boundary conditions H2(0) = H2(0) = 0 suffice

to determine the value of the two integration constants BA = −δ2/2 and BB = 0, the additional

boundary conditions H2(1) = H2(1) = 0 require that

δ2 =
(w − 2)

2w

[(∫ 1

0

w(4− w)

r2(w − 2)2
dr − 1

)∫ 1

0
(w − 2)

[
2
3(FFKH1)′ − 1

6uH
2
1

]
dr

−
∫ 1

0
(w − 2)

[
2
3(FFKH1)′ − 1

6uH
2
1

](∫ r

0

w(4− w)

r̂2(w − 2)2
dr̂ − 1

r

)
dr

]
, (5.35)

obtained by evaluating (5.34) at r = 1. The resulting value of δ2 is a function of φo, shown in

Fig. 5.1.

The function δ2(φo) can be used to evaluate the modified explosion curve

Da = DaFK(1 + Ra2δ2), (5.36)

where DaFK(φo) = u(φo), given by u(λ) for λ = φo. Because of the very small value δ2 ∼ 10−6

encountered in the perturbation analysis in powers of Ra, important perturbations in the critical

Damköhler number occur only for values of the Rayleigh number of order 103. Considerations

of (5.14), (5.24), and (5.25) suggest that the smallness of the factor δ2 ∼ 10−6 is a cumulative

result of the sequence of ordinary differential equations, each with numerical coefficients of order

10, involved in its computation.

The accuracy of the prediction (5.36) is illustrated in Fig. 5.2(a), which includes compar-

isons with results of numerical integrations of the initial problem (4.13)–(4.16) for Ra = 100, 200,

and 300, shown as points along the curves. The numerical procedure employed a pseudo-transient
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method in seeking convergence to a steady solution, which prevented the branch of unstable solu-

tions found beyond the first turning point from being accessible in the numerical integrations, so

that the numerical results are limited to the lower branch of solutions extending from Da = 0 to

Da = Dac. Over the range that these numerical results are obtained, they differ negligibly from the

results of the expansion, as may be seen by comparing the points with the thin curves in the figure.

The corrections at the first non-vanishing order to the FK result for Dac are seen to amount to less

than ten percent even at Ra = 300. The range of the Rayleigh number over which the expansion

remains valid thus is very large.

An unexpected peculiarity of the curve of δ2 as a function of φo, shown in Fig. 5.1, is the

attainment of a maximum, followed by a progression to negative values, beyond the turning-point

value marked by the vertical line. These negative values imply that the motion of the fluid inside

the sphere under those conditions, instead of decreasing the peak temperature by increasing the

rate of heat loss to the boundary, tends on the average to insulate the central fluid from conductive

heat loss, decreasing temperature gradients to the sides and bottom there, thereby increasing the

peak temperature. Although reminiscent of the related effect in planar geometry mentioned earlier,

the fluid-dynamic cause of this is quite different. Because the flow computed here in the region

beyond the vertical line in the figure is unstable, however, this peculiarity would not be observed

experimentally.

5.3 Concluding remarks

The present analysis has described effects of buoyancy on the slowly reacting mode of

combustion in spherical vessels. The motion induced for small values of the Rayleigh number is

an axisymmetric vortex—termed here the Frank-Kamenetskii vortex—that also exhibits symmetry

about the equatorial plane, with positive vorticity generated in the central region by the finite-

rate chemical heating but also with a region of negative vorticity near the wall, where the viscous

retardation of the motion by the wall reverses the sign of the vorticity. At the leading order in the

Rayleigh number, developed here, the zero-vorticity surface is perfectly spherical. At much higher

Rayleigh numbers, this downward gas motion in the vicinity of the walls will generate a boundary

layer there, growing with distance from the top, distorting the zero-vorticity sphere, so that the

vortex tends to produce temperature stratification in the core, with hotter fluid in the upper portion

of the sphere, as has been seen in numerical computations. The resulting modifications of the FK

vortex may be expected to affect the criticality conditions for ignition, which motivates pursuit of

associated boundary-layer analyses in the future.

Especially noteworthy of the present results is how remarkably small the fluid-flow influ-
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ences associated with the Frank-Kamenertskii vortex are on the critical ignition Damköhler number

(the value beyond which the slow-reaction types of solutions derived here no longer exist) . Despite

the gas motion, the spatial variations average out in such a way that the overall effects remain

small. This is not an asymptotic phenomenon; rather, it is a purely numerical influence of the

small numerical coefficients arising in the expansions. For example, as may be seen in Fig. 5.1,

even though the nondimensional flow velocities are roughly of order 10−2, the nondimensional mod-

ification of the temperature gradient is only on the order of 10−3, resulting in the change in the

critical ignition Damköhler number, a second-order quantity, being only of order 10−6, seen in the

figure. Furthermore, while the leading-order corrections to the flow field of the Frank-Kamenertskii

vortex do depend on the Prandtl number, even at the second order calculated here, the corrections

to the critical ignition Damköhler number do not. This underscores the fact that the Rayleigh

number, not the Grashof number, is the appropriate parameter of expansion.

This chapter, in part, has been published in Combustion Theory and Modelling, “The

slowly reacting mode of combustion of gaseous mixtures in spherical vessels. Part 2: Buoyancy-

induced motion and its effect on the explosion limits”, by A. L. Sánchez, I. Iglesias, D. Moreno-

Boza, A. Liñán and F. A. Williams (2016) 20(6), 1029-1045. The dissertation author is the primary

investigator in this publication.
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Chapter 6

The slowly reacting mode of

combustion in spherical vessels:

solution for large Rayleigh numbers

Specific consideration is given in this chapter to the description of buoyancy effects for

larger values of Ra, where results of relevant integrations are reported for values of the Rayleigh

number up to Ra = 7 × 106, thereby covering the entire range of flow conditions under which the

flow may be expected to remain laminar. Besides numerical integrations, perturbation methods

are used to investigate the flow structure that develops in the asymptotic limit Ra � 1, which is

shown here to include a thin chemically frozen boundary layer driven by buoyancy, surrounding

the vessel surface, and an inner chemically reacting inviscid region. The analysis at leading order

provides the formulation of a boundary-value problem that determines the rescaled FK explosion

curve, including the critical explosion conditions. The solution is obtained by an approximate

method involving an integral form of the boundary-layer equations, which is found to produce

predictions for the critical Damköhler number that compare favorably with the results of numerical

integrations.

6.1 Selected numerical results

As previously mentioned, the evolution of the reactive flow in the vessel depends funda-

mentally on the Damkhöhler number. If Da is smaller than a critical value Dac, larger for larger Ra,

the temperature and velocity evolve to approach a steady distribution for moderately large values

of t, whereas for Da > Dac the transient stage ends with a thermal runaway at a finite ignition
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time. The determination of Dac for a given Ra based on transient computations requires consid-

eration of increasing values of Da until critical conditions are achieved, as was done previously in

(Campbell et al., 2007; Liu et al., 2008, 2010). Alternatively, the explosion limit for a given Ra can

be obtained directly by investigating the existence of steady solutions for the slowly reacting mode

of combustion, with the value of Dac corresponding to the turning point of the stationary explosion

curve giving the variation of the peak temperature with Da, that being the criterion proposed in

Frank-Kamenetskii’s original theory. We shall see below that both computational approaches lead

to predictions of explosion limits that are virtually identical.

6.1.1 FK analysis of thermal-explosion limits

We begin by considering steady FK solutions, described by integrating the steady version

of (4.4)–(4.6) supplemented by (4.8) with the boundary conditions (4.9) at the vessel wall. A

standard iterative root–finding technique (Newton–Raphson) is employed in the integrations. The

linearized system of equations is solved using the software package FreeFem++ (Hecht, 2012), which

employs finite elements for the spatial discretization. A summary of the steady solutions obtained

for different values of Da and Ra is given in Fig. 6.1.

The upper plot in Fig. 6.1 shows explosion diagrams (i.e., curves representing the peak

temperature φmax as a function of the Damköhler number Da) for six different values of the Rayleigh

number, including the classical FK results corresponding to Ra = 0, for which the turning point

occurs at DaFK ' 3.32 with φmax ' 1.61 (Frank-Kamenetskii, 1955). Because of the enhanced heat

transfer associated with the convective motion, the turning points of the resulting curves occur

at larger values of Dac for increasing Ra. This variation is represented in the intermediate plot

of Figure 6.1. As expected from previous analyses, the departures Dac − DaFK of the critical

Damköhler number from the buoyancy-free value DaFK remain fairly small for values of Ra on the

order of a few hundred. For these conditions of weak convective motion the asymptotic prediction

Dac = DaFK(1 + δ2Ra2), derived previously in the limit Ra � 1 (Sánchez et al., 2016), agrees well

with the numerical results. The quantitative effect of buoyancy on the explosion boundary becomes

clearly noticeable for Ra >∼ 500, for which the departures Dac −DaFK become of order unity. The

monotonic growth of Dac with Ra continues for increasing Ra. As seen in the plot, for sufficiently

large values of Ra >∼ 104, the curve Dac(Ra) displays the asymptotic behavior Dac ∝ Ra1/4,

corresponding to a straight line with slope 1/4 in the log-log scale used in the figure. The dashed

curve Dac = ΛcRa1/4 in the plot is the asymptotic prediction for Ra � 1, to be derived later in

§ 6.2.

The motion induced by buoyancy and its associated effects on the temperature field are

investigated on the bottom plots of Figure 6.1 by representing the isotherms (left half of each
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Figure 6.1: Results of numerical integrations of steady reactive flows for different values of Ra
and Da. The upper plot shows the variation with Da of the peak temperature in the vessel for
six different values of Ra = 7 × (0, 102, 103, 104, 105, 106). The middle plot shows the variation
with Ra of the critical Damköhler number, including as dashed curves the asymptotic predictions
Dac = DaFK(1 + δ2Ra2), derived in (Sánchez et al., 2016) for Ra � 1, as well as the new result
Dac = ΛcRa1/4 for Ra � 1, to be derived later in section 6.2. The bottom plots show ten isotherms
(left half) and ten streamlines (right half) for the conditions corresponding to the six turning points
of the upper plot.

circular plot) and streamlines (right half) corresponding to the solutions at the turning points of

the six different explosion curves. A total of ten isocurves of temperature and stream function are

shown in each subplot. The isotherms are equally spaced between the value φ = 0 at the wall and
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Figure 6.2: Detailed view of the explosion curve near the turning point for Ra = 700. The circular
plots show isotherms (left half) and streamlines (right half) corresponding to Da = 4.13 for the
solutions along the upper (unstable) branch and the lower (stable) branch. A total of 10 equally
spaced isocurves is shown in each plot, with peak values of temperature and stream function given by
φmax = 4.410 and ψmax = 1.594×10−3 for the upper plot and φmax = 1.822 and ψmax = 1.380×10−3

for the lower plot.

the peak value φmax. Similarly, the selection of streamlines correspond to equally spaced values of

the stream function ψ, defined such that rvr = ∂ψ/∂z and rvz = −∂ψ/∂r with ψ = 0 at the wall,

and the peak values being ψmax = (1.6822×10−3, 1.5575×10−3, 5.728×10−4, 1.361×10−4, 2.7973×
10−5, 5.6811× 10−6) for Ra = 7× (0, 102, 103, 104, 105, 106).

It can be seen that the Frank-Kamenetskii vortex induced by buoyancy, symmetric about

the equatorial plane for Ra � 1, evolves in a non-monotonic manner for increasing Ra, with the

accompanying velocity, directed upwards in the central hot region, causing a vertical displacement

of the peak temperature, which readily destroys the spherical symmetry of the temperature dis-

tribution, as noticed in early experimental observations (Tyler, 1966; Ashmore et al., 1967). The

streamline pattern indicates that the center of the vortex, which initially migrates upwards, moves

eventually downwards to occupy a location near the wall, where a high-velocity boundary-layer flow

develops for Ra � 1, as inferred by the close spacing between adjacent streamlines. The structure

of the flow in that limit, which includes a central region of stratified temperature with a hot kernel

near the “north pole” of the vessel, is to be considered in detail in section 6.2.

Unlike numerical schemes based on pseudo-transient methods, the root–finding technique

employed here not only is able to describe the lower branch of stable solutions, extending between

the origin of the explosion diagram φmax − Da and the turning point of the bending bifurcation,
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but it can also be employed in principle to describe the unstable solutions lying beyond the turning

point, corresponding to larger values of φmax. For illustrative purposes, a detailed view of the

turning point of the curve corresponding to Ra = 700 is shown in Fig. 6.2, along with the isotherms

and streamlines corresponding to two different solutions for the same Da < Dac. The description

of the solutions along the upper branch becomes more difficult for larger Ra, because the curvature

of the associated explosion curves at the turning point becomes smaller, leading to rapid variations

of φmax for Dac−Da � 1 that hinder the convergence of the root-finding scheme. For these larger

values of Ra, the value of Dac reported here is defined as the maximum value of Da for which a

converged solution is found. Numerical methods based on continuation techniques might be better

suited for the description of the complete multi-branch explosion curve developing beyond the first

turning point, but this alternative approach is not further pursued here because of the limited

practical interest in these unstable solutions.

6.1.2 Transient computations

To complement the above steady solutions, transient histories corresponding to the ini-

tial conditions (4.10) were computed by marching in time the equations (4.4)–(4.6) supplemented

with (4.8), with the boundary conditions given in (4.9). Besides the parameters Ra and Da, the

Prandtl number Pr = 0.7, and the specific-heat ratio γ = 1.4, the results of the transient com-

putations depend also on φI , the rescaled initial gas temperature in the container. As previously

discussed, to ensure that the chemical reaction is negligible before the wall temperature is suddenly

increased at t = 0, this negative temperature must satisfy −φI � 1. The value φI = −10 is

employed in the computations reported below.

As in the steady computations, finite elements were used for the spatial discretization.

The time-marching technique employed a characteristics-Galerkin method (Hecht, 2012; Carpio &

Prieto, 2014) with a fixed time step ∆t. The resulting system of linearized equations was solved at

each time step using FreeFem++ (Hecht, 2012). The temporal evolution, including the associated

ignition time for supercritical cases, was found to be independent of the choice of ∆t provided that

a sufficiently small value is employed. The solutions shown below in Figs. 6.3–6.5 correspond to

∆t = 10−5.

As expected, the transient computations reproduce the FK explosion boundary Dac(Ra)

shown in the middle plot of Fig. 6.1 in that, regardless of the value of Ra, the unsteady flow

for all subcritical values of the Damköhler number Da < Dac(Ra) was seen to evolve to reach

the final steady–state solutions shown in Fig. 6.1 with indistinguishable differences, whereas for

Da > Dac(Ra) a localized thermal runaway occurs at a finite time t = ti, larger for smaller values

of Da−Dac.
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Figure 6.3: Ignition time for Ra = 7×104 as a function of Da > Dac(Ra) ' 11.51. The inset shows
isotherms and streamlines for Da = 75 at t ≈ ti.

The variation of ti with Da is shown in Fig. 6.3 for Ra = 7× 104. In the plot, the ignition

time is defined as the last time for which a bounded solution is found in the numerical integration.

Because of the precipitous character of the temperature increase, other definitions of the ignition

time, based for instance on a given threshold value for the local rate of temperature increase, would

produce almost identical results. The plot includes the curve ti(Da) obtained by neglecting in the

energy equation (4.6) the term involving the temporal pressure increase. In view of these results,

it can be concluded that computations of thermal explosions omitting this term, as was done in

many previous studies (Liu et al., 2008, 2010), may result in significant overpredictions of ignition

times in chambers with rigid walls. The plot also indicates that, as expected, the computation of

the critical value Dac at which ti → ∞ is not affected by the presence of this unsteady term. To

illustrate changes in the morphology of the ignition kernel, the insets in the figure show snapshots

of isotherms and streamlines immediately before ignition for Da = 75. For this particular case, the

ignition kernel is centered at a point along the axis when the term dp̂/dt is removed, but ignition

occurs in a thin reacting annulus, slightly detached from the container axis, when this term is

retained in the computation, as may be seen at the top of the insets.

As previously stated, the results in Fig. 6.3 correspond to φI = −10. Since the duration

of the heating period needed to increase the gas temperature in the container to values close to the

wall value depends fundamentally on φI , lower values of φI result in larger ignition times, as was

verified in additional computations. Nevertheless, the explosion limits, measured by the critical
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Figure 6.4: Results of transient numerical integrations of (4.4)–(4.6) with initial temperature φI =
−10, Da = 11.75, Ra = 7× 104. The temporal evolution of the temperature at the center φo and
of the peak temperature φmax is shown in the top left panel, whereas sample equatorial profiles
of vertical velocity uz and temperature φ are plotted in the top right panel for times indicated
in the figure. As in Figure 6.1, isotherms (left) and streamlines (right) are shown in the bottom
panel for times marked with circles in the curve φo(t). The values of the stream function and
temperature corresponding to each isocurve are selected to be equally spaced between the zero wall
values and the peak values. The shade indicate positive values of the temperature (left half) and
stream function (right half).

Damköhler number Dac, were found to be independent of the selection of φI for all φI ≤ 0, in

agreement with our previous results for buoyancy-free systems (Liñán et al., 2016).

The role of buoyancy in the development of the thermal explosion is investigated in Fig. 6.4

for Ra = 7×104 and φI = −10 when the Damköhler number is Da = 11.75, only slightly above the
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critical value Dac = 11.51 predicted by the turning-point FK criterion. The upper left panel shows

the temperature at the center of the vessel φo and the peak temperature φmax, the latter displaying

a precipitous growth at t = ti ' 0.28. The twelve panels at the bottom show isotherms and

streamlines at representative instants of time, marked with circles in the curve φo(t). The shading

is used in the panels to indicate positive temperatures (above the wall value) and positive values

of the stream function, corresponding to counterclockwise motion in the right-hand-side panels.

The heating of the gas from the hot wall affects initially a thin boundary layer that

moves upwards under the action of gravity, entraining the surrounding cold gas and inducing a

counterclockwise motion on the right inside the vessel. Because of the spherical geometry of the

container, the boundary layer collides at the top of the sphere, ejecting downwards along the axis

the gas that has been heated while ascending next to the wall. A secondary vortex with clockwise

motion is seen to emerge from the collision region, thereby further complicating the dynamics. This

convective transport rapidly heats the upper half of the vessel, while the bottom, nearly stagnant,

remains initially cold.

The chemical reaction, initially negligible, begins to occur near the top of the sphere,

causing the temperature to increase there above the wall value (i.e. positive values of φ) for

t >∼ 0.017. The shaded region representing the hot gas extends rapidly downstream, changing in a

fundamental way the gas motion. This can be seen in the snapshot corresponding to t = 0.0643

(the third from the left on the bottom row). In the upper half of the vessel φ > 0, so that in

the corresponding near-wall boundary layer the gas temperature is lower than that found outside.

Consequently, buoyancy pulls the fluid downwards near the wall, supporting clockwise motion in

this region. The opposite effect is found on the lower half of the vessel, where the temperature still

remains negative. As a result, the flow at this intermediate time is characterized by the existence

of two annular counterrotating vortices. For longer times, the hot gas occupies the entire vessel,

and the resulting motion is given by a single vortex with clockwise motion, as in the steady cases

displayed in Fig. 6.1. The change in sign of the heat flux from the wall and the corresponding flow

reversal along the boundary layer are illustrated in the upper right plot of Fig. 6.4 by plotting the

radial distributions of vertical velocity and temperature at the equatorial plane z = 0 at different

instants of time.

As seen in the last three snapshots in Fig. 6.4, corresponding to t = (0.1386, 0.2543, 0.2750),

for this near-critical case the transient ignition history shows a relatively long stage of slow evolu-

tion in which the streamline pattern at all times is very similar to that of the FK solution at the

turning point (see the plot for Ra = 7× 104 in Fig. 6.1). This quasi-steady motion is accompanied

by a slow temperature evolution in which the values found in the central region remain almost

constant, as seen in the evolution of φo, while the temperature distribution near the top develops
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tion of a plume as a result of a thermal instability near the bottom of the vessel for Ra = 7× 106.
The shading represents temperature, varying between −10 (light) and 0 (dark).

an increasingly sharp peak that eventually transitions into a rapid runaway.

The heating dynamics becomes even more complicated for larger values of the Rayleigh

numbers because of the development of flow instabilities. In particular, the thin layer of heated

gas near the bottom may be subject to Rayleigh-Taylor-like instabilities that lead to the ejection of

hot gas. This is illustrated in the series of snapshots shown in Fig. 6.5, corresponding to the initial

stages of the heating process for Ra = 7× 106. It can be seen that the ejection occurs in the form

of a toroidal plume, which soon develops into a thermal rising along the axis to eventually meet

the jet of fluid coming down from the top collision region. The ejection process repeats itself in a

quasi-periodic fashion, thereby providing an effective mechanism that contributes to the heating of

the vessel interior.

It is worth noting that the dynamics described here is limited by the axisymmetric char-

acter of the integrations. The computations are not capable of describing the three-dimensional

boundary-layer instabilities that are expected to be responsible for the transition to turbulence that

has been postulated to occur for Ra & 106 (Liu et al., 2008, 2010). Uncertainties remain concerning

exactly when transition occurs, but it seems likely that the patterns revealed in Fig. 6.5 will play

some role in post-transitional development of the flow.
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6.2 Slowly reacting flow for Ra � 1

6.2.1 Flow structure

The computations shown in Fig. 6.1 reveal that the structure of the flow in the limit

Ra � 1 includes a central region of slowly moving hot gas bounded by a high-velocity near-wall

boundary layer. The scales and the dominant balances applying in each region can be identified

by an order-of-magnitude analysis. Thus, since the temperature increment must be φ ∼ 1 for the

thermal explosion to develop, the buoyancy force in (4.5) can be anticipated to be of order unity

when Da ∼ Dac, inducing streamwise velocities of order Ra−1/2 in a near-wall boundary layer of

characteristic thickness Ra−1/4, as inferred from the convection-diffusion balance in (4.5). The flow

in the central region, outside the boundary layer, is induced by the boundary-layer entrainment,

with characteristic velocities of order Ra−3/4. This slow motion does not induce an appreciable

pressure disturbance inside the container, where (4.5) reduces in the first approximation to −∇p′+
φ ez = 0. This hydrostatic balance requires that the pressure p′ and the temperature φ be a

function of z only. This is consistent with the results shown in Fig. 6.1, where the isotherms for

Ra � 1 are nearly horizontal outside the boundary layer. Since the velocities induced by boundary-

layer entrainment are of order Ra−3/4, the effective Peclet number, measuring in the central region

the relative importance of convective and conductive rates, is of order Ra1/4 � 1, so that the

effect of heat conduction can be neglected in the first approximation when writing (4.6) there. The

resulting convection-reaction balance Ra v·∇φ = Da eφ, with v ∼ Ra−3/4, indicates that for Da ∼ 1

the temperature increase associated with the chemical reaction is limited to small values of order

Ra−1/4, insufficient to produce a significant increase in the reaction rate from its near-wall value,

and that temperature increments of order unity, needed to trigger the thermal explosion, require

values of the Damköhler number of order Ra1/4. In this near-explosion regime, Da ∼ Ra1/4, the

chemical reaction occurs mainly in the central region, while the boundary layer remains chemically

frozen in the first approximation, because the transport rates there are larger than the reaction

term by a factor of order Ra1/4, as can be seen from (4.6).

Before proceeding with the analysis, it is worth pointing out that the flow structure

identified here is fundamentally similar to that emerging in fully developed flow in a curved pipe at

large values of the Dean number (Dennis & Riley, 1991). In both cases, the inviscid internal flow is

coupled with a thin boundary layer that develops between two stagnation-point self-similar regions.

Also, as we shall see below, the difficulties in the numerical solution stem in both cases from the

elliptic character of the boundary-layer problem, associated with the existence of recirculating flow.
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6.2.2 The boundary-layer problem

The leading-order form of the simplified equations in the chemically frozen boundary

layer and in the central inviscid region are written now in terms of appropriately rescaled variables.

The boundary layer developing at the wall is described in terms of the local distance to the wall

y = Ra1/4[1− (r2 + z2)1/2] and the angle θ = cos−1 z, which measures the distance along the wall

from the vessel top, giving the equations

∂

∂θ
(U sin θ) +

∂

∂y
(V sin θ) = 0 (6.1)

1

Pr

(
U
∂U

∂θ
+ V

∂U

∂y

)
=
∂2U

∂y2
+ (φc − φ) sin(θ) (6.2)

U
∂φ

∂θ
+ V

∂φ

∂y
=
∂2φ

∂y2
(6.3)

where U = Ra1/2(zvr−rvz) and V = −Ra3/4(rvr+zvz) are the rescaled streamwise and transverse

velocity components, respectively. The boundary conditions for 0 < θ < π are

y = 0 : U = V = φ = 0 (6.4)

y →∞ : U = φ− φc(θ) = 0. (6.5)

Here φc(θ) is the temperature outside the boundary layer, in the central inviscid region, given by

the convection-reaction balance

v̄z
dφc
dz

= Λeφc (6.6)

where Λ = Ra−1/4Da is a rescaled Damköhler number and v̄z = Ra3/4vz is the rescaled vertical

velocity, also a function of z, as required for consistency.

The conduction-free equation (6.6) describes the increase of the temperature of the as-

cending gas due to chemical reaction, from the value φc = 0, found near the bottom z = −1, to

reach the peak value φmax as z → 1. The vertical velocity appearing as a factor in (6.6) can be

obtained at a given height z by equating the upward mass flux π(1− z2)v̄z in the container interior

to the downward mass flux 2π(1− z2)1/2
∫∞

0 Udy across the boundary layer to give

v̄z =
2
∫∞

0 Udy

(1− z2)1/2
, (6.7)

and the accompanying radial velocity v̄r = Ra3/4vr is given by v̄r = −(r/2)dv̄z/dz, as follows from

continuity. The geometrical relations sin θ = (1− z2)1/2 and sin(θ)dθ = −dz can be used together

with (6.7) to express (6.6) in the form

dφc
dθ

= −Λ sin2(θ)eφc

2
∫∞

0 Udy
, (6.8)
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yielding the solution

φc(θ) = ln

[
e−φmax +

Λ

2

∫ θ

0

sin2(θ̃)∫∞
0 Udy

dθ̃

]−1

, (6.9)

upon integration with the initial condition φc(0) = φmax.

The integration of (6.1)–(6.3) must be initiated at θ � 1, where there exists a self-similar

solution. At the leading order described here, the solution is identical to that encountered near

the attachment point of the buoyancy-driven boundary layer that develops over a hot sphere in a

stagnant atmosphere when the Grashof number is large (Potter & Riley, 1980). The local flow,

first described for the hot sphere in (Chiang et al., 1964), can be analyzed by introducing the

normalized coordinate ζ = φ
1/4
maxy together with the stream function ψ = φ

1/4
maxθ2F (ζ) and the

reduced temperature G = (φmax − φ)/φmax to give

Fζζζ + (2FFζζ − F 2
ζ )/Pr +G = 0, (6.10)

Gζζ + 2FGζ = 0, (6.11)

with boundary conditions

F (0) = Fζ(0) = G(0)− 1 = 0 (6.12)

Fζ(∞) = G(∞) = 0, (6.13)

where the subscript ζ denotes differentiation with respect to this coordinate. The integration

of (6.10)–(6.13) for Pr = 0.7 provides the profiles shown in Fig. 6.6 along with the value of

F (∞) = 0.63702, which can be used to write the relationship v̄z(z = 1) = 2φ
1/4
maxF (∞) between

the boundary temperature and the uniform entrainment velocity at θ = 0. The uniformity of the

boundary-layer entrainment rate near the top is consistent with the negligible radial variation of

the vertical velocity v̄z(z) in the reactive core region. The functions F (ζ) and G(ζ) provide the

profiles of streamwise velocity and temperature

U = φ1/2
maxθFζ and φ = φmax(1−G) at θ � 1, (6.14)

to be used as initial condition for integration of (6.1)–(6.3).

The apparent parabolic nature of (6.2) and (6.3) suggests a marching procedure in which

(6.1)–(6.3) supplemented with (6.9) are integrated for increasing θ subject to the boundary condi-

tions (6.4). The integration must be initiated at θ � 1 using the self-similar profiles (6.14). In this

scheme, the value of Λ corresponding to a given maximum temperature φmax is obtained from (6.9)

as an eigenvalue by imposing the condition that φc → 0 as θ → π. This eigenvalue problem bears

similarity with that encountered in the analysis of fully developed flow in curved pipes at large

Dean number (Dennis & Riley, 1991). As in that case, the time-marching integration strategy
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Figure 6.6: Results of the integration of (6.10)–(6.13) (left panel) and of (6.15)–(6.18) (right panel),
showing the functions F (ζ), F ′(ζ), 1−G(ζ) and F̂ (ξ), F̂ ′(ξ), 1−Ĝ(ξ), respectively. The integrations
indicate that F (∞) = 0.63702 and F̂ (∞) = 0.05903.

delineated above fails because of the appearance of recirculating flow. This is observed to emerge

at an intermediate location between θ = π/2 and θ = π, with the velocity profile U exhibiting

regions of negative U . This behavior seems to be consistent with the streamline patterns depicted

in Fig. 6.1 for Ra � 1.

Because of the presence of backflow, the character of the resulting boundary-layer problem

changes from parabolic to elliptic. The associated boundary-value problem requires consideration

of the specific conditions found near the bottom θ = π. There, the flow exhibits a self-similar

solution, with the core temperature vanishing on approaching θ = π according to the power law φc =

A(π−θ)λ, consistent with the local scalings U ∝ (π−θ)1+λ/2 and y ∝ (π−s)−λ/4, where the value of

the exponent λ = 8/5 is determined from the convective-reactive balance (6.8). Writing (6.1)–(6.3)

in terms of the local coordinate ξ = A1/4(π− θ)2/5y, stream function ψ = A1/4(π− θ)12/5F̂ (ξ), and

temperature increment φc − φ = A(π − θ)8/5Ĝ(ξ) yields

F̂ξξξ +
(

9
5 F̂

2
ξ − 12

5 F̂ F̂ξξ

)
/Pr + Ĝ = 0 (6.15)

Ĝξξ − 12
5 F̂ Ĝξ −

8
5 F̂ξ(1− Ĝ) = 0 (6.16)
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with boundary conditions

F̂ (0) = F̂ξ(0) = Ĝ(0)− 1 = 0 (6.17)

F̂ξ(∞) = Ĝ(∞) = 0, (6.18)

where the subscript ξ denotes differentiation with respect to this coordinate. The profiles F̂ , F̂ξ,

and Ĝ are shown in Fig. 6.6 for Pr = 0.7. In connection with this self-similar solution it is worth

noting that the boundary-layer thickness diverges as (π−θ)−2/5 as θ → π, indicative of a boundary

layer that empties near the bottom, a flow feature consistent with the streamline patterns observed

in the bottom plots of Fig. 6.1 for Ra � 1. This type of local behavior is fundamentally different

from that emerging in free convection from a heated sphere, where the eruption of the fluid into the

plume above the sphere is the result of the collision of the boundary layer at the upper stagnation

point, as described by Potter and Riley (Potter & Riley, 1980). Also of interest is that the rescaled

streamwise velocity F̂ξ shown in Fig. 6.6 displays an oscillatory profile with multiple zeros. An

emptying boundary layer with oscillatory velocity profile is also encountered near the inside bend

of curved pipes at large Dean number (Smith, 1975), thereby further highlighting the similarities

between both flows. The self-similar profiles can be used to write the velocity and temperature

distributions as

U = A1/2(π − θ)9/5F̂ξ, φc − φ = A(π − θ)8/5Ĝ at π − θ � 1, (6.19)

where the constant factor A = [(5Λ)/(16F̂ (∞))]4/5, obtained from (6.8), can be evaluated with use

made of of the boundary value F̂ (∞) = 0.05903 determined from the integration of (6.15)–(6.18).

Equations (6.1)–(6.3) must be integrated for 0 < θ < π together with (6.9) subject to

the boundary conditions (6.4) and to the local boundary distributions (6.14) and (6.19) at θ � 1

and π − θ � 1, respectively. In the solution, the value of Λ corresponding to a given φmax is

an eigenvalue of the problem. The numerical solution of the above boundary–value problem was

attempted using different methods, involving either a pseudo-transient scheme for advancing (6.1)–

(6.3) or the simultaneous solution for U , V , and φ by means of a Newton-Raphson method, with

the eigenvalue Λ updated after each iteration using (6.9). Despite significant efforts, difficulties

associated with the strong sensitivity of the results to small changes in Λ precluded convergence

of the method, so that a numerical solution to the problem could not be achieved. It is worth

pointing out that similar difficulties have been encountered in connection with the boundary-value

problem arising in curved pipes at large Dean number (Dennis & Riley, 1991), whose numerical

solution also remains elusive to date. For this latter problem, an approximate solution based on the

integral form of the boundary-layer equations was successfully employed by Ito (Ito, 1969). The

same strategy is followed below to obtain the reduced explosion curve φmax as a function of Λ and

the associated critical value Λc.
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6.2.3 Von-Karman integral formulation

The approximate solution begins by integrating (6.2) and (6.3) across the boundary layer

to give the two ordinary differential equations

1

Pr

d

dθ

(
sin θ

∫ ∞
0

U2dy

)
= − sin θ

∂U

∂y

∣∣∣∣
y=0

+ sin2 θ

∫ ∞
0

(φc − φ)dy, (6.20)

d

dθ

(
sin θ

∫ ∞
0

U(φc − φ)dy

)
− sin θ

dφc
dθ

∫ ∞
0

Udy

= sin θ
∂φ

∂y

∣∣∣∣
y=0

. (6.21)

Guided by the method employed in (Ito, 1969), it is further assumed that the boundary layer has

a finite thickness δ(θ) and that the temperature and streamwise velocity across the boundary layer

can be expressed in the form

φ = φc k(η) and U = φc sin(θ) δ2f(η) + Uoh(η), (6.22)

where the description for U incorporates a velocity correction Uo(θ) in addition to the direct effect

of the gravitational acceleration. The functions k(η), f(η), and h(η) of the normalized transverse

coordinate η = y/δ are introduced to define the shape of the profiles. These shape functions are

defined such that k − 1 = f = h = 0 for η ≥ 1, with polynomial expressions employed below for

describing k(η), f(η), and h(η) in the range 0 ≤ η ≤ 1. In principle, a second-order polynomial for

k and f and a third-order polynomial for h suffice to satisfy the boundary conditions k = f = h = 0 and d2k
dη2 = d2f

dη2 + 1 = d2h
dη2 = 0 at η = 0

k − 1 = f = h = 0 at η = 1,
(6.23)

stemming from (6.4). Smoother profiles with vanishing derivatives at η = 1 can be obtained by

increasing the order of the polynomials. In particular, the results shown below correspond to

k = η(2− 2η2 + η3), f = 1
6η(1− η)3, h = η(1 + 3η)(1− η)3 (6.24)

which satisfy the additional boundary conditions

dk

dη
=

df

dη
=

dh

dη
=

d2k

dη2
=

d2f

dη2
=

d2h

dη2
= 0 at η = 1. (6.25)

The temperature in the interior of the vessel φc(θ), the velocity correction Uo(θ), and the

boundary-layer thickness δ(θ) are to be computed by integration of (6.8) written in the form

dφc
dθ

= − Λ sin2(θ)eφc

2δ
(
φc sin(θ)δ2

∫ 1
0 fdη + Uo

∫ 1
0 hdη

) , (6.26)

112



together with the momentum and energy equations (6.20) and (6.21) written with use made of the

expressions ∫ ∞
0

U2dy = φ2
c sin2(θ) δ5

∫ 1

0
f2dη

+ 2Uoφc sin(θ) δ3

∫ 1

0
fhdη + U2

o δ

∫ 1

0
h2dη (6.27)∫ ∞

0
U(φc − φ)dy = φ2

c sin(θ) δ3

∫ 1

0
f(1− k)dη

+ Uoφc δ

∫ 1

0
h(1− k)dη (6.28)∫ ∞

0
(φc − φ)dy = φc δ

∫ 1

0
(1− k)dη (6.29)∫ ∞

0
Udy = φc sin(θ) δ3

∫ 1

0
fdη + Uo δ

∫ 1

0
hdη (6.30)

∂U

∂y

∣∣∣∣
y=0

= φc sin(θ) δ
df

dη

∣∣∣∣
η=0

+
Uo
δ

dh

dη

∣∣∣∣
η=0

(6.31)

∂φ

∂y

∣∣∣∣
y=0

=
φc
δ

dk

dη

∣∣∣∣
η=0

. (6.32)

The equations were integrated by marching in θ. The integration is started with the initial values

φ = φmax, Uo = CU φ
1/2
maxθ, δ = Cδ φ

−1/4
max at θ � 1, (6.33)

consistent with the previously identified self-similar solution (6.14). The constant factors CU and

Cδ are determined from the system of algebraic equations obtained by substituting (6.33) into (6.20)

and (6.21), yielding the values CU = 0.021683 and Cδ = 4.05827 for the shape functions (6.24).

The condition φc(π) = 0 is used to determine the value of Λ corresponding to a given value of φmax,

producing the results shown in Fig. 6.7.

The lower plot in Fig. 6.7 represents typical profiles of δ, Uo, and φc for a large value of

φmax (e.g., φmax = 7 in the computation shown in the figure). Although the model (6.22) allows

for the presence of backflow in the boundary layer, as would occur if Uo reaches sufficiently large

negative values, such recirculating flow conditions were not achieved for any φmax; instead, Uo was

seen to remain always positive for 0 ≤ θ ≤ π. The nonzero value of Uo as θ → π, indicative of

boundary-layer collision, can be attributed to the inherent limitations of this approximate model.

As in Ito’s analysis (Ito, 1969), the thickness of the mixing layer δ(θ) shows a non-monotonic

behavior for increasing θ and eventually diverges as θ → π, the latter boundary-layer thickening

being consistent with the self-similar scaling δ ∼ (π − θ)−2/5 identified earlier for π − θ � 1.

The upper plot in Fig. 6.7 shows the reduced explosion curve (i.e., the variation of the

reduced Damköhler number Λ with φmax). The integral method is not capable of describing the
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Figure 6.7: Results of numerical integrations of (6.20), (6.21) and (6.26) for the shape functions
given in (6.24).

bending bifurcation; it yields instead a value of Λ that approaches a limiting value Λ = Λc as

φmax →∞, seen in the upper plot. The vertical asymptote, rather than the turning point, identifies

in this case the explosion limit, thereby providing the leading-order prediction

Dac = ΛcRa1/4. (6.34)

For the polynomials (6.24) used in Fig. 6.7 the critical Damköhler number is found to correspond

to Λc ' 0.655. Although a different selection of shape functions k(η), f(η), and h(η) results in a

different value of Λc, the associated changes were verified in additional computations to be only

moderate. For instance, use of third-order polynomials for k and f and a fourth-order polynomial

for h (satisfying (6.23) and having vanishing first-order derivatives at η = 1) yields instead the value

Λc = 0.616. Since (6.34) can be expected to have relative errors of order Ra−1/4 (that being the

order of magnitude of the terms left out in the leading-order asymptotic description), the differences

in Λc, on the order of 5%, are not very important for practical purposes, in that up to large values

of Ra ∼ 106 they lead to differences in predictions of Dac that are comparable to or smaller than
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the inherent errors of the leading-order result (6.34).

The asymptotic prediction (6.34) evaluated with Λc = 0.655 is compared in the middle plot

of Fig. 6.1 with the critical Damköhler numbers computed numerically from integration of (4.4)–

(4.6). As can be seen, the accuracy of the prediction is truly remarkable. The relative departures

between the two curves remain of order Ra−1/4, consistent with the relative errors present in the

leading-order development leading to (6.34). Achievement of this degree of success in numerical

accuracy with a von-Karman integral method is perhaps somewhat surprising.

6.3 Concluding remarks

Simplified equations, derived for the slowly reacting mode of combustion and accounting

for buoyancy-induced motion as well as for the time variations of the pressure in the confined

environment of the vessel, provide a useful basis for developing insights into fluid dynamics and

heat-transfer mechanisms associated with this ignition process. Numerical integrations of the tran-

sient problem successfully describe the development of the thermal explosion. The integrations

indicate that, despite the complex dynamics arising during the transient stage, the predictions of

explosion limits derived from Frank-Kamenetskii’s criterion (i.e., based on the existence of steady

solutions with negligible fuel consumption) remain accurate over the whole range of Rayleigh num-

bers explored in this Chapter.

In the limit Ra � 1 appropriate scalings can be identified for deriving predictions of

critical explosion conditions when the flow is dominated by buoyancy. A characteristic structure

emerges, including an inviscid convective-reactive core of slowly rising hot fluid, surrounded by

a descending near-wall boundary-layer flow driven by the negative buoyancy associated with the

cooler walls. The presence of backflow in the boundary layer gives this boundary-layer problem

an elliptic character, resulting in an appreciably complicated boundary-value problem which needs

results of analyses of special, simpler boundary layers at the top and bottom of the vessel for de-

termining the appropriate boundary condition for the computation of the boundary layer along the

curved walls. An approximate solution method, employing an integral form of the boundary-layer

equations, combined with presumed shapes for the temperature and velocity profiles, circumvents

computational difficulties that are encountered in attempts to integrate numerically the elliptic

boundary-value problem that arises for the boundary layer on the curved walls. The most signif-

icant result of the asymptotic analysis for Ra � 1 is the leading-order prediction (6.34) of the

critical Damköhler number for explosion as a function of the Rayleigh number. The value of the

proportionality factor Λc ' 0.655, obtained from the approximate analysis appears to be surpris-

ingly accurate, as may be seen in the comparisons of critical explosion conditions shown in the
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middle plot of Fig. 6.1.

This work serves to extend the Frank-Kamentskii theory of thermal explosions of ideal

gas mixtures in rigid spherical vessels throughout the entire range of conditions over which buoy-

ancy produces interior flows that remain laminar. The associated fluid-flow influences on explosion

conditions become important only for Rayleigh numbers above a few hundred, and transitions to

turbulent flow occur at Rayleigh numbers of a few million, whence the current results may be useful

over about four orders of magnitude of the Rayleigh number. Both numerical and conceptual chal-

lenges were encountered, but the correct scalings for laminar flows at large Rayleigh numbers were

established, along with the determination of reasonably accurate values for associated constants

that appear in the scaling relations. Future studies for large Rayleigh numbers may address pecu-

liar geometrical effects that are known to be encountered in vessels of different shapes (as indicated

in the introduction of Chapter 4), or turbulent flows at higher Rayleigh numbers.

Chapter 6, in part, has been published in the Internationl Journal of Heat and Mass

Transfer, “Thermal explosions in spherical vessels at large Rayleigh numbers”, by I. Iglesias, D.

Moreno-Boza, A. L. Sánchez, A. Liñán and F. A. Williams (2017) 115, 1042-1053. The dissertation

author is the primary investigator in this publication.

Future prospects

This section serves as a brief description of relevant topics in connection with what has

been presented throughout Part II that can be subject of future investigation.

For instance, it is important to add that, although for simplicity our analysis was restricted

to spherical vessels, the treatment can be generalized to non-symmetrical vessels, using (3.22)

and (3.23) along with the linearized form of the continuity and momentum equations, with the

latter including a term associated with the spatial variations of the pressure, which although small

compared with po/β, play an important role in establishing the gas motion. It is also worth

mentioning that the analyses presented in this dissertation can be readily extended to determine

explosion lengths and critical explosion radii of pipes carrying combustible gaseous mixtures, a

problem analyzed later in Appendix A.

On the other hand, while the present analysis pertains only to the classical one-step Arrhe-

nius heat-release description underlying the FK theory. Extensions of the early FK theory incorpo-

rating realistic chemistry in descriptions of hydrogen-oxygen systems, have been shown to predict

explosion conditions in spherical vessels in excellent agreement with experiments (Sánchez et al.,

2014), including critical pressures along the so-called third explosion limit (Sánchez & Williams,

2014). Possible influences of buoyant fluid motion on the resulting critical ignition conditions have
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not been addressed. Corrections accounting for buoyancy effects could be incorporated in these

analyses following the general procedure used here, accounting for the significant differences in the

chemical-kinetic descriptions. In the absence of such studies, it remains unclear how significant the

influences of the buoyant fluid motion will be on ignition in systems with real chemical kinetics,

although it may be conjectured that the influence on the third limit, which retains a thermal-

explosion character, may be comparable with what has been found here, while for the second limit,

the branched-chain explosion, the influence may be larger.

In addition to the future worthwhile investigations of different fluid-mechanic and chemical-

kinetic aspects of problems of this kind, as indicated above, it would also be of interest to address

different geometrical configurations, other than the sphere. For example, the problem that has been

analyzed by the present expansion procedure has not yet been considered in cylindrical geometry.

Related ignition experiments have, in fact, been performed with gases contained in long cylindrical

tubes, and an analysis of the present type may well be even simpler in cylindrical coordinates.

Concerning the idealized reactive slab bounded by two isothermal infinite horizontal walls, which

has been considered in a number of previous theoretical analyses (Jones, 1973; Kolesnikov, 1992;

Joulin et al., 1996; Kagan et al., 1997), the resulting FK vortices could be investigated for different

convective cells, including also rectangular and hexagonal shapes. These are just some of the many

possible future investigations along these lines that could be revealing.

Future studies for large Rayleigh numbers may address peculiar geometrical effects that

are known to be encountered in vessels of different shapes (as indicated in the introduction of

Chapter 4), or turbulent flows at higher Rayleigh numbers. As indicated previously in the main

text, our analysis may be limited for values of Ra for which the flow is inherently turbulent.

Therefore, it is of practical interest the assessment of the range of Rayleigh numbers for which the

predictions on the critical conditions for thermal explosion remain accurate.
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Appendix A

Large-activation-energy analysis of

gaseous reacting flow in pipes

In the last Chapter of this dissertation, the exothermic reaction of an initially cold gaseous

mixture flowing with a moderately large Reynolds number along a cylindrical pipe with constant

wall temperature is analyzed. This work emerges as an extension of Frank-Kamenetskii’s theory

of thermal explosions, presented in Chapter 3, applied to a different geometry. An overall irre-

versible reaction with an Arrhenius rate having a large activation energy is used for the chemistry

description. The flow is chemically frozen in the cold entrance region, where the velocity evolves

towards the Poiseuille profile as the gas temperature increases to reach the wall value, ushering

in a reaction stage during which the rate of heat transfer from the wall changes from positive to

negative. The subsequent downstream evolution of the flow depends critically on the competition

between the heat released by the chemical reaction and the heat-conduction losses to the wall,

as measured by the Damköhler number δ, first introduced by Frank-Kamenetskii in his seminal

analysis of thermal explosions in cylindrical vessels. For values of δ below the critical value δ = 2

corresponding to the quasi-steady explosion limit, heat losses to the wall keep the gas temperature

close to the wall value, so that the chemical reaction occurs slowly along the pipe in a flameless

mode, which is analyzed to give an implicit expression for the streamwise reactant distribution. By

way of contrast, for δ > 2 the slow reaction rates occur only in an initial ignition region, which

ends abruptly when very large reaction rates cause a temperature runaway, or thermal explosion,

at a well-defined location, whose computation must account for the temperature found at the end

of the entrance region. The predictions of the large-activation-energy analyses, including ignition

distances for δ > 2 and flameless reactant consumption rates for δ ≤ 2, show good agreement with

numerical computations of the reactive pipe flow for finite values of the activation energy.
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A.1 Introduction

The safe storage and transportation of reactant gas mixtures requires conditions that en-

sure a negligibly small reaction rate, achieved in storage vessels and transport pipes by lowering suffi-

ciently the wall temperature. The seminal investigation of this problem is due to Frank-Kamenetskii

(FK) (Frank-Kamenetskii, 1939), who studied a reacting mixture undergoing an exothermic chem-

ical reaction in a centrally symmetric closed vessel with constant wall temperature. His analysis

employed an overall irreversible reaction with an Arrhenius rate having a large activation energy,

an appropriate model to represent the strong temperature dependence of the rate-controlling oxida-

tion reactions in typical fuel-air mixtures (Frank-Kamenetskii, 1955; Zel’dovich et al., 1985). The

resulting gas-temperature distribution is seen to depend on the competition of the heat released

by the chemical reaction and the heat losses to the wall, characterized by the Damköhler number

δ, defined as the ratio of the conduction time across the vessel to the relevant characteristic time

(i.e. the homogeneous thermal-explosion time at constant pressure) evaluated at the wall temper-

ature (Zel’dovich et al., 1985). A slowly reacting flameless mode of combustion is found for values

of δ below a critical value, when the heat losses to the wall are able to limit the temperature rise,

in such a way that the reaction rate does not change in order of magnitude from its near-wall

value. Since the overall heat-release rate is proportional to the volume of reacting gas while the

heat-loss rate to the wall is proportional to the wall surface, for a given wall temperature there

exists a limiting size, corresponding to a critical value of δ, above which a slow reaction cannot

be maintained, and is replaced by a localized temperature runaway that leads to the formation

of a flame (Dold, 1985, 1989). More recent analyses of slowly reacting mixtures in closed vessels

have addressed additional aspects of the problem, including the effects of pressure increase on the

ignition time (Liñán et al., 2016) and of buoyancy-induced motion on explosion limits (Kagan et al.,

1997; Liu et al., 2008, 2010; Sánchez et al., 2016).

The results of the FK analysis find direct application in connection with the safety storage

of reactant mixtures, defining critical sizes for thermal explosions in chemically reacting systems. A

related problem addressed here is that of reactant transportation in pipes, analyzed previously in a

simplified configuration (Barenblatt et al., 1997). Specifically, we consider below the discharge of a

reactant mixture stored in a cold vessel at temperature T ′I through a pipe whose wall temperature is

kept at a constant temperature T ′o > T ′I with T ′o−T ′I ∼ T ′o. The Damköhler number δ introduced by

Frank-Kamenetskii for the analysis of thermal explosions in cylindrical vessels emerges as the main

governing parameter (Barenblatt et al., 1997). Our analysis identifies the existence of an entrance

region with negligible chemical reaction, where the gas temperature increases from T ′I towards T ′o

by heat conduction from the wall, immediately followed by a region of incipient chemical reaction
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that governs the transition towards a persistent slowly reacting mode of combustion for δ ≤ 2 or the

development of a thermal runaway for δ > 2. Ignition events are analyzed to determine the explosion

distance for δ > 2, a computation that requires consideration of the upstream chemically frozen

region of temperature accommodation. Specific attention is given to near-critical conditions with

delayed ignition events. The development includes also an analytic description of the slowly reacting

mode of combustion established downstream the transition region in subcritical configurations with

δ ≤ 2.

A.2 Formulation

Consider a gaseous reactant mixture with initial temperature, density, and reactant mass

fraction T ′I , ρ
′
I , and Yo discharging from a storage vessel along a pipe of radius a whose wall

temperature is kept at a fixed value T ′o > T ′I . As in Frank-Kamenetskii’s work (Frank-Kamenetskii,

1939), our analysis considers an overall Arrhenius reaction, with the mass of reactant consumed

per unit volume per unit time ṁ given by

ṁ/ρ′ = k(T ′)Yr = B exp[−E/(RT ′)]Yr, (A.1)

where ρ′, T ′, and Yr represent the density, temperature and reactant mass fraction. The temperature-

dependent reaction-rate constant

k = B exp[−E/(RT ′)] = B exp[−E/(RT ′o)] exp[β(T ′ − T ′o)/T ′], (A.2)

includes a frequency factor B and an activation energy E, with R denoting the universal gas

constant. The characteristic activation temperature E/R is assumed to be large compared with

the wall temperature, resulting in a temperature-sensitive rate constant that changes from its wall

value B exp[−E/(RT ′o)] by a factor of order unity when T ′ − T ′o ∼ RT ′2o /E = T ′o/β � T ′o, where

RT ′2o /E is the so-called FK temperature and β = E/(RT ′o) � 1 is the nondimensional activation

energy. A direct consequence of this strong temperature dependence is that, for initially cold

mixtures with T ′o − T ′I ∼ T ′o, the case considered here, the chemical reaction is effectively frozen in

the storage vessel.

In this overall-reaction model the heat-release rate of the reaction per unit volume is

given by qṁ, where q denotes the amount of heat released per unit mass of reactant consumed.

Correspondingly, the time te needed for the heat-release rate of the chemical reaction—evaluated

at T ′o with the initial reactant mass fraction Yo—to increase the enthalpy by an amount cpT
′
o/β,

proportional to the FK temperature RT ′2o /E, is given by

te =
1

αβB exp[−E/(RT ′o)]
, (A.3)
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where α = (qYo)/(cpT
′
o) is the dimensionless temperature rise, based on T ′o, for constant-pressure

adiabatic combustion, with cp representing the specific heat at constant pressure, taken as constant

for simplicity. In relevant combustion applications the parameter α takes values that are of the order

of, although typically larger than, unity. The chemical time te defined in (A.3) can be compared

with the characteristic heat-conduction time across the pipe

tc = a2/DT , (A.4)

where DT is the thermal diffusivity evaluated at T ′o, to define the FK parameter

δ = tc/te = (a2/DT )αβB exp[−E/(RT ′o)], (A.5)

a Damköhler number characterizing the slowly reacting mode of combustion of enclosed reac-

tant mixtures, with the value δ = 2 identifying the explosion limit in cylindrical vessels (Frank-

Kamenetskii, 1939, 1955; Zel’dovich et al., 1985).

The discharge is assumed to occur at low Mach numbers, resulting in spatial pressure

differences in the pipe that are small compared with the vessel pressure, so that the equation of

state can be written in the simplified form ρ′T ′ = ρ′IT
′
I . A convenient characteristic value for the

streamwise flow velocity U = G/(ρ′oπa
2) can be defined from the known mass flow rate G by using

the density ρ′o = ρ′IT
′
I/T

′
o evaluated at T ′ = T ′o. This velocity defines the Peclet number of the pipe

flow Pe = Ua/DT , comparable in magnitude to the associated Reynolds number Re = Pe/Pr ,

with Pr denoting the order-unity Prandtl number of the gaseous mixture. The following analysis

pertains to configurations with moderately large values of the Reynolds number Re ∼ Pe in the

range 10 <∼ Re <∼ 2000, for which the flow in the pipe is stable and slender, with a characteristic

streamwise development length ` = Pe a much larger than the pipe radius a. The resulting steady

laminar flow can be analyzed in the boundary-layer approximation by integrating

∂

∂x
(ρu) +

1

r

∂

∂r
(rρv) = 0 (A.6)

ρu
∂u

∂x
+ ρv

∂u

∂r
= −Pl(x) +

Pr

r

∂

∂r

(
rT σ

∂u

∂r

)
(A.7)

ρu
∂T

∂x
+ ρv

∂T

∂r
=

1

r

∂

∂r

(
rT σ

∂T

∂r

)
+
δ

β
ρY exp[β(T − 1)/T ] (A.8)

ρu
∂Y

∂x
+ ρv

∂Y

∂r
=

1

Le r

∂

∂r

(
rT σ

∂Y

∂r

)
− δ

αβ
ρY exp[β(T − 1)/T ] (A.9)

for x > 0 and 0 < r < 1 supplemented with the equation of state

ρT = 1 (A.10)

and subject to the initial conditions

x = 0 : u− TI = T − TI = Y − 1 = 0 (A.11)
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at the pipe entrance, and the boundary conditions

∂u

∂r
= v =

∂T

∂r
=
∂Y

∂r
= 0 at r = 0 (A.12)

and

u = v = T − 1 =
∂Y

∂r
= 0 at r = 1 (A.13)

for x > 0, as corresponds to axially symmetric flow bounded by a non-permeable constant-

temperature wall with non-slip flow.

In the formulation the axial and radial coordinates x′ and r′ are scaled with ` = Pe a and a

according to x = x′/` and r = r′/a, while their associated velocity components u′ and v′ are scaled

with U and DT /a to give u = u′/U and v = v′/(DT /a), respectively. With the scale selected for the

axial velocity, its initial uniform value u′I = G/(ρ′Iπa
2) becomes u′I/U = ρ′o/ρ

′
I = TI when expressed

in dimensionless form, as shown in (A.11). The reactant mass fraction Yr is normalized with its

initial value Yo to give Y = Yr/Yo, and the temperature and density are scaled with T ′o and ρ′o to

give the nondimensional variables T = T ′/T ′o and ρ = ρ′/ρ′o. The unknown streamwise pressure

gradient Pl(x), to be determined as part of the integration, has been scaled with its characteristic

value ρ′oU
2/`. Its presence in pipe flow ensures mass-flux conservation. Besides the Prandtl number

Pr , the Lewis number Le, and the assumed exponent σ for the power-law temperature dependence

of the transport coefficients, the problem depends on four nondimensional parameters, namely,

the activation energy β = E/(RT ′o), the heat-release parameter α = (qYo)/(cpT
′
o), the Damköhler

number δ, and the initial-to-wall temperature ratio TI = T ′I/T
′
o < 1. The analysis below considers

the simplified solution that arises for moderately large values of β with α ∼ 1, δ ∼ 1, and 1−TI ∼ 1.

A.3 Sample numerical results

Figure A.1 shows results of numerical integrations of (A.6)–(A.13) for σ = 0.7, Pr = 0.7,

Le = 1.0, β = 10, α = 5, and TI = 0.5. A standard Crank-Nicholson method (Pletcher et al.,

2012) was used to advance the fluid variables in the streamwise direction whereas a collocation

technique (Driscoll et al., 2014) was used for the radial discretization of the corresponding operators

at each axial station. For stability, a modified backward Euler method was used for the initial steps.

Typical values of the step size were ∆x = 10−4 for the initial steps and ∆x = 10−3 after 4 or 5

steps. Computations with both finer and coarser grids were performed to ensure that the results

were independent of the grid size.

The plots in Fig. A.1 show the evolution along the axis of the temperature T (x, 0), reactant

mass fraction Y (x, 0), and reduced reaction rate

ω(x, 0) = Y exp[β(T − 1)/T ]
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Figure A.1: The variation with axial distance of T (x, 0), Y (x, 0), and ω(x, 0) = Y exp[β(T − 1)/T ]
obtained by numerical integration of (A.6)–(A.13) with σ = 0.7, Pr = 0.7, Le = 1.0, β = 10, α = 5,
and TI = 0.5 for δ = 1.0 (squares) and δ = 5.0 (plain curves); the bottom plots show the axial
velocity profiles at five different locations x = (0, 0.5, 1.0, 1.5, 2.0). The cross on the temperature
curve for δ = 5.0 indicates the location of the inflection point, used in the numerical integrations
to characterize the ignition distance.

for two different values of δ = (1.0, 5.0), along with the corresponding radial profiles of axial velocity

at different streamwise locations. The two Damköhler numbers are selected as representative of

subcritical and supercritical ignition events. In both cases, the integrations reveal the existence

of an initial chemically frozen region, with exponentially small values of ω � 1, where the gas

temperature increases as a result of the heat transferred from the wall, while the reactant mass

125



fraction does not change significantly. Because of the associated decrease in density, the velocity

is seen to increase as its profile evolves from the initial uniform distribution u = TI towards a

parabolic distribution u = 2(1− r2).

While the initial evolution is nearly identical for both values of δ, the subsequent down-

stream evolution is very different. Thus, for δ = 1.0 the reaction rate ω increases to a maximum

value of order unity, leading to the establishment of a slowly reacting mode of combustion with

T (x, 0)−1 ∼ β−1 and small reactant consumption rates ω/(αβ) ∼ 1/(αβ)� 1. By way of contrast,

for δ = 5, the reaction rate continues to increase to very large values, leading to a rapid temper-

ature increase at a well defined ignition location x ' 1.32, where the reactant is rapidly depleted

as the temperature reaches its peak value. In the equilibrium region found farther downstream the

temperature decreases as a consequence of heat losses to the wall, eventually approaching the wall

value T = 1 for x � 1. Following the criterion used in ignition studies in homogeneous systems,

the inflection point of the curve T (x, 0), marked with a cross in Fig. A.1, can be used as a defini-

tion of the ignition distance in these computations; other criteria, such as the location of the peak

temperature, would give essentially the same results in the limit β � 1.

A.4 The chemically frozen entrance region

As discussed above, the flow in the tube includes an entrance development region of

characteristic length ` = Pe a, corresponding to values of x of order unity, where the velocity

profile evolves from an initial uniform profile u = TI to a Poiseuille profile u = 2(1− r2) while the

temperature evolves from the initial value T = TI < 1 to the wall value T = 1. As a consequence of

the exponential temperature dependence of the reaction rate discussed earlier, the chemical reaction

can be entirely neglected as long as 1− T � β−1, so that the reactant mass fraction remains equal

to its initial value Y = 1 in this entrance region, as can be seen by integrating the chemically frozen

version of (A.9) with initial condition Y = 1 at x = 0 and boundary conditions ∂Y/∂r = 0 at r = 0

and r = 1. The associated distributions of u and T are obtained by integration of (A.6)–(A.8) with

the initial and boundary conditions given in (A.11)–(A.13); the chemical reaction being discarded

in (A.8). The solution depends on the initial temperature TI and on the transport description

through the values of σ and Pr , with the realistic values σ = 0.7 and Pr = 0.7 selected in the

integrations reported below, as is appropriate for fuel-air gas mixtures (Rosner, 2012).

The resulting chemically frozen, low-Mach-number laminar gas flow has been treated in the

past (Kays & Nicoll, 1963; Davenport & Leppert, 1965; Worsøe-Schmidt & Leppert, 1965) to assess

effects of variable gas properties on the friction coefficient and heat-transfer rate, including recent

efforts to characterize the solution for extreme values of TI (Higuera, 2011). These previous analyses,
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which extended to variable density the classical constant-density entry–flow results (Van Dyke,

1964), did not consider specifically the asymptotic behavior of the solution for values of xmoderately

larger than unity, where the temperature differences from the wall value and of the velocity from

the Poiseuille distribution become small. This asymptotic behavior is needed in reacting flows for

the analysis of the initiation of the reaction as the temperature increases to near-wall values such

that 1 − T ∼ β−1. In this region of incipient chemical reaction, located downstream from the

entrance region, the heat-transfer rate from the wall changes from positive to negative as a result of

the chemical heat release. As seen in Fig. A.1, depending on the conditions, the temperature either

continues to increase, leading to a thermal runaway at a finite distance downstream, or reaches a

maximum value T − 1 ∼ β−1 corresponding to a quasisteady balance between the heat released by

the chemical reaction and the heat losses to the walls.

The asymptotic temperature distribution for the non-reacting gaseous pipe flow at x� 1

is given by

T − 1 = −C exp(−λ2
1x/2) exp(−λ1r

2/2)L(λ1−2)/4(λ1r
2), (A.14)

as can be obtained by using separation of variables in

2(1− r2)
∂

∂x
(T − 1) =

1

r

∂

∂r

[
r
∂

∂r
(T − 1)

]
, (A.15)

derived by linearizing (A.8) for T − 1 � 1 with u ' 2(1 − r2) and v ' 0. Here L(λ1−2)/4 is the

Laguerre polynomial of order (λ1 − 2)/4, with the value of λ1 = 2.704 determined as the smallest

root of the equation L(λ−2)/4(λ) = 0 associated with the condition T = 1 at r = 1. The factor C is

an unknown positive constant of order unity that must be obtained from the numerical integration

of the entrance flow, giving the results shown in Fig. A.2. The plot shows the variation with TI of C

and (2/λ2
1) lnC; the latter is to be employed later in evaluating the ignition distance through (A.24).

A.5 Slowly reacting flow

The exponential temperature decay (A.14) is modified as the chemical reaction begins

to have a significant effect, which occurs when the temperature drop from the wall value 1 − T
decreases to values of order β−1 across most of the pipe section. The condition 1 − T = β−1

evaluated with use made of the temperature drop along the axis 1−T (x, 0) = C exp(−λ2
1x/2) given

in (A.14) provides

xd = (2/λ2
1) ln(Cβ), (A.16)

as an expression for the downstream location xd where the reaction becomes important, marking

the end of the chemically frozen flow. The following region of incipient chemical reaction, where
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Figure A.2: The factor C for the asymptotic temperature distribution (A.14) found at the end
of the chemically frozen entrance region, obtained numerically by fitting (A.14) to the results
of integrations of (A.6)–(A.8) with the initial and boundary conditions given in (A.11)–(A.13)
and with the chemical reaction neglected in (A.8). The plot also shows the associated value of
(2/λ2

1) lnC = 0.274 lnC, which carries in (A.24) the dependence of the ignition distance on the
initial temperature.

T −1 ∼ u−2(1−r2) ∼ v ∼ ρ−1 ∼ β−1 � 1, can be described in terms of the translated coordinate

x̂ = x − xd and the rescaled temperature increment θ = β(T ′ − T ′o)/T ′o, reducing the problem to

the integration of

2(1− r2)
∂θ

∂x̂
=

1

r

∂

∂r

(
r
∂θ

∂r

)
+ Y δeθ (A.17)

2(1− r2)
∂Y

∂x̂
=

1

Le r

∂

∂r

(
r
∂Y

∂r

)
− 1

αβ
Y δeθ (A.18)

with initial conditions

θ + exp(−λ2
1x̂/2) exp(−λ1r

2/2)L(λ1−2)/4(λ1r
2) = Y − 1 = 0 as x̂→ −∞ (A.19)

and boundary conditions

∂θ

∂r
=
∂Y

∂r
= 0 at r = 0 and θ =

∂Y

∂r
= 0 at r = 1. (A.20)

The initial conditions for integration of (A.17) and (A.18), given in (A.19), are obtained by matching

with the solution found in the entrance region at intermediate distances 1� x� xd, corresponding

to large negative values of the translated coordinate x̂ = x− xd, represented by the limit x̂→ −∞
in (A.19). In particular, the initial temperature distribution is obtained by writing the temperature

profile (A.14) in terms of x̂ = x−xd with use made of (A.16). The Frank-Kamenetskii linearization
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exp[β(T − 1)/T ] = exp[θ/(1 + θ/β)] ' eθ has been employed in writing the reaction rate in (A.17)

and (A.18), as it is appropriate in the limit β � 1 with θ ∼ 1.

A.6 The first reaction stage

The analysis of the chemical reaction at distances x̂ = x − xd ∼ 1 determines whether

the solution undergoes a thermal runaway, as occurs for supercritical cases with δ > 2, or whether

the flow evolves into a quasisteady slow mode of combustion that persists farther downstream, as

occurs for δ ≤ 2. In this transition region x ∼ 1 with θ ∼ 1 the change in reactant mass fraction

is small, of order 1− Y ∼ (αβ)−1 � 1, as follows from (A.18), so that the problem reduces to the

integration of

2(1− r2)
∂θ

∂x̂
=

1

r

∂

∂r

(
r
∂θ

∂r

)
+ δeθ (A.21)

subject to the initial and boundary conditions given above in (A.19) and (A.20). Selected results

of computations are shown in Fig. A.3. In the integrations, a low-storage standard RKW3 method

(Spalart et al., 1991) was used for advancing in x̂ with a variable step size with minimum value ∆x̂ =

10−3. The pseudospectral technique (Driscoll et al., 2014) used previously in integrating (A.6)–

(A.13) was employed for the radial discretization of (A.21). The integration was initiated with the

temperature profile given in (A.19) evaluated at a selected negative value of x̂ and the results were

found to be independent of the selection for values of the initial location smaller than −1.

For subcritical cases with δ ≤ 2 the temperature evolves towards the steady distribution

θFK = 2 ln

{
2/(1 +

√
1− δ/2)

1 + (δ/2)[r/(1 +
√

1− δ/2)]2

}
(A.22)

corresponding to the cylindrical FK problem

1

r

d

dr

(
r

dθFK

dr

)
= −δ eθFK ,

dθFK

dr
(0) = θFK(1) = 0. (A.23)

The associated temperature along the axis θ(x̂, 0) is seen to approach θ(x̂, 0) = 2 ln[2/(1+
√

1− δ/2)]

for x� 1, with the limiting value θ(x̂, 0) = 2 ln 2 reached for the critical case δ = 2.

On the other hand, for δ > 2 the transition stage ends with a thermal runaway at a finite

downstream location x̂t = xt − xd ∼ 1. An interesting finding of the numerical integrations of the

ignition problem (A.21), illustrated in the transient histories on the left-hand side of Fig. A.3, is

that the thermal runaway occurs at the axis for values of δ in the range 2 < δ <∼ 6.68, whereas

for δ >∼ 6.68 the thermal runaway occurs in an increasingly thinner annular reacting layer at an

intermediate radius, not far from the wall, while the gas in the center is still cold. A similar behavior

was identified in (Liñán et al., 2016) in connection with the transient ignition history in spherical

containers.
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Figure A.3: The temperature evolution obtained by integration of (A.21) with the initial and
boundary conditions given in (A.19) and (A.20) for different values of δ, including the evolution
with distance of the temperature along the axis θ(x̂, 0) for subcritical and supercritical cases along
with selected temperature profiles for δ = 5 [x̂ = (0, 0.999, 4.999, 9.299, 9.678, 9.686, 9.687)] and
δ = 10 [x̂ = (0, 2.010, 4.826, 5.933, 6.028, 6.032, 6.033)].

The resulting thermal-runaway location x̂t, a decreasing function of δ, is shown in Fig. A.4.

The ignition distance computed here differs by a factor of order unity from that computed earlier

in (Barenblatt et al., 1997), where integrations of (A.21) were started with an initially uniform

gas temperature, equal to the wall value. The present analysis, accounting for the presence of the

reaction-free entry region, provides a prediction for the distance from the entrance of the pipe x′t

at which ignition occurs, given in nondimensional form xt = x′t/[G/(πρ
′
oDT )] by

xt = xd(TI , β) + x̂t(δ) = (2/λ2
1) lnC + (2/λ2

1) lnβ + x̂t, (A.24)

written with use made of (A.16). As can be seen, the value of xt results from the addition of three

separate terms that carry the influence of TI , β, and δ, respectively. The first and third terms are

given in Figs. A.2 and A.4, respectively, whereas the second term can be readily evaluated using

2/λ2
1 ' 0.274.
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Figure A.4: The variation with δ > 2 of the thermal-runaway distance x̂t = xt − xd, with the
dashed curve representing the near-critical asymptotic result (A.32).

A.7 Ignition for near-critical conditions δ − 2� 1

For 0 < δ − 2 � 1 the thermal runaway occurs at very large distances x̂t � 1. As can

be inferred from the results for δ = 2.01 shown on the right-hand side of Fig. A.3, for these near-

critical conditions the ignition history includes a relatively short initial period x̂ ∼ 1, where the

temperature increases to approach the critical FK profile θFK = 2 ln[2/(1 + r2)] corresponding to

δ = 2, followed by a long quasi-steady evolution for x̂ ∼ (δ− 2)−1/2 � 1 with θ− 2 ln[2/(1 + r2)] ∼
(δ−2)1/2 � 1 which ends with a thermal runaway. This second stage can be investigated in terms of

the asymptotically small parameter ε = δ/2−1 to determine the resulting value of x̂t ∼ ε−1/2 � 1.

The development begins by writing (A.21) in terms of the rescaled coordinate ξ = ε1/2x̂

and the off-equilibrium temperature departure θ − 2 ln[2/(1 + r2)] = ε1/2Θ(ξ, r) to give

2(1− r2)ε
∂Θ

∂ξ
=
ε1/2

r

∂

∂r

(
r
∂Θ

∂r

)
+

8

(1 + r2)2

[
(1 + ε)eε

1/2Θ − 1
]
. (A.25)

Introducing the expansion Θ = Θ1 + ε1/2Θ2 + · · · and collecting terms of order ε1/2 leads to

1

r

∂

∂r

(
r
∂Θ1

∂r

)
+

8Θ1

(1 + r2)2
= 0;

∂Θ1

∂r
= 0 at r = 0 and Θ1 = 0 at r = 1, (A.26)

which can be integrated to give

Θ1 = F (ξ)
1− r2

1 + r2
. (A.27)

The unknown function F (ξ), carrying the streamwise dependence of the off-equilibrium temperature

departure, can be obtained from the problem arising at order ε

1

r

∂

∂r

(
r
∂Θ2

∂r

)
+

8Θ2

(1 + r2)2
= Q(ξ, r);

∂Θ2

∂r
= 0 at r = 0 and Θ2 = 0 at r = 1, (A.28)
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where

Q = 2
(1− r2)2

1 + r2

dF

dξ
− 8

(1 + r2)2

[
1 +

1

2

(
1− r2

1 + r2

)2

F 2

]
. (A.29)

Existence of solutions to the inhomogeneous problem (A.28) requires that
∫ 1

0 Q(1−r2)r/(1+r2)dr =

0, providing the ordinary differential problem

1

2

dF

dξ
=

1 + (F/2)2

17− 12 ln 4
; F (0) = −∞, (A.30)

where the initial condition F (0) = −∞ follows from matching with the upstream region x̂ ∼ 1 of

rapid temperature increase. The solution

F = 2 tan

(
ξ

17− 12 ln 4
− π

2

)
(A.31)

diverges as ξ → ξt = (17− 12 ln 4)π, as corresponds to a thermal-runaway distance

x̂t = ε−1/2ξt =
(17− 12 ln 4)

√
2π

(δ − 2)1/2
' 1.62(δ − 2)−1/2. (A.32)

This asymptotic prediction is shown as a dashed curve in Fig. A.4.

As noted earlier in connection with the homogeneous ignition problem (Kassoy & Liñán,

1978), reactant consumption, not accounted for in the ignition equation (A.21), would necessarily

become significant in configurations with sufficiently small values of δ − 2, thereby modifying the

result (A.32) as well as the thermal explosion limiting condition δ = 2, with associated departures

δ − 2 that can be anticipated to be of order 1/(αβ)� 1 (Liñán et al., 2016).

A.8 Downstream flameless combustion for δ ≤ 2

For subcritical values of the Damköhler number δ ≤ 2 the temperature in the pipe evolves

towards the quasi-steady distribution (A.22) for moderately large values of x̂. Most of the reac-

tant consumption, negligibly small in the entrance and transition regions, occurs downstream, at

distances of order αβ`, such that the rescaled coordinate X = (x − xd)/(βα) is of order unity,

when (A.17) and (A.18) become

2

αβ
(1− r2)

∂θ

∂X
=

1

r

∂

∂r

(
r
∂θ

∂r

)
+ Y δeθ, (A.33)

2(1− r2)
∂Y

∂X
=

αβ

Le r

∂

∂r

(
r
∂Y

∂r

)
− Y δeθ, (A.34)

to be solved with the boundary conditions given earlier. Equation (A.34) indicates that during this

second stage transverse diffusion of the reactant is so fast that its mass fraction remains spatially
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uniform across the pipe at leading order, so that Y ' Ȳ (X) with errors of order 1/(αβ), while the

temperature evolves in a quasi-steady manner as dictated by

1

r

∂

∂r

(
r
∂θ

∂r

)
+ Ȳ δeθ = 0, (A.35)

the limiting form of (A.33) for βα� 1.

As can be inferred from (A.23), the solution to (A.35) subject to ∂θ/∂r = 0 at r = 0 and

θ = 0 at r = 1 is just given by

θ = 2 ln

{
2/(1 +

√
1− δ Ȳ /2)

1 + (δ Ȳ /2)[r/(1 +
√

1− δ Ȳ /2)]2

}
(A.36)

obtained by writing the FK temperature distribution (A.22) with δ replaced by the instantaneous

Damköhler number δ Ȳ . The evolution of Ȳ (X) is given by

dȲ

dX
= −2

∫ 1

0
δ Ȳ eθrdr, Ȳ (0) = 1, (A.37)

obtained by integrating (A.34) multiplied by r, with use made of the non-permeability condition

∂Y/∂r = 0 at r = 1. Since the energy balance is quasi-steady, the surface integral in (A.37),

representing the overall rate of reactant consumption across the pipe, is proportional to the rate of

heat transfer to the wall, as can be seen by using (A.35) to write (A.37) in the alternative form

1

2

dȲ

dX
=

∫ 1

0

∂

∂r

(
r
∂θ

∂r

)
dr =

(
∂θ

∂r

)
r=1

, Ȳ (0) = 1, (A.38)

involving the reduced heat-loss rate to the wall

−
(
∂θ

∂r

)
r=1

=
δȲ

1 +
√

1− δ Ȳ /2
(A.39)

evaluated with use made of (A.36). Substituting (A.39) into (A.38) and integrating the resulting

separable equation finally yields

δX =

(
1− δ

2

)1/2

−
(

1− δȲ

2

)1/2

− ln

[
1−

(
1− δȲ /2

)1/2
1− (1− δ/2)1/2

]
(A.40)

as an implicit representation for the reactant mass fraction as a function of the rescaled streamwise

distance X = (x− xd)/(αβ). The above expression applies for subcritical cases with δ ≤ 2.

A.9 Accuracy of the analytical predictions

The leading-order asymptotic analyses given above provide predictions of ignition dis-

tances for δ > 2 and of slow flameless reactant consumption for δ < 2 that apply strictly in the
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Figure A.5: The ignition distance for TI = 0.5 obtained with the inflection-point criterion from
numerical integrations of (A.6)–(A.13) for σ = 0.7, Pr = 0.7, Le = 1.0, and α = 5 (circles) and
evaluated with the asymptotic prediction (A.24) (solid lines). The upper plot shows the variation
of xt with β for δ = 5.0 while the lower plot shows the variation of xt with δ for β = 32.

limit β � 1. It is therefore worthwhile to test the accuracy of these predictions for large but

finite values of β by comparing the analytical results with numerical integrations of the starting

equations (A.6)–(A.13).

We begin by comparing in Fig. A.5 the ignition distance predicted by the expression (A.24)

with that obtained numerically, with the inflection-point criterion employed to give a precise def-

inition of xt in the computations. A first set of computations, shown in the upper plot, consider

increasing values of β for a fixed value of δ = 5. The accuracy of the asymptotic results is seen to

improve for increasing β, yielding corresponding relative errors that decrease in proportion to β−1,

as expected from the ordering of the corrections in the asymptotic description.

A second set of computations, for a fixed value of β = 32, considers ignition histories for

different values of δ. The results are shown in the bottom plot of Fig. A.5. As can be seen, the

accuracy of the prediction degrades as the ignition distance increases for smaller values of δ. The

observed departures are attributable to the effect of reactant consumption, neglected in our leading-
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Figure A.6: The solid curves represent the evolution of the temperature and reactant mass fraction
along the axis obtained by numerical integration of (A.6)–(A.13) with σ = 0.7, Pr = 0.7, Le = 1.0,
β = 10, α = 5, and TI = 0.5 for two different subcritical values of δ, whereas the dashed curves
are the predicted value of Ȳ , obtained by evaluating (A.40) with use made of X = (x − xd)/(βα)
and (A.16), and of the accompanying temperature along the axis, determined from (A.41).

order analysis, which becomes more noticeable for longer residence times, slowing down the reaction

rate and leading to values of xt that are larger than those predicted by (A.24). Incorporation of these

reactant-consumption effects in the asymptotic analysis would require consideration of corrections

of order β−1, following the methodology developed earlier for the homogeneous problem (Kassoy

& Liñán, 1978).

According to the asymptotic results, in the flameless mode of combustion established in

the pipe for δ ≤ 2 the resulting reactant mass fraction, uniform across the pipe, decreases slowly

with X = (x − xd)/(βα) as dictated by (A.40), whereas the temperature increment from the wall

value T − 1 ∼ β−1 follows the quasi-steady distribution (A.36), with a corresponding value at the

axis given by

T (x, 0) = 1 + 2β−1 ln

[
2

/(
1 +

√
1− δ Ȳ /2

)]
. (A.41)

These predictions are shown in Fig. A.6 along with numerical results for β = 10 and δ = (0.5, 1.0),

the latter shown as solid curves. As can be seen, the dashed curves representing the analytical

results fall on top of the solid curves from x ∼ 1 all the way to the reactant depletion region,

located at x ' 50 for δ = 1 and at x ' 100 for δ = 0.5. The degree of agreement achieved is
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truly remarkable, indicating that the leading-order results developed here are sufficiently accurate

to describe reactant consumption in flameless combustion in pipes for large but finite values of β.

A.10 Concluding remarks

The flow of an initially cold reactant mixture in a hot cylindrical pipe at moderately large

values of the Reynolds number has been analyzed in the limit of large activation energies. The

flow includes an entrance region where the gas temperature adapts to the wall value, followed by a

shorter region of incipient reaction where the flow evolves to give either a rapid thermal runaway

leading to the generation of a flame or a quasi-steady flameless mode of combustion that persists

downstream along the pipe. Appropriate rescaled problems have been formulated and analyzed in

the different regions, leading to predictions for the ignition distance in supercritical cases and for

the slow downstream reactant consumption encountered in subcritical cases.

While the present analysis pertains only to the classical one-step Arrhenius heat-release

description underlying the FK theory, future studies of flameless combustion in pipes incorporating

realistic chemistry are clearly worth pursuing, using for instance reduced chemical-kinetic mecha-

nisms, an approach that has been found to be useful in developing analytical predictions of explosion

limits for hydrogen-oxygen systems (Sánchez et al., 2014; Sánchez & Williams, 2014). Also, ex-

tensions of the analysis to address more general boundary conditions for the temperature at the

wall could be attempted, for instance by consideration of a Newtonian heat–exchange law, as done

previously for thermal explosions in closed vessels (Zel’dovich et al., 1985). Effects of buoyancy-

induced motion are also worth exploring, including modifications to the critical value δ = 2 arising

from enhanced heat-transfer rates, which could be described for small Rayleigh numbers using a

perturbation analysis similar to that performed in Chapter 5.

This chapter, in part, has been published in Combustion and Flame, “Large-activation-

energy analysis of gaseous reacting flow in pipes”, by D. Moreno-Boza, I. Iglesias and A. L. Sánchez

(2017) 178, 217-224. The dissertation author is the primary investigator in this publication.
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