
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Pedestrian Detection Based on Deep Learning

Permalink
https://escholarship.org/uc/item/9q04r9hg

Author
Chen, Li

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9q04r9hg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Pedestrian Detection Based on Deep Learning

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Electrical Engineering

by

Li Chen

September 2017

Thesis Committee:

Dr. Qi Zhu, Chairperson
Dr. Hyoseung Kim
Dr. Daniel Wong

Copyright by
Li Chen

2017

The Thesis of Li Chen is approved:

 Committee Chairperson

University of California, Riverside

 iv

Table of Content

Chapter 1 Introduction……………………………………………………………….. 1

1.1 Background……………………………………………………………………….1

1.2 Objective………………………………………………………………………….3

Chapter 2 Literature Overview……………………………………………………….4

 2.1 Pipeline for Pedestrian Detection………………………………………………....4

 2.2 Traditional Method……………………………………………………………….4

 2.21 Region Proposal Methods…………………………………………………..4

 2.22 Feature Extraction Methods………………………………………………...7

 2.23 Region Classification Methods……………………………………………10

 2.3 Deep Net Methods………………………………………………………………12

Chapter 3 Related Work……………………………………………………………..14

Chapter 4 Methodology………………………………………………………………18

 4.1 Framework………………………………………………………………………18

 4.11 Feature Extraction…………………………………………………………19

 4.12 Region Proposal…………………………………………………………...21

 4.13 Region Classification and Bounding Box Regression…………………….22

 4.2 Deep learning model…………………………………………………………….23

 4.21 Loss function………………………………………………………………24

 4.22 Labels……………………………………………………………………...25

Chapter 5 Implementations…………………………………………………………..28

 5.1 Deep Learning Framework and Dataset…………………………………………28

 v

 5.2 Data Training……………………………………………………………………29

 5.3 Data Validation……………………………………………………………….…30

 5.4 Data Testing……………………………………………………………………..31

 5.5 Evaluation methods……………………………………………………………...33

Chapter 6 Result Analysis……………………………………………………………36

 6.1 Training and Validation Loss……………………………………………………36

 6.2 Evaluation Results……………………………………………………………….37

 6.3 Comparison with Faster R-CNN………………………………………………...43

 6.4 Example of Pedestrian Detection Results……………………………………….43

Chapter 7 Conclusion………………………………………………………………...46

Chapter 8 Reference………………………………………………………………….47

 vi

List of Figures

Figure

1 Pedestrian detection pipeline……………………………………………………......4

2 From left to right: Original image, initial edge map used Structured Edges, edge

groups and example of correct bounding box [3] ……………………….……...…....5

3 Left is the original image and the right one is the image that used selective search

[7] …………..................…………………………………………………………….7

4 HOG Descriptor [8] ………………………………………………………………...7

5 (1) Overview of ACF Detector………………………………………………….......9

(2) Fast feature pyramids……………………………………………………...…….9

(3) Feature channel scaling….………………………………………………...…….9

6 Diagram that explains the Adaptive Boosting………………………...…...…...….10

7 SVM [11] ….………………………………………………………….…….……..11

8 Layers of convolution neural network.………………………………….…………12

9 Example of pedestrian detection based on CNN network……………………...….13

10 R-CNN [13] ………………………………………………………………….……14

11 A network structure with a spatial pyramid pooling layer [14] ……………….…..15

12 Fast R-CNN [15] …………………………………….………………………........16

13 Process of Faster R-CNN…………………………………………………….……16

14 Methods comparison among R-CNN, Fast R-CNN and Faster R-CNN ………….17

15 Framework of methodology……………………………………………….………18

16 Alexnet model [18] ……………………………………...………………………...21

 vii

17 RPN in Faster R-CNN [16] ……………………………………...………………..22

18 Training model………………………………………………….….…..…….……23

19 Smooth L1 loss function…………………………….……………………….….…25

20 IOU overlap between anchor box and ground-truth box, A represents

anchor box and G represents ground-truth box……………………………….….26

21 Underfitting, balanced and overfitting of the model [19] ………………………....30

22 The process of training data and validation data…………………………….…….31

23 samples [20] ….….…………………………….………………………………….33

24 Definition for true positive, false positive, false negative and true negative……...33

25 Evaluation Diagram from Wikipedia………………………...................................35

26 Comparison between training loss and validation loss…….……………………...36

27 Training precision, recall and F1 score…….……………………….……………..37

28 The precision, recall and F1 Score of validation data…….……………………….38

29 Miss rate of training and validation data…….……………………….……………39

30 Precision of 38 testing images…….……………………….………………………40

31 Recall of 38 testing images…….……………………….………………………….40

32 F1 Score of testing images…..….……………………….…………………………41

33 Miss rate of Testing images….….……………………….………………………...41

34 Images from validation data…….……………………….………………………...44

35 Images from daily life.. ….……………………….………………………………..45

 1

Chapter 1 Introduction

1.1 Background

According to the preliminary data from Governs Highway Safety Association, the

number of pedestrian fatalities in the United States increased significantly recent years.

About 6,000 pedestrian fatalities are estimated to have occurred in 2016, which could

make 2016 the first year in more than two decades with more than 6,000 pedestrian

deaths [1]. On the other hand, intelligence techniques, such as self-driving technology,

develop rapidly to benefit people’s daily life. Therefore, automotive safety has been an

important issue that people are concerned about. In order to guarantee their safety, the

accuracy of pedestrian detection is much more significant.

Besides the automotive safety, pedestrian detection has also been widely used in

many other applications, such as robotics and surveillance. These critical applications

attract great attention to the researchers. They come up with different methods to improve

the accuracy for pedestrian detection. From designing the algorithms for the base features

of pedestrians to improving the learning algorithms, researchers have made great

contributions to this area.

However, pedestrian detection is a challenging task due to its complexity background

as well as various body sizes and postures. Traditionally, researchers focus more on

capturing low-level feature extraction of pedestrians by manually designing some

algorithms. Such hand-crafted method has two steps to compute features, selecting the

region of interest in the image, like the corners, and then using a descriptor to calculate

the characteristics of the region. The descriptor can distinguish the characteristics from

 2

others. However, using hand-crafted method has to find a good trade-off between the

accuracy and efficiency of computation.

Recently, with the development of deep learning technology, researchers take

advantage of deep neural network, especially the convolution neural network to

automatically extract the features from original images. Instead of extracting the low-

level feature as traditional methods, deep learning method extracts high-level feature due

to deep layers of convolution neural network. For the first several layers, convolution

neural network just learns the low-level features, such as edge, dots and colors, while the

later layers will learn to recognize the general shape of the objects and get a high-level

representation of the image. So, deep learning method can discover multiple levels of

representation of the images through multiple layers and can be considered as feature

extractor. These features extracted by convolution neural network are directly learn from

the data, which are different from the traditional hand-crafted methods that the features

are designed by the experts.

Besides feature extraction for the pedestrians, classification and detection of the

region is also an important part that researchers are focus on. For hand-crafted methods,

typically it should combine with the classifiers to classify and detect the features that are

extracted before. For the deep learning methods, it can be trained from end-to-end,

extracting features from the original image and classifying the result from the last layer of

convolution neural network, which means that convolution neural network can be

considered as both feature extractor and classifier.

 3

1.2 Objectives

In order to get higher efficiency and accuracy on detecting pedestrians, utilize deep

learning method could be an effective way. In the previous work, researchers combine

the hand-crafted methods with deep neural network, leading good results of pedestrian

detection, but hand-crafted methods are still slower than the efficient network, since these

are implemented on CPU while the region-based CNN can be implemented on GPU.

 Recently, Faster RCNN, proposed by Shaoqing Ren[2] can purely use convolution

neural network to achieve the detection of objects without any hand-crafted method. The

result has shown that it has great performance on object detection. Pedestrian detection, a

specific category of objects, can also utilize part of network in Faster RCNN to

implement the process of detection in deep neural network.

 4

Chapter 2 Literature Overview

2.1 Pipeline for Pedestrian Detection

Pedestrian Detection has been an important research area in computer vision for

decades of years and researchers propose a lot of methods. Typically, they solve such

problem have similar pipeline: region proposals, feature extraction and region

classification.

Figure 1: pedestrian detection pipeline

At the first stage, regions of interest are selected in the images. Researchers come up

with some methods to select the regions as candidates, some of them include parts of

pedestrians, others do not.

Then the features of these candidate regions will be extracted. These features can be

considered as representations of the whole image and feed to the classifiers.

Finally, train the classifiers to recognize these features. These classifiers can

provide a binary flag to indicate whether pedestrians exist in the candidate regions.

2.2 Traditional Methods

2.21 Region Proposal Methods:

For region proposals, traditionally researchers use hand-crafted method, selecting the

region of interests in the image based on the low-level features. Sliding window is the

most common method that people use in the research. In general, the detected image is

Region Proposals Feature Extraction Region Detection

 5

fixed and the sliding window with different scales will traverse the whole image from the

top left to the bottom right, this method is simple but time-consuming.

EdgeBox [3] is another method based on sliding windows. Instead of traversing

every location of the image, this method accelerates the process of proposing the

candidate region. The authors use edges information to generate bounding box for the

objects. The main idea is that they observed the number of contours that totally enclosed

in the bounding box can indicate the probability that the bounding box includes objects.

The edges correspond to the boundaries of the objects and when all the pixels of the

edges are in the bounding box, the edges are thought to be wholly enclosed in it. Since

the number of the bounding box could be so large, the authors came up with a method

that they must score these candidates to select the best one. Firstly, they utilized the

Structured Edge detector proposed in [4] and [5] to get the initial edge-map. After that

they grouped the neighbor pixels with the similar orientations as the edge groups and

calculated the affinity for the neighboring groups, shown on the third image of the Figure

2. According to the affinity, the boundary and the score of the box can be calculated.

They used sliding window method to find the potential candidate bounding boxes with

different scale and aspect ratio. Figure 1 shows the process of edge box method that find

the example of correct bounding box.

Figure 2: from left to right: Original image, initial edge map used Structured Edges, edge groups and
example of correct bounding box [3].

 6

Selective search [6] is a hand-crafted method that based on super-pixels. It generally

groups the pixels of similar colors together and generates the bounding box around these

regions. There are three main design considerations they proposed in the paper: capture

all scales, diversification and fast to compute [6]. For capturing all scales, they proposed

the hierarchical grouping [6] that combined with segmentation method, generating all

locations with different scales and grouping these regions until the single region is left.

The way to group the regions is the following: 1) use the segmentation method to create

the initial image. 2) calculate the similarity between all these neighboring regions 3)

group the two most similar regions and calculate the new similarity between this new

region and its neighboring regions. 4) repeat the process until the whole image becomes a

single region. The steps from 2) to 4) are considered as greedy algorithm. For

diversification, the authors also proposed several strategies: complementary color space,

complementary similarity measures and complementary starting regions[6]. For the fast

to computer, the selective search generated fewer regions than the exhausted method that

generates all the regions from the bottom left to the bottom right in the image. In [7], the

authors utilized the selective search on Daimler Pedestrian Monocular Dataset. From the

Figure 3, we can see that the image including a pedestrian, cars, ground, trees and sky are

segmented and grouped by the similar pixels. The bounding boxes also take into grouping

these regions together. In a word, using selective search method can improve the

computational efficiency and reduce the cost of computation compared to exhausted

search method.

 7

 Figure 3: Left is the original image and the right one is the image that used selective search.[7]

2.22 Feature Extraction Methods

Histogram of Gradients (HOG) and Aggregate Channel Feature Algorithm (ACF) are

two typical methods to extract the features.

 For the Histogram of Gradients, it is a feature descriptor that covert the image to a

feature vector. The authors proposed that utilize the distribution of local intensity

gradient or the edge directions can represent the shape and appearance of the local objects

 Figure 4: HOG Descriptor [8].

 8

well, since the direction gradients of the edge or corners can be so large, they can contain

large information about the shape and appearance of objects in the image. In order to gain

a better performance on the images, gamma and color normalization should be

preprocessed at the very beginning. For the color image, turn it to the gray one. For the

image with uneven lightness, use the gamma correction can raise or reduce the contrast of

the whole image. Then, calculate the gradient of each pixel, getting the appearance of the

pedestrians. After that, accumulate histogram of direction gradients for each cell, where

the cell is divided by the fixed square sliding window. Because of the diversity

background and other conditions, the range of the gradient changing will be large,

normalize the features becomes so important. Set the 2x2 cell as one block and each

block has overlap, which helps the result of detection. Normalize each block and collect

the HOGs for all blocks over detection window. These HOGs are the features of the

image.

Aggregate Channel Feature Algorithm is proposed by Piotr Dollar in [9]. The main

idea is aggregating channel features with fast feature pyramids. As Figure 5(1) shows,

when given an image, we need to create the feature pyramids which are multi-scale

representations of the image and the features includes normalized gradient magnitude,

histogram of oriented gradients and LUV color channels. Instead of calculating channels

at each scale, fast feature pyramids just need to calculate only a sparse set of s, for

example, once for every eight scales. The pipeline is shown in Figure 5(2). The feature

channels of other scales are calculated by directly scaling based on the nearest scale

which we have calculated, the vision of the pipeline is shown in Figure 5(3).

 9

Figure 5(1). Overview of ACF detector [9]

Figure 5(2): Fast feature pyramids

Figure 5(3): Feature channel scaling[9]

 10

2.23 Region Classification Methods

Adaptive Boosting is an algorithm that can combine a sequence of other learning

algorithms into a weighted sum that represent a final output of the boosted classifier. The

process is similar as the Figure 6 shown below. It starts to assign the equal weights to

each observation. D1, the decision stump, represents the first learning algorithm, and we

can see that three plus are predicted wrong in box 1. Therefore, we assign the larger

weights to the wrong predicted plus in box and use a second learning algorithm

represented by D2, which is applied to predict these wrong observation correctly. Again,

in Box2, three observations (minus) are predicted wrong, so in Box3, three minus labels

are assigned with higher weights for the third learning algorithm to learn. Continue this

process, adding new algorithms until reach the accuracy limitation. Adaptive Boosting is

like the Box4 that combine all the learning algorithms to form a strong prediction that

perform better than any individual learning algorithm.

 Figure 6: Diagram that explains the Adaptive Boosting [10]

 11

Support Vehicle Machine is a supervised machine learning algorithm that mostly are

used for classification. As shown in Figure 7, numbers of data items are plotted with their

corresponding value in the two-dimensional space, if there are n number of features, it

should be plotted in n-dimensional space. The support vectors are the co-ordinates of

each observation. The main idea is to find the hyperplane to differentiate two different

classes. A good hyperplane should set the accuracy as the priority and it can separate the

classes better, choosing the one which can maximum the distance between the hyperplane

and the nearest data point. Besides the linear problem, SVM can also deal with non-linear

problem. It has a technique called kernel, which are some functions that can transform the

low dimensional of the input space to a higher dimensional space. It helps to convert the

non-separate problem to be a separate problem, classifying the different regions.

Figure 7: SVM [11]

 12

2.3 Deep Net Methods

Besides the traditional methods are illustrated before, deep net is a totally different

method to extract feature and classify the regions and it has been an important method in

recent research area due to its high efficiency.

For feature extraction, instead of designing feature by expert beforehand, deep neural

network can automatically extract the feature from the region proposals of the image,

especially, the convolutional neural network. It is a supervised learning network with

multiple layers, including the input layer, output layer and several hidden layers. Figure 8

shows the simple order of the layers in CNN network. After the image is fed into the

Figure 8: Layers of convolution neural network

input layer, it will enter the convolution layer. In convolution layer, the features of the

image can be extracted by the convolution operation and several feature maps would be

produced. These several feature maps correspond to different kinds of features in the

image. During the convolution operation, the weights and bias are learned by the neurons

and are adjusted through the backpropagation. These weights and bias are shared between

the same feature map, but for the different feature maps, the weights and bias are

different. In addition, each neuron in the feature map is related to the local receptive field

of the previous layers. Pooling layer is very useful to reduce the dimension of the

features, improving the efficiency of the parameter learning. It operates independently on

Input layer Convolution
layer Pooling layer Fully connected

layer

 13

each feature map and remains the most important value in the sliding window, for

example, the max operation. For fully connected layer, neurons are fully connected to all

neurons in the previous layers by the activations and these activations are computed by

the matrix multiplication plus a bias offset.

 In addition, CNN network can also classify the feature by itself by the end of fully

connected layer. Through calculating the loss function between the ground-truth labels

and predicted output value, adjust the weights and bias to minimum the loss value. After

training these parameters, the network can automatically classify the image whether

includes the objects. Figure 9 is an example that shows how the pedestrians in the image

can be detected through convolution neural network.

Figure 9: Example of pedestrian detection based on CNN network [12]

 14

Chapter 3 Related Work

3.1 Object Detection Methods

Recently, the algorithms for object detection have made great breakthrough on both

the computation efficiency and accuracy, especially, the three related algorithms: RCNN,

Fast R-CNN and Faster R-CNN, they are all based on deep learning. The difference is

that Faster RCNN can implement all the processes in deep nets: feature extraction, region

proposals and region classification as well as bounding box regression, other two still

need to implement some of the processes by hand-crafted. These differences are drawn in

Figure 14.

R-CNN is the earliest one among these three algorithms, proposed by Ross Girshick.

The authors used selective search to get the regions of interest in the image, resized these

regions and put these into the convolution neural network to extract features. At the end,

these features will be fed into the SVM classifier to judge what kind of objects they are.

The main disadvantage is that all the regions must feed into the CNN one by one which

will bring large computation costs. In addition, the input size of CNN is fixed and all the

region proposals must be resized. The process of R-CNN is shown in Figure 10.

Figure 10: R-CNN [13]

 15

Instead of feeding region proposals into CNN one by one, Fast R-CNN input the

whole image to convolution neural network. Firstly, it still uses the selective search to get

the region proposals in the original image. After getting the feature map through CNN,

the region proposals in the original image can be mapped on this feature map. Since the

size of the input images are different, we need to get the fixed size of the feature maps

from the original images and feed them into the fully-connected layer, the ROI pooling

layer is used to fix this problem, making each feature map has the same fix-length

representation after this layer, see the details in Figure 11. This layer performs max

pooling on each window of feature map and produces a small feature map of fixed size.

Finally, the outputs of the CNN are fed into two sibling layers: the classification layer

and bounding box regression layer. Therefore, the whole system can be trained from end

to end, except the selective search for region proposals. Figure 12 shows the whole

process that how Fast R-CNN works.

 Figure 11: A network structure with a spatial pyramid pooling layer [14]

 16

Figure 12: Fast R-CNN [15]

 Faster R-CNN, a much more efficient algorithm that combines all these processes in

the pure deep net without any hand-crafted methods. This algorithm composes two main

network, Region Proposal Network and Fast R-CNN. Region Proposal Network(RPN) is

used to propose the candidate regions, telling which module should be looked. The output

of RPN are used as the input to the Fast R-CNN, detecting what these candidate regions

are. Figure 13 illustrates the general flow path of Faster R-CNN.

Since Faster R-CNN improves accuracy on several multi-category benchmarks and

has high efficiency that totally implements the end-to-end training in the convolution

neural network, it also can be considered to apply for pedestrian detection, a specific part

of the objects.

Figure 13: Process of Faster R-CNN

RPN Fast
R-CNN

Original
images

 17

 R-CNN Fast R-CNN

 Figure 14: Methods comparison among R-CNN, Fast R-CNN and Faster R-CNN

region proposals
 (selective search)

feature extraction
(Deep Net)

classification Bounding Box
 (SVM) Regression

region proposals
 (selective search)

feature extraction
 classification +Bounding Box
 Regression

 (Deep Net)

region proposals
feature extraction

 classification + Bounding Box
Regression
(Deep Net)

 18

Chapter 4 Methodology

4.1 Framework

 Instead of using all the deep networks in Faster R-CNN, RPN can classify the

pedestrians and the performance will be downgrade if the following Fast R-CNN is

implemented, according to the result from [17]. When detecting the pedestrians, there are

two objects in total, the pedestrians and background. Utilize the RPN could detect

whether the candidate region is a pedestrian or not. Since pedestrian has its special shape,

some changes have been made when implement the RPN. The framework of the

methodology is shown in Figure 15.

Figure 15: Framework of methodology

 Feature Extraction
 (Different Features)

Raw image
(1* image_width *
image_height * 3)

Raw Feature
Extraction Net
(Pretrained model)

 Input Feature
(from last convolution
layer)

Region Proposal:
RPN

Convolution layer
 +
 Relu Layer

Convolution layer
 +
 Relu Layer

Convolution layer
 +
 Relu Layer

vre

Class
scores

Bbox_predict

score

Bbox

Region Classification
+

Bounding Box Regression

 19

 The left side in Figure 15 is to extract feature. Input any size of original image and

get the raw feature from the last convolution layer of the pretrained model. Here I use a

different pretrained model from the model in Faster R-CNN based on my training set, so

the extracted features are totally different. After that, use Region Proposal Network to get

the region proposals over the feature map. Since pedestrians have special shapes than the

general objects, I change the scales of the anchor boxes that can fit the shape of

pedestrians better. Basically, this architecture is implemented with a convolution and a

Rectified Linear Unit layer. The third part is used for region classification and bounding

box regression. This part will be trained and the parameters will learn to get a good

performance. In order to get a higher efficiency and train the parameters better, I add two

more layer modules and the output is fed to two sibling fully-connected layers: region

classification layer and bounding box regression layer. For classification layer, it will

predict the probability of each anchor box including a pedestrian. For bounding box

regression layer, it will predict four offset coordinates for each anchor box. Through the

backpropagation, the performance will be optimized via calculating the gradient of the

loss function, minimizing the loss and adjusting the parameters, like the weights and bias.

 Therefore, this methodology can also implement the pedestrian detections by using

the purely convolution neural network, rather than combine with other hand-crafted

methods.

4.11 Feature Extraction

 For feature extraction, use pretrained models is an efficient way since these models

have been trained on very large dataset and we can get a good starting point, saving more

 20

effort than training from scratch based on much less dataset. Therefore, select a good

pretrained model is very important. In my methodology, I choose the Alexnet model,

which has been trained under the ImageNet, with 15 million annotated images, over

22,000 categories. As we can see in Figure 16, it has 5 sharable convolutional layers,

max-pooling layers, dropout layers and 3 fully connected layers. For the first convolution

layer, applies 96 kernels with size of 11x 11 over the original image and then use pooling

and local response normalization layers. The Relu layer is used for the nonlinearity

function. Actually, it does a max operation, which is faster than other activations like

tanh activation, improving the efficiency of training. After that, 256 filters with size of 5

x 5 are applied over 96 feature maps, still followed by the pooling and local

normalization unit layers. Then applies 384 kernels with size of 3 x 3 over 256 feature

maps for the later three convolution layers and do the pooling layers. Finally, three fully

connected layers are applied.

 The reason to choose Alexnet model as the pretrained model is that the number of

layers is suitable for the training data that I choose. The number of images in my training

dataset is not large enough, once other complex model with more layers like VGG16, it

probably causes overfitting. In addition, Alexnet model has been trained with many

images from multiple object categories, including pedestrians.

 21

Figure 16: Alexnet model [18]

4.12 Region Proposal

 After getting the feature map from the last convolution layer of the pretrained model,

generating region proposals can be implemented over this feature map. Slide a 3 x3

window over the feature map and each sliding window is mapped to a 256-dimensional

feature. Instead of directly feeding the feature to the two sibling fully-connected layer,

these features are fed into the following two convolutions and Relu layers and then the

output of Relu layers will be fed into classification layers and bounding box regression

layer by the end.

At each sliding window, k region proposals are predicted. So for the classification

layer, it outputs 2k scores, indicating the probability of object or not object in each region

proposal. For the regression layer, there are 4k output since each region proposal is

associated with four coordinates. According to the general shapes of pedestrians, here k is

set to be 21. Heights are set as 45, 67.5, 101, 151, 227, 410, 738 and the ratio of width to

height is 0.25, 0.41 and 0.6, which generates 21 anchor boxes for each sliding window.

 22

Figure 17: RPN in Faster R-CNN [16]

 The way to get the corresponding region proposals on the original image is the

following. First, find the center point of the sliding window and map to the point on the

original image. Based on the point on the original image, draw the corresponding

different scales of the region proposals. So on the right side of Figure 17, these anchor

boxes are on the original image. This anchor-based method is built on a pyramid of

anchors, which is more efficient than the traditional methods, like the way based on

image or feature pyramids. The way based on the image or feature pyramids has to resize

the images or features at different scales, useful but time-consuming. The anchor-based

method only relies on the single scale of the image and uses sliding window of a single

size.

4.13 Region classification and bounding box regression

 Region classification and bounding box regression are implemented by the last two

layers: classification and bounding box regression layer respectively. Based on the given

 23

labels, the parameters in the convolution neural networks can learn by themselves to

minimize the loss function between the predicted value and true values.

4.2 Deep learning model

 2 x 21

 (256) (256) (256) (256)

 4 x 21

Figure 18: Training model

Figure 18 illustrates the diagram of training model. I trained the training dataset and

test dataset based on this model. The input of the model is the raw feature maps that

extracted by the pretrained Alexnet model. Actually, we get 256 feature maps totally, and

these feature maps are fed to the following three convolution and Relu layers. Each

Raw
Feature

Map

Conv
+

Relu

Conv
+

Relu

Conv
+

Relu

Clas

Reg

Class
labels

Regression
labels

Class
loss

Regression
loss

Total
loss

 24

convolution layer has the same kernel size which is 3 x3 on each feature map. Finally,

there are two fully-connected layers with two outputs from this model, one is the score

that indicates the probability of the anchor box has pedestrians or not. Since we have 21

anchor boxes for each sliding window and each one has two scores, the number of score

output is 21 x 2 which is 42. The other one is regression layer which has 4 x 21 outputs,

encoding the coordinates of 21 anchor boxes. By the end, we need to calculate the total

loss for these two outputs, using the backpropagation to adjust the weight of each neuron

and making the loss function become minimum.

4.21 Loss function

 As for the total loss function, it is composed with two parts: the loss function for the

classification plus the loss function for the bounding box regression.

𝐿 𝑝# , 	 𝑡# = 	 (
)*+,

𝐿-./ 𝑝#, 𝑝#∗# + 𝜆 (
)234

𝑝#∗𝐿567(𝑡#, 	𝑡#∗#) [16]

 When training RPN, the anchor box is assigned as positive or negative label based on

the IOU overlap with the ground-truth box. When the anchor box is positive, the ground-

truth label 𝑝#∗ is 1, where i is the index of the anchor box, and 𝑝#∗ is 0 when the anchor

box is negative. 𝑝# is predicted probability for the ith anchor box including a pedestrian.

ti is a vector with predicted parameterized coordinates for the predicted anchor boxes

while 𝑡#∗ is the ground-truth label for the positive anchor box.

 For classification loss 𝐿-./, it is the log loss over the two classes, pedestrian or not

pedestrian. For the regression layer, 𝐿567is the loss function.

 25

𝐿567(𝑡#, 	𝑡#∗) = 𝑠𝑚𝑜𝑜𝑡ℎ>((𝑡# − 	𝑡#∗) =
0.5𝑥D, 										𝑖𝑓	 𝑥 < 1
𝑥 − 0.5, 					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Figure 19. Smooth L1 loss function

The reason to choose the smooth L1 loss is that it is less sensitive to outliers, than other

loss functions like L2 loss. In Figure 19, we can see that the transition point changes from

quadratic function to linear function is 0. In addition, the regression loss is only applied

for the positive anchor box since when 𝑝#∗ is zero, the loss will be zero.

 After calculating classification loss and bounding box regression loss for each anchor

box, we need to sum them up separately and normalize these two terms by Nreg and Nclas,

where Nclas is the number of anchor box of each mini-batch that use for training and Nreg

is the number of positive anchor box. Finally, use a parameter 𝜆 to make these two

losses balance.

4.22 Labels

 As we discuss the loss function before, labels for the classification layer and

bounding box regression need to be defined.

0

1

2

3

-4 -2 0 2 4

Smooth L1 loss

 26

 When define the label of the anchor box, we need to calculate the IOU overlap with

the ground-truth box. In the definition of IOU, A represents the area of anchor box and G

represents the area of ground-truth box.

𝐼𝑂𝑈 = 	
𝐴 𝐺
𝐴	 𝐺

If anchor box has an IOU overlap higher than 0.7 or has the highest overlap with ground-

truth box, we assign a positive label to this anchor box. One thing needs to be noticed is

that a ground-truth box may assign positive labels to multiple anchor boxes. If anchor

box has an IOU overlap which is less than 0.3, the negative label is assigned to this

anchor box. Those anchor boxes have the IOU overlap between 0.3 and 0.7 are ignored

and are not contributed to the training.

 Figure 20: IOU overlap between anchor box and ground-truth box, A represents
 anchor box and G represents ground-truth box

When define the labels for bounding box regression, we use the parametrization of

the coordinates. (𝑥Q, 𝑦Q), 𝑤Q, 𝑤S represent the center coordinates, width and height of

the anchor box respectively while (𝑥∗	, 𝑦∗), 	𝑤∗, ℎ∗ represents the center coordinates,

width and heights of the ground-truth box respectively. So we adopt 𝑡T∗ ，𝑡U∗ 	，𝑡V∗ and

𝐴 ∩ 𝐺

 A

G

 27

𝑡S∗ as our labels for each positive anchor box when calculating the loss function for the

bounding box regression. The formulas for the parameterizations of coordinates are

shown below.

𝑡T∗ = (𝑥∗	 − 	𝑥Q) / 𝑤Q	

𝑡U∗ = (𝑦∗ − 	𝑦Q) / 𝑤S

𝑡V∗ = log(V
∗

V[
)

𝑡S∗ = log(
ℎ∗

𝑤S
)

 reference: from [16]

 28

Chapter 5 Implementation

5.1 Deep learning framework and dataset

 Tensorflow is an open-source software library for machine intelligence. Due to its

well-organized interface and easy implementation in python, I choose it as my deep

learning framework. In addition, it has better computational graph visualizations than

other framework, like caffe or torch. Also, it could be trained on big GPU clusters, even

on the TPU recently. In Tensorflow, it uses data flow graphs, where the node represents a

computation and edge represents the flow of computation, from one node to another in

tensor form.

 The dataset I choose to train is INRIA Dataset. Different from other datasets which

are collected from the videos, INRIA Dataset has the images that are collected from

different backgrounds, including the cities, beaches and mountains. It has high quality

annotations of pedestrians. The diverse setting has great advantage in training.

In INRIA Dataset, it has training dataset, validation dataset and annotations. In the

training dataset, there are 1828 images, where 1214 of them are positive images,

including pedestrians and 614 are the negative images, without any pedestrians. In the

validation dataset, it includes 741 images, 288 of them are positive and 453 of them are

negative images. In annotations, the center point coordinates and the width as well as

heights of ground-truth regions are provided for both training data and validation data.

Besides the training dataset and validation set, testing dataset is also needed. I select

457 images from the validation dataset as validation part, including 250 positive images

and 206 negative images, and the rest of them are used for testing, which includes 285

 29

images, 38 for positive images and 247 for negative images. Training dataset are totally

used for training.

5.2 Data Training

 When train the model in tensorflow, we need to choose the proper optimizer. Firstly,

I tried to use the simplest one: Gradient Descent Optimizer and let the learning rate stay

the same all the time, I found that the process of training is slower and the training loss

cannot decrease a lot. The fixed learning rate is one reason for the poor performance,

since some parts of weight matrix may change fast, but others stay as constant. Getting

stuck in local minimum is probably another weakness. After that, I tended to select the

Momentum Optimizer, which can avoid the gradients stuck in local minimum and can

accelerate the training. However, it is too fast for training set to learn, causing the training

loss becomes infinite.

After several trials, I adopt the AdamOptimizer, since it brings better performance

than others on the training loss. It makes each weight have different learning rate and an

exponentially decay average of the previous gradients. In addition, it does not need to

keep a history of anything, excepts the rolling average, which make the memory efficient.

The starting learning rate of the AdamOptimizer is set to be 0.0001, too large or too small

cannot converge the training loss.

 For training, 1828 images from training set in INRIA dataset are selected to be

trained and each image are trained one by one, which means for one iteration, each batch

of training is one image. The epoch is set to be 70 and each epoch includes the whole

training set, which includes 1828 images. When selecting the anchor boxes for computing

 30

the loss function, 1200 negative samples will be randomly selected from each negative

image. For each positive image, the number of sampled positive anchor boxes is equal to

the number of sampled negative anchor boxes, and the number of sampled positive

samples are all the positive anchor boxes in the images.

5.3 Data Validation

 To avoid underfitting or overfitting when training images, we use cross validation to

keep tracking the training process. When the model fits the training data very well but

does not fit the validation data, it is overfitting. When the model performs poorly on the

training data, it is underfitting since it cannot capture the relationship between the input

data and the target values. Figure 21 shows each of them in diagram. In Figure 22, we can

see that the test error will decrease for a while and then will increase. To avoid the

overfitting, we need to stop training at the point when the test error has the tendency to

increase.

Figure 21: Underfitting, balanced and overfitting of the model [19]

 31

Figure 22: The process of training data and validation data

 As discussed before, 456 images are selected from the 741 images in validation

dataset to use as validation data. It includes 250 positive images and 206 negative images.

The target selections for validation data is the same as training data when computing the

loss function, which the ratio of the sampled positive and negative is 1 for each positive

image and 1200 negative samples for each negative image. For the validation steps, one

image will be validated after training every four images.

5.4 Data Testing

 Testing data is composed with two part: one from the validation data, including 38

positive images and 247 negative images, the others are the pictures that we collected

from daily life.

 To test how the model works, I let the predicted bounding boxes show on the image,

which can compare with the ground-truth boxes. Firstly, we need to know the center

coordinates and the height as well as the width of the predicted bounding box. The output

 32

of the bounding box regression layer is the parameterization coordinates (tx, ty, tw, th), and

according to the following formula, the needed information (x, y), w and h can be

calculated, which represents the center pointer, width and height of the predicted

bounding box. xa,ya, wa, and ha presents the coordinates of the anchor box associated with

the predicted position.

											𝒕𝒙 = (𝒙	 − 	𝒙𝒂)/𝒘𝒂								𝒕𝒚 = (𝒚	 − 	𝒚𝒂)/𝒉𝒂								𝒕𝒘 = 𝒍𝒐𝒈(𝒘
𝒘𝒂
) 						𝒕𝒉 = 𝒍𝒐𝒈(𝒉

𝒉𝒂
)

 When showing the proposals, one pedestrian probably has several bounding boxes

with corresponding probability due to the method of sliding window and there is no

necessary to keep all of them. So, I adopt Non Maximum Suppression(NMS) to keep the

most optimized bounding box for each pedestrian. Firstly, sort all the bounding boxes by

the probabilities that includes pedestrians and select the bounding box with the highest

score. Secondly, calculate the overlap between the selected one and its surrounding

bounding boxes and delete the bounding boxes which have exceed the overlap threshold.

Repeat the process until the last bounding box. In my own implementation, I set the

threshold of the overlap to be zero, which keeps only one bounding box for each possible

pedestrian. Figure 23 shows the sample results between the original images and the

images after NMS.

 33

Figure 23: samples [20]

5.5 Evaluation methods

 When evaluating the result, true positive, false positive, true negative and false

negative for each image are recorded. The relationship between these four terms are

illustrated in Figure 24. If both the predict outcome and the true value are positive, we

can consider the output is true positive. If the predict value is the same negative as the

actual value, the result is true negative. It is false positive when the predict output value is

positive but the actual value is negative and the predict outcome is false negative when

the predict outcome is negative but the true value is positive.

 Figure 24. Definition for true positive, false positive, false negative and true negative

True
Positive

False
Positive

False
Negativ

e
True

Negative

Actual value

positive negative

Predict outcom
e

positive

negative

 34

 Instead of simply calculating the accuracy of the result, I choose to use precision,

recall, F1 score and miss rate as the evaluation. Since the number of negative samples is

much larger than the number of positive samples, there is no more sense to calculate the

accuracy.

Precision is the number of true positives divided by all the selected elements. In

pedestrian detection, precision is the fraction of all the predicted pedestrians that are

predicted correctly. The formula of precision is:

Precision = True positive / (True positive + False positive)

For recall, it is the number of true positives over the total number of positives that

should be selected. In pedestrian detection, recall is the fraction of all the pedestrians that

are successfully predicted. The formula of recall is:

 Recall = True positive / (True positive + False negative)

 F1 Score is a method that consider both the precision and recall and find the

average weight between these two values to reach a balance, making the contribution of

both precision and recall to F1 score equal. It can reach the best value at 1 and the worst

value at 0. In pedestrian detection, we mainly focus on this score. The formula of F1

Score is:

F1 Score = 2 * Precision * Recall / (Precision + Recall)

For miss rate, it is also the false negative rate and the value of miss rate and recall

equals to one. The formula of miss rate is:

Miss Rate = 1 – Recall

 In Figure 25, the diagram shows the definition of precision and recall.

 35

Figure 25. Evaluation Diagram from Wikipedia.

 36

Chapter 6 Result Analysis

6.1 Training Loss and Validation Loss

Figure 26. Comparison between training loss and validation loss

 In Figure 26, it shows how the loss changes at each iteration in both training data and

validation data. The x-axis is the number of iterations and y-axis is the loss value. Each

point in the diagram represents the average loss at each iteration. There are 80 iterations

in total and every one image is validated when four images are trained. For training loss,

it decreases as the number of iterations increases and reach at around 0.06 at the last

iteration. In general, the loss of validation data also decreases when the iteration becomes

larger, but some parts have sudden changes. The reason is that during these iterations, the

model cannot fit the validation data well at some specific steps, causing the average loss

0 20 40 60 80
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Lo
ss

Iteration

 Training loss
 Validation loss

 37

becomes relatively larger than the surrounding points. But the loss still can decrease to

the low value after these sudden changes and reach the lowest value at around 0.15. I stop

the iteration at 80 because when I continue adding the number of iteration, the loss of

validation data becomes larger and more points of the loss have sudden increase, it tends

to become overfitting for the model.

6.2 Evaluation Results

 For the evaluation of experiments, I mainly compare the precision, recall, F1 score

and miss rate between the training data and validation data. And then test the images

separately on these evaluations. The training data includes 1828 images, while the

validation data includes 457 images. The number of images for testing is 38.

Figure 27. Training precision, recall and F1 score

0 20 40 60 80
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rc

en
ta

ge

Iteration

 Training precision
 Training recall
 Training F1 score

 38

Figure 28. The precision, recall and F1 Score of validation data

 The precision, recall and F1 score of training data and validation data are shown in

Figure 27 and Figure 28 respectively. For training and validation data, they have the

similar tendency on these three evaluations. They both have significant increase at

iteration 4, 33 and 65. The F1 score of training data can reach at around 72 percent while

for the validation data, it can achieve at 81 percent.

0 20 40 60 80
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe

rc
en

ta
ge

Iteration

 Validation precision
 Validation recall
 Validation F1 score

 39

Figure 29. Miss rate of training and validation data

 In Figure 29, it shows the miss rate of training data and validation data. It is obvious

to notice that the tendency of training miss rate and validation miss rate is also similar. At

around 4th , 33rd and 65th iteration, the miss rate has significantly decreased, which can

correspond to value of recall in Figure 27. For the training data, miss rate decreases from

0.9 to 0.28 while the miss rate of validation data decreases to 0.2.

0 20 40 60 80
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe

rc
en

ta
ge

Iteration

 Training miss rate
 Validation miss rate

 40

Figure 30. Precision of 38 testing images

Figure 31. Recall of 38 testing images

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

Test Precision

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

Test Recall

 41

Figure 32. F1 Score of testing images.

Figure 33. Miss rate of Testing images.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

F1 Score of Test images

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

Test Miss Rate

 42

 Figure 30 to Figure 33 are the evaluation results for testing images. There are 38 test

images in total and the precision, recall, F1 score and miss rate for each image are

recorded. In Figure 30, it shows the distribution of precision of all the test images. We

can notice that most of the images can reach 100 percent precision, which means all the

predicted bounding box are true positives in these test images. The average precision is

90 percent. However, according to Figure 31, The average recall is 0.79, which is much

lower than the precision. The reason is that some test images have high precision but

lower recall rate, indicating that there are some pedestrians which should be predicted are

not be shown with the bounding boxes. Combine with the precision and recall, the F1

score of these test images can reach at around 83 percent. Figure 33 shows the

distribution of the miss rate for testing data and the average miss rate is around 0.2.

 From the results shown above, we can see that it still exists some limitations about

the accuracy. There are several reasons that I think plays important role in the results.

Firstly, training data is not large enough that the CNN model cannot have much larger

features of pedestrians to learn. Secondly, due to the number of training dataset is

relatively small, the pretrained model Alexnet model is selected which are relatively

simpler than other models and has fewer layers. It also limits the learning accuracy.

Thirdly, instead of fine-tuning the layers from pretrained model, I directly use the feature

map from the last convolution layer from Alexnet model without training, since I just can

train these images from my laptop which only has CPU.

 43

6.3 Comparison with Faster R-CNN

 In [17], the author proposed that Faster R-CNN degrades the accuracy of detecting

pedestrians. When feeding the proposals into Fast R-CNN classifier after getting the

proposals from RPN, the convolutional feature maps of Fast R-CNN classifier have low

solutions for such small objects. And typically, the scenarios of pedestrian detections

present small size of pedestrians, causing the performance of detection is degraded.

6.4 Example of Pedestrian Detection Results

 In order to observe directly, I choose some images from validation data and show the

predicted bounding boxes and ground-truth boxes for each image. The blue one

represents the predicted bounding box associated with predicted probability of the

pedestrians while the red one represents the ground-truth bounding box of pedestrians.

These images are selected according to their various background as well as the number of

pedestrians.

 44

Figure 34. Images from validation data.

Besides the images from INRIA dataset, I also choose some pictures that are

photographed by ourselves. The backgrounds of these images are roads and beaches at

San Diego. The value associated with the blue bounding box is the predicted value of

 45

whether the object is pedestrian. In Figure 35, We can see that the model can predict

different sizes of bounding boxes according to the various shapes of pedestrians and

predict correctly where the pedestrians are.

Figure 35. Images from daily life

 46

Chapter 7 Conclusion

 The methodology based on Faster R-CNN which leads high accuracy on Object

Detection can reach relatively high accuracy. Region Proposal Network, a critical part of

Faster R-CNN has been utilized and modified in detecting the pedestrians due to the

specific characteristics of pedestrians. Getting the feature maps from pretrained Alexnet

model and training in the convolution neural network, we can get both the predicted

probability of whether the object is pedestrian and the bounding boxes of the predicted

pedestrians.

 In order to increase a higher accuracy, there are still some future work to do. Firstly,

the training dataset need to be extended, for example, combine the Caltech-USA dataset

with INRIA dataset. Secondly, the complexity of the training model should be increased.

More layers of the model are needed which can help the training model learn more

features from the images. Lastly, since the dataset are trained on CPU with my laptop, the

device limits a lot of work. It should be better to fine-tune all the layers of the model,

instead of directly using the feature maps from the pretrained model and just training

parts of the new layers.

 47

Chapter 8 Reference

[1] Pedestrian Traffic Fatalities by State 2016 preliminary data, prepared for Governors
Highway Safety Association by Richard Retting Sam Schwartz Transportation
Consultants.

[2] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region
proposal networks." Advances in neural information processing systems. 2015.

[3] Zitnick, C. Lawrence, and Piotr Dollár. "Edge boxes: Locating object proposals from
edges." European Conference on Computer Vision. Springer, Cham, 2014.

[4] Doll ́ar, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV. (2013)

[5] Doll ́ar, P., Zitnick, C.L.: Fast edge detection using structured forests. CoRR
abs/1406.5549 (2014) 	

[6] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object
recognition. IJCV, 2013

[7] Ling, Christopher. "Image Detection Techniques on Daimler Pedestrian Monocular
Data."

[8] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human
detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. Vol. 1. IEEE, 2005.

[9] Dollár, Piotr, et al. "Fast feature pyramids for object detection." IEEE Transactions
on Pattern Analysis and Machine Intelligence 36.8 (2014): 1532-1545.

[10] Blog ‘Quick Introduction to Boosting Algorithms in Machine Learning’ by SUNIL,
RAY

[11] Understanding Support Vector Machine algorithm from examples by Sunil Ray

[12] Fukui, Hiroshi, et al. "Pedestrian detection based on deep convolutional neural
network with ensemble inference network." Intelligent Vehicles Symposium (IV), 2015
IEEE. IEEE, 2015.

[13] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and
semantic segmentation." Proceedings of the IEEE conference on computer vision and
pattern recognition. 2014.

 48

[14] He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for
visual recognition." IEEE transactions on pattern analysis and machine intelligence 37.9
(2015): 1904-1916.

[15] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on
computer vision. 2015.

[16] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with
region proposal networks." Advances in neural information processing systems. 2015.

[17] Zhang, Liliang, et al. "Is faster r-cnn doing well for pedestrian detection?." European
Conference on Computer Vision. Springer International Publishing, 2016.

[18] Srinivas, Suraj, et al. "A taxonomy of deep convolutional neural nets for computer
vision." arXiv preprint arXiv:1601.06615 (2016).

[19] Picture from Amazon Machine Learning documents.

[20] Non-Maximum Suppression for Object Detection in Python by Adrian Rosebrock on
November 17, 2014 in Machine Learning, Tutorials.

