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In Brief

Using serial blood draws from COVID-19

patients, Su et al. present an extensive

multi-omics dataset of plasma and single

PBMCs covering the first week of

infection following clinical diagnosis,

which includes information on plasma

proteins, metabolites, and on PBMC

transcriptomic and surface-protein data,

immune receptor sequences, secreted

proteins, and electronic health record

data. Their integrated analysis identifies a

major immunological shift between mild

and moderate infection, which includes

an increase in inflammation, drop in blood

nutrients, and the emergence of novel

immune cell subpopulations that intensify

with disease severity.
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SUMMARY
We present an integrated analysis of the clinical measurements, immune cells, and plasmamulti-omics of 139
COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first
week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which
point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites andmeta-
bolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell
phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune fea-
tures into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-
2. This immune-response axis independently aligns with the major plasma composition changes, with clinical
metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study sug-
gests that moderate disease may provide the most effective setting for therapeutic intervention.
INTRODUCTION

The novel coronavirus disease, COVID-19, has rapidly spread to

become a global health challenge, with over 38million cases and
This is an open access article under the CC BY-N
over 1 million associated fatalities as reported through mid-

October 2020. 20%–31% of symptomatic patients require hos-

pitalization, with intensive care unit (ICU) admission rates ranging

from 4.9%–11.5%, and fatality rates ranging from 2%–10% (Iype
Cell 183, 1–17, December 10, 2020 Published by Elsevier Inc. 1
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Figure 1. Overview of the Multi-Omic Characterization of Immune Responses in COVID-19 Patients

(A) Overview of the ISB/Swedish INCOV study of COVID-19 patients. The bar graph represents the counts of patient samples acrossWHO ordinal score (WOS) of

disease severity. The various analytic assays run on the plasma and isolated PBMCs are indicated.

(B) EHR clinical measurements for the COVID-19 patients. Correlation matrix of 34 clinical features from hospitalized patients. The square size corresponds to the

absolute value of the Spearman rank correlation coefficient, with red (blue) color indicating a positive (negative) correlation. *FDR <0.05, **FDR <0.01,

***FDR <0.001.

(C and D) Plasma protein (C) and metabolite (D) analysis. Left panel: PCA analysis of plasma proteins (metabolites). Each dot represents 1 plasma sample, color-

coded for disease severity (see key). Right panel of (C): statistically significant (FDR <0.05) changed plasma protein from stepwise comparisons of disease

severity from T1. The x axis indicates the numbers of significant protein changes, and the y axis indicates the magnitude of those changes (units = age, sex, BMI,

and race/ethnicity adjusted NPX protein levels). The changes of four specific proteins are indicated by colored circles. Right panel of (D): statistically significant

(FDR <0.05) changed plasma metabolites from stepwise comparisons of disease severity from T1. Changes are shown as upregulated and downregulated bar

plot pairs, and each segment within a bar represents a superpathway (for color-code, see key) and is sized by the sum of the fold changes of the superpathway’s

significantly changed metabolites.

(legend continued on next page)
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and Gulati, 2020). Patients with more severe COVID-19 infec-

tions are distinguished by significant immune dysregulation,

the nature of which is incompletely understood.

Most reports on immunedysfunction inCOVID-19patients have

focused on severe disease. In particular, studies on peripheral

blood mononuclear cells (PBMCs) using single-cell analytics,

have revealed phenomena that tracked with disease severity,

including robust HLA class II downregulation on monocytes (Wilk

et al., 2020), lymphopenia (Cao, 2020), immune cell exhaustion

(Zheng et al., 2020), and elevated levels of inflammatory cytokines

(Del Valle et al., 2020). Larger patient population studies have re-

vealed abnormal myeloid cell subsets in severe COVID-19

(Schulte-Schrepping et al., 2020; Silvin et al., 2020) and dysregu-

latedmammalian targetof rapamycin (mTOR)signaling indendritic

cells (Arunachalamet al., 2020).Mathewet al. (2020) reported ona

large patient cohort characterized through clinical observations

and flow cytometry single-cell proteomics to identify three patient

immunotypes associated with clinical trajectories. Lucas et al.

(2020) reported on maladapted cytokine profiles associated with

severe COVID-19, including immune dysregulation arising from

impaired type I interferon (IFN) response associated with elevated

interleukin (IL)-6 (Hadjadj et al., 2020). Dysregulated plasma me-

tabolites have been reported for serious infection (Shen et al.,

2020). Of course, inflammation and immune activation are ex-

pected to accompany a viral infection, but understanding the

coupling between elevated inflammation signals, plasmametabo-

lite composition, and immune cell dysfunction requires a full char-

acterizationofbothplasmaandPBMCs in large cohorts ofCOVID-

19 patients representing the spectrum of infection severities.

We characterized the circulating immune cell classes and the

plasma multi-omic profiles from a cohort of 139 COVID-19

patients (265 samples from 2 longitudinal blood draws per

patient) and 258 healthy donors. We interpret that data through

the patients’ clinical features extracted from their electronic

health records (EHR) (Figure 1A). One blood draw was collected

shortly after the initial clinical diagnosis (time = T1), and the

second was collected a few days later (T2) (Figure S1A). For

each draw, the plasma levels of around 500 proteins and 1,000

metabolites were quantified along with single-cell multi-omic

analyses of PBMCs in which whole transcriptome, 192 surface

proteins, 32 secreted proteins, and T cell and B cell receptor

gene sequences were measured (Figure 1A).

RESULTS

COVID-19 Patients Exhibit Clinical Profiles and
Metabolic and Proteomic Plasma Compositions that
Depend upon Disease Severity
The participating COVID-19 patients exhibited a range of clinical

phenotypes, including many that exhibited statistically signifi-
(E) Circos plot visualizing WOS-dependent cross-omic interaction network. Prot

results are provided in the Table S1.7. Positive main effects are represented as so

and blood urea nitrogen are highlighted in black, green, and purple lines, respec

(F) Scatterplot depicting a specific connection from the circos plot. Each dot rep

(G) Boxplot depicting percentages, from single cell transcriptome data, of major

**p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S1 and Table S1.
cant correlations with disease severity (quantified by the World

Health Organization [WHO] ordinal scale [WOS]) (World Health

Organization, 2020) (Figure 1B). Some correlations, including

C-reactive protein (CRP) (Li et al., 2020), immature granulocyte

count (Kuri-Cervantes et al., 2020), D-dimer (Mathew et al.,

2020), and segmented neutrophils (Huang et al., 2020) have

been previously reported (Figures 1B and S1B). Clinical meta-

data for these COVID-19 patients and healthy donors are pre-

sented in Tables S1.1–S1.2.

Analyzed plasma proteins and metabolites are listed in Tables

S1.3–S1.4. Measurements of the samemetabolites fromMetab-

olon and clinical labs (EHR data) were highly correlated (Fig-

ure S1C). Principal component analysis (PCA) of both datasets,

using both principal component (PC) 1 and PC2, resolved shifts

in these plasma profiles in stepwise comparisons (healthy do-

nors [WOS = 0] versus mild [WOS = 1–2]; mild versus moderate

[WOS = 3–4], and moderate versus severe [WOS = 5–7]) (Figures

1C, 1D, S1D, and S1E). Proteomic PC1, which separated healthy

donors and COVID-19 patients (Figure S1D), contains pro-in-

flammatory cytokines (e.g., CXCL6) and proteins associated

with immune cell activation (e.g., CD244 and CD40) as high

contributing factors (Table S1.5), implying immune activation in

even mild COVID-19 cases. Proteomic PC2 distinguished mild

from moderate patients (Figure S1D), which are differentiated

by whether hospitalization is required (World Health Organiza-

tion, 2020). The alterations in protein profiles can be appreciated

by comparing the numbers of proteins significantly changed for

each step in disease severity (Figure 1C, right panel). The highest

number of significant protein changes were observed in the tran-

sition from healthy donors to mild infections (n = 307 proteins

with only 27 downregulated, Table S1.6). A comparison of mild

to moderate revealed relatively fewer changes (n = 132 total

with 91 downregulated, Table S1.6), while few proteins changed

from moderate to severe disease (n = 5, all upregulated, Table

S1.6). Consistent with previous literature (Lucas et al., 2020),

we identified the upregulation of CCL7, IL-10, and IL-6 (that

barely misses significance between moderate and severe dis-

ease with p = 0.056) (Figures 1C, right panel, and S1F; Table

S1.6). Keratin-19 (KRT19), which is involved in the organization

of muscle fibers (Stone et al., 2007), is upregulated in all compar-

isons (Figures 1C, right panel, and S1F; Table S1.6) andmay be a

marker of tissue damage. This analysis suggests a striking sim-

ilarity between moderate and severe COVID-19 cases.

Metabolomic PC1 resolved mild from moderate cases, while

PC2 distinguished healthy and COVID-19 patients (Figure S1E).

These changes were evaluated by themetabolic-change scores,

which consider the sum of the fold changes observed in classes

of metabolites (Figure 1D, right panel). From healthy to mild

COVID-19, upregulated metabolites included molecules associ-

ated with amino acid (up = 58 versus down = 8), nucleotide
eins and clinical measures are only shown if they have degree R5. Complete

lid lines and negative as dashed lines. Significant associations with IL6, CCL7,

tively.

resents a patient sample color-coded for disease severity.

immune cell types among PBMCs from patients, grouped by WOS. *p < 0.05,
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(up = 14 versus down = 2), and carbohydrate (up = 11 versus

down = 0) metabolism (Table S1.6), with lipids slightly more

downregulated (up = 61 versus down = 79). Interestingly, for

mild to moderate and moderate to severe transitions, there is a

clear preference toward downregulation of lipids, which agrees

with previous reports (Shen et al., 2020), and amino acid metab-

olites, which recalls reports of amino acid catabolism for severe

COVID-19 (Thomas et al., 2020) (Figures 1D, right panel, and

S1G; Table S1.6). Disruption of xenobiotic metabolism appears

mostly associated with severe disease; the upstream xenobiotic

benzoate is elevated while downstream products, such as cate-

chol sulfate and 3-hydroxyhippurate, are repressed (Figure S1G;

Table S1.6). Benzoate level may point to hepatic injury, because

liver is the principal site for such metabolism (Alqahtani and

Schattenberg, 2020). Therefore, the global metabolic profile al-

terations point to amajor shift betweenmild andmoderate cases

with a disproportionate loss of several classes of circulating

metabolites.

We explore the relationships between plasma analytes, clin-

ical measures, and disease severity (WOS) in the circos interac-

tion plot of Figure 1E. Linkages shown are analyte-analyte asso-

ciations with significant (false discovery rate [FDR] <0.001)

interaction effects withWOS (see STARMethods). A representa-

tive severity-dependent linkage (IL-6 versus a lysoplasmalogen)

is shown in Figure 1F. These interactions reveal many new in-

sights. For example, blood urea nitrogen (BUN) (in hospitalized

patients) has many connections with amino acid metabolism

(Figures 1E and S1H, left panels), suggesting amino acid catab-

olism in advanced COVID-19 (Thomas et al., 2020). Several

inflammation-associated proteins, including CCL7 and IL-6,

are anti-correlated with many plasma lipids (Figures 1E and

S1H, middle and right panels). For healthy donors or mildly in-

fected patients, these lipid levels exhibit a range of values (Fig-

ure S1I). However, between mild and moderate infection, the

lipid levels drop precipitously (Figure S1I). This general

severity-dependent trend is seen for many interactions (Table

S1.7). For example, out of the 32 significant connections of IL-

6 in the circos plot, 29 are with lipids, and all negatively correlate

with WOS (Table S1.7). The circos plot suggests that increased

inflammatory signals are accompanied by a loss of metabolic re-

sources and a drop in xenobiotic metabolism, seemingly reflect-

ing a stressed environment that may influence the immune

response in COVID-19 patients.

We further explored how COVID-19 severity is reflected in

circulating immune cells. The PBMC single-cell transcriptome

data were visualized as a two-dimensional (2D) projection via

uniform manifold approximation and projection (UMAP) (Becht

et al., 2018) (Figure S1K, left panel). No major batch effects

were revealed (Figures S1J and S1K, right panel).

Relative percentages of different cell types were assessed

relative to increasing WOS (Figures 1G and S1L). Consistent

with previous reports (Mathew et al., 2020; Song et al., 2020),

we observed a drop in the relative percentage of lymphocytes,

including CD4+ T cells, natural killer (NK) cells, and especially

CD8+ T cells (Figures 1G and S1L). By contrast, monocyte per-

centages were elevated (Figure 1G). B cell percentages did not

significantly vary with WOS (Figure S1L), consistent with previ-

ous reports (Zhang et al., 2020). Healthy and mild participants
4 Cell 183, 1–17, December 10, 2020
exhibit similar immune cell compositions (Figure S1L), although

mild and moderate disease exhibited the most significant

changes (Figure 1G, p < 0.0001 for both). This observation aligns

with the major shift we observed in plasma multi-omics between

mild and moderate disease and prompted us to further investi-

gate major immune cell types.

CD8+ T Cell Phenotypic Composition Evolves with
COVID-19 Severity with a Non-monotonic Change of
Activation Status
Weprojected theCD8+ T cell single-cell transcriptomic data onto

a 2D UMAP and resolved nine subpopulations characterized by

both protein and transcriptional signatures (Figures 2A, 2B, S2A,

and S2B). We identified naive, memory, effector, exhausted-like,

and proliferative phenotypes. For instance, the naive-related

mRNA and protein markers LEF1, TCF7, and CD197 were all up-

regulated in the red-colored cluster 3, while effector markers,

such as GZMB and PRF1, were elevated in clusters 0, 1, and 2

(Figures 2A, 2C, S2A, and S2B). The protein levels yielded a

consistent picture. For example, the naive-like cluster 1 dis-

played a high CD45RA/CD45RO ratio and effector-like clusters

0, 1, and 2 displayed intermediate levels (Figure 2B). Exhausted

CD8+ T cells have been documented in COVID-19 patients (Diao

et al., 2020) and, indeed, exhaustion markers LAG3 and TIGIT

were upregulated in both effector clusters (0 and 2) (Figures

2A, 2C, and S2A). Such inhibitory markers are also increased af-

ter T cell activation (Wherry, 2011; Wherry and Kurachi, 2015)

and may not indicate dysfunction.

Certain CD8+ subpopulations correlated with disease severity.

As expected, naive-like markers and cell cluster 3 exhibited the

highest density in healthy donors and decreased in COVID-19

patients (Figures 2E, 2F, and S2F). Effector-like cells (clusters

0, 1, and 2) were enriched in COVID-19 samples (Figures 2F

and S2E), also as expected (Mathew et al., 2020). Similarly,

CD8+ T cells in patients who improved (defined as a decrease

of WOS from T1 to T2) displayed higher levels of effector-asso-

ciated transcripts such as GZMH, KLRD1, SLC9A3R1, etc. (Fig-

ure S2G; Table S2.1). Interestingly, the severe patients showed

an increase of naive clusters and a decrease in activated effector

T cells (Figures 2F and S2E) relative to moderate disease. Such

non-monotonic change of T cell activation status with disease

severity may resolve conflicting reports of both positive and

negative correlations of T cell activation with disease severity

(Lucas et al., 2020; Song et al., 2020) and underscores the impor-

tance of analyzing large patient cohorts in distinct disease

stages to accurately sample the heterogeneity of COVID-19 dis-

ease manifestation.

A Proliferative Exhausted CD8+ T Cell Subpopulation
Emerges in Moderate COVID-19 Patients
Cluster 8 displayed intermediate levels of effector markers, upre-

gulated exhaustion markers (LAG3, TIGIT, and CD279), and,

counterintuitively, exclusively expresses proliferation markers

(MKI67 and TYMS) (Figures 2A, 2C, S2A, and S2B). In fact, tran-

script levels of exhaustionmarkerPDCD1 showed a positive cor-

relation with MKI67 for cluster 8 cells (Figure 2H). Cluster 8 also

displays high cytotoxic signatures and has not fully lost its naive

signature (Figure 2G). This subpopulation emerges at the stage



Figure 2. CD8+ T Cell Heterogeneity in COVID-19 Patients and Its Association with Disease Severity

(A and B) UMAP embedding of all CD8+ T cells colored by unsupervised clustering (top left) and by selected mRNA transcript levels (other panels in A) or (B) the

CD45RA/CD45RO surface protein ratio.

(C) Heatmaps showing the normalized levels of selected mRNA (top panel) and proteins (bottom panel) across each cell cluster.

(D) UMAP embedding of CD8+ T cells shaded by clonal expansion level.

(E) Boxplots showing the WOS-dependence of percentages of CD8+ T cell clusters. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(F) UMAP embedding density of CD8+ T cells for different blood draw samples, grouped by WOS. Selected clusters are encircled in the colors of the (A) clusters.

(G) Scatterplots showing the naive (x axis) and cytotoxic (y axis) signature scores of individual CD8+ T cells from all PBMC samples. Cluster 8 is encircled. Each

point represents one cell. Cells are color coded with cluster-specific colors (left) or signature scores (middle and right).

(H) Pearson correlation between MKI67 and PDCD1 gene expression for cluster 8 cells. Correlation coefficient and p value shown. *p < 0.05, **p < 0.01,

***p < 0.001.

(I) Clonal expansion score for CD8+ T cells from patients with different WOS. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(J) TCR clustering analysis. Left panel: hierarchical clustering of TCRs (columns) based on TCR sharing patterns across clusters (rows). The two distinct groups of

TCRs identified are shaded with orange (group1) and green (group2). Middle panel: UMAP visualization of the embedding density of cells containing TCRs from

group1 and group2 from the left panel. Right panel: boxplots represent ratio of cells containing TCRs from group1 over cells containing TCRs from group2 for

samples of different WOS. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(K) Single cell polyfunctional strength index (PSI) of CD8+ T cells according to sample WOS. Data are represented as mean ± SEM. Pairwise statistical com-

parisons are shown in Table S2.3.

See also Figure S2 and Table S2.
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of moderate disease (Figure 2E). The relative percentages of this

hybrid proliferative-exhausted phenotype were confirmed by

flow cytometry (Figure S2H). This may reflect the proliferative hi-

erarchy that maintains the exhausted T cells, which has been

observed in chronic infections and cancer (Bengsch et al.,

2018; Huang et al., 2017; Paley et al., 2012).

Pathway analysis of cluster 8 cells revealed that genes regu-

lated by the MYC and the regulation of RUNX3 activity were

both enriched (Figure S2I; Table S2.2). This may imply that clus-

ter 8 is comprised of early-stage activated T cells, becauseMYC

is rapidly but transiently induced during the early stage of activa-

tion (Nie et al., 2012).

Integrating Single-Cell Omics with TCR Datasets
Resolved Two Distinct Groups of Phenotypic-Specific
TCRs in CD8+ T Cells that Associate with Disease
Severity
CD8+ T cell clonal expansion was enhanced in mild and moder-

ate COVID-19 patients relative to healthy donors (Figures 2D and

2I). The effector-like clusters 0 and 2 showed the most clonal

expansion, while T cells with a clonal expansion index of 1

were mainly within the naive-like cluster 3 (Figures S2C and

S2D), suggesting the activated effector CD8+ T cells detected

in the peripheral blood are clonally expanding, likely due to vi-

rus-antigen encounters.

Integrating the TCR and single-cell transcriptome datasets us-

ing hierarchical clustering revealed one set of TCRs (group 1)

within the cytotoxic effector phenotype and a group 2 within

the memory-like phenotype (Figure 2J). Group1 TCRs are mainly

from patients with moderate or severe COVID-19 and the group2

TCRs are mostly frommild patients (Figure 2J). Thus, the expan-

sion of CD8+ clones emphasizes the sharp transition between

mild and moderate disease.

COVID-19 Severity Is Associated with Non-monotonic
Changes of Polyfunctionality in CD8+ T Cells
Polyfunctional T cells produce multiple different cytokines, can

release a substantially higher amount of cytokines relative to other

T cells, and can dominate an immune response (Abel et al., 2010;

Lu et al., 2015;Maet al., 2013; Zhou et al., 2017).Wemeasured 32

secreted cytokines from individual live CD8+ T cells. Polyfunction-

ality, as quantified by the polyfunctional strength index (PSI = the

numbersofdifferentproteins secreted3copynumberssecreted),

is similar for healthy and mild cases, but upregulated at moderate

severity (Figure 2K), with increased frequency of cells secreting

granzymeBand perforin (FigureS2J). Polyfunctionality is reduced

in severe patients (Figure 2K), consistent with the peak in CD8+

effector cluster percentage for moderate cases (Figure S2E).

Thus, peripheral CD8+ T cells inCOVID-19 patientswithmoderate

illness reflect the highest polyfunctionality and the highest per-

centages of effector phenotypes.

TwoDistinct CD4+ TCell Subpopulations AreAssociated
with COVID-19 Severity
UMAP representations of single CD4+ T cell transcriptomic data

are provided in Figures 3A, 3B, S3A, and S3B. Projecting data for

COVID-19 patients grouped by disease severity revealed how

CD4+ T cell phenotype is influenced by infection (Figure 3E).
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For example, naive-like cells (clusters 1 [blue] and 2 [green]),

which are characterized by elevated naive-related transcripts

TCF7, CCR7, and CD197 surface protein, were reduced in

COVID-19 patients (Figures 3E, S3E, and S3F), implying

increased activation of CD4+ T cells with COVID-19 infection,

as reported (Mathew et al., 2020).

We identified two unusual CD4+ T cell subpopulations (clus-

ters 5 and 8) that varied with WOS. Cluster 5 cells exhibited

elevated cytotoxic transcripts PRF1 and GNLY (Figures 3A,

3C, and S3A) and increased in patients with moderate infections

(Figure S3E), possibly suggesting repeated antigen exposure

(Juno et al., 2017). In fact, more than 95%of the highly expanded

CD4+ T cell clones (defined by n R 5) were in cluster 5 (Figures

3D, S3C, S3D, and S3G), suggesting viral specificity for these

cells. Cluster 8 expressed exhaustion markers, an elevated

Th1 signature, the most elevated proliferation signature, but little

clonal expansion (Figures S3D, S3G, and S3H). The single-cell

RNA sequencing (scRNA-seq)-derived relative percentages of

the hybrid and cytotoxic CD4+ T cell clusters were both quanti-

tatively confirmed by flow cytometry (Figures S3I and S3J).

Both clusters 5 and 8 exhibited unique groups of enriched

genes (Figures S3K and S3L; Tables S3.1 and S3.2). Cytotoxic

cluster 5 cells showed elevated effector memory, antigen pre-

sentation signatures, and enrichment of the complement gene

set (Figure S3K). Hybrid cluster 8 cells showed enrichment of an-

tigen cross presentation and cell cycle G2M transition-related

gene signatures (Figure S3L). Interestingly, cluster 8 CD4+

T cells were highly enriched forMYC targets, similar to the hybrid

CD8+ T cell cluster, suggesting a transient intermediate cell-state

during early-stage activation, potentially due to rapid activation.

The functional differences of all CD4+ T cell clusters were

compared by projecting single cells onto a scatterplot where

the x and y axes represent the Th1 and cytotoxic signature

scores, respectively (Figure 3F). Cells with high naive scores

reside at the bottom-left (Figure 3F). The two unique clusters

extend out toward opposite corners of themap, while other clus-

ters align along either of the branches (Figure 3F). For example,

cluster 6 (pink) aligns along the upper branch with cluster 5, and

cluster 0 (orange) aligns with cluster 8. No significant overlap is

observed between the two branches (Figure 3F), implying that

the branches may comprise two distinct cell state destinations

for a given naive CD4+ T cell. These two clusters exhibit differ-

ences in other functional signatures. Cluster 8 displays uniquely

upregulated proliferation and exhaustion signatures, intermedi-

ate levels of the naive markers, and low levels of the cytotoxic

signature (Figure S3H). In contrast, cytotoxic cluster 5 shows

opposite trends for these functional signatures. Importantly,

these two clusters exhibit notable differences in their TCR

sharing patterns (Figure 3G). Cells with group 1 TCRs were

uniquely enriched in cytotoxic cluster 5 (Figure 3G). Thus, these

two unique clustersmay represent distinct cell state destinations

for CD4+ T cells during infection.

Polyfunctionality of single, viable CD4+ T cells revealed that

CD4+ T cells from COVID-19 patients exhibit polyfunctionality

relative to those from healthy donors, peaking at patients with

moderate illness (Figure 3H). Notably, the frequencies of CD4+

T cells that can secrete the Th1 cytokine IFN-g, Th17 cytokines

IL17-A, IL17-F, Th2 cytokine IL-4, and cytotoxic molecule



Figure 3. Two Distinct CD4+ T Cell Subpopulations Are Associated with COVID-19 Severity

(A and B) UMAP embedding of all CD4+ T cells colored by unsupervised clustering (top left of A) and by selected mRNA transcript levels (other panels in A) or (B)

the CD45RA/CD45RO surface protein ratio.

(C) Heatmap showing the normalized expression of selected transcripts (top panel) and proteins (bottom panel) across each cell cluster.

(D) UMAP embedding of CD4+ T cells shaded by clonal expansion level.

(E) UMAP embedding density of CD4+ T cells for different samples, grouped by WOS. Selected clusters are encircled in the colors of the (A) clusters.

(F) Scatterplots showing the Th1 (x axis) and cytotoxic (y axis) gene signature scores of individual CD4+ T cells from all PBMC samples. Clusters 5 and 8 are

encircled. Each point represents one cell. Plots are color coded for their cluster and functional signature as specified on top of each plot.

(G) TCR clustering analysis. Hierarchical clustering of TCRs (columns) based on TCR sharing patterns across clusters (rows). Left: the two distinct groups of TCRs

identified are shaded with orange (group1) and green (group2). Right: UMAP visualization of the embedding density of cells containing TCRs from group1 and

group2 defined by left panel.

(H) Single-cell polyfunctional strength grouped according to patient WOS. Data are represented as mean ± SEM. Pairwise statistical comparison are shown in

Table S3.3.

See also Figure S3 and Table S3.
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granzyme B are increased in COVID-19 patient samples, again

peaking for moderate patients (Figure S3M). This recalls trends

seen in CD8+ T cells, but whether this is related to T cell exhaus-

tion in the most severe patients is unclear.

B Cell Heterogeneity in COVID-19 Patients and Its
Association with Severity
We observed significant activation in naive B cells (downregula-

tion of FCER2 and upregulation of SLAMF7) and expansion of

antibody-secreting cells (ASCs) in moderate and severe samples
compared to healthy andmild samples (Figures 4A–4C). A distinct

memory B cell population that has high expression in ITGAX and

FCRL5 (Figure 4A), resembling a tissue-likememory B cell pheno-

type (Li et al., 2016), was found to be high in mild samples

compared to healthy samples (Figure 4B). We found prominent

downregulation of several HLA class II genes in moderate and

severe COVID-19 patients (Figure 4C), suggesting dysregulation

of immune cell crosstalk between the adaptive immune cell clas-

ses. Besides the loss of chemokine receptor CXCR5 in moderate

and severe samples of COVID-19 patients (Figure 4D) that has
Cell 183, 1–17, December 10, 2020 7
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Figure 4. B Cell Heterogeneity in COVID-19 Patients and Its Association with Severity

(A) UMAP embedding of all B cells colored by unsupervised clustering (top left panel of A) and by selected mRNA transcript levels (other panels in A).

(B–D) Boxplots showing theWOS-dependence of specific B cell clusters (B), normalized levels of transcript (C), and proteins (D). p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.
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been reported previously (Mathew et al., 2020), we also discov-

ered a significant loss of chemokine receptor CCR6 in moderate

and severe samples (Figure 4D). This could impair germinal center

reactions (Reimer et al., 2017) and ultimately lead to the dysregu-

lated humoral immunity responses found in early infection of

COVID-19 (Kaneko et al., 2020).

S100highHLA-DRlow Dysfunctional Monocyte
Subpopulation Reflects Coordinated Changes with Both
Plasma Multi-Omics Signals and COVID-19 Severity
UMAP visualization of all monocytes shows a clear separation of

non-classical monocytes (CD14lowCD16high cluster 6), character-

ized by the upregulated transcripts FCGR3A, CX3CR1, and sur-

face protein CD16 (Figures 5A–5D, S4A, and S4B). The non-clas-

sical monocyte fraction decreases in moderate and severe

infections (Figures 5E and S4C), compared to a reported drop in

severe patients (Schulte-Schrepping et al., 2020; Silvin et al.,

2020; Wilk et al., 2020). Among the classical monocyte clusters

(CD14highCD16low), the cluster 5 (brown)monocyte percentage in-

creases for moderate and severe cases (Figures 5E and S4C).

Cluster 5 exhibits expression of inflammation-related transcripts

such asS100A4,S100A9, S100A12, and decreasedHLA-DR sur-

face protein level (Figures 5A–5D, S4A, and S4B). Interestingly,

monocytes in patients who improved (defined as a decrease of

WOS from T1 to T2) displayed higher levels of HLA-DRB5,

S100A8, etc. (Figure S4D; Table S4.1). The increase of S100high-

HLA-DRlow cluster 5 subset with downregulated HLA class II is

reminiscent of monocyte ‘‘immunoparalysis’’ in sepsis (Giamarel-

los-Bourboulis et al., 2020) and is further supported by the

decrease in tumor necrosis factor alpha (TNF-a) transcripts (Fig-

ure S4E). Expression of HLA class II genes in monocytes were

negatively correlatedwith IL-6 plasma level (Figure S4F), suggest-

ing an influenceof the hyper-inflammatoryplasmaenvironment on

monocyte dysfunction, prompting us to more deeply explore this

connection.

We hypothesized that monocyte responses to COVID-19 may

correlate with the metabolic and proteomic plasma composi-

tions that vary with WOS (Figure 1E). We first identified plasma
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proteins that correlated with cluster 5 monocyte percentages.

Pathway analysis of the top50 proteins (Figure 5G; Table S4.2)

suggests an association with cytokine signaling, inflammation

response, monocyte chemotaxis, IFN-g, and mitogen-activated

protein kinase (MAPK) signaling (Figure 5G; Table S4.4). These

plasma protein signatures, most of which are reflected in the

cross-omic interaction network of Figure 1E, can be compared

against monocyte gene expression signatures that increased

with severity (Figure 5F). These include leukocyte chemotaxis,

IFN-g, and MAPK/extracellular signal-regulated kinase (ERK)

signaling (Figure 5F). Metabolites that correlate with cluster 5

percentage are mainly within lipid and amino acid metabolisms

(Figure 5H right panel), reminiscent of themanyWOS-dependent

cross-omic interaction connecting lipid and amino acid metabo-

lites (Figure 1E). The top five positively correlatedmetabolites are

N1-methyladenosine, two lipids, mannose, and kynurenine (Fig-

ure 5H; Table S4.3), of which kynurenine has been previously

associated with COVID-19 severity (Shen et al., 2020). The asso-

ciations between the cluster 5 subpopulation and the plasma an-

alytes suggests that cluster 5 monocytes may play a potential

role in the coordinated immune response for severe COVID-19

infections, and highly correlated plasma proteins, such as IL-6

and CCL23, could serve as potential biomarkers for rapidly as-

sessing the dysfunctional state of monocytes in clinic.

We also characterized the polyfunctional strength index (PSI)

of monocytes from COVID-19 patients. Unlike the case of

CD8+ and CD4+ T cells (Figures 2K and 3H), the PSI monotoni-

cally increases with disease severity (Figure 5I), suggesting

that monocytes contribute to the pro-inflammatory condition of

moderate or severe COVID-19. One can speculate that the

increased S100highHLA-DRlow monocyte percentage may be

influenced by and contribute to the inflammatory proteomic

and altered metabolomic plasma profile.

Proliferative NK Cell Subpopulation Is Associated with
Increased COVID-19 Severity
Unsupervised clustering and UMAP visualization of NK cell tran-

scriptomes resolved two well-known NK cell subsets: CD56bright

mailto:Image of Figure 4|tif


Figure 5. S100highHLA-DRlow Dysfunctional Monocyte Subpopulation Reflects Coordinated Changes with Both PlasmaMulti-Omics Signals

and COVID-19 Severity

(A–C) UMAP embedding of all monocytes colored by unsupervised clustering (top left panel of A) and by selected mRNA transcript levels (other panels in A) or (B)

surface proteins or (C) pathway enrichment scores.

(D) Heatmap displaying normalized expression of differentially expressed genes in each cluster (top), select proteins (middle) and pathway-enrichment scores

(bottom) across each cell cluster. Full gene list of differential analysis is provided in Table S4.12.

(E) Boxplots showing the WOS-dependence of relative abundance of specific monocyte clusters from (A). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

(F) Heatmap visualization of top genes, surface proteins, and pathways in monocytes that significantly correlated with disease severity (WOS). Each column

represents a sample and each row corresponds to levels of mRNA, surface protein, or pathway enrichment score for the monocytes from that sample. Columns

are ordered based onWOS in ascending order. The top three rows indicate theWOS, gender, and age. The heatmap keys are provided at the bottom. Sidebar on

the left of each row represent correlation of that value with WOS, with red (blue) indicating positive (negative) correlations. Full list of the top genes, proteins, and

pathways is provided in Tables S4.5–S4.11. Detailed correlation coefficient and FDR-corrected p values are indicated at the right panel bar plots. *FDR <0.05,

**FDR <0.01, ***FDR <0.001.

(G) GO enrichment analysis of the top50 plasma proteins that positively correlated with cluster 5 monocyte percentages. Each row represents one of the top10

enriched pathways, each column represents each plasma protein. The top10most over-represented proteins are shown. Bar plot shows the -log10(p value) of the

enriched pathways. Full enrichment results are provided Table S4.4.

(legend continued on next page)
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(cluster 4) and CD56dimCD16bright (clusters 0–3 and 5) (Figures

6A–6C) (Miller and Lanier, 2019). The CD16bright subpopulations

display high levels of cytotoxic transcripts (PRF1 andGZMB) and

elevated levels of the terminal-differentiation marker CD57 and

the exhaustion marker LAG3. The CD56bright subpopulation

(cluster 4) expresses markers associated with less-differentia-

tion, including IL7R, CD27, and CD62L (Figures 6A–6C, S5A,

and S5B). Cluster 4 is significantly repressed in moderate and

severe patients (Figures 6D and S5C), which may reflect the dif-

ferentiation of NK cells toward more cytotoxic phenotypes and,

again, points to the sharp transition between mild and moderate

disease. This is consistent with the observed decrease of CD56

and CD127, and IL7R as well as the increase of PRF1, GZMB,

and CD69 in moderate and severe patients (Figure S5E). The

NK cell activation in COVID-19 PBMCs has been seen using

flow cytometry (Maucourant et al., 2020).

Interestingly, among CD56dimCD16bright NK cells, one sub-

population (cluster 5) shows intermediate levels of CD16,

CD57, and LAG3, and the highest level of the proliferationmarker

MKI67 (Figures 6A–6C, S5A, and S5B). The cluster 5 fraction in-

creases from mild to moderate samples (Figures 6D and S5C).

We further investigated cluster 5 by visualizing a few functional

signature scores for each NK cell across different clusters (Fig-

ure S5F). As expected, CD56high cluster 4 cells reside mainly at

the top-left region indicating a low level of exhaustion, while

terminally differentiated cells with a high level of KIR transcripts

are at the bottom-right branch (Figure S5F). Interestingly, the

hybrid proliferative cluster 5 NK cells are at the intersection of

these branches (Figure S5F), indicating that these cells may

represent an intermediate transitional state during NK cell activa-

tion in response to virus. These cells also display upregulated

signatures associated with fatty acid transport (Figure S5G; Ta-

ble S5.1), potentially required to fulfill the proliferative capacity of

this unique cluster.

We examined how NK cell transcriptomic signatures varied

with disease trajectory and found an association between

expression of the cytotoxic NK cell marker PRF1 and DNA repair

marker DDIT4 and patient improvement (decrease of WOS be-

tween T1 and T2). For patients who did not improve, the nuclear

factor kB (NF-kB)-inhibiting protein, COMMD6, increased (Fig-

ure S5D; Table S5.2). Thus, increased levels of cytotoxicity,

DNA replication, and decreased inhibition of NFkB signaling in

NK cells are associated with COVID-19 patient recovery.

Integrating Multi-Omic Profiles across Cell Types
Resolves an Orchestrated Response Gene Module that
Correlates with Clinical Features
The successful control of SARS-CoV-2 infection requires im-

mune system coordination. We explored for such coordination

by analyzing how the transcriptomes of all cell types covary
(H) Analysis of the top50 plasmametabolites that positively correlated with cluster

of the top50 positively correlatedmetabolites. Bar plot showsPearson correlation

S4.3). *p < 0.05, **p < 0.01, ***p < 0.001.

(I) Functional characterization ofmonocytes. Left panel: heatmap visualization of a

Right panel: polyfunctional characterization of monocytes. Single cell polyfuncti

mean ± SEM. Pairwise statistical comparison are shown in Table S4.13.

See also Figure S4 and Table S4.
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across patients with different levels of disease severity. The

goal is to provide a unified view of the immune response in

COVID-19 patients that can potentially provide important in-

sights for patient treatment. For this purpose, we utilized sur-

prisal analysis (Remacle et al., 2010), which has been applied

to consolidate high-dimensional bulk and single-cell multi-omic

data (Su et al., 2019b, 2019a, 2020). The basic hypothesis is

that many genes co-vary across samples and thus can be

viewed as functional genemodules. In this way, changes of thou-

sands of correlated transcripts from different cell types are

condensed into just one major gene module. In this view, each

sample is reduced into a single dot along that gene module

axis (Figure 7A). The module may then be mined to identify bio-

logical processes that co-vary across different cell types or

correlate with clinical features and changes in plasma

composition.

The calculated most dominant module, module1 (M1), posi-

tively correlated (r = 0.95, p < 0.001, Figure S6A) with

sequencing-depth-related information, reflecting technical de-

tails rather than biological information. The second most domi-

nant genemodule (M2), did not correlate with these technical pa-

rameters (Figure S6B), but correlated with many genes with

biological functions (Figures 7C and S6B; Tables S6.1–S6.35),

and so we selected M2 for further analysis.

Although M2 was computed without considering clinical infor-

mation, it clearly separates healthy and mild from moderate and

severe patients (Figure 7B). This recalls the distinct shift from

mild to moderate cases revealed in many analyses discussed

above. Potentially because of this separation, the M2 score

also correlates with disease severity (Figure S7A, Spearman cor-

relation = 0.62, p < 0.001), as well as with several clinical obser-

vations including CRP, blood clotting metrics (APTT, INR, and

prothrombin time), and negative correlations with eosinophils

and platelets (Figures 7D and S6C).

We examined how properties of circulating immune cells

tracked with increasing M2. Interestingly, the unusual pheno-

types identified for each immune cell class (such as the hybrid

CD8+ T cells or the cytotoxic CD4+ T cells, etc.) all exhibited sig-

nificant positive correlations with M2 (Figures S6F and S7C; Ta-

ble S6.38). This suggests a level of orchestration across these

unique COVID-19 specific subpopulations that is not apparent

by analyzing those phenotypes in isolation. Naive cell types

were consistently anti-correlated with M2 (Figure S7C). In other

words, for motion along the M2 axis, the adaptive immune cells

become increasingly activated and differentiated, and various

unique immune cell phenotypes emerge (Figure 7F).

Innate immune cells also orchestrated transcriptional alter-

ations along the M2 axis. This includes an increasing IFN-a

response for all cell classes, suggesting a role of type I IFN

response to infection (Hadjadj et al., 2020). Different from the
5 monocyte percentage. Pie chart represents the super-pathway composition

coefficient of the top5most significantly (p < 0.05) correlatedmetabolites (Table

verage cytokine secretion frequencies for cells from samples grouped byWOS.

onal strength is grouped according to sample WOS. Data are represented as



Figure 6. Proliferative NK Cell Subpopulation Is Associated with Increased COVID-19 Severity

(A and B) UMAP embedding of all NK cells colored by unsupervised clustering (top left panel of A) and by selected mRNA transcript levels (top right panel of A) or

(B) selected surface proteins.

(C) Heatmap displaying normalized level of select mRNA (top), proteins (middle), and pathway-enrichment scores (bottom panel) in each cell cluster.

(D and E) Boxplots showing the WOS-dependence of relative abundance of (D) specific NK cell clusters from (A) and (E) normalized transcript levels. *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S5 and Table S5.
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increased antigen presentation in both CD4+ and CD8+ T cells,

monocytes showed decreased antigen presentation along M2

(Figure 7C). The unique S100highHLA-DRlow monocyte and the

proliferative NK cell cluster also both correlate with M2 and

emerge at the transition from mild to moderate disease

(Figure 7C).

TheM2 score also significantly correlatedwith the plasma pro-

teomic principal component (PC) 2 andmetabolomics PC1, both

of which distinguishmoderate and severe frommild disease (Fig-

ures S1D, S1E, S6D, and S7C). Many pro-inflammatory and

chemo-attractive cytokines, including CCL7 and CXCL10, posi-

tively correlate with M2 while CLEC4A, a regulatory receptor for

dendritic cells that impairs inflammation and T cell immunity (Uto

et al., 2016), is negatively correlated (Figures 7E and S6E; Table

S6.36). Metabolites that positively correlate with M2 include the

endothelial relaxing factor kynurenine (Wang et al., 2010) that

may be associated with hypotension seen in severe COVID-19

cases (Hanidziar and Bittner, 2020). A number of lipids negatively

correlate with M2 (Figures 7E and S6E; Table S6.37), recalling
the disproportionate loss of lipids in moderate and severe infec-

tions (Figure 1D, right panel). These results indicate that immune

cell coordination, reflected in M2, is correlated with pro-inflam-

matory signals, loss of circulating lipids, and other biological pro-

cesses associated with COVID-19.

In summary, we integrated the immune response, defined as

whole transcriptomic changes, from all major cell types (with

more than 120,000 variables) and condensed all of them into a

single gene module (Figure 7A). This module M2 provides a

detailed view for how different immune cell types coordinate

across a highly heterogeneous cohort of COVID-19 patients (Fig-

ures 7F and S7D), and again suggests major physiological

changes that distinguish mild from moderate and severe

COVID-19 infections.

DISCUSSION

A comprehensive understanding of immune responses in

COVID-19 patients is fundamental to defining the effectiveness
Cell 183, 1–17, December 10, 2020 11
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Figure 7. Integrating Multi-Omic Profiles across Immune Cell Types Resolves a Coordinate Immune Response to SARS-CoV-2

(A) Cartoon illustration of the process of integrating data from different immune cell types from all samples, followed by reduction in single a dimensional rep-

resentation (gene module). This characterizes the coordinated changes of cell types across COVID-19 patients.

(B) Distribution of individual PBMC datasets along gene module (M) 2 for healthy donors (WOS = 0, green), mild (WOS = 1–2, yellow), moderate (WOS = 3–4,

orange), and severe (WOS = 5–7, red) patients.

(C) Heatmap visualization of selected top genes, surface proteins, and pathways for each cell type that significantly correlated withM2. Each column represents a

sample and each row corresponds to levels of mRNA, surface protein, or pathway-enrichment score for the certain cell type of that sample. Columns are ordered

based on M2 score in ascending order. The top three rows indicate the gender, age, andWOS. The heatmap keys are provided at the bottom. Sidebar on the left

(legend continued on next page)
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of treatments, predicting disease prognosis, and for understand-

ing the reported heterogeneity of disease severities. We utilized

computational methods to integrate clinical observations, sin-

gle-cell characterizations, and plasma analytics, to develop a

comprehensive and integrated view of COVID-19 during the

week following initial diagnosis.

For a large cohort of patients representing the full spectrum of

disease severities, we constructed a cross-omic interaction

network (Figure 1E) that revealed, for example, COVID-19

severity-dependent connections between specific elevated cy-

tokines and the downregulation of certain classes of metabolites

and metabolic processes, suggesting an orchestration between

increasing disease severity, elevated inflammation, and loss of

key circulating nutrients. Further, the plasma multi-omic profiles

captured a surprising similarity between moderate and severe

COVID-19 and a sharp difference between mild and moderate

infections. This major shift is marked by the preferential loss of

lipids, amino acids, and xenobiotic metabolism (Figure 1D) and

significant elevation of inflammatory cytokines (Figure 1C). The

net implication is that of a stressed pro-inflammatory environ-

ment accompanied by decreased metabolic resources and sig-

natures of possible hepatic dysfunction (Alqahtani and Schatten-

berg, 2020).

Similarly, a sharp difference between mild andmoderate cases

is observed in peripheral immune cells. This is characterized by

the significant elevation of activated adaptive immune cells, and

the emergence of unusual phenotypes. An interesting example

is that of CD4+ T cells, which exhibit both a proliferative exhausted

phenotype and a clonally expandedCD4+ cytotoxic phenotype. In

fact, these two CD4+ phenotypes exhibit distinct functional

signatures, distinct TCR sharing patterns, and may represent

two divergent destinations for naive CD4+ T cells. Whether these

phenotypes are harmful or protective remains unclear, but their

relative abundances increase with infection severity, starting at

the transition between mild and moderate disease.

Similar to a previous report (Schulte-Schrepping et al., 2020),

we find a relative decrease in non-classical monocytes and the

emergence of S100highHLA-DRlow monocytes at the stage of

moderate disease. We also find that this subset highly correlated

with global changes within the plasma proteome and metabo-

lome. In general, unusual or dysfunctional adaptive or innate im-

mune cell phenotypes that are unique to severe cases are not

seen. Rather such phenotypes are seen in moderately ill patients

and are only relatively increased in severe patients, further

emphasizing the similarity between severe andmoderate disease

and the sharp difference between mild and moderate cases.

Gene module M2 (Figure 7) further reflects the sharp transition

between mild and moderate disease and yields a coordinated
of each row represents the marker’s correlation with the M2 score, with red (blue)

pathways is provided in Table S6. Pearson correlation coefficients and FDR-correc

***FDR <0.001.

(D) Spearman rank correlations between M2 with clinical data. The square size co

indicates negative correlation and red indicates positive correlation. *FDR <0.05

(E) Bar plot depicting Pearson correlation coefficient of the top 5 most significantly

or metabolites (right) with M2. Full list of correlated proteins (metabolites) is prov

(F) Summary for coordinated immune response changes along M2 axis.

See also Figures S6 and S7 and Table S6.
view of the immune response to infection. M2, which was calcu-

lated using the immune cell transcriptomic data, readily distin-

guishes healthy donors andmild patients frommoderate and se-

vere cases, positively correlates with all observed unique

immune cell phenotypes, with pro-inflammatory signals in the

plasma, with the loss of specific metabolite classes, and with

multiple clinical metrics (e.g., CRP). These correlative findings

suggest that routine clinical measures may provide surrogate

biomarkers for the immune dysfunction that emerges post the

stage of mild disease and may yield markers that can anticipate

disease course or provide surrogate endpoints for COVID-19 tri-

als. The recognition of a non-monotonic change occurring be-

tween mild and moderate COVID-19 is potentially of high value,

because therapeutic interventions at the stage of moderate dis-

ease are likely to be most effective. The resources provided from

this work could prove valuable in developing such interventions,

such as anti-inflammatory therapies that preserve the IFN-a anti-

viral response, and target coagulation defects or metabolic

resource starvation. This broad systems immunology approach

should also be applicable toward understanding immune re-

sponses in a plethora of other infectious diseases.
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CryoStor CS-10 Biolife Solutions Inc Cat# 210102

autoMACS Rinsing Solution Miltenyi Biotec Cat# 130-091-222

PBS, 1X Fisher Scientific Cat# 21-040-CV

AO/PI Cell Viability Kit - dual stain for cell counter Logos Bio Cat# F23001
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FlowJo FlowJo https://www.flowjo.com/
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Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Dr. James

R. Heath (jim.heath@isbscience.org).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
All blood scRNA-seq data used in this study can be accessed by Array Express under the accession number: E-MTAB-9357. Addi-

tional Supplemental Items, including the metabolomic and proteomic datasets, are available from Mendeley Data at http://dx.doi.

org/10.17632/tzydswhhb5.5.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

COVID-19 patients and healthy control samples
The study sample consisted of N = 139 COVID-19 patients (60 males and 79 females) and 258 healthy controls (18 for single-cell

analysis; 133 for metabolomics; and 124 for proteomics, 18 of which overlap with metabolomics controls). Enrolled COVID-19 pa-

tients have an age range from 18 to 89 (median = 58). For ethnicity, 16 patients were recorded as Hispanic or Latino, 118 were re-

ported as not Hispanic or Latino, and 5 had no ethnicity recorded. For race, 82 patients were recorded asWhite, 17 patients as Asian,

13 as Black or African American, 4 as Native Hawaiian or other Pacific Islander, 2 as American Indian or Alaska Native, 1 asmore than

one race, and 20 had no race recorded. A large percentage of patients presented with chronic hypertension (42%), and among other
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comorbidities, obesity (BMI R 30 kg/m2; 37%; BMI ranged from 13.9 to 56.0 with Mean = 29.7, SD = 7.8), type 2 diabetes mellitus

(19%), coronary artery disease (5%), and pulmonary disease (i.e., asthma or COPD; 24 or 19%) were the most prevalent. Patients in

this study received a number of medications, including tocilizumab (an IL-6 receptor inhibitor), remdesivir (an antiviral), hydroxychlor-

oquine, and antibiotics. 38% of draws were collected from the patient’s home (mobile phlebotomy), 38% of draws were collected

from non-ICU hospitalized patients, 21% of draws were from patients in the ICU, and 3% from the clinic. All participants in this study

provided written informed consent, in accordance with 45 CFR 46. De-identified proteomic and metabolomic data from matched

healthy controls were previously collected from individuals enrolled in a wellness program at baseline (Arivale, Seattle, WA) (Manor

et al., 2018), and processed using the same proteomic and metabolomic protocol. Healthy control samples for single-cell analyses

were obtained from Bloodworks Northwest (Seattle, WA). All healthy control participants provided informed consent and authoriza-

tion and permission for their de-identified data to be used for scientific research. Control samples for proteomics and metabolomics

were matched on age and sex with enrolled patients. Information on age, sex, medication, and co-morbidities is listed in Table S1.

This study was designed to characterize the immunological responses in COVID-19 patients without the intention of the development

of new treatments or new diagnostics, and therefore sample size estimationwas not included in the original study design. Procedures

for the current study were approved by the Institutional Review Board (IRB) at Providence St. Joseph Health with IRB Study Number

[STUDY2020000175] and the Western Institutional Review Board (WIRB) with IRB Study Number 20170658.

METHOD DETAILS

EHR extraction and illness status designation
WOS for time of blood draw were determined by manual expert review. WOS for Figure S1A were automatically generated from data

extracted from the electronic health record for hospitalized patients, and plotted for 6-hour time intervals based on end-interval

grade. Automated results were compared against manual expert review for 15% of study subjects.

The following data were collected from the subject’s electronic health record (EHR): complete blood count (CBC) with differential,

comprehensive metabolic panel, APTT, D-dimer, fibrinogen, prothrombin time, thrombin time ,and troponin I. Lab data were ex-

tracted from the nearest time point to each blood draw, if available within a window ± two days. First blood draw (n = 76), second

blood draw (n = 54). Blood draws were classified as WOS = 3-4 (n = 83) and WOS = 5-7 (n = 47). We used an unpaired Wilcoxon-

test to determine the statistical difference between WOS = 3-4 and WOS = 5-7, and P values were FDR adjusted. Spearman corre-

lation coefficient was calculated using R package ‘corrplot v0.84’ to observe the associations between EHR labs and WOS disease

severity, and the correlation significance was reported as FDR adjusted P values.

Plasma and PBMC isolation
Plasma and PBMC isolation were conducted with standard protocols from Bloodworks Northwest (Seattle, WA). Patient blood was

collected in BD Vacutainer (EDTA) tubes (Becton, Dickinson and Company, Franklin Lakes, NJ). Plasma fractions were collected after

centrifuged at 800 x g at 4�C for 10min, aliquoted, and stored until use at�80�C. The rest of the blood was diluted with PBS (pH7.2) to

2X of the original volume and layered over 15 mL Ficoll (GE Healthcare, Waukesha, WI) in SepMate-50 tubes (StemCell, Vancouver,

BC). After centrifuged at 800 x g for 15 min at room temperature, the PBMC layer (did not include granulocytes (such as neutrophils))

was poured into a 50mL conical tube. The cells were washed twice with autoMACSRinsing Solution (Miltenyi Biotec, Auburn, CA) and

centrifuge at 250 x g for 10 min, at RT. PBMC pellets were gently resuspended in 5 mL Rinsing Solution and a 5 mL aliquot was diluted

1:10 v/v for cell counting. Cells in 18 mL of diluted samples were first mixedwith 2 mL of AcridineOrange / Propidium Iodide Stain (Logos

Biosystems, Annandale, VA), 10mLwas then loaded to aPhotonSlide (LogosBiosystems) and counted in a LUNAFLDual Fluorescence

cell counter (Logos Biosystems). Cryopreservation freeze media CryoStor CS-10 (Biolife Solutions, Bothell, WA) was slowly added to

make a concentration of 2.5million PBMC/ml. Cells were aliquoted in 2.0mLCryotube vials (ThermoFisher,Waltham,MA) and frozen in

CoolCell LX Cell Freezing Container (Corning, Corning, NY) at �80�C for at least 2 hours before stored in liquid nitrogen until use.

Plasma proteomics
Plasma concentrations of proteins were measured using the ProSeek Cardiovascular II, Inflammation, Metabolism, Immune

Response, and Organ Damage panels (Olink Biosciences, Uppsala, Sweden). Health control plasma samples were processed at

Olink facilities in Boston, MA. Plasma samples from COVID-19 participants were assayed at the Institute for Systems Biology. Pro-

teins from patient plasma were measured using proximity extension assay (PEA) (Olink Proteomics, Uppsala, Sweden) which allows

for the simultaneous analysis of 92 protein biomarkers on each panel. Five panels including Inflammation, Cardiovascular II, Organ

Damage, Immune Response, and Metabolism were run using 328 patient plasma samples as well as 8 replicates of a pooled healthy

control. One microliter of plasma was incubated overnight and allowed to bind with oligonucleotide-labeled antibody pairs to form

specific DNA duplexes. This template was then extended and pre-amplified, and the individual protein markers weremeasured using

high-throughput microfluidic real-time PCR (Fluidigm, South San Francisco, CA). The resulting Ct values were normalized against an

extension control, an inter-plate control, and adjusted with a correction factor according to the manufacturer’s instructions to calcu-

late a normalized protein expression value (NPX) in log2 scale. Samples were processed in batches with pooled quality control sam-

ples included in each batch. Specifically, 8 technical replicates from a pooled blood sample served as overlapping reference samples

in each plate. Raw expression values are then batch corrected by normalizing to the overlapping reference samples within each plate.
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Plasma metabolomics
Metabolon (Morrisville, NC, USA) conducted the metabolomics assays for all participant plasma samples used in this study. Data

were generated with the Global Metabolomics platform via ultra-high-performance liquid chromatography/tandem accurate mass

spectrometry. 100 ml of plasma was aliquoted and transported on dry ice to Metabolon Inc. for analysis. Sample handling and quality

control were performed by Metabolon in their CLIA-certified laboratory. Mass spectrometry was performed using Metabolon’s ultra-

high-performance liquid chromatography/tandemmass spectrometry (UHPLC/MS/MS) Global Platform, which consisting of four in-

dependent UPLC–MS/MS instruments, each with a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and Thermo

Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source

and Orbitrap mass analyzer at 35,000 mass resolution. Data extraction, along with biochemical identification, data curation, quan-

tification, and data normalizations were performed byMetabolon’s hardware and software. Samples were processed in batches with

pooled quality control samples included in each batch; pooled quality control samples were consistent across batches. Potential

batch effects for each metabolite were adjusted by dividing by the corresponding average value identified in the pooled quality con-

trol samples from the same batch. For analysis, the rawmetabolomics data were median scaled within each batch such that the me-

dian value for each metabolite was one.

Single-cell multiplex secretome assay
Cryopreserved PBMCs were thawed and incubated in the RPMI 1640 for overnight recovery at 37�C, 5% CO2. Recovered cell

viability was measured at > 95% for all samples. After overnight recovery, CD4+ and CD8+ T cell populations and monocytes

were magnetically isolated using the CD4+, CD8+ Microbeads and Pan Monocyte Isolation Kit (Miltenyi Biotec, Bergisch Gladbach,

Germany) sequentially.

The enriched CD4+ and CD8+ T cells (100,000 cells/well in a 96 well-plate) were stimulated for 6 hours with plate-bound anti-CD3

antibodies (pre-coated at 10 mg/mL overnight at 4�C) and soluble anti-CD28 antibodies (5 mg/mL) in complete RPMI-1640 at 37�C,
5% CO2 . The enriched monocytes at 1 3 105/ml were stimulated with 10 ng/ml LPS for 12 hours.

After stimulation, the activated cells were collected, washed, and stained with membrane stain (included in the IsoPlexis kit). The

stained cells were then loaded onto the chip consisting of the 12,000 chambers pre-coated with an array of 32 cytokine capture an-

tibodies. The chip was inserted into the fully automated IsoLight for further incubation for 16 hours and the cytokines were detected

by a cocktail of detection antibodies followed by the fluorescent labeling. The scanned fluorescent signal was analyzed by IsoSpeak

software to calculate the numbers of cytokine-secreting cells, the intensity level of cytokines, and polyfunctional strength index (PSI).

See the below for the measured cytokines in each panel.

Single-Cell Adaptive Immune cytokine panel including the following subsets of cytokines. Effector: Granzyme B, IFN-g, MIP-1a,

Perforin, TNF-a, TNF-b; Stimulatory: GM-CSF, IL-2, IL-5, IL-7, IL-8, IL-9, IL-12, IL-15, IL-21; Chemoattractive: CCL11, IP-10,

MIP-1b, RANTES; Regulatory: IL-4, IL-10, IL-13, IL-22, TGFb1, sCD137, sCD40L; Inflammatory: IL-1b, IL-6, IL-17A, IL-17F,

MCP-1, MCP-4.

Single-Cell Innate Immune cytokine panel including the following subsets of cytokines. Effector: IFN-g, MIP-1a, TNF-a, TNF-b;

Stimulatory: GM-CSF, IL-8, IL-9, IL-15, IL-18, TGF-a, IL-5; Chemoattractive: CCL11, IP-10, MIP-1b, RANTES, BCA-1; Regulatory:

IL-10, IL-13, IL-22, sCD40L; Inflammatory: IL-1b, IL-6, IL-12-p40, IL-12, IL-17A, IL-17F, MCP-1, MCP-4, MIF; Growth Factors:

EGF, PDGF-BB, VEGF.

Flow cytometry analysis
For surface marker and intracellular cytokine staining, PBMCs were surface stained for 30 minutes at 4�C and washed twice. Cells

were then fixed in 4% paraformaldehyde solution for 20 minutes and washed twice with 1x permeabilization solution. Intracellular

cytokines were stained using an antibody cocktail and incubated for 30 min at 4�C. The washed cells were analyzed with Attune

NxT and the data was analyzed with FlowJo software. Antibodies against human CD4, CD8, PD-1, Ki-67, and Granzyme B were

purchased from Biolegend.

Single cell multi-omics assay
Chromium Single Cell Kits (10x Genomics) were utilized to analyze the transcriptomic, surface protein levels and, TCR sequences

simultaneously from the same cell. Experiments were performed according to the manufacturer’s instructions.

Briefly, cryopreserved PBMCs were thawed and 1X red blood cell lysis solution (BioLegend) was used to lyse any remaining red

blood cells in the PBMC samples. Cells were stained with a panel of TotalSeq-C human antibodies that includes hashtagmultiplexing

antibodies (BioLegend) detailed in Table S1.8 according to the manufacturer’s protocol. Stained cells were then loaded onto a Chro-

mium Next GEM chip G. Cells were lysed for reverse transcription and complementary DNA (cDNA) amplification in the Chromium

Controller (10X Genomics). The polyadenylated transcripts were reverse-transcribed inside each gel bead-in-emulsion afterward.

Full-length cDNA along with cell barcode identifiers were PCR-amplified and sequencing libraries were prepared and normalized.

The constructed library was sequenced on the Novaseq platform (Illumina).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Quantifying disease severity via WOS
Severity of COVID-19 was clinical status assessed throughout a patient’s encounter in accordance to the 9-point the World Health

Organization (WHO) Ordinal Scale (WOS) for clinical improvement consisting of the following categories: 0) uninfected - no evidence

of infection; 1) ambulatory - no limitation of activities; 2) ambulatory - limitation of activities; 3) hospitalized, mild - no oxygen therapy;

4) hospitalized, mild - oxygen by mask or nasal prongs; 5) hospitalized, severe - non-invasive ventilation or high-flow oxygen; 6)

hospitalized, severe - intubation and mechanical ventilation; 7) hospitalized, severe - ventilation + additional organ support; and

8) dead – death (World Health Organization, 2020). For Figure S1A, WOS was calculated in 6-hour intervals, and the score was

used that corresponded to the window in which the blood was drawn.

Correlation between EHR and other dataset
We conducted Spearman correlation analysis to evaluate the association between gene module2 (M2), obtained from surprisal anal-

ysis of sc-RNA-seq data, and disease severity (WOS) with clinical labs as well as CBCs. The correlation significance was reported as

FDR adjusted P values.

Statistical Analysis of Plasma-omics
For quality control analysis, a threshold of less than 20%missing values was set for each protein and metabolite. Missing values for

proteins were imputed to be the limits of detection whilemissing values formetabolites were imputed to the lowestmeasured value. A

total of 463 proteins and 877 metabolites were included in further statistical analyses.

For association with COVID-19 status and severity, we assessed the differential abundance of protein and metabolite levels be-

tween healthy and COVID-19 samples. Specifically, we compared samples from uninfected participants with samples from mild

(WHO Ordinal Scale 1-2), moderate (WHO Ordinal Scale (3-4), and severe (WHO Ordinal Scale 5-7) patients. For all analyses, only

samples from the first blood draw were considered.

Prior to association analysis, levels of proteins and metabolites were first adjusted for age, sex, BMI, and race/ethnicity. We then

performed Welch’s t tests between uninfected and mild; mild and moderate; and moderate and severe samples. Analyses were per-

formed for proteins and metabolites separately. Multiple testing correction was subsequently applied to each comparison using the

Benjamini-Hochberg (BH) procedure with false discovery rate (FDR) at 5%. Age, sex, BMI, and race/ethnicity adjusted protein and

metabolite levels were tested separately and multiple testing correction was performed using BH FDR < 5%.

Further metabolites that significantly changed (FDR < 0.05) in the aforementioned stepwise comparisons were first grouped by

their superpathway (e.g., lipid, xenobiotic, etc.). Then the fold changes of eachmetabolite within a superpathway groupwas summed

and utilized for the stacked bar plots shown in Figure 1D, right panel. Similarly, proteins that significantly changed (FDR < 0.05) in the

aforementioned stepwise comparisons were utilized for the plot shown in Figure 1C, right panel.

For association with gene module2 score of single-cell data, pearson correlation was also performed to test the association of

adjusted metabolite and protein levels with the M2 score derived from surprisal analysis of single-cell data. Calculated Pearson cor-

relation coefficients and associated P values were subsequently used.

Principal component analysis of plasma-omics
PCA was performed separately for metabolomic and proteomic data using metabolites and proteins that passed quality control,

respectively. Values were centered and scaled from 0 to 1 prior to dimensional reduction. In the case of proteins, all proteins that

could not be determined for any patient were removed from the dataset, and PCA was run on the remaining 352 proteins per patient

using scikit-learn in python (Pedregosa et al., 2011). In the case of metabolites, several more values could not be determined and so

deterministic PCA was not feasible. Instead, all metabolites that could not be determined for > 20% of patients were removed. This

left 766 of 1053 metabolites remaining, and only 4.98% of the filtered dataset undetermined. Then, the dimensional reduction was

applied to the filtered data via probabilistic PCA inMATLAB (Tipping and Bishop, 1999). PCA plots were colored by the severity of the

patient based on the WOS at the time of the blood draw.

WOS-dependent cross-omic network analysis
Metabolite data (N = 123 patients and k = 243 observations) and protein data (N = 127 patients and k = 249 observations) collected

from plasma were combined with clinical test data extracted from patent medical records (N = 79 patients and k = 137 observations)

as well as patient baseline demographics. Clinical test data collected within two days of blood draws were used for this analysis.

Multiple observations were available for most patients. Proteins and metabolites with greater than 50% missingness were dropped

from the dataset.

First, we identified a set of significant pairwise Spearman correlations between inter-omic analytes, adjusting for potential

confounding variables. This initial step was performed to lower the computational burden for downstream model fitting. Generalized

estimating equations (GEE) were fit for each of N = 1,591 analytes using the model analyte �age_at_baseline + C(sex) + C(race) +

C(ethnicity) + BMI. For skewed analytes (jskewj> 1:5), a Gamma distribution with a log link function was used; otherwise a

Gaussian distribution with an identity link function was used. The Exchangeable dependence structure was used to account for
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the non-independence of multiple observations within each patient. Residuals from each GEE were used to compute Spearman cor-

relations between each pair of inter-omic analytes (e.g., metabolite-protein, metabolite-clinical, or clinical-protein). P values were

adjusted for multiple hypotheses using the False Discovery Rate (FDR) method of Benjamini and Hochberg (1995).

Disease severity at each patient blood draw was calculated using the WHO ordinal scale. For each of 27,386 highly significant

(FDR < 0.001) pairwise inter-omic Spearman correlations calculated in the previous step, we fit a GEE using the model analyte1

�age_at_baseline + C(sex) + C(race) + C(ethnicity) + BMI + who_ordinal_scale*analyte2 on the original (non-residualized) data. For

skewed analytes (jskewj> 1:5), a Gamma distribution with a log link function was used; otherwise a Gaussian distribution with an

identity link function was used. The Exchangeable dependence structure was used to account for the non-independence of multiple

observations within each patient. Interaction p values were adjusted for multiple hypotheses.

Single cell RNA-seq data processing
Droplet-based sequencing data were aligned and quantified using the Cell Ranger Single-Cell Software Suite (version 3.0.0, 10x

Genomics) against the GRCh38 human reference genome. Cells from each demultiplexed sample were first filtered for cells that ex-

pressed a minimum of 200 genes, then they were filtered based on three metrics: 1) the total number of unique molecular identifiers

(UMI) counts per cell (library size) must be less than 10000; 2) the number of detected genes per cell must be less than 2500; and 3) the

proportion of mitochondrial gene counts (UMIs from mitochondrial genes / total UMIs) must be less than 10%. Doublets were either

simultaneously identified in sample demultiplexing or identified using scrublet (Wolock et al., 2019) and were removed prior to the

aforementioned filtering. After QC metric filtering, a total of 559,583 cells were retained for downstream analysis. Scanpy (Wolf

et al., 2018) was used to normalize cells via CPM normalization (UMI total count of each cell was set to 106) and log1p transformation

(natural log of CPM plus one).

Single cell RNA-seq cell type identification
PCAwas performed on the normalized, ln(CPM+1), gene expression matrix of all cells passing the previously mentioned QCmetrics,

‘‘arpack’’ was set as the SVD solver. A neighborhood graph was built with n-neighbors set to 15 and all 50 calculated PCs as inputs.

This neighborhood graph was utilized to calculate a UMAP (McInnes et al., 2018) and clusters were determined via the Leiden algo-

rithm (Traag et al., 2018). Clusters identified in this first round of clustering were annotated based on the expression of canonical

marker genes. Clusters that were not uniform in their expression of well-known marker genes were extracted and a second round

of dimension reduction and clustering was performed on these subsets (recalculation of UMAP and Leiden, this was mainly utilized

to separate T cells and NK cells, and rare cell type populations). Clusters that simultaneously expressed canonical markers from two

or more major cell types were identified as potential doublets or low-quality cells and were removed from downstream analysis.

10,433 low-quality cells were removed resulting in 549,210 total cells for further analyses.

Identified T cells from the first and second round of clustering were extracted for CD4+ and CD8+ T cell identification. A CD4+ T cell

score was obtained by taking the sum of the scaled values (scale the ln(CPM + 1) values to be from 0 to 1) of the CD4 transcript and

CD4 surface protein. A CD8+ T cell score was obtained by taking the sum of the scaled values of theCD8A andCD8B transcripts, and

the CD8 surface protein. Both scores were subsequently scaled to be from 0 to 1 and utilized as inputs for a scatterplot for manual

gating of CD4+ T cells andCD8+ T cells. Other T cells were then defined as T cells that did not confidently categorize as CD4+ or CD8+.

Single cell RNA-seq batch information
All 50 computed PCs from the PCA performed on the normalized gene expression data were used as inputs to calculate a bbKNN

graph (Pola�nski et al., 2020) which was set to correct across batch-specific patient samples (this treats patient samples which were

obtained from different sequencing batches/reactions as different). This bbKNN graph was then utilized to calculate batch corrected

UMAP coordinates, which are projected in Figure S1K (left panel). Batch correction (based on bbKNN) was only used for UMAP

visualization purposes in Figure S1K (left panel). No major batch effects were found as examined through heatmap visualization

of batch-specific cell-types with cell-type markers in Figure S1J and hierarchical clustering of batch-specific cell-types in Figure S1K

(right panel). Downstream statistical analysis was performed on the uncorrected data as recommended in (Amezquita et al., 2020).

Single cell RNA-seq gene regulatory networks
Major immune cell types CD4+ T cells, CD8+ T cells, monocytes, B cells, and NK cells were further analyzed via a construction of their

single-cell regulatory networks by inputting their normalized gene expression matrices into pySCENIC (Van de Sande et al., 2020).

Patient 4 B cells were removed from the B cell transcriptomic dataset inputted into pySCENIC as they had chronic lymphocytic leu-

kemia and a resultant cancerous population of B cells. Due to the large number of identified monocytes (n = 175,635), it was not

computationally feasible to perform single-cell regulatory network calculation on the entire monocyte dataset and thus monocytes

were subsetted by taking one-third of the monocytes from each sample resulting in 58,542 monocytes being utilized to calculate

transcription factor modules. The resultant single-cell transcription factor modules from each cell type were subject to PCA.

Batch-specific PC dimensions, determined via plotting of sequencing batches and canonical subpopulation markers onto reduced

dimensional space (PC or UMAP), were removed. This entailed the removal of PC7 from CD8+ T cells, PC9 from CD4+ T cells, and

PC4 from NK cells. Further dimensional reduction was calculated via a neighborhood graph (n-neighbors was set to 15 and all PCs

(49 if a PC was removed, 50 if no PCs were removed) were utilized) and subsequently a UMAP with the neighborhood graph as input.
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Clustering was calculated via the Leiden algorithmwith resolution set to 0.8 for CD8+ T cells, 1.0 for CD4+ T cells, 0.95 for B cells, 0.95

for monocytes, and 0.7 for NK cells. All reduced dimensions (PCA, neighborhood graph, UMAP) and clusters (Leiden) for all of the

aforementioned single cell RNA-seq data were calculated via Scanpy (Wolf et al., 2018).

Single cell RNA-seq signature score
Signatures scores were calculated for CD8+ T cells, CD4+ T cells, and NK cells for further characterization of cell type specific sub-

populations. For all of the aforementioned cell types for which signature scores were computed, the single cell transcriptomic matrix

was first subject toMAGIC imputation (vanDijk et al., 2018). Imputed gene expression valueswere then utilized to calculate the signa-

ture scores, unless otherwise specified the signature scores consist of the sum of the scaled values (genes were scaled to be from

0 to 1) of a gene set. For CD8+ T cells naive (TCF7, LEF1, SELL, CCR7), cytotoxic (NKG7, CCL4, CST7, PRF1, GZMA, GZMB, IFNG,

CCL3), exhaustion (PDCD1, TIGIT, LAG3, HAVCR2, CTLA4), and proliferation (MKI67, TYMS) signature scores were calculated. For

CD4+ T cells naive (TCF7, LEF1, SELL,CCR7), cytotoxic (GZMB, PRF1,GNLY), exhaustion (PDCD1, TIGIT, LAG3,HAVCR2,CTLA4),

and proliferation (MKI67, TYMS) signature scores were calculated. The CD4+ T cell Th1 signature score was calculated via the

average of a HLA class II signature score (HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DMA,

HLA-DMB, HLA-DPA1, HLA-DPB1) and the imputed expression of the IFNG transcript. Genes utilized in the HLA class II signature

score were selected via filtering for transcripts with non-sparse expression as determined via plotting all HLA class II transcripts onto

the single cell transcription factor module determined UMAP for CD4+ T cells. For NK cells undifferentiated (SELL, NCAM1), exhaus-

tion (PDCD1, TIGIT, LAG3, HAVCR2, CTLA4), cytotoxic (NKG7, CCL4, CST7, PRF1, GZMA, GZMB, IFNG, CCL3), proliferation

(MKI67, TYMS), and KIR (KIR2DL1, KIR2DL3, KIR3DL1, KIR3DL2) signature scores were calculated.

Gene set enrichment/variation analysis
To quantify the pathway enrichment score across samples or cells, GSVA was performed using the R package GSVA (v.3.11) (Hän-

zelmann et al., 2013) to identify the most changed pathways between samples/cells with the averaged log2 (CPM+1) data as input.

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was performed using GSEA v4.1.0 software with ‘‘weighted’’

enrichment statistics. Transcriptomic pseudo-bulk of Leiden clusters (per cell type) and transcriptomic pseudo-bulk of samples (pa-

tient blood draws and healthy donor samples, also per cell type) were subject to this analysis. Pseudo-bulk of Leiden clusters were

calculated by taking the mean normalized (ln(CPM + 1)) gene expression values of each Leiden cluster, and pseudo-bulk of samples

were similarly calculated by taking themean normalized (ln(CPM+ 1)) gene expression values of each sample. Each pseudo-bulk was

then separately (only one pseudo-bulk was used at a time) used as the input with ‘‘diff_of_classes’’ methods used as the metric for

ranking genes. Normalized enrichment score (NES) was assessed across the curatedMolecular Signatures Database (MSigDB) Hall-

mark, C2 curated gene sets, C5 Gene ontology, and C7 Immunological signature.

Single cell RNA-seq marker selection
Figures S2F and S3F are showing well-reported naive-related gene TCF7 (Gullicksrud et al., 2017), proliferation gene MKI67 (Miller

et al., 2018), and exhaustion gene PDCD1 (encodes PD-1) (Riley, 2009) in T cells.

Similarly, Figure 4C showed the FCER2 gene which is known to be highly expressed in naive B cell populations but low in class-

switched B cells (Liu et al., 2016); the SLAMF7 gene that is upregulated in activated B cells (Kim et al., 2016); and theHLA-DRA gene,

one of the HLA class II genes that play essential roles in T cell-dependent B cell activation (Adler et al., 2017; Katikaneni and Jin,

2019). In Figure 4D, we included two important chemokine receptors in B cells (CD185 and CD196) (Henneken et al., 2005; Reimer

et al., 2017) that showed significant changes in COVID-19 patients compared to healthy donors. Figure S4E is investigating if TNF-a,

another marker for monocyte immunoparalysis (Giamarellos-Bourboulis et al., 2020) is also downregulated with increasing disease

severity, which we found to be such. Figures 6E and S5E show a fewwell-reported genes associated with NK cell states. Specifically,

we included GZMB and PRF1 that are highly expressed in cytotoxic NK cells (Yoon et al., 2015), the proliferation gene MKI67 (Hud-

speth et al., 2019), the CD56 surface marker for the classification of two canonical NK cell subtypes (Vivier et al., 2008), the activation

marker CD69 (Borrego et al., 1999), the surface marker CD62L that is highly expressed on CD56bright NK cells and differentially ex-

pressed during various maturation stages of NK cells (Lima et al., 2017), and the IL7R gene (encodes CD127) that is expressed spe-

cifically on CD56bright cells and enhances the survival of this NK subset (Michaud et al., 2010).

The selection of transcripts and proteins for heatmaps in Figures 2C and 3C is based on knowledge of well-documented T cell

phenotype genes and proteins. We show genes TCF7, CCR7, LEF1 that have high expression in naive T cells (Campbell et al.,

2001; Willinger et al., 2006); memory-like/intermediate genes AQP3, CD69, GZMK (Szabo et al., 2019); effector-like cytotoxic genes

GZMB, PRF1,GNLY (Hidalgo et al., 2008); proliferation genesMKI67 and TYMS (Miller et al., 2018; Shichijo et al., 2004); exhaustion-

related genes PDCD1, LAG3, TIM3, TIGIT (Anderson et al., 2016) to help annotate T cell subpopulations. We also selected the IFNG

gene that is highly expressed by T helper type 1 cells (Swanson et al., 2001), CXCR5 for T follicular helper cells (Crotty, 2014), and

FOXP3 for regulatory T cells (Li et al., 2015). For proteins in Figure 2C, we show naive CD8+ T cell marker CD45RA, CD28 (Berard and

Tough, 2002; Vallejo et al., 1999); long-lived memory CD8+ T cell marker CD127 (Huster et al., 2004); CD8+ effector T cell markers

CD95, KLRG1, CD11b (Arens et al., 2005; Fiorentini et al., 2001; Herndler-Brandstetter et al., 2018); T cell activation marker CD71

(Caruso et al., 1997); terminally differentiated CD8+ T cell marker CD57 (Kared et al., 2016); and the immunoregulatory receptor

CD244 (Agresta et al., 2018). For CD4+ T cell proteins in the heatmap in Figure 3C, we show naive T cell marker CD45RA (Berard
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and Tough, 2002); the activation marker CD278 for CD4+ T cells (Maawy and Ito, 2019); the memory T cell marker CD49F (Abitorabi

et al., 1996); HLA class II protein HLA-DR that can be upregulated after CD4+ T cell activation (Mangalam et al., 2006); the dual func-

tion receptor CD95 that has both apoptotic and anti-apoptotic effects (Paulsen and Janssen, 2011); immunoregulatory receptor

CD244 (Agresta et al., 2018) and the inhibitory receptor CD224 (Shuai et al., 2016). For monocytes, the selection of transcripts for

Figure 5D are based on the combined list of the top5 most differentially expressed genes (determined via the Wilcoxon Rank-

Sum test) for each monocyte cluster, only one copy of duplicate genes were kept in the final gene list and genes were hierarchically

clustered via the ‘‘complete’’ linkage method (also known as the Farthest Point algorithm). The full list of top genes and associated

statistics can be found in our supplementary Table S4.12.

The selection of mRNA, protein, and pathway for Figure 7C, is based onM2 score Pearson correlation coefficient and P value. The

top300 most positively/negatively correlated genes with M2 from each cell type were separately enriched for gene ontology biolog-

ical processes, then genes related to said biological processes were utilized for transcriptomic heatmaps. Proteins are selected from

the top5 most positively/negatively correlated proteins, pathways are selected from top50 most positively/negatively correlated

pathways. Full lists of the top genes, proteins, and pathways and their associated statistics are provided in Table S6 and the

gene ontology analysis of the top300 genes are also provided in Table S6. P values for all correlations plotted are all less than 0.05.

The selection of transcripts, proteins, and pathways for Figure 5F is based on the WOS correlation coefficient and P value. The

top300most positively/negatively correlated genes withWOS frommonocytes were separately enriched for gene ontology biological

processes, then genes related to said biological processes were utilized for transcriptomic heatmaps. Proteins are selected from the

top5 most positively/negatively correlated proteins, pathways are selected from top50 most positively/negatively correlated path-

ways. Full lists of the top genes, proteins, and pathways and their associated statistics are provided in Table S4 and the gene

ontology analysis of the top300 genes are also provided in the Table S4. P values for all correlations plotted are all less than 0.05.

Surprisal analysis
The genemodule score was calculated based on surprisal analysis, an information-theoretical analysis technique that integrates and

applies principles of thermodynamics and maximal entropy (Agmon et al., 1979; Levine, 2005). It has already been well-used in a

spectrum of disciplines including engineering, physics, chemistry, and biomedical engineering (Levine, 1978, 2005; Levine and Bern-

stein, 1974). Recently, it has been extended to characterize the state of living cells, specifically monitoring and characterizing bio-

logical processes using transcriptional data (Remacle et al., 2010; Zadran et al., 2014).

When applying surprisal analysis to our particular scenario, we have a dataset characterized by a cohort of patient samples with

different immune profiles (defined by gene expression from all five cell types), Equation 1 from surprisal analysis can de-convolute the

changes of thousands of genes into one unchanged gene expression baseline, ln X0
nðkÞ, and a series of gene expression modules,

ljðkÞ$Gn j. Each module contains a group of genes that are coordinately changing together across patient samples. In the equation,

Gn j value represent the contribution of each gene from each cell type (with n going from 1 to (#cell types) x (#genes)), onto module j,

and ljðkÞ values represent the overall score of this gene module j across patient sample k.

The mathematical derivation and computational implementation details have been well documented in the previous publication

(Remacle et al., 2010). Briefly, we are fitting the sum of terms,
P
j

ljðkÞ$Gn j as shown on the right-hand side of Equation 1 to the log-

arithm of the measured expression level of cell-type transcript n (with n going from 1 to (#cell types) x (#genes)) at the given patient

sample k. This is repeated for every sample in the pseudo-bulk which contains (#cell types) x (#genes) rows and (#patient samples)

columns of the normalized (ln(CPM+1)) gene expression values. A suitable general method has been published (Agmon et al., 1979)

and extensively applied mRNAmicroarrays monitor the expression levels of thousands of genes at a time. As the analysis of the data

needs to be handled by numerical procedures that are compatible with such a large dataset, we have adapted singular value decom-

position to handle the optimization problem as detailed in (Remacle et al., 2010).

ln XnðkÞ = ln X0
nðkÞ �

X

j

ljðkÞ$Gn j Equation 1
In this study, the most dominant constraint, l1 was reflecting seq
uencing technical variations (Figure S6A), thus the 2nd most domi-

nant constraint, l2, which is associated with many biological processes (Figure 7C) was further investigated as the immune response

module M2, scores for analyzed blood draw samples are in Table S6.39.

Single cell -omics disease severity analysis
The dataset collected here can be analyzed, at a high level, in two different ways. First, each blood draw corresponds to a time point

at which that patient was characterized by a level of disease severity (WOS) (Table S1.1). Grouping each blood draw according to

WOS, a contemporary measure of disease severity, can provide insight into how various immune cell populations, regulatory net-

works, and other biomarkers vary with disease severity level by sample. A second view is to consider each patient separately, so

that the two blood draws are used to capture an individual patient’s disease trajectory. Here, patients that improve between T1

and T2 can be differentiated from patients advancing to more severe infection. We utilize both types of analyses here. Disease tra-

jectories the time of the T1 and T2 blood draws, and WOS measures of disease severity, are provided in Figure S1A. These trajec-

tories start at the self-reported day of symptom onset and give WOS during the time of hospital admission.
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Statistical analysis of single cell -omics
Differential expression analysis was performed using the R package MAST (Finak et al., 2015). For each cell type (CD8+ T cells, CD4+

T cells, monocytes, B cells, and NK cells), we investigated theWHO-score delta by comparing patients getting better (having aWHO

score that decreases (T2-T1)) to patients staying stable (having a WHO score that does not decrease/increase (T2-T1)). The normal-

ized (but not batch corrected) gene-cell barcode was used as input, and we adjusted for all factors in our model as recommended in

Amezquita et al. (2020). OurMASTmodels included as covariates the batch and patient ID, as well as the cellular detection rate (CDR)

to correct for biological and technical nuisance factors. Multiple hypothesis testing correction was performed by controlling the false

discovery rate (FDR). Genes were declared significantly differentially expressed at a FDR of 5% and a fold-change > 1.5.

Single cell TCR-seq data processing
Droplet-based sequencing data for T cell receptor sequences were aligned and quantified using the Cell Ranger Single-Cell Software

Suite (version 3.1.0, 10x Genomics) against the GRCh38 human VDJ reference genome.

Single cell TCR & RNA-seq integration
Filtered annotated contigs for T cell receptor sequences were analyzed via scirpy (Sturm et al., 2020). The aforementioned contig files

were read in as TCRs, filtered for either CD4+ or CD8+ T cells (as identified via single cell RNA-seq analysis) and then subject to clo-

notype definition and clonal expansion analysis utilizing nucleotide sequences. Samples were then concatenated together and

merged with gene expression data for simultaneous single cell TCR and RNA data visualization.

Both the integrated CD4+ and CD8+ T cell datasets were subject to filtering for cells with complete TCR sequences, defined as a

detectable TRA and TRB. This filtering resulted in 107,397 of the 169,019 CD4+ T cells, and 55,994 of the 91,810 CD8+ T cells for

downstream TCR analysis. Each integrated T cell subset was grouped by Leiden clusters resulting in a TCRmatrix consisting of Lei-

den clusters as rows and unique TCRs as columns with the number of cells with a given TCR in a certain Leiden cluster as values. The

TCRmatrix was then filtered for shared TCRs (TCR sequence is present in at least two clusters) and then transformed via log1p trans-

formation (formula = ln(value + 1)) and values were clipped at 2 (any value greater than 2 was set to 2). Both TCRs and Leiden clusters

were subject to hierarchal clustering (scanpy.tl.dendrogram) with the method set to ‘‘ward.’’ TCR clusters were determined utilizing

the fcluster function from scipy (Virtanen et al., 2020) with the criterion set to ‘‘distance’’ and the distance set to 800 for CD8+ T cells

and 175 for CD4+ T cells.

ADDITIONAL RESOURCES

All data has been integrated for further visualization and analysis in ISB COVID-19 data explorer at https://atlas.fredhutch.org/isb/

covid/.
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Supplemental Figures

Figure S1. Overview of the Multi-Omic Characterization of Immune Responses in COVID-19 Patients, Related to Figure 1

A. The swimmer plot depicting EHR-extracted WOS severity score dynamics for studied patients who were admitted to hospital. Symptom onset and pre-

hospitalization (if available) are indicated by black rectangles and lines. WOS is calculated at 6-hour intervals during hospitalization. Blood draws are indicated by

upside-down blue triangles and administered medications by symbols overlaid on the colored bands.

B. Boxplots of clinical data comparing moderate (orange) and severe (red) patient sample values. Ranges that specify normal limits are indicated by the dashed

lines. Significance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

(legend continued on next page)
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C. Spearman Rank correlations between the measurement of the same analytes from EHR clinical labs and from metabolon metabolites. The regression line is

shown in blue with 95% confidence area in shaded blue. Spearman Rank correlation coefficient and associated P value shown. Significance is indicated by:

(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

D,E. Boxplot of principal component (PC) 1 and 2 from plasma proteomics data (D) or metabolomics data for donors, grouped by WOS (E). Significance is

indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)

F,G. Boxplots of select plasma protein (F) and metabolite(G) levels for donors, grouped by WOS. Significance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001).

H. Scatterplots representing interactions drawn on the circos plot shown in Figure 1E. Each dot represents a patient sample with a color that corresponds to

disease severity (see key).

I. Boxplots of select plasma lipid-related metabolites levels in donors grouped by different WOS. Metabolites were selected to illustrate (H) middle panel. Sig-

nificance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

J. Heatmap showing levels of well-known transcripts (left panel) and surface proteins (right panel) specific for each cell type and across different sequencing

batches (see color-code). Cell types indicated by B: B cells, CD34+: CD34+ Progenitor cells, DC: Dendritic cells, MK: Megakaryocytes, M: Monocytes, NK:

Natural killer cells, T: T cells.

K. UMAP visualization of single-cell RNA-seq data cell type annotation and analysis of batch effect. Left: 2D projection of single-cell RNA-seq data of all PBMCs

from all samples using UMAP. Single cells are shown as dots, colored by their assigned cell type. Right: Hierarchical clustering of cell types across sequencing

batches. Each column represents the expression profile of a cell type from a sequencing batch. Clustering was performed based on the expression of top 2000

most variable genes. Same cell types were clustered within the same hierarchical groups regardless of sequencing batch.

L. Boxplots depicting the percentages of major immune cell types within PBMCs for donors, grouped byWOS. Significance is indicated by: (*p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001).
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Figure S2. CD8+ T Cell Heterogeneity in COVID-19 Patients and Its Association with Severity, Related to Figure 2

A,B. UMAP embedding of all CD8+ T cells colored by unsupervised clustering (top left of A) and by selected mRNA transcript levels (other panels in A) or (B) two

selected surface proteins.

C. UMAP embedding of all CD8+ T cells colored by the density of cells characterized by different clonal expansion sizes (n = 1, n = 2-4, and n > = 5).

D. Clonal expansion sizes of each CD8+ T cell subset from unsupervised clustering. Bar plot shows the normalized clonal composition.

E. Boxplots represent percentages of effector CD8+ T cells (cluster 0, 1 and 2) over all CD8+ T cells for PBMCs in donors for different WOS.

F. Boxplots showing the mRNA expression levels of 3 transcripts in healthy donors (green), mild (yellow), moderate (orange) and severe (red) blood draws of

COVID-19 patients.

G. Differential expression analysis of genes that uniquely change in patients who improve (T2 versus T1, WOS decreased) in comparison with patients who did

not. Each row represents a gene. The x axis differential expression score with positive being upregulated and negative being downregulated. FDR-corrected P

values was shown.

H. Flow cytometry validation of the proliferative-exhausted cluster 8 CD8+ T cell. First panel (starting from the left): Representative flow cytometry plots of the

gating strategy for proliferative-exhausted CD8+ T cells (top box) and non-proliferative exhausted CD8+ T cells (bottom box). Gating was performed on all CD8+

T cells. Second panel: quantitative comparison of the% of gated proliferative-exhausted CD8+ T cells from flow cytometry (y axis) and%of cluster 8 CD8+ T cells

quantified by 10X (x axis) of the same sample. Each dot represents a PBMC sample. The regression line is drawn in green. Pearson correlation coefficient and

associated P value shown. Right two panels: Bar plots represent% of proliferative-exhausted CD8+ T cells quantified by flow and cluster 8 cells quantified by sc-

RNA-seq, comparing samples from healthy donors and COVID-19 patients. Data are represented as mean ± SEM.

I. GSEA of top pathways enriched for cluster 8 cells. Normalized enrichment score (NES) and P values are shown. Full results provided in Table S2.2.

(legend continued on next page)
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J. Functional characterization of CD8+ T cells using single-cell secretome analysis. Left panel: heatmap visualization of average cytokine secretion frequency for

cells from healthy donors (HD), mild (WOS = 1-2), moderate (WOS = 3-4) and severe (WOS = 5-7) patients. Right panel: Boxplots indicate the percentage of CD8+

T cells secreting granzyme B, and perforin from samples grouped by different WOS. P values are shown.

Significance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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Figure S3. Two Distinct CD4+ T Cell Subpopulations Are Associated with COVID-19 Severity, Related to Figure 3

A,B. UMAP embedding of all CD4+ T cells colored by unsupervised clustering (top left of A) and by selected mRNA transcript levels (other panels in A) or two

selected surface proteins (B).

C. UMAP embedding of all CD4+ T cells colored by the density of cells characterized by different clonal expansion sizes (n = 1, n = 2-4, and n > = 5).

D. Clonal expansion sizes of each CD4+ T cell subset from unsupervised clustering. Bar plot shows the normalized clonal composition.

E. Boxplots showing percentages of naive CD4+ T cells (cluster 1 and 2), cluser5 and 8 over all CD4+ T cells in samples grouped by WOS.

F. Boxplots showing the mRNA expression levels in samples grouped by WOS.

G. Clonal expansion status, presented as bar plots, for eachCD4+ T cell cluster, color-coded by clonal expansion sizes (n = 1, n = 2-4, n > = 5). The pie charts show

the CD4+ T cell cluster composition for each clonal expansion sizes present in the bar plots

H. Bar plots representing four functional signature scores across different subclusters of CD4+ T cells. P values are shown.

I,J. Flow cytometry validation of cytotoxic CD4+ T cells (I) and proliferative-exhausted cluster 8 CD4+ T cells (J). Left panel: Representative flow cytometry plots of

the gating strategy for cytotoxic CD4+ T cells (I), and proliferative-exhausted CD4+ T cells (J). Gating was performed on all CD4+ T cells. Middle panel: quantitative

(legend continued on next page)
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comparison of the% of gated cytotoxic (proliferative-exhausted) CD4+ T cells (y axis) and cluster 5 (cluster 8) CD4+ T cell % (x axis); each dot represents a PBMC

sample. The regression line is drawn in orange. Pearson correlation coefficient and associated P value shown. Right panels: Boxplots represent % of cytotoxic

(proliferative-exhausted) CD4+ T cells quantified by flow cytometry and % of cluster 5 (cluster 8) cells quantified by 10X single cell RNA-seq. Comparison was

between samples from healthy donor and COVID-19 patients. Data are represented as mean ± SEM.

K, L. Bar plots represent GSEA of top pathways enriched for cluster 5 (K) and cluster 8 (L) cells. Normalized enrichment score (NES) and P values are shown. Full

results provided in Tables S3.1 and S3.2.

M. Heatmap visualization of average cytokine secretion frequencies for cells from healthy donor (HD), mild (WOS = 1-2), moderate (WOS = 3-4) and severe

(WOS = 5-7) patient samples.

Significance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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Figure S4. S100highHLA-DRlow Dysfunctional Monocyte Subpopulation Reflects Coordinated Changes with Both Plasma Multi-Omics Sig-

nals and COVID-19 Severity, Related to Figure 5
A,B. UMAP embedding of all monocytes colored by unsupervised clustering (top left panel of A) and by selected mRNA transcript levels (other panels in A) or (B)

surface proteins for non-classical (CD16) monocytes.

C. UMAP embedding density of monocytes for different blood draw samples, grouped by WOS. Selected clusters that display significant changes from WOS

group to WOS group are encircled in the colors of the (A) clusters.

D. Differential expression analysis of monocyte genes that uniquely change in patients who improve (T2 versus T1, WOS decreased) in comparison with patients

who did not. Each row represents a gene. The x axis represents differential expression score with positive being upregulated and negative being downregulated.

FDR-corrected P values was shown. Significance is indicated by: (* FDR < 0.05, ** FDR < 0.01, *** FDR < 0.001).

E. Boxplots showing the mRNA expression levels of TNF transcripts from monocytes in samples grouped by WOS. Significance is indicated by: (*p < 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001).

F. Pearson correlation of HLA-DRA gene expression in monocytes with plasma IL-6 levels. Each dot represents a blood draw sample and is colored by disease

severity (WOS, see key). Regression line indicated in black, with a 95% confidence interval shown in shaded gray. Pearson correlation coefficient and associated

P value are shown. Significance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001).
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Figure S5. Proliferative NK Cell Subpopulation Is Associated with Increased COVID-19 Severity, Related to Figure 6

A,B. UMAP embedding of all NK cells colored by unsupervised clustering (top left of A) and by selected mRNA transcript levels (other panels in A) or (B) two

selected surface proteins.

C. UMAP embedding density of NK cells for different blood draw samples, grouped byWOS. Selected clusters that display significant changes fromWOS group

to WOS group are encircled in the colors of the (A) clusters.

D. Differential expression analysis of NK cell genes that uniquely decrease in patients who improve (T2 versus T1, WOS decreased) in comparison with patients

who did not. Each row represents a gene. The x axis represents differential expression score with positive being upregulated and negative being downregulated.

FDR-corrected P values was shown. Significance is indicated by: (* FDR < 0.05, ** FDR < 0.01, *** FDR < 0.001). Full list provided in Table S5.2.

E. Boxplot showing the mRNA expression and protein levels of a few markers associated with NK cell functions in samples grouped by WOS. Significance is

indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

F. Scatterplots showing the Exhaustion gene signature score (x axis) and Undifferentiated gene signature score (y axis) of individual NK cells from all PBMC

samples. Plots colored according to unsupervised clustering (from A), proliferation gene signature score, cytotoxic gene signature score, and KIR gene signature

score are color-coded in each panel.

G. GSEA of top pathway enriched for cluster 5 cells. Normalized enrichment score (NES) and p values are shown. Significance is indicated by: (*p < 0.05, **p <

0.01, ***p < 0.001). Full enrichment results are provided in Table S5.1.
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Figure S6. Integrating Multi-Omic Profiles across Immune Cell Types Resolves Coordinate Immune Response to SARS-CoV2 Infection,

Related to Figure 7

A. Pearson correlations of gene module (M) 1 score with two technical parameters: number of genes detected (left panel) and number of counts (right panel). The

regression line is indicated in blue, with the 95% confidence area shown in shaded blue. Pearson correlation coefficient and associated P value are shown.

Significance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001).

B. Pearson correlations of gene module (M) 2 score with two technical parameters: number of genes detected (left panel) and number of counts (right panel). The

regression line is indicated in blue, with the 95% confidence area shown in shaded blue. Pearson correlation coefficient and associated P value are shown.

Significance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001).

C. Spearman Rank correlations of gene module (M) 2 score with two clinical labs from EHR: Platelets (top panel) and CRP (bottom panel). The regression line is

indicated in black, with the 95% confidence area shown in shaded gray. Spearman Rank correlation coefficient and associated P value shown. Significance is

indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001).

D. Pearson correlations of gene module (M) 2 score with principal component (PC) 1 values of plasma proteomic (bottom panel) and PC2 values of plasma

metabolomic data (top panel). The regression line is indicated in black, with the 95% confidence area shown in shaded gray. Pearson correlation coefficient and

associated p value shown. Significance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001).

(legend continued on next page)
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E. Pearson correlations of gene module (M) 2 score with top correlated plasma metabolites (top panel) and proteins (bottom panel). The regression line is

indicated in black, with the 95% confidence area shown in shaded gray. Full list is provided in Tables S6.36 and S6.37. Pearson correlation coefficient and

associated p value shown. Significance is indicated by: (*p < 0.05, **p < 0.01, ***p < 0.001).

F. Pearson correlations of the gene module (M) 2 score with levels of select top correlated mRNA, surface proteins, pathway enrichment scores, and sub-

population percentages from different immune cell types. Full list is provided in Table S6. The regression line is indicated in a cell-type specific color, with the 95%

confidence area shown in shaded cell-type specific color. Pearson correlation coefficient and associated p value shown. Significance is indicated by: (*p < 0.05,

**p < 0.01, ***p < 0.001).
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Figure S7. Integrating Multi-Omic Profiles across Immune Cell Types Resolves Coordinate Immune Response to SARS-CoV2 Infection,

Related to Figure 7

A. Spearman Rank correlation of M2 with disease severity (WOS). Regression line is indicated in black, with the 95% confidence area in shaded gray. Spearman

Rank correlation coefficient and associated P value shown. (*p < 0.05, **p < 0.01, ***p < 0.001).

B. Heatmap visualization of selected top genes, surface proteins and pathways for B cell that significantly correlated with M2. Each column represents a sample

and each row corresponds to levels of mRNA, surface protein, or pathway enrichment score for B cells of that sample. Columns are ordered based onM2 score in

ascending order. The heatmap keys are provided at the top. Sidebar on the left of each row represents the marker’s correlation with the M2 score, with red (blue)

indicating positive (negative) correlation. Full list of the top genes, proteins and pathways is provided in Table S6. Pearson correlation coefficients and FDR-

corrected P values are indicated in the right panel bar plots. (* FDR < 0.05, ** FDR < 0.01, *** FDR < 0.001).

C. Summary of the plasma proteomic, metabolomics and major immune subtypes correlation with M2. 1st panel: cartoon illustration of increase of severity along

the M2 axis. 2nd �3rd panels, Pearson correlations of M2 with principal component (PC) 2 of the plasma proteomics data and PC1 of the plasma metabolomics

data (PCA shown in Figures 1C and 1D). Regression lines are indicated in black, with 95% confidence area in shaded gray. Spearman Rank correlation coefficient

and associated P value shown (*p < 0.05, **p < 0.01, ***p < 0.001). Remaining panels: Bar plot depicting Pearson correlation coefficient of immune cell type

percentages and subtype percentages with M2. (*p < 0.05, **p < 0.01, ***p < 0.001).

D. Summary for coordinated immune response changes along M2 axis.
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