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Abstract Nicotinamide adenine dinucleotide (re-
duced form: NADH) serves as a vital redox-energy
currency for reduction-oxidation homeostasis and
fulfilling energetic demands. While NADH exists as
free and bound forms, only free NADH is utilized for
complex I to power oxidative phosphorylation, espe-
cially important in neurons. Here, we studied how
much free NADH remains available for energy pro-
duction in mitochondria of old living neurons. We
hypothesize that free NADH in neurons from old
mice is lower than the levels in young mice and even
lower in neurons from the 3xTg-AD Alzheimer’s
disease (AD) mouse model. To assess free NADH,
we used lifetime imaging of NADH autofluorescence
with 2-photon excitation to be able to resolve the
pool of NADH in mitochondria, cytoplasm, and nu-
clei. Primary neurons from old mice were character-
ized by a lower free/bound NADH ratio than young
neurons from both non-transgenic (NTg) and more so
in 3xTg-AD mice. Mitochondrial compartments
maintained 26 to 41% more reducing NADH redox

state than cytoplasm for each age, genotype, and sex.
Aging diminished the mitochondrial free NADH con-
centration in NTg neurons by 43% and in 3xTg-AD
by 50%. The lower free NADH with age suggests a
decline in capacity to regenerate free NADH for
energetic supply to power oxidative phosphorylation
which further worsens in AD. Applying this non-
invasive approach, we showed the most explicit mea-
sures yet of bioenergetic deficits in free NADH with
aging at the subcellular level in live neurons from in-
bred mice and an AD model.

Keywords NADH .Aging brain . Alzheimer’s disease .

FLIM .Mitochondria . Redox states

Introduction

Aging is generally accompanied by progressive loss in
cognitive function (Squier 2001). The Epigenetic Oxi-
dative Redox Shift (EORS) theory of aging proposes
that a sedentary low-energy state with aging triggers an
oxidative shift and mitochondrial dysfunction and fur-
ther causes metabolic disturbances (Brewer 2010). In-
deed, aging increases the risk for neurodegenerative
diseases, including Alzheimer’s disease (AD). A 2016
report projects that by 2050, the number of people above
65 years of age with AD will grow from 5.4 million to
13.8 million (Alzheimer’s Association 2016). Aging
and AD share some common characteristics such as
oxidative stress (Zhu et al. 2015), mitochondrial impair-
ment (Lin and Beal 2006), and bioenergetic deficits
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(Parihar et al. 2008), which are associatedwith cognitive
deficits or dementia. In the 3xTg-AD mouse model that
we used, Fattoretti et al. (2010) reported decreased
mitochondrial numeric density (number of mitochon-
dria/μm3 of cytoplasm) in CA1 in 10-month-old mice,
but the volume and average length increased. Martins
et al. (2017) also found decreasedmitochondrial number
with age in the hippocampus along with abnormal mi-
tochondrial morphology with elongation, swelling and
disorganized cristae (Martins et al. 2017). Manczak and
Reddy (2012) found decrements in the motility of mito-
chondria in the 3xTg-ADmodel due to changes in Drp1
levels for fission. We propose that these mitochondrial
structural changes reflect functional deficits of free
NADH as a bioenergetic substrate for oxidative phos-
phorylation (OXPHOS) that initiates a vicious cycle
involving redox imbalance, energetic shortage, and mi-
tochondrial dysfunction.

The brain consumes large amounts of energy to fire
action potentials (Attwell and Laughlin 2001). Neurons
primarily depend on the energy-transducing capacity of
mitochondria tomeet redox and phosphorylation demands.
Since the reduced form of nicotinamide adenine dinucleo-
tide (NADH) is the major intracellular redox currency and
the substrate for generation of ATP as the energy currency
viaoxidativephosphorylation (OXPHOS) inmitochondria,
mitochondrial NADH availability to the electron transport
chain(ETC)becomesacritical issue(Brewer2010).NADH
functions as a pivotal metabolite that bridges redox states,
metabolicpathways, andenergy (ATP).Neurons respond to
higher energy demands by increasing free NADH produc-
tion in theTCAcycle as electrondonors to feed the electron
transportchain (ETC)forATPgeneration.Wehypothesized
that aging brain neurons exhibit an oxidized NADH redox
state with decreased free NADH and these free NADH
levels are further decremented by the genetic burden of
AD-like mutations in 3xTg-AD mouse neurons. Antioxi-
dant defenses also depend on NADH and its reductive
conversion toNADPHandGSH. For instance, the forward
reaction of nicotinamide nucleotide transhydrogenase
(NNT) oxidizes NADH and reduces NADP+ to generate
NADPH (Ronchi et al. 2016). However, during oxidative
shifts, thebackwardreactionofNNTdrivesNADHproduc-
tion at the expense of NADPH (Ronchi et al. 2016).
NADPH also donates electrons to GSSG for regeneration
of GSH. Evidence for which of these is upstream comes
from titrated inhibition of enzymes for their synthesis and
supplementation of precursors (Ghosh et al. 2014). From
these studies in neurons, NAD(P) H appears upstream of

GSH, since decreasingNAD(P)H lowersGSH levelsmore
thanthereverseandneuronsurvivalwasmoredependenton
NAD(P) H, especially in neurons from old mice and those
from anAlzheimermodelmouse brain (Ghosh et al. 2014).
Therefore, determination of the availability of freeNAD(P)
H in mitochondria was evaluated to provide a possible
mechanism of age-related and Alzheimer’s associated dec-
rements in energy supply and oxidative redox shifts.

Although NADH and NAD+ are reduced and oxi-
dized forms of nicotinamide adenine dinucleotide, only
NADH has intrinsic fluorescence (Chance and Thorell
1959). Different excited state lifetimes of free and bound
NADH enable determination of the free NADH avail-
able from that bound to enzymes (Lakowicz et al. 1992).
The long intrinsic fluorescent lifetime of NADH is due
to the protein-bound state (Yu andHeikal 2009; Stringari
et al. 2012). The ratio of free to protein-bound NADH
correlates with the NADH/NAD+ ratio (Bird et al.
2005). Our previous work measured steady state levels
of NAD(P) H without discriminating between free and
bound forms (Ghosh et al. 2012, 2014). These studies
found age-related and AD-associated declines in
NAD(P) H concentrations, NADH regenerating capaci-
ty, NAMPT and NNT gene expression for regeneration
in neurons from non-transgenic (NTg), and an age-
matched triple transgenic Alzheimer’s mouse (3xTg-
AD). We can do this because of techniques for isolating
neurons from any age animal and culturing them in a
common serum-free environment (Brewer 1998; Brewer
and Torricelli 2007). These neurons are thus removed
from an aging immune system, age-related changes in
hormones, and the vasculature. In vitro, we demonstrat-
ed the age-related increased susceptibility to biochemi-
cal stressors as a critical mechanism in aging (Brewer
1998, 2010). Based on measures in aged rat neurons
challenged with glutamate, steady state NADH and glu-
tathione decline with age before declines in ATP
(Parihar et al. 2008). Flux control experiments indicated
that the often-reported declines in mitochondrial func-
tion with age are caused by lower supplies of NADH
substrate, rather than problems with the complex I en-
zyme that uses the NADH to generate a proton gradient
across the mitochondrial membrane to power generation
of ATP (Jones and Brewer 2010). In mitochondria iso-
lated from 3xTg-AD brains, respiratory capacity was
shown to be impaired (Yao et al. 2009). Conventional
biochemical approaches performed on the cell lysates as
a snapshot of redox states to measure NADH concen-
trations in cells introduces errors as the NADH is
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oxidized when exposed to air (Uppal and Gupta 2003;
Klaidman et al. 1995) and rapidly consumed by mito-
chondrial demand for ATP. Further, these studies could
not discriminate neuronal from glial mitochondria and
did not examine the age-dependence or how the propor-
tion of free to bound NADH dynamically changes in
living neurons during aging and AD. Since the distribu-
tion of NADH and NAD+ are highly compartmentalized
within cells (Xiao et al. 2018), here we determine how
aging and AD affect the re-distribution of free to bound
NADH ratios. Though intrinsic fluorescence does not
discriminate between NADH and NADPH due to iden-
tical photophysical properties (Yu and Heikal 2009), the
autofluorescence of intracellular NADH levels contrib-
utes the majority of the NAD(P) H intensity (Eng et al.
1989). Here, we applied a non-invasive, sensitive meth-
od that utilizes the intrinsic NADH fluorescence life-
times as a natural probe to identify the shifts in free
NADH levels, free to bound NADH ratios (Van
Munster and Gadella 2005) and re-distribution of
NADH among subcellular compartments in NTg and
age-matched 3xTg-AD mouse neurons from young to
old ages.

Materials and methods

Mouse model

We used LaFerla’s triple transgenic mouse model of AD
(3xTg-AD) with human transgenes βAPP (SWE), PS1
(M146V), and Tau (P301L) to mimic the neuropatholog-
ical features of AD (Oddo et al. 2003). Non-transgenic
(NTg) C57BL/6 mice were used as controls. All mice
underwent genotyping before using in experiments.

Primary neuron culture

Adult hippocampal neurons were isolated from NTg
and 3xTg-AD age-matched mouse brains at young (3–
4 months old), middle ages (9–10 months old), and old
ages (18, 21, 22, 23 months old) (Brewer and Torricelli
2007). Briefly, hippocampus of each hemisphere were
sliced at 0.5 mm and combined in Hibernate A
(BrainBits LLC, Springfield, IL), 2% B27 supplement
(Invitrogen), and 0.5 mM Glutamax (Invitrogen) for
8 min at 30 °C. The slices were transferred and digested
with 2 mg/mL papain (Worthington) in Hibernate with-
out B27 for 25 min at 30 °C. After trituration, neurons

were separated from debris and microglia on an
Optiprep (Sigma-Aldrich) density gradient. The
neuron-enriched fraction was collected and viable neu-
rons counted by exclusion of trypan blue. Neurons were
plated at 50,000 cells/cm2 on 15 mm glass coverslips
(Assistent; Brand, Carolina Biologicals). Slip were pre-
coated overnight with poly-D-lysine, 100 μg/mL in
18 MΩ deionized water. Neurons were cultured in
NbActiv1 (BrainBits) with 5 ng/mL mouse FGF2 and
5 ng/mL mouse PDGFbb (Invitrogen) for trophic sup-
port for 9–12 days at 37 °C in 5% CO2, 9% O2 at
saturated humidity. Viability in our neuronal cultures
was similar to previous studies of neurons from young,
middle, and old ages of both genotypes (Ghosh et al.
2012). The neuronal densities of all ages and genotypes
in culture were similar without fragmented axons or
dendrites. Further, the strong TMRE intensity of mito-
chondria indicated negative membrane potentials, with-
out perinuclear fragmentation for no obvious age- or
AD-related differences or qualitative changes in number
of stained mitochondria per neuron. Furthermore, in
follow-up experiments, the intracellular NADH levels
of old neurons of both genotypes were remarkably
responsive to an external imposed reductive and oxida-
tive stress in cultures (Dong and Brewer in preparation).

TMRE staining of mitochondria

To label mitochondria with minimal interference in their
memb r ane po t en t i a l (Wa rd e t a l . 2 000 ) ,
tetramethylrhodamine ethyl ester (TMRE; Molecular
Probes) stock solution wasmade in DMSO at 5mM.After
series dilutions with culture medium (NbActiv1), neurons
were incubated with 10 nM TMRE in NbActiv1 for
20 min under 5% CO2 at 37 °C. After incubation, the
coverslip was rinsed twice gently with warm NbActiv1.
The cell slip was mounted in a slip-holder (Warner Instru-
ments). Experiments were conducted on at least three
coverslips from independent cultures with 10–20 neurons
for young, middle, and old ages.

FLIM imaging

Fluorescence lifetime images were acquired on a Zeiss
LSM 710microscope (Carl Zeiss, Jena, Germany) using
a 63× oil immersion objective, 1.2 N.A. (Carl Zeiss,
Oberkochen, German). The environment was controlled
at 5% CO2 and 37 °C at saturated humidity while
collecting FLIM images. The 2-Photon excitation
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Titanium:Sapphire MaiTai laser (Spectra-Physics,
Mountain View, CA) was modelocked at 740 nm gen-
erating ~ 120 fs pulses with a repetition rate of 80 MHz.
Image scan speed was 25.21 μs/pixel and images were
collected at 256 × 256 pixels. The emission from the
excited native NADH in the cultured neurons was fil-
tered with a bandpass at 460/80 nm. FLIM data was
acquired using SimFCS32/64 FLIMBox (ISS, Cham-
paign, IL). FLIM lifetime calibration of the system used
a Coumarin 6 solution (at 100 μM) with a known
lifetime as 2.5 ns. One hundred counts per pixel were
collected for one FLIM image of the same field of view.

FLIM phasor data analysis

As described previously (Stringari et al. 2012, 2015),
every pixel of the FLIM image is transformed in one
pixel in a phasor plot by performing a Fast Fourier
Transform (FFT) of the intensity decay I(t). The coordi-
nates g and s in the phasor plot are the real and imagi-
nary part of the FFT as follows (Stringari et al. 2015):

gi; j ωð Þ ¼ ∫t0I i; j tð Þcos ωtð Þdt
∫t0I i; j tð Þdt

si; j ωð Þ ¼ ∫t0I i; j tð Þsin ωtð Þdt
∫t0I i; j tð Þdt

where the intensity signal (I) at indices i and j identify a
pixel of the image andω frequency (ω = 2πƒ), with ƒ the
laser repetition rate (80 MHz) and t is the period of the
laser, 12.5 ns. Based on the linearity of the phasor coordi-
nates, the g and s position of each pixel represents the
fraction of free to bound NADH in the image (Stringari
et al. 2015).

We examined regions of interest (ROI) for mitochon-
drial, cytoplasmic, and nuclear subcellular compart-
ments segmentation using circles. We conducted mea-
surements of g, s, and NADH bound fraction from five
ROIs on each compartment of each neuron. We then
calculated the average of five ROIs in each compartment
per cell and further averaged the values of g, s, and
bound fraction of 10 neurons from each mouse (n = 20
neurons/age/genotype for female and n = 10 neurons/
age/genotype for male). Free NADH fraction was given
by one minus the bound NADH fraction.

Free NADH calibration

β-Nicotinamide adenine dinucleotide (NADH, Sigma-
Aldrich, Inc) was prepared fresh at 450 μM in a 0.2 mM
Tris-HCl buffer, pH 7.5, and stored at 4 °C for use. As the
free NADH solution gradually oxidizes in air, the absolute
concentration of the prepared free NADH solution for
calibration was determined in a NanoDrop 2000 UV-Vis
Spectrophotometer (Thermo Fisher Scientific Inc). After
blankingwith 100mMTris-HCl pH 7.4, the absorbance of
the free NADH was measured at 340 nm wavelength.
Calculated the actual free NADH concentration for cali-
bration based on the Beer-Lambert law: A=εbc, whereA is
the readout absorbance value from NanoDrop; ε is the
extinction coefficient of NADH (6.22 at 340 nm); b is
the length of light path (1 mm for NanoDrop) and c refers
to concentration of NADH in the solution. Each time after
imaging neurons, with the laser power and exposure pa-
rameters unchanged, we loaded the free NADH solution in
themicroscope system for absolute free NADH calibration
measurements.

Measurements of absolute NADH concentrations
in mitochondria (Ma et al. 2016)

Before calibration with free NADH for absolute NADH
quantification, we calibrated the instrument response
function with a known standard, 100 μM Coumarin 6
with lifetime at 2.5 ns. In the phasor plot, the pure free
NADH lifetime is short of 0.4 ns (green cursor in Fig. 1).
Whereas, the NADH bound to LDH (lactate dehydro-
genase) has a longer lifetime of 3.4 ns (red cursor in
Fig. 1). The lifetime distribution of the NADH signal
from the cells represents the fractional combination of
free and bound NADH along the line between the pure
free NADH and bound NADH (green line in Fig. 1). To
measure the total NADH in the neurons, we first ac-
quired a FLIM image of a known concentration of free
NADH calibrated using the absorbance spectrophotom-
eter. We then corrected for the difference between a
lower quantum yield of the free and higher quantum
yield of the bound form of NADH as described by
Ma et al. (2016). To determine the mitochondrial
free NADH concentration, we multiplied the mea-
sured total NADH by the corresponding free NADH
fraction in mitochondria. Masks of mitochondrial,
nuclear, and cytoplasmic regions were made
individually.
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Statistics

Data are presented as means and S.E. One-way or two-
way ANOVAwas used to assess the difference of means
and variances in Excel. The number of replicates is
indicated in the legends. The level of significance was
set at p < 0.05 to reject the null hypothesis. Multiple
comparison ANOVAs were analyzed by ProStat soft-
ware (Poly Software, Pearl River, NY) using Fisher’s
LSD method.

Results

Distribution of free and bound NADH in neuronal
mitochondria, cytoplasm, and nucleus

We isolated and cultured neurons in a uniform medium
from mice at young, middle, and old ages, removed
from a complicated aging context in vivo including
age-related inflammation, hormones, and vasculature.
Prior studies showed no significant age-related differ-
ences in neuronal viability (Patel and Brewer 2003;

Ghosh et al. 2012), basal respiration, complex I activity
with excess substrate (Jones and Brewer 2010), resting
ATP levels (Parihar et al. 2008), or mitochondrial num-
ber per cell (Ghosh et al. 2012), but significant age-
associated oxidative shifts of steady state NADH/FAD
redox ratio after middle age (Ghosh et al. 2012). Better
than steady state fluorescence measures of NADH, two-
photon lifetime imaging of NADH discriminates be-
tween free and bound NADH portions of the total
NADH as well as neuronal subcellular distributions in
live cells. Mitochondria were localized within neurons
by fluorescent staining with tetramethyl rhodamine eth-
yl ester (TMRE), which partitions into mitochondria by
their negativemembrane potential (Fig. 1a, f;Ward et al.
2000). In the same field of view, we investigated the
distribution of intrinsic NADH of individual neurons by
two-photon fluorescence lifetime imaging microscopy
(FLIM) (Fig. 1b, g), which show the distribution of two-
photon intensities within neuronal sub-regions segregat-
ed into mitochondria (red circle ROIs), nuclei with their
central circular appearance (yellow circles), and else-
where in regions lacking mitochondria as cytoplasmic
compartments (pink circles). Each pixel in the FLIM

Fig. 1 Highest free NADH fraction in mitochondria compared to
nuclei and cytoplasm in each genotype. AD genotype shows lower
free NADH fraction than the corresponding compartment levels of
NTg neurons. (a, f) TMRE stain for mitochondrial localization of
neurons from (a) NTg and (f) 3xTg-AD 9-month (middle-age)
female mouse. (b, g) NADH-FLIM intensity images of the corre-
sponding neurons. To determine the proportion of free and bound
NADH in each compartment, ROIs were chosen relative to the
TMRE image for analysis on mitochondrial (red circle), nuclear
(yellow), and cytoplasmic (pink) compartments. (c–e, h–j) Phasor

plots present compartment-specific differences in the ratios of free
to bound NADH redox states from the corresponding NTg and
3xTgmiddle age neurons. Pure, free NADHwith lifetime of 0.4 ns
is shown by green circle and bound NADH with lifetime of 3.4 ns
with a red circle on the semicircle. All the NADH compartmental
clusters fall along the lines between pure free NADH (green
cursor) and protein-boundNADH (red cursor). The vertical orange
lines are centered on the NTg young mitochondrial distribution for
reference at G = 0.71
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intensity image was transformed into phasor space by a
Fast Fourier Transform (FFT) to determine the distribu-
tion of bound and free forms of NADH within each
compartment of middle age neurons from NTg (Fig.
1c–e) and 3xTg-AD mice (Fig. 1h–j) (Stringari et al.
2015). The real and the imaginary parts of the FFT
transformation are represented as G and S coordinates
in the phasor plots. Each compartmental NADH cluster
presented in the phasor plot (Fig. 1c–e, h–j) is composed
of a combination of free and bound NADH with life-
times of 0.4 ns (green circle in the phasor plot) and
3.4 ns (red circle) respectively (Datta et al. 2015). Cel-
lular pixels are distributed along the line joining the pure
free and protein-bound NADH (green line). The free/
bound NADH ratio serves as an indicator of NADH
redox state. A lower free/bound NADH fraction indi-
cates a more oxidized NADH state and a higher free/
bound NADH ratio implies a more reduced NADH
redox state. Mitochondria distributed closest to the free
NADH lifetimes (green cursor) compared to nuclei and
cytoplasm, indicating the highest free/bound NADH
ratio, highest free NADH fraction and more reductive
NADH redox state in the mitochondria. Conversely, the
cytoplasm showed the highest fraction of bound NADH
with less free NADH, consistent with a more oxidized
redox state. A smaller genotype effect was suggested by
a small shift toward more bound NADH (red circle) in
3xTg-AD age-matched neurons for each compartment
as indicated by the vertical yellow lines, centered on the
NTg mitochondria at G = 0.71 (Fig. 1).

Age- and AD-related oxidative shifts from free to more
bound NADH

With aging, NADH regenerating capacity declines
(Ghosh et al. 2012) which could promote oxidative
and energetic shifts. In vivo, NADH exists as either
bound to enzymes or free in solution. The free/bound
NADH ratio is altered by the cellular redox, metabolic
and energetic states. Normally, the free NADH levels
maintain balanced between the activity of glycolysis for
producing more free NADH and more reliance on oxi-
dative phosphorylation (OXPHOS) for consuming free
NADH (Yu and Heikal 2009). To determine whether
aging or the 3xTg-AD genotype affects the NADH
redox states, we compared free/bound NADH ratios
from different age neurons of both genotypes (Fig. 2).
To illustrate the distribution of free/bound NADH in
FLIM images of neurons, we present NADH color maps

of neurons with different ages for NTg (Fig. 2a–c) and
3xTg-AD mouse neurons (Fig. 2e–g) respectively. In
these color maps, cyan-green color reflects more free
NADH and pink-purple color indicates more bound
NADH. With aging, in both NTg (Fig. 2a–c) and
3xTg-AD (Fig. 2e–g) neurons, the higher cyan-green
free NADH shifted toward more pink-purple bound
NADH, indicating depletion of free NADH and shift
toward a more oxidized NADH redox state with age.
Furthermore, 3xTg-AD neurons presented comparative-
ly a more pink-purple bound NADH distribution than
the age-matched NTg neurons, meaning an even lower
free NADH in 3xTg-AD neurons. The free/bound
NADH distribution of whole neurons at ages of
young, middle, and old were quantitatively trans-
formed into one phasor plot for NTg (Fig. 2d) and
3xTg-AD neurons (Fig. 2h). In genotypes, age
drives substantial shifts from free to more bound
NADH along the free-bound trajectory. The cluster
of young age neuron presents much closer to the
free NADH form (green cursor) whereas the cluster
of old age neuron displays a shift toward bound
NADH (red cursor). This indicates that young age
neurons contained the highest free NADH fractions
and old-aged neurons contained the most bound
NADH with depletion in free NADH. Compared to
the clusters of NTg neurons (Fig. 2d), those of the
age-matched 3xTg-AD neurons were shifted toward
more bound NADH, implying the AD genotype
accelerated the age-related shifts toward more bound
NADH and depletion of free NADH.

Mitochondria show the most reduced state with highest
free NADH fraction among subcellular compartments

To statistically validate these results, we selected five
regions of interest for each compartment of 10–20 neu-
rons in separate cultures of each age and genotype and
sex. We expected compartmental differences in neurons
because compartments of HeLa cells measured by thiol/
disulfide redox states showed that mitochondria were
the most reduced followed by nuclei and cytoplasm,
which was comparatively the most oxidized (Hansen
et al. 2006). In addition, as the distribution of NADH
is highly compartmentalized (Xiao et al. 2018), we
further investigated how the free/bound NADH ratios
change in mitochondria, cytoplasm, and nuclei with
aging of both NTg and 3xTg-AD neurons.
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Age effect

Aging strongly drove a decline in the free NADH frac-
tions in all subcellular compartments, p < 0.001, in both
genotypes and both genders. In male NTg mouse neu-
rons (Fig. 3a), from young to old age, mitochondrial free
NADH fractions declined 23%, nuclear free NADH
fractions decreased 12%, and cytoplasmic free NADH
levels dropped 23%. Similarly, in female neurons (Fig.
3b), aging drove least decline in nuclear free NADH
fractions of NTg female neurons with only 18%, but a
26% drop in mitochondrial free NADH fraction (Fig.
3b). In male and female 3xTg-AD neurons, the slopes of
age-associated declines in free NADH fractions present
similar changes in percentages to that of gender-
matched NTg neurons in each compartment, but further
drops in the AD genotype neurons in response to aging.
The age-related depletion of free NADH levels in all
compartments suggests an impaired capacity for free
NADH regeneration and lower capacity for energetic
supplement in old-aged neurons of both NTg and 3xTg-

ADmouse brains. With aging, the nuclear compartment
declined the least compared to that of mitochondria and
cytoplasm in both NTg and 3xTg-AD of both genders,
indicating a better buffering capacity and protective
mechanism in nuclei against age-related oxidative shifts
and depletion in free NADH levels.

Compartment effects

Figure 3 a and b show that mitochondria have the
highest free NADH fraction while cytoplasm displayed
the lowest free NADH among the three subcellular
compartments (ANOVA for compartment effect, in
male, both NTg and 3xTg-AD p < 0.001; for female,
NTg and 3xTg-AD p < 0.001). In NTg male young
neurons (Fig. 3a), free NADH fraction in mitochondria
was 37% higher than the levels in cytoplasm. This
difference reached a maximum of 41% higher in the
middle age followed by a 36% higher in mitochondrial
free NADH in old aged neurons. 3xTg-AD male young
neurons presented the same 37% higher in

Fig. 2 Aging promotes shifts toward more bound and less free
NADH in NTg and 3xTg-AD neurons. FLIM color maps of
young, middle, and old age neurons from NTg (a–c) and 3xTg-
AD (e–g)mice illustrate a dramatically age-dependent depletion in
free NADH level of both genotypes shown as the color shifts from
more green-cyan (free NADH) to more pink-purple (bound
NADH) with aging. Comparatively, the 3xTg-AD neurons present
more bound NADH than the age-matched NTg neurons seen as a

more pink-purple color in the age-matched 3xTg-AD neuron. (d,
h) Phasor plots show the shift in distribution from free to bound
NADH in neurons from young, middle, and old age neurons of
NTg and 3xTg-AD brains, respectively. Each cluster that falls
along the free-bound NADH trajectory (line between free and
bound NADH) represents the combination of free and bound
NADH from the corresponding single neuron in the colormap

GeroScience (2019) 41:51–67 57



mitochondrial free NADH fraction compared to that of
cytoplasm, with further increases in the mitochondria-
cytoplasm differences to 46% in middle and old ages.
Similar magnitude changes in free NADH with age and
genotype were seen in female neurons (Fig. 3b). The
relative order of compartmental free to bound NADH
redox states was independent of age and genotype.
Overall, the largest changes in free NADH were associ-
ated with age, then compartment, genotype, and gender.
The highest free NADH fraction in mitochondria

suggests that mitochondria have the highest capacity
for free NADH production compared to nuclei and
cytoplasm.

Genotype effect

As illustrated in Fig. 3a, b, the age-matched 3xTg-
AD neurons present consistently lower free NADH
levels compared to the free NADH levels of NTg
neurons in each compartment of each gender. The

Fig. 3 Mitochondrial, nuclear, and cytoplasmic free NADH frac-
tions decline with age are further depleted with AD genotype of
both a male and b female mouse neurons. For the compartment
effect, mitochondria were the most reduced with the highest free
NADH fractions and cytoplasm presents themost oxidized NADH
state with the lowest free NADH levels (ANOVA for the compart-
ment-differences, in male, NTg F(2,89) = 397, p < 0.001, 3xTg-
AD F(2, 89) = 927, p < 0.001; in female, NTg F(2,179) = 154,
p < 0.001, 3xTg-AD F(2,179) = 106, p < 0.001). Aging depleted
free NADH levels in all compartments of both genotypes.
ANOVA for male, mitochondria F(2,59) = 338, p < 0.001, nuclei
F(2,59) = 56, p < 0.001, cytoplasm F(2,59) = 262, p < 0.001; for
female, mitochondria F(2,119) = 161, p < 0.001, nuclei
F(2,119) = 51, p < 0.001, and cytoplasm F(2,119) = 96,
p < 0.001). The 3xTg-AD genotype demonstrated significantly

more bound NADH and more oxidized NADH redox state than
the age-matched NTg neurons in each compartment. By gender (c,
d), male neurons were lower in free NADH fraction than the
female neurons at young and middle ages, but the multiple com-
parison results indicated no significant differences in old ages
between female and male neurons. Two-way ANOVA for gender
effect on compartments, mitochondria F(1,59) = 13, p < 0.001;
nuclei F(1,59) = 13, p < 0.001; cytoplasm F(1,59) = 25,
p < 0.001). In 3xTg-AD neurons, male NADH fraction was lower
than that in female neuron of each compartment (mitochondria
F(1,59) = 7, p < 0.01; nuclei F(1,59) = 8, p < 0.01; cytoplasm
F(1,59) = 51, p < 0.001) and each age (young F(1,59) = 18,
p < 0.001; middle F(1,59) = 26, p < 0.001; old F(1,59) = 8,
p < 0.01)
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cytoplasm responded most to the genetic loads of
3xTg-AD, ranging from 6% at young age to 12% at
old age lower in free NADH levels of both male and
female (young, p < 0.05; old p < 0.01). Under the
genetic loads of 3xTg-AD, free NADH levels in
mitochondria and nuclei were 5–10% lower than the
age-matched NTg neurons from young to old ages of
each gender (p < 0.001). The comparatively lower
free NADH levels in 3xTg-AD neurons than that of
the age- and gender-matched NTg neurons suggests
an AD genotype-driven decline in capacity of free
NADH regeneration of 3xTg-AD mouse brains. We
infer that the genetic load of 3xTg-AD promoted age-
related oxidative shifts to more bound NADH redox
states by either consuming more free NADH or
impairing the capacity for free NADH production.

Male free/bound NADH fraction slightly less than that
of female neurons

To gain insights into gender differences in free
NADH depletion during aging in the NTg and
3xTg-AD mouse model, we compared the free
NADH fractions in male and female neurons of mi-
tochondria, nucleus, and cytoplasm as a function of
age and genotype. To more easily compare gender
effects, the same data was expressed as male percent
of female free NADH (Fig. 3c, d). Male neurons
displayed less reducing free NADH states compared
to the age-matched female neurons in these compart-
ments (Fig. 3c, d), but these gender differences in
free NADH diminished in old age. The average free
NADH levels of male neurons was significantly 7%
lower than that in female, across all ages and com-
partments of both genotypes (p < 0.01). Multiple
comparison analysis demonstrated gender differences
in the young and middle age of all compartments, but
no significant gender differences at old ages. This
suggests that higher reductive capacity in females
than males is gradually lost in old age.

Mitochondrial free NADH concentrations decline
with age and AD genotype in hippocampal neurons

A variety of approaches have been reported for mea-
surement of NAD(P) H concentrations (Sporty et al.
2008; Zhu et al. 2015; Coremans et al. 1997; Yu and
Heikal 2009; Ghosh et al. 2012). Neither HPLC or
steady state fluorescence measures distinguish the

bound form with a higher quantum yield from the free
form (Ma et al. 2016; Ghosh et al. 2012). However,
absolute measurement of concentration of both the free
and bound NADH in situ is possible by a FLIM phasor
method (Ma et al. 2016). We determined the absolute
free NADH concentrations in live neurons from young
and old age mouse hippocampal neurons specifically in
mitochondria (Fig. 4). In NTg female neurons from
young to old ages, mitochondrial free NADH concen-
trations declined 43% from 442 to 250 μM (Fig. 4). In
3xTg-AD neurons, age drove a roughly 50% loss in
mitochondrial free NADH levels from 410 down to
207 μM. In addition, comparison of genotype effects
indicated 8% less free NADH in the young (p < 0.05)
and 21% in the old (p < 0.001). With a lower NAD total
pool size in aging and AD, the declines in free/bound
NADH fraction with age result from larger declines in
free NADH concentration. In our results, we observed
43–50% age-related declines in concentrations of mito-
chondrial free NADH, which were much larger than the
23–26% declines in free NADH fractions. Thus, the
concentration of mitochondrial free NADH was deplet-
ed twofold more with aging in the 3xTg-AD than the
NTg neurons. These results suggest both an age- and
AD-related decrease in capacity for NADH regeneration
or increase in consumption of NADH.

Fig. 4 Free NADH concentrations decline from young to old
mitochondria in situ exacerbated by the 3xTg-AD genotype.
Two-way ANOVA shows age effects F(1,63) = 466, p < 0.001
and for genotype effects F(1,63) = 16, p < 0.001 (n = 16 neurons/
age/genotype)
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Discussion

Age- and AD-dependent decline in free NADH

Free NADH serves as a vital redox-energy intermediate,
produced from NAD+ in glycolysis, the TCA cycle and
transhydrogenase. Energy generation at complex I of
oxidative phosphorylation in neurons requires at least
three elements: sufficient levels of complex I protein,
favorable regulation of this complex, and sufficient free
NADH substrate. The 3-min lability of NADH (Chance
and Thorell 1959) likely precludes its measurement in
human surgical samples or postmortem. Our previous
work in cultured rat neurons reported here suggested that
NADH substrate was at least part of the age-related
limitation (Jones and Brewer 2010). Here, we examined
the free NADH levels as a function of age and AD-like
genotype. With aging, we found a 43% loss of free
NADH concentration at rest, which was diminished
further to 50% under the load of the transgenes in the
3xTg-AD neurons. These numbers are larger than the
steady state fluorescence declines with aging (Ghosh
et al. 2012) in the same neuron preparations because free
NADH gets oxidized when exposed in air during tissue
extraction. The lower NADH concentrations with age
are consistent with an age-dependent lower capacity of
NADH regeneration in the same live neuron preparations
(Ghosh et al. 2012) or increased NADH consumption. In
3xTg-AD mouse brain mitochondria with age, the activ-
ity of cytochrome c oxidase (COX) decreased by 51%
and PDH by 55%, which exceeded the 31% age-driven
declines in NTg mitochondria (Yao et al. 2009). These
assays are performed with excess substrate. Therefore, a
lower NAD pool could further slow these activities.
Judged by steady state fluorescence, neuronal NAD(P)
H concentration peaks in middle age compared to young
and old age neurons (Ghosh et al. 2012). Similar to
mouse brains, human postmortem AD brains exhibited
27–57% declines in PDHC, ICDH, and KGDHC activ-
ities relative to age-matched controls (Bubber et al.
2005). As these enzymes produce NADH in the TCA
cycle, AD-related declines in these dehydrogenases
would lead to lower freeNADHproduction inmitochon-
dria, in line with our findings of lower free NADH with
age and further decreased with AD genetic load.

There can be concerns for how well primary cul-
tures from aged brains represent the aging brain with
age-related changes in hormones, inflammatory me-
diators and the vasculature. Many fundamental

properties of brain neurons are maintained in culture
such as dendrite and axon regeneration (Brewer
1997), synapse formation (Brewer et al. 2009), action
potential firing (Evans et al. 1998), NMDA receptor
modulation (Cady et al. 2001), and response to redox
shifts (Ghosh et al. 2014). Although a lower NAD
pool can be measured in old brain homogenates
(Gomes et al. 2013), the lability of NADH makes
in vivo measurements difficult. In vivo circadian
oscillation of NADH have been detected in stem cells
within the epidermal basal layer of mice by two-
photon excitation (Stringari et al. 2015). A control-
ling influence of NAD+ levels on behavior was dem-
onstrated in mice without the NAD-hydrolase CD38
(Sahar et al. 2011). As NADH needs to be measured
non-invasively, studies on neuron cultures will be
useful in attempts to remedy age and AD-related
deficits in free NADH.

The age-related declines in NADH could be caused
by age-associated sedentary behavior (Figueiredo et al.
2009; Lee et al. 2015; Stolle et al. 2018) that sets
epigenetic controls for metabolic changes (Walker
et al. 2013; Intlekofer et al. 2013). Metabolic expression
of enzymes of the TCA cycle and ETC that could
impede NADH regeneration and ATP production need
to be measured in activity-controlled studies of aging
and AD. This type of study in aging mouse skeletal
muscle showed a decline in respiratory activity with
aged sedentary behavior (Figueiredo et al. 2009). A
review of rat cardiac energy function highlighted de-
creased mitochondrial energetics with age (Yaniv et al.
2013). As compensatory effects, pathwaysmay re-direct
fluxes to replenish the decreasing NADH levels. The
NNT reverses the direction of reaction to generate more
NADH at the cost of NADPH. This begins a vicious
cycle because NADPH is needed to regenerate GSH as
the major redox buffer, when GSH levels are decreased
by age-associated oxidative stress (Ghosh et al. 2014).
Age- and AD-related oxidative shifts stimulate up-
regulation of glycolytic pathway to feed the NADH
and energetic demand. Alternatively, to maintain redox
balance within a viable range, NADH needs to be
recycled via either lactate dehydrogenase (with associ-
ated acidosis) or the electron transport chain (with min-
imal oxyradicals) or plasma membrane NAD(P) H ox-
idoreductase (NOX, with one oxyradical per NADH)
(Brewer 2010; Aon et al. 2010). Moreover, rat neurons
are more susceptible to stressors with aging (Brewer
1998) and old mouse neurons are more vulnerable than
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young neurons to limits on NADH resynthesis and GSH
depletion (Ghosh et al. 2014). An upstream possible
cause is the age-related 50% decline in the total NAD(P)
H pool of whole 3xTg-AD neurons compared to 27%
decrease in age-matched NTg neurons (Ghosh et al.
2012). The mitochondrial free NADH concentrations
of NTg old neurons surpassed those of 3xTg-AD old
neurons by 21%, further indicating an even lower ca-
pacity to maintain free NADH levels with genetic load
in 3xTg-AD old mouse brains.

NAD pool size diminished with aging and AD

Under normal physiology, the concentrations of NADH
and NAD+ are balanced by the NAD-synthesizing and
NAD-consuming enzymes. In aging and AD, evidence
suggests that consumption exceeds recycling and syn-
thetic capabilities. NAD+ levels are maintained via three
biosynthetic pathways: the Preiss-Handler, de novo bio-
synthesis and salvage pathways (Verdin 2015). Age-
and AD-related changes in consumption and resynthesis
of NAD+ diminish the levels of free NADH (Prolla and
Denu 2014), which could further lead to a decrease in
capacity for ATP synthesis. Either the age- and AD-
related oxidative shift or the energy crisis with demand
is insufficient to cause many downstream dysfunctions
including amyloid and tau processing, LTP, calcium
handling (Green and LaFerla 2008), mitochondrial
function and motility (Gibson and Blass 1976; Calkins
et al. 2011), DNA repair (Imam et al. 2006), and au-
tophagy (Nixon 2013).

With aging, the activity of NAD biosynthesis de-
creases while the activities of NAD+-consuming en-
zymes increase such as CD38 (Camacho-Pereira et al.
2016) and PARP (Bai and Canto 2012) which together
contribute to the age-associated decline in NAD pool
size. PARP inhibitors together with NAD+ precursors
boost ATP levels and increased gene expression of
enzymes in TCA cycle and glycolysis, such as citrate
synthase and hexokinase (Mouchiroud et al. 2013).
Supplementation of the NAD+ precursor, nicotinamide
riboside improves learning and memory in AD/Polβ
mouse model of mitochondrial DNA damage (Hou
et al. 2018). Mounting evidence supports the beneficial
effects of nicotinamide (NAM) to ameliorate cognitive
decline in ADmouse models associated with declines in
Sirt3 activity (Green et al. 2008; Liu et al. 2013). Gomes
et al. (2013) reported the reversibility of mitochondrial
dysfunction in skeletal muscle of old mice by raising

NAD+ levels via the SIRT-1-HIF-1α-c-Myc pathway.
Ghosh et al. (2012) showed that neurons pretreated with
nicotinamide reverse NAD(P) H levels and NADH
regenerating capacity of both NTg and 3xTg-AD neu-
rons (Ghosh et al. 2012). Nicotinamide pre-treatment
improved recovery of hippocampal neuronal function,
enhanced NADH reduction and ATP content in an acute
model of hypoxia in rat (Shetty et al. 2014).

Tau protein is critical to stabilize microtubules of
axons. Overexpression of tau in P301L tau mice alters
the distribution of organelles including mitochondria
that are dependent on microtubule motor proteins for
transport and decrease the distribution of mitochondria
in synapses of neurons (Rhein and Eckert 2007). Fur-
thermore, in P301L tau mice together with reduced
NADH-ubiquinone oxidoreductase activity with age
were found to impair mitochondrial respiration and
ATP synthesis (Rhein and Eckert 2007; David et al.
2005). Our results of decreased free NADH levels with
age could impair energetic capacity to remove amyloid
and tau through autophagy (Brewer 2010; Barnett 2011;
Brewer submitted 2019).

Age-related oxidized shifts in NADH/NAD+

in subcellular compartments

The subcellular distribution of NADH and their signal-
ing pathways are highly compartmentalized and func-
tion somewhat independently (Koch-Nolte et al. 2011).
In our study with aging, free NADH shifted toward
more bound and less free NADH in both NTg and
3xTg-AD mouse neurons. Of note, all ages of 3xTg-
AD neurons display comparatively more oxidized redox
state with less free NADH than the age-matched NTg
neurons, indicating a further impaired in capacity of free
NADH regeneration. The genetic load of 3xTg-AD
neurons promoted age-related depletion in free NADH
levels and oxidative shifts in NADH redox states
starting as early as in young age. The NADH/NAD+

redox states also mediates crosstalk of signaling be-
tween neurons and astrocytes in brain (Winkler and
Hirrlinger 2015). Both NADH and NAD+ levels drop
remarkably with aging and AD. However, growing
evidence demonstrates the age- and AD-induced oxida-
tive shifts in NADH/NAD+ redox states (Zhu et al.
2015; Parihar et al. 2008; Ghosh et al. 2012). An im-
portant issue is whether redox state controls ROS pro-
duction or ROS levels influence redox state. Based on
more neurodegeneration from titrated inhibition of
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NADH production than GSH synthesis, we concluded
that NADH redox state is upstream of ROS generation
(Ghosh et al. 2014).

We found nuclear free NADH to be less affected by
age than cytoplasmic or mitochondrial NADH. Cyto-
plasmic and nuclear NAD+ pools can communicate by
diffusion via the nuclear pore (Verdin 2015). Given the
important role of NADH shuttles in the communication
between compartments, Easlon et al. (2008) reported
beneficial effects on extending lifespan in yeast by
overexpression of the functional component of the
NADH malate-aspartate shuttle and glycerldehyde-3-
phosphate shuttle in the calorie restriction (CR) path-
way. In addition to comparatively lower consumption of
NADH in the nucleus, the nuclear-localization of
NMNAT1, with its lower Km and higher Vmax than
mitochondrial NMNAT3 (Berger et al. 2005), could be
sufficient to regenerate NAD+ consumed by Sirt1 and
PARPs. Control of many redox-sensitive transcription
factors (Lavrovsky et al. 2000) could buffer or exacer-
bate age-related changes in free NADH and the NAD
pool. We found mitochondrial free NADH to be the
most affected by age. The mitochondrial membrane is
impermeable to both NAD+ and NADH. Normal ratios
of NADH/NAD+ are maintained by the malate-aspartate
and glutamate-aspartate shuttles and transhydrogenase.
NAD+ precursors such as nicotinamide and nicotin-
amide riboside can traverse the mitochondrial mem-
brane (Pittelli et al. 2011) to be used for NADH/NAD+

regeneration by nicotinamide phosphoribosyltransferase
(NAMPT) and nicotinamide mononucleotide adenyl
transferase (NMNAT) (Revollo et al. 2004) via the
salvage pathway and transhydrogenase.

Redox states of NADH/NAD+ reflect metabolic states
of neurons

The alterations of free/bound NADH provide insight on
kinetic switches for modulation of metabolism based on
NADH/NAD+ redox states. We find in mouse hippo-
campal neurons across the age span, both genotypes and
both genders, that the NADH redox state is more re-
duced in mitochondria, than nuclei and that cytoplasm
was the most oxidized. This order replicates the relative
thiol redox states from most reducing to most oxidizing
in Hela cells: mitochondria > nuclei > cytoplasm
(Hansen et al. 2006). As the cytoplasmic and mitochon-
drial NADH/NAD+ ratios are metabolic readouts
(Christensen et al. 2014), a shift from free to more

bound NADH suggests a metabolic shift from glycoly-
sis to more oxidative phosphorylation with more con-
sumption of free NADH (Stringari et al. 2015). As we
observed an age- and AD-related depletion of free
NADH in mouse neurons, an oxidative shift in
NADH/NAD+ redox states predicts a downstream
switch and re-direction in metabolic fluxes from higher
TCA-dependent to higher reliance on glycolysis for
energy supply and lactate generation for redox balance.

Relationship to caloric restriction (CR)

Caloric restriction (CR) and fasting can extend lifespan
and increase NAD levels in the Alzheimer’s mouse
brain (Qin et al. 2006), rat or mouse liver (Yang et al.
2007; Nakagawa et al. 2009; Hayashida et al. 2010), and
skeletal muscles (Canto et al. 2010) of animal models by
inducing the expression of NAMPT in the salvage path-
way. Protein restriction (PR), especially, methionine
restriction was also found to extend lifespan (Schiff
et al. 2011; Lopez-Torres and Barja 2008) and decrease
mitochondrial reactive oxygen species (ROS) produc-
tion in both brain and kidney mitochondria of rats (Caro
et al. 2009) as well as free radical leak in rat mitochon-
dria (Lopez-Torres and Barja 2008). Paradoxically, the
enzymatic activities needed by the brain for energy
production, complex I and III are decreased in rat brain
with MetR (Naudi et al. 2007). Martin et al. (2016) also
found that CR decreased cytochrome c oxidase activity
together with 40% increases in the levels of NAD(P) H
in the molecular and polymorphic layers of the mouse
dentate gyrus of the hippocampus. This CR paradox of
lower activities of the electron transport chain so critical
to brain energetics may be explained if CR forces higher
turnover of leaky mitochondria so that higher efficiency
is maintained (Yang et al. 2016). CR mitochondria of
higher efficiency could produce more energy with less
consumption of NADH. Thus, CR could cause free
NADH levels to rise above the age-related depletion
that we observed. The overall effects can be described
by antagonistic pleiotropy in which restriction results in
higher autophagic quality control to maintain efficient
function (Barnett and Brewer 2011; Yang et al. 2016).

Gender differences in age-related declines of free
NADH levels

We found that levels of free NADH in male neurons
were significantly lower than those of age- and
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genotype-matched female mouse brains, particularly in
the cytoplasmic compartment. This protective effect of
higher free NADH levels in female neurons appears to
lessen with age, ending in similar free NADH levels in
old neurons of female and male. This direction of lower
male NADH levels follows the results of (Guevara et al.
2009) who found lower mitochondrial capacity of male
brain mitochondria with lower respiratory capacity and
lower antioxidant enzyme activities compared to that in
aged female brains. Consistent with these studies,
Grimm and Eckert (2017) summarized a number of
sex-specific changes with age in mitochondria, includ-
ing mitochondrial dynamics and mitophagy (Guebel
and Torres 2016), peroxide production (Borras et al.
2003), respiratory control rate, pyruvate dehydrogenase,
and cytochrome c oxidase (COX) activity (Yao et al.
2012). Many of these changes could be downstream of
changes in the bioenergetics of NADH. However, in our
studies with lower free NADH in males, sex differences
were smaller than the age and genotype effects. This
protection seems to be lost after menopause in females
or just older age in males (Borras et al. 2003; Brewer
et al. 2006).

Conclusions

To our knowledge, this is the first time mitochondrial
free NADH concentrations were measured in sub-
compartments of live primary neurons using FLIM.
The ability to distinguish free NADH from total NADH
in live neurons across the age span from NTg and 3xTg-
AD mice identified critical age-related deficits in ener-
getic states of the neurons. Furthermore, imaging the
intrinsic fluorescence of NADH in live neurons by two-
photon excitation avoids modifying or introducing any
extra fluorophore probe or perturbation. Combined with
subcellular analysis, we found an oxidative shift in free
NADH levels in mitochondria, cytoplasm, and nuclei of
neurons as a function of age and AD-like genotype. The
observed depletion of free NADH levels with age and
AD genotype suggests that less free NADH will be
available for demand-critical energy supply to oxidative
phosphorylation. The drop in free NADH could be
caused by any combination of increased consumption
by resting demand for ATP, decreased regeneration of
NAD+ by de novo and nicotinamide salvage pathways
or relative metabolic changes, in glycolysis, lactate gen-
eration. Together with this work, our earlier work in rat

neurons that found ATP levels unchanged with age but
significantly lower NAD(P) H levels with age (Parihar
et al. 2008) suggests that an age-associated oxidative
shift in NADH redox state is upstream of the age-related
metabolic shifts in rat and mouse brains. However, the
consumption of NAD+ by glycolysis or the TCA cycle
for NADH demand at lower NAD pool sizes together
with increased lactate production may contribute to a
lower redox ratio of NADH/NAD+ (Brewer 2010). Dis-
crimination between excess consumption and regenera-
tion in free NADH with age and genotype will require
interventional studies (Dong and Brewer in prepara-
tion). Since free NADH is the substrate for numerous
redox reactions as well as energy generation, NADH
target engagement and reversal of low free NADH
levels could counter AD and extend lifespan via a series
of NADH-sensor mechanisms involving oxidative
stress, DNA repair, and mitochondrial function.
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