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Abstract 
 

NO CHROMOSOME LEFT BEHIND: MECHANISMS THAT ALLOW LAGGING 

CHROMOSOMES TO ENTER DAUGHTER NUCLEI 

Brandt Warecki 

Cells that divide with lagging chromosomes risk losing key genetic information if 

those chromosomes are not incorporated into daughter nuclei.  When the nuclear 

envelope reforms a physical barrier around the daughter nucleus, lagging 

chromosomes are expected to be locked out of the nucleus and form damage-prone 

micronuclei.  While micronuclei occur fairly frequently in cancer cells, lagging 

chromosomes can still sometimes enter telophase daughter nuclei to preserve 

euploidy.  However, very little is known about the cellular mechanisms that allow 

lagging chromosomes to reintegrate into daughter nuclei and maintain genome 

integrity.  In Drosophila, lagging chromosome fragments lacking a centromere, called 

acentrics, are capable of efficient reintegration into telophase daughter nuclei.  

Acentrics remain connected to daughter nuclei through a DNA tether.  The tether is 

coated with Polo kinase, BubR1 kinase, Aurora B kinase, and INCENP, but the 

function of the tether is poorly understood.  Here, I use Drosophila as a model system 

to identify mechanisms that promote lagging chromosome reintegration.  I find that 

dividing with lagging chromosomes triggers the formation of highly localized gaps in 

the nascent nuclear envelope surrounding daughter nuclei.  These gaps form channels 

through which acentrics pass to enter into daughter nuclei.  Channel formation 

requires the pool of Aurora B kinase localized to the tether.  Aurora B kinase 
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phosphorylates chromatin on the acentric and at the site of acentric entry, keeping this 

chromatin in a mitotic state that prevents the recruitment of nuclear envelope 

components, leading to gap formation.  Furthermore, I find that while acentrics are 

free of lamin and nuclear pore complexes, nuclear membrane frequently contacts 

acentrics during reintegration.  Fusion between membrane on the acentric and 

membrane on the nucleus guides the acentric through the channel.  The membrane 

fusion protein Comt/NSF and the ESCRT-III component Shurb/CHMP4B are 

required for these fusion events and efficient acentric entry into daughter nuclei.  

Taken together, these results uncover novel mechanisms by which lagging 

chromosomes can rejoin daughter nuclei to preserve the integrity of the genome. 
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CHAPTER 1: Aurora B-mediated localized delays in nuclear envelope formation 

facilitate inclusion of late-segregating chromosome fragments 

 

Abstract 

To determine how chromosome segregation is coordinated with nuclear envelope 

formation (NEF), we examined the dynamics of NEF in the presence of lagging 

acentric chromosomes in Drosophila neuroblasts.  Acentric chromosomes often 

exhibit delayed but ultimately successful segregation and incorporation into daughter 

nuclei. However, it is unknown whether these late segregating acentric fragments 

influence NEF to ensure their inclusion in daughter nuclei. Through live analysis, we 

show that acentric chromosomes induce highly localized delays in the reassembly of 

the nuclear envelope. These delays result in a gap in the nuclear envelope that 

facilitates the inclusion of lagging acentrics into telophase daughter nuclei. Localized 

delays of nuclear envelope reassembly require Aurora B kinase activity.  In cells with 

reduced Aurora B activity, there is a decrease in the frequency of local nuclear 

envelope reassembly delays, resulting in an increase in the frequency of acentric-

bearing lamin-coated micronuclei. These studies reveal a novel role of Aurora B for 

maintaining genomic integrity by promoting the formation of a passageway in the 

nuclear envelope through which late segregating acentric chromosomes enter the 

telophase daughter nucleus.  
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Introduction 

The eukaryotic cell has evolved a number of mechanisms to maintain genome 

integrity.  In response to damaged or improperly replicated DNA, cell cycle 

checkpoints activate signaling pathways that influence the activity of both positive 

and negative cell cycle regulators, providing time for repair or elimination of the 

damaged cell (Abbas et al., 2013). The molecular basis of these signaling pathways 

has been extensively investigated, with much of the work focused on the action of 

DNA damage/replication checkpoints during interphase (G1, S, and G2) (Rhind and 

Russell, 2012). Recent studies provide convincing evidence that cells entering 

metaphase with damaged chromosomes delay anaphase entry, suggesting the 

activation of DNA damage checkpoints during metaphase.  Support for this 

interpretation comes from studies in a number of cell types, demonstrating that these 

DNA damage induced metaphase delays depend on the spindle assembly and DNA 

damage checkpoints (Cipressa and Cenci, 2013; Zhang and Hunter, 2014; Mikhailov 

et al., 2002; Fasulo et al., 2012). For example, in Drosophila chk1/grp is required for 

delaying anaphase entry in response to double-strand breaks (Royou et al., 2005).  

In spite of these safeguards, cells occasionally exit metaphase with damaged 

DNA.  Unrepaired double-strand breaks (DSBs) are particularly problematic because 

they produce chromosome fragments lacking either a centromere or a telomere (Kaye 

et al., 2004).  The former, known as acentrics, are incapable of forming normal 

attachments with the mitotic spindle and are thus expected to exhibit segregation 

defects.  For example, acentrics often fail to properly segregate, resulting in their 



 3	

exclusion from daughter nuclei and inclusion in cytoplasmic micronuclei (Fenech et 

al., 2011; LaFountain et al., 2001; Kanda and Wahl, 2000).  In Drosophila, the 

behavior of acentrics has been examined by taking advantage of transgenic lines 

bearing an inducible I-CreI endonuclease (Royou et al., 2010; Rong et al., 2002).  I-

CreI specifically targets the rDNA locus near the base of the X chromosome (Rong et 

al., 2002; Maggert and Golic, 2005; Paredes and Maggert, 2009; Golic and Golic, 

2011).  Surprisingly, I-CreI induced acentrics segregate in a delayed but otherwise 

normal fashion due to the action of DNA tethers connecting the fragments to their 

centric partners (Royou et al., 2010; Kotadia et al., 2012).  The DNA tether contains 

histones and is coated with BubR1, Polo, and the chromosome passenger proteins 

Aurora B and INCENP (Royou et al., 2010).  During metaphase, acentrics localize to 

the outer edge of the metaphase plate, separated from the main mass of chromosomes.  

Upon entry into anaphase, they remain in this position while the main mass of sister 

chromosomes separate.  Only during late anaphase do sister acentrics segregate to 

opposing poles.  Polo and BubR1 are not necessary for tether formation but are 

required for the normal poleward movement of the acentrics (Royou et al., 2010). 

The extensive delay in acentric segregation raises a number of questions 

regarding the spatial and temporal control of events during the anaphase-telophase 

transition, including the timing of NEF with respect to chromosome segregation.  

Drosophila cells undergo “semi-closed” mitosis in which the nuclear envelope only 

breaks down completely in early anaphase before reassembling again during late 

anaphase/early telophase (Katsani et al., 2008).  Current models of NEF propose that 
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the nuclear envelope forms from mitotic endoplasmic reticulum (ER) extensions, 

which initiate interactions between chromatin and inner nuclear membrane proteins 

(Anderson and Hetzer, 2008; Lu et al., 2011).  Membrane fusion of nuclear envelope 

microdomains and nuclear pore complex assembly complete NEF to build a fully 

functioning nuclear envelope (Baur et al., 2007; Dultz et al., 2008).  Chromatin 

decondensation is concomitant with NEF and Aurora B has been shown to inhibit 

both decondensation and NEF on a global scale (Ramadan et al., 2007; Meyer et al., 

2010; Afonso et al., 2014). 

Understanding the mechanisms by which chromosome segregation and NEF 

are coordinated is of particular interest.  Specifically, how would delayed segregation 

of acentric chromosomes influence the dynamics of nuclear envelope reformation 

during telophase?  Here, we directly address this issue through live and fixed analyses 

of chromosome segregation and NEF in Drosophila larval neuroblasts bearing normal 

and lagging acentric chromosomes.  Our analysis reveals a highly localized delay of 

the reassembly of NE components around the lagging acentrics that result in the 

formation of large gaps in the nascent nuclear envelope.  Live analysis reveals that 

these gaps provide a means for late segregating acentrics to be included in the newly 

formed telophase nuclei.  Aurora B kinase activity is required for these local nuclear 

envelope component reassembly delays. If Aurora B levels are reduced, the frequency 

of cells with delays in the reassembly of NE components upon I-CreI induction is 

greatly decreased.  As a result, reduced Aurora B levels result in a dramatic increase 

in lamin-coated acentric-bearing micronuclei.  Thus, in addition to its well-
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established role in the spindle midzone assembly, kinetochore-microtubule 

attachments, and the abscission checkpoint (Douglas et al., 2010; Tanaka et al., 2002; 

Norden et al, 2006), we find that Aurora B also plays an important role in maintaining 

genomic integrity by facilitating the entry of late segregating acentrics into daughter 

nuclei through highly localized delays in the reassembly of nuclear envelope.  

 

Results 

Acentric chromosomes induce highly localized delays in the reassembly of the 

nuclear envelope during telophase 

To examine the impact of severely delayed acentric chromosome segregation on 

nuclear envelope formation (NEF), we visualized NEF in third instar Drosophila 

neuronal stem cells (neuroblasts) in which lagging acentrics were induced by I-CreI.  

Third instar neuroblasts divide asymmetrically to produce a large self-renewing 

neuroblast and a smaller ganglion mother cell, which divides once more giving rise to 

a post-mitotic neuron (Doe, 2008).  Transgenic Drosophila bearing the heat-inducible 

I-CreI endonuclease produce DSBs specifically at the rDNA repeats on the X-

chromosome (Maggert and Golic, 2005; Rong et al., 2002).  The resulting acentrics 

localize to the edge of the metaphase plate and eventually segregate to the poles late 

in anaphase through the action of a DNA tether attaching each acentric fragment to its 

centric partner (Royou et al., 2010). In addition to I-CreI, these transgenic lines 

express the Histone 2 variant (H2Av) labeled with RFP, (H2Av)-RFP, and lamin B-
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GFP, facilitating live analysis of chromosome and nuclear envelope dynamics in 

neuroblasts (see materials and methods).  

Live imaging of chromosome segregation and reformation of the nuclear 

lamina in neuroblasts with undamaged chromosomes (no I-CreI expression) is shown 

in the top panel of Figure 1A (see Movie 1). In neuroblasts with undamaged 

chromosomes, NEF occurs rapidly after sister chromatid segregation (Figure 1A, top 

panel; Movie 1). Time 0 marks the onset of anaphase as defined by separation of 

sister chromosomes. Once NEF is initiated, it proceeds until it is fully completed, as 

visualized by lamin B-GFP signal completely surrounding the segregated chromatin 

(compare time points 180-240).  On average, initiation and completion of NEF 

occurred approximately 217 +/- 102 sec (N=6) and 327 +/- 116 sec (N=6) 

respectively after anaphase onset.  Despite neuroblast divisions being asymmetric 

with respect to their cell size (Jiang and Reichert, 2014), centrosome morphology 

(Rebollo et al., 2007), microtubule aster size (Giansanti et al., 2001) and cortical 

components (Doe, 2008), we found that timing of NEF initiation and completion were 

synchronous in the two daughter nuclei, which is consistent with previous reports 

(Katsani et al., 2008).  

We next imaged chromosome separation and NEF in neuroblasts bearing I-

CreI induced acentrics (Figure 1A, bottom panel; see Movie 2). While initiation of 

NEF was slightly delayed in divisions with acentrics (298 +/- 65 sec (N=32)), we 

observed significant delays in completion of NEF (681 +/- 248 sec (N=14)) (Figure 

1A, bottom panel, compare timepoints 280-680). The delay in NEF completion, as 
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visualized by a gap in the lamin B-GFP signal, was highly localized, consistently 

occurring at the site of acentric entry (Figure 1A green arrows). These gaps in the 

nuclear envelope serve as passageways for late segregating acentrics to enter the 

telophase nuclei. Our analysis revealed that the width of these nuclear envelope gaps 

did not undergo significant changes in diameter as the acentric passed through to 

rejoin the main nuclear mass.  We found that the localized nuclear envelope gaps 

have an average width of 0.92µm +/- 0.27 (N=7).  This is approximately 6 fold larger 

than the physical diameter of a nuclear pore (Wente and Rout, 2010). It should be 

pointed out that these localized delays in nuclear envelope reassembly only occur in 

the presence of an acentric and are not present in heat-shocked larvae without I-CreI.  

 To quantify the presence of localized delays in nuclear envelope reassembly 

induced by acentric chromosomes, we measured the fluorescence intensity of lamin 

B-GFP across the surface of the nuclear envelope during telophase (Figure 1B).  

Compared to regions on the same telophase nucleus without local delays in nuclear 

envelope reassembly (blue line), fluorescence intensity of lamin B-GFP was 

markedly lowered across the site where acentrics entered through local delays in 

nuclear envelope reassembly (red line) (Figure 1B, left panel).  We did not observe 

the same lowered intensity of lamin B-GFP signal on the midzone face in non-I-CreI 

expressing control telophase neuroblasts (Figure 1B, right panel).  We found that the 

lowered intensity of lamin B-GFP signal persisted until after the acentric had passed 

through the gap, at which point nuclear envelope assembly resumed, as visualized by 

an increase in lamin B-GFP signal (Figure 1C).  
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To further demonstrate that these gaps in the nuclear envelope were induced 

by acentrics, we performed live 3D rendering of telophase nuclei expressing I-CreI to 

determine the position of acentrics relative to the nuclear envelope gaps. This analysis 

revealed that the acentric is positioned within the channel formed by the gap in the 

nuclear envelope (Figure 1D).  
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Figure 1.  Acentric chromosome fragments enter nascent daughter nuclei through 
highly localized delays in assembly of the nuclear envelope.  (A) Still images from 
time-lapse movies of mitotic neuroblasts without (top panel, see Movie 1) and with 
(bottom panel see Movie 2) I-CreI-induced acentrics (red arrows).  Acentrics enter 

daughter nuclei through nuclear envelope gaps (green arrows).  The chromosomes are 
labeled with H2Av-RFP (red) and the nuclear envelope with lamin B-GFP (green).  

These gaps do not form when acentric fragments are not present.  Dashed lines 
represent cell outlines.  Scale bars are 2 µm. (B) Quantification of lamin B-GFP 

signal across the surface of the nuclear envelope gaps during NEF.  Shown are graphs 
of the lamin B-GFP fluorescence intensity along pole facing (blue line) and midzone 
facing (red line) sections of the newly formed telophase nuclear envelopes with (left 
panel) and without acentrics (right panel). Each graph represents an average of three 
measurements.  Error bars indicate standard deviations.  Green brackets indicate the 

presence of a nuclear envelope gap.  Scale bars are 2 µm. (C) Quantification of lamin 
B-GFP signal across the midzone face of a newly formed nuclear envelope before and 
after an acentric enters the daughter nucleus.  Shown are graphs of the lamin B-GFP 

fluorescence intensity along pole facing (blue line) and midzone facing (red line) 
sections of the telophase nuclear envelope before (top) and after (bottom) an acentric 

has entered the daughter nucleus.  Each graph represents an average of three 
measurements.  Error bars indicate standard deviations.  Green brackets indicate the 

presence of a nuclear envelope gap.  Scale bar is 2 µm. (D) Multi-plane 3D rendering 
of an I-CreI-induced acentric entering a nascent daughter nucleus through a nuclear 

envelope gap (green arrow).  Red channel depicts H2Av-RFP.  Green channel 
represents lamin B-GFP. 
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Figure 1 
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To determine whether these localized gaps in nuclear envelope involve 

nuclear envelope proteins in addition to lamin B, we examined dividing non-I-CreI 

expressing control neuroblasts (Movie 3) and neuroblasts with I-CreI induced 

acentrics (Movie 4) that co-expressed a GFP-tagged nuclear pore complex protein, 

Nup107 (Figure 2). Embedded in the nuclear membrane, nuclear pore complexes are 

a highly conversed component of the nuclear envelope (Doucet and Hetzer, 2010).  

Similar to our live imaging analysis with lamin B-GFP, we observed localized delays 

and gaps in the reassembly of the nuclear envelope with GFP-Nup107 (Figure S1A, 

bottom panel, green arrow, see Movie 4).  Similar to our experiments with lamin B-

GFP, quantification of GFP-Nup107 fluorescence intensity along the nuclear 

envelope showed a decrease at the site of acentric entry compared to regions on the 

same nucleus where nuclear envelope reassembly was not delayed (compare Figure 

2B to Figure 1B). Staged-matched control and I-CreI expressing neuroblasts in 

telophase demonstrate that using GFP-Nup107 to image the nuclear envelope reveal 

acentric generated gaps in the nuclear envelope (Figure 2C).  Taken together with the 

lamin imaging, these studies suggest an absence of the nuclear envelope in the 

acentric-induced gaps but do not formally exclude the possibility that other 

components of the nuclear envelope have completely reassembled. 
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Figure 2.  Nuclear envelope gaps are imaged using a GFP-tagged nuclear pore 
protein.  (A) Still frames from time-lapse movies of mitotic neuroblasts expressing 

GFP-Nup107 and H2Av-RFP without (top panel, Movie 33) and with (bottom panel, 
Movie 4) I-CreI-induced acentrics.  Red arrows indicate acentric chromosomes.  

Green arrow indicates the nuclear envelope gaps.  Dashed lines outline the cell.  Scale 
bars are 2 µm.  (B) Quantification of GFP-Nup107 signal across the surface area of 

nuclear envelope gaps during NEF.  Shown are graphs of the GFP-Nup107 
fluorescence intensity along pole opposing and midzone facing sections of the newly 

formed telophase nuclear envelopes with (left and middle panel) and without 
acentrics (right panel).  Depicted in each panel are merged RFP and GFP signals, 

GFP signal alone, and graphical representation of GFP fluorescence intensity 
measured along a line tangent to the nuclear envelope at the polar (blue line) and 
midzone (red line) faces of the nucleus. Each graph represents an average of three 

measurements.  Error bars indicate standard deviations.  Green brackets indicate the 
presence of a nuclear envelope gap.  Scale bars are 2 µm.  (C) Stage-matched 

telophase nuclei from neuroblasts with (right panel) and without (left panel) I-CreI-
induced acentrics. Red arrow indicates acentric.  Green arrow indicates nuclear 

envelope gap.  Scale bars are 2 µm.
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Figure 2 
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Localized delays and gaps in nuclear envelope formation are determined by the 

timing of acentric chromosome segregation 

To further define the relationship between acentric chromosome segregation and 

localized gaps in the nuclear envelope, we investigated whether the timing of acentric 

segregation correlates with gap formation.  The initiation of acentric chromosome 

segregation occurs at varying times following the onset of anaphase segregation of 

the undamaged autosomes (Royou et al., 2010).  In theory, acentrics that segregate 

soon after the undamaged sister chromatids separate should be more associated with 

the nascent daughter nuclei than acentrics that segregate much later.  Therefore, early-

segregating acentrics should be able to rejoin the nucleus before NEF is initiated, 

while late-segregating acentrics will remain as discrete entities at this time, 

necessitating the localized delay in nuclear envelope reformation to allow these late-

segregating acentrics to rejoin the nucleus. 

To determine whether or not the timing of acentric segregation is correlated 

with the presence of localized gaps in the nuclear envelope, we induced I-CreI and 

imaged live the neuroblast divisions as described above. We found that formation of 

localized gaps is highly correlated with late segregating acentric chromosomes 

(Figure 3, A-D).  In contrast, early segregating acentrics were less likely to form 

localized gaps in the nuclear envelope and rejoined telophase nuclei well before 

completion of NEF (Figure 3, A-D). To further demonstrate the importance of time 

and distance of acentric segregation relative to the separation of undamaged 

chromosomes, we plotted both the time of acentric segregation and the distance of 
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acentrics from the separated sisters (Figure 3F).  As expected, this analysis showed 

that delayed acentric segregation was correlated (r=0.73) with a greater distance of 

acentrics from the main mass of separated sisters.  For divisions in which acentrics 

segregate later and thus at a greater distance from the main mass of separated sisters, 

the formation of a nuclear envelope gap allowed acentric entry into daughter nuclei 

(Figure 3F, blue diamonds), while a lack of gap formation resulted in acentrics 

forming micronuclei (Figure 3F, green triangles).  We interpret these results as 

evidence that the presence of an acentric fragment separated from the main 

chromosome mass causes a localized delay in nuclear envelope reassembly, providing 

a gap for the inclusion of the acentric into the daughter telophase nucleus.  
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Figure 3.  Local inhibition of nuclear envelope assembly is determined by acentric 
segregation timing. (A) Time lapse images of a larval neuroblast division expressing 
H2Av-RFP and lamin B-GFP with I-CreI-induced acentrics segregating soon after 

anaphase initiation.  Acentrics (red arrows) lag on the metaphase plate for 40 sec after 
anaphase initiation before they begin their poleward segregation. Nuclear envelope 
formation begins 340 sec after anaphase initiation and is completed at 400 sec after 
anaphase initiation. Nuclear envelope assembly proceeds normally with no nuclear 

envelope gap present. (B) Time lapse images of a larval neuroblast division 
expressing H2Av-RFP and lamin B-GFP with I-CreI-induced acentrics segregating 

well after anaphase initiation and segregation of the main chromosome complement.  
Acentrics (red arrows) lag on the metaphase plate for an extended period of 260 sec 
after anaphase initiation and then undergo poleward segregation. Nuclear envelope 

formation begins 400 sec after anaphase initiation and is completed at 1060 sec after 
anaphase initiation. Nuclear envelope assembly is marked by the presence of a 

nuclear envelope gap (green arrow) through which the acentric fragment enters the 
daughter nucleus. This gap persists until acentrics have rejoined the nucleus. (C) 

Schematic depicting the timing and distances of acentric segregation relative to the 
timing and distance of the main chromosome mass were measured.  Time of acentric 
segregation was measured from sister chromatid separation to separation of the last 

acentric pair.  Distance of acentrics from main nuclear masses was measured from the 
center of the acentric to the center of the main nuclear mass at the time of last acentric 
segregation.  (D, E and F) Graphs demonstrating that nuclear envelope gaps are more 
likely to form in neuroblasts with late segregating acentrics. (D) Acentrics that do not 
form gaps (red squares) segregate less than 100 sec after anaphase initiation (50 +/- 
11, N=8).  Acentrics that form gaps (blue diamonds) segregate at least 100 sec after 

anaphase initiation (220 +/- 90, N=23). p values calculated by independent t-test with 
equal variances not assumed. (E) Acentrics that do not form gaps (red squares) are 
separated from the main chromosome mass by a shorter distance (3.14 +/- 0.8 µm, 
N=10) compared to acentrics that do form gaps (blue diamonds) (5.38 +/- 1.06 µm, 
N=30) following anaphase initiation. p values calculated by independent t-test with 
equal variances assumed. (F) A plot showing the correlation between the timing of 
acentric segregation following anaphase initiation the distance between acentrics 
from the main chromosome mass after anaphase (r=0.73).  Red squares indicated 

acentrics that rejoin nuclei without gap formation.  Blue diamonds represent acentrics 
that rejoin nuclei through nuclear envelope gaps. Green triangles represent acentrics 

that do not form gaps rejoin nuclei and form micronuclei.   Acentrics that segregate at 
a shorter time and distance after anaphase initiation are able to reenter daughter nuclei 
before NEF initiation and do not form gaps (red shaded area).  In contrast, acentrics 

that segregate later and further from undamaged chromosomes require a nuclear 
envelope gap to reenter daughter nuclei (blue shaded area).  Solid line represents line 
of best fit for data (R2 = 0.5). Time and distances are represented as averaged values 
+/- SD. Dotted lines outline the plasma membrane of the cell. All scale bars are 2µm. 
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Figure 3 
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X-irradiation-induced acentrics also produce localized delays and gap formation in 

nuclear envelope formation 

The foregoing results demonstrate that I-CreI induced late segregating acentric 

chromosomes no longer associated with the main mass of segregating chromosomes 

result in localized delays in nuclear envelope formation.  To determine if acentrics 

formed by others sources of DSBs also produce localized delays in nuclear envelope 

formation, we exposed neuroblasts to X-irradiation (Figure 4).  X-irradiation 

produces both single and double-stranded breaks, resulting in acentric fragments and 

BubR1-coated DNA tethers (Royou et al., 2005; Royou et al., 2010).  In divisions 

with X-irradiation induced acentrics, nuclear envelope formation was specifically 

delayed at the site of acentric entry, resulting in gaps in the nuclear envelope (Figure 

4, A-B, green arrow). As seen in an additional irradiated neuroblast, these gaps were 

strikingly similar to those observed with I-CreI induced acentrics (compare Figure 4B 

to Figure 1A, bottom panel).  Of 25 neuroblast divisions examined from irradiated 

larvae, 15 exhibited chromosome segregation defects (Figure 4C, grey bar).  Of these 

15 divisions, 8 possessed acentric fragments (Figure 4C, red bar) and gaps in nuclear 

envelope formation were observed in 4 of these (Figure 4C, blue bar). 
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Figure 4.  X-ray induced acentric chromosome fragments also enter nascent daughter 
nuclei through highly localized delays in assembly of the nuclear envelope.  (A) 
Time-lapse images of acentric fragments in the neuroblast division of an X-ray 

irradiated larva expressing H2Av-RFP (red) and lamin B-GFP (green).  Acentrics 
resulting from X-ray irradiation (red arrows) enter the daughter nuclei through a gap 
in the nuclear envelope (green arrow). Initiation to completion of NEF requires 220 
seconds (sec).  (B) A still frame from a time-lapse movie of a nuclear envelope gap 

forming in a telophase nucleus with irradiation-induced acentrics (different neuroblast 
than shown in A) expressing H2Av-RFP (red), and lamin B-GFP (green). As seen in 

Panel A, the irradiation-induced acentric (red arrow) rejoins the main nuclear mass by 
entering the nucleus through a gap in the nuclear envelope (green arrow).  (C) A 

graphical representation quantifying the percentage of irradiated neuroblasts that had 
chromosome segregation defects (grey bar), the percentage of neuroblasts with 

chromosome segregation defects that were acentrics (red bar), and the percentage of 
neuroblasts with acentrics that formed nuclear envelope gaps (blue bar). 

 
Figure 4 
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Nuclear envelope gaps are specific to acentric chromosomes and not intact lagging 

chromosomes 

To determine if nuclear envelope gaps are a result of a physical barrier due to the 

presence of a lagging chromosome that blocks complete reformation of the nuclear 

envelope, or if these gaps are specific to acentrics, we visualized lamin reassembly in 

neuroblasts bearing a long compound second chromosome, (C(2)EN).  Created by 

attaching both second chromosome homologs to a common centromere, these 

artificial chromosomes possess chromosome arms twice the normal length and exhibit 

extensive lagging during anaphase, but are not coated with the tether component 

BubR1 (Novitski et al., 1981; Gonzalez et al., 1991; Sullivan et al., 1993; Kotadia et 

al., 2012; Martins et al., 2013).  Nuclear envelope formation was examined by 

immunofluorescence in dividing larval neuroblasts expressing either I-CreI or bearing 

C(2)EN (Figure 5).  The panels in Figure 5A depict fixed neuroblasts in which I-CreI 

has been induced.  As described in the previous sections, these images clearly show 

the lagging acentric chromosomes (red arrows, Figure 5A) during anaphase and 

telophase. During telophase a distinct gap in the nuclear envelope is observed (green 

arrow, Figure 5A).   

We used the same fixed protocol to examine whether lagging compound 

chromosome arms also produce nuclear envelope gaps.  Similar to the I-CreI results, 

fixed and stained neuroblasts bearing the compound chromosome exhibited extensive 

chromosome lagging during anaphase and telophase (red arrowheads, Figure 5B).  

However, no gaps in the nuclear envelope were observed.  Instead, lamin formed 
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around the nucleus and the entire length of the outstretched lagging arm (green 

arrowhead, Figure 5B).  Recent studies demonstrated that the compound chromosome 

undergoes extensive stretching at heterochromatic linker regions (Oliveira et al., 

2014).  Significantly, the lamin signal could be visualized around these highly 

stretched regions of the elongated chromosome.  We interpret these results as 

suggesting, but not excluding the possibility, that lagging chromatin by itself is not 

sufficient to induce nuclear envelope gaps through a physical blockage of nuclear 

envelope reassembly. 
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Figure 5.  Unlike acentric chromosome fragments, intact lagging chromosomes do 
not form nuclear envelope gaps.  Images of fixed neuroblasts bearing I-CreI-induced 
acentrics (A) and neuroblasts with long compound second chromosome (C(2)EN) (B) 

stained with DAPI (red) and anti-Lamin antibody (green).  (A) I-CreI-induced 
acentrics (red arrows) rejoin the main nuclear mass through a nuclear envelope gap 
(green arrow) during telophase.  (B) In contrast, the compound second chromosome 
(red arrowheads) is entirely encapsulated by lamin (green arrowhead) at telophase.  

All scale bars are 2 µm. 
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Aurora B kinase is required for highly localized delays in nuclear envelope formation 

and acentric entry into daughter nuclei  

Previous studies demonstrated that injection of chromatin into Xenopus egg extracts 

resulted in the association of lamins and formation of a nuclear envelope 

encompassing the outer periphery of the ectopic chromatin mass (Forbes et al., 1983).  

Given the propensity of lamin to form around chromatin, the highly localized delays 

in nuclear envelope formation in response to acentric fragments suggest the presence 

of factors preventing lamin-chromatin association specifically at the site of localized 

delays and acentric entry. Insight into the mechanism of highly localized delays in 

nuclear envelope formation comes from the observation that these delays often form 

in the presence of tethered acentrics.  Previous studies demonstrated that Aurora B 

kinase is an established negative regulator of lamin assembly (Ramadan et al., 2007; 

Meyer et al., 2010; Afonso et al., 2014).  As shown in Figure 6, we observed that 

Aurora B specifically associated with the tether as previously reported (Royou et al., 

2010).  Aurora B is a chromosome passenger protein that concentrates at the midzone 

microtubules once sister chromosome segregation is initiated (Gruenberg et al., 

2004).  Recent studies demonstrate that a gradient of Aurora B originating from the 

midzone globally prevents NEF (Afonso et al., 2014).  Once the chromosomes have 

segregated away from the high Aurora B concentrations, NEF is initiated.  Here we 

investigated whether Aurora B associated with the tether during late 

anaphase/telophase acts to locally prevent lamin assembly and NEF leading to the 

formation of highly localized gaps in the reassembly of the nuclear envelope.  
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Figure 6.  Aurora B is highly associated with acentric fragments and their DNA 
tethers.  (A) Still frames of a control neuroblast (no I-CreI expression) movie show 
GFP-tagged Aurora B (cyan) on kinetochores during metaphase and at the cleavage 
furrow during anaphase.  Dotted lines outline the plasma membrane of the cell. All 

scale bars are 2µm.  (B) Still frames from a movie of a dividing neuroblast during the 
same mitotic stages with I-CreI induced acentrics that are decorated with GFP-tagged 

Aurora B (cyan arrows). Undamaged chromosomes (cyan arrowheads) are not 
associated with Aurora B (bottom panel). These results are in accord with Royou et al 
(2010).  Dotted lines outline the plasma membrane of the cell. All scale bars are 2µm. 
 
Figure 6 
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Because Aurora B provides a number of essential functions in the mitotic cell 

cycle, in order to investigate its role specifically in highly localized nuclear envelope 

gap formation, we used RNAi to reduce but not eliminate Aurora B levels in 

neuroblasts.  We achieved conditions in which chromosome morphology, 

condensation, alignment on the metaphase plate and segregation proceeded normally.  

We measured chromosome compaction in I-CreI expressing control and I-CreI with 

Aurora B RNAi neuroblasts.  Chromosome compaction was determined by measuring 

the area occupied by the metaphase chromosomes at the time when the last acentric 

began poleward segregation.  This corresponds to the point of maximum chromosome 

compaction in the cell cycle.  We found no difference between the measured areas of 

the chromosomes in I-CreI expressing control and I-CreI with Aurora B RNAi 

neuroblasts (Figure 7A).  In addition, Aurora B RNAi expressing neuroblasts without 

the I-CreI transgenes revealed no discernable defects in chromosome segregation or 

any evidence of chromosome bridging.  In control and Aurora B RNAi neuroblasts, 

0/10 and 0/13 divisions respectively exhibited chromosome bridging.   

To determine if our Aurora B RNAi conditions caused specific defects in 

acentric morphology, we measured the area of acentrics of I-CreI expressing control 

and I-CreI with Aurora B RNAi neuroblasts at the beginning of NEF (Figure 7B).  

We found no difference between the measured area of acentrics in I-CreI expressing 

control and I-CreI with Aurora B RNAi neuroblasts. We also measured the distance 

from acentrics to the main nuclear mass at the time of acentric segregation in I-CreI 

control and I-CreI with Aurora B RNAi neuroblasts.  We found no difference in the 
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distance of acentrics from the main chromosome mass in I-CreI control and I-CreI 

with Aurora B RNAi neuroblasts (Figure 7C).  To determine whether induction of 

Aurora B RNAi influences acentric segregation, we compared the timing and 

dynamics of acentric poleward segregation in both I-CreI with Aurora B RNAi and I-

CreI-expressing control neuroblasts.  We found that acentrics began their poleward 

segregation within similar time frames during anaphase in both I-CreI-expressing 

control and I-CreI with Aurora B RNAi neuroblasts (Figure 7D).  Likewise, there was 

a small, but not statistically significant increase in the frequency of unequal versus 

equal acentric segregation in I-CreI-expressing neuroblasts with Aurora B RNAi 

compared to I-CreI alone control neuroblasts (Figure 7E).  To ensure that induction of 

Aurora B RNAi reduced Aurora B levels in the neuroblasts, we assayed the frequency 

of binucleate cells, a result of failed cytokinesis and previously described phenotype 

in Drosophila using RNAi knockdown of Aurora B (Giet and Glover, 2001). We 

observed a dramatic increase in bi-nucleate neuroblasts (Aurora B RNAi (22% N=18) 

compared to I-CreI-expressing controls (2.7% N=37) (Figure 7F).  Taken together, 

these results indicate that reducing Aurora B levels through RNAi does not disrupt 

chromosome morphology, condensation, or segregation of the normal chromosomes 

or the acentric fragment. 
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Figure 7.  Aurora B RNAi does not lead to gross changes in chromosome behavior or 
structure. (A) Graph of the measured size of undamaged chromosomes in I-CreI-
expressing control (cyan triangles) and I-CreI; Aurora B RNAi neuroblasts (red 
squares) at the moment of maximal metaphase compaction.  (B) A graph of the 

measured size of acentrics generated in I-CreI neuroblasts (cyan triangles) and I-CreI; 
Aurora B RNAi neuroblasts (red squares) at the beginning of NEF. (C) Graph of the 

distance between acentrics and the main chromosome mass in gap forming I-CreI 
alone (control) neuroblasts (cyan triangles) and non-gap forming I-CreI, Aurora B 

RNAi neuroblasts (red squares) following the completion of anaphase.  (D) Graph of 
the timing of the initiation of acentric poleward segregation following the onset of 

anaphase in both I-CreI alone (control) and I-CreI; Aurora B RNAi neuroblasts. The 
timing of the initiation of acentric poleward segregation was grouped into two 

categories: 0-4 min (cyan bars), and 4-7 min (red bars).  (E) Still images from time-
lapse movies of equal (top panel) and unequal (bottom panel) segregation of acentrics 

during anaphase in neuroblasts expressing I-CreI alone (top panel) or I-CreI plus 
Aurora B RNAi (bottom panel). Red arrows show acentrics.  Scale bar is 2 µm.  

Graph of the percentage of unequal segregation in both types of neuroblasts is shown 
on the right.  A statistically non-significant increase in unequal segregation of 

acentrics in I-CreI with Aurora B RNAi neuroblasts versus I-CreI alone (control) 
neuroblasts was observed.  (F) Single frame pictures of third instar neuroblasts from 
wild type larvae (top panel) and larvae in which Aurora B is reduced (bottom panel).  

To the right is a graph of the percentage of binucleate neuroblasts in both types of 
larvae.  Cyan arrows point to binucleate cells.  Red channel is H2Av-RFP.  Grey 
channel is differential interface contrast (DIC).  Scale bar is 6 µm. p values were 

calculated by independent t-test with equal variances not assumed.
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Figure 7 
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To determine if Aurora B is necessary for the highly localized delays in 

nuclear envelope formation, we compared divisions in I-CreI-expressing control and 

I-CreI with Aurora B RNAi neuroblasts for the presence of gaps in the nuclear 

envelope.  Through fixed analysis, we discovered that the frequency of gap formation 

was greatly reduced in neuroblasts bearing an I-CreI induced acentric with reduced 

levels of Aurora B (Figure 8A). As seen in Figure 6A, I-CreI induced acentrics are 

free of lamins and a distinct gap is present in the nuclear envelope (green arrow).  In 

contrast, when Aurora B levels are reduced there is a dramatic increase in the number 

of acentrics coated with lamins (green arrowheads).  Nuclear envelope gaps were 

formed at a frequency of 79% (N=13) and 14% (N=25) in I-CreI-expressing control 

and I-CreI with Aurora B knockdown neuroblasts respectively (Figure 8B).  In 

addition, the percentage of telophase cells with lamins ectopically localized to the 

acentrics increased two-fold (from 21%, N=13 to 41% N=25) in the Aurora B 

knockdown neuroblasts (Figure 8C).  

In accord with these fixed results, live imaging of acentrics in I-CreI-

expressing control neuroblasts formed nuclear envelope gaps (Figure 8D, green 

arrow) through which the acentrics passed to join daughter nuclei. Strikingly, acentric 

fragments in divisions with reduced Aurora B were associated with ectopic lamin 

(Figure 8D, green arrowheads, Movie 5).  Presumably, because of this absence of 

highly localized delays in nuclear envelope formation, acentric fragments in I-CreI 

with Aurora B RNAi expressing neuroblasts were not able to rejoin daughter nuclei 
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and therefore formed micronuclei at a higher rate compared to controls  (see below) 

(Figure 8E).  

Increased failure of nuclear envelope gap formation when Aurora B levels are 

reduced indicates that gap formation is dependent on Aurora B.  Because our Aurora 

B RNAi conditions did not affect whole or acentric chromosome segregation or 

geometry, our results suggest that nuclear envelope gap formation is likely mediated 

by Aurora B through prevention of local nuclear envelope reassembly specifically at 

the site of acentric entry into daughter nuclei as opposed to altering chromosome 

segregation or compaction.  In addition, the ectopic assembly of lamins on acentric 

fragments in reduced Aurora B conditions shows that the formation of nuclear 

envelope gaps is not due to an inability of the acentrics to recruit nuclear envelope 

components.   

 

Failure to form highly localized delays in nuclear envelope formation results in 

increased rates of micronuclei formation 

As described previously, when I-CreI induction results in late segregation of 

acentrics, there is a local delay in completion of NEF.  In contrast, when Aurora B 

levels are reduced, these delays are eliminated (Figure 8F). In neuroblasts expressing 

I-CreI and Aurora B RNAi, acentrics form micronuclei at a higher rate (67% N=9) 

than acentrics in I-CreI expressing controls (15% N=33). Therefore, formation of 

micronuclei appears to be a direct consequence of the failure to form highly localized 

delays in nuclear envelope formation when Aurora B levels are reduced.   
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A small molecule inhibitor of Aurora B prevents nuclear envelope gap formation 

To further demonstrate that Aurora B is responsible for gap formation, we treated 

neuroblasts with the Aurora B small molecule inhibitor Binucleine-2 (Afonso et al., 

2014).  Similar to our results with Aurora B RNAi, the inhibition of Aurora B by 

Binucleine-2 decreased nuclear envelope gap formation and increased the rate of 

lamin-coated acentric-bearing micronuclei (Figure 8G).  To test whether or not 

Aurora B inhibition diminished tether function, we examined the localization of the 

tether component BubR1 (Royou et al., 2010) to I-CreI Induced DNA tethers.  We 

found that Binucleine-2 inhibition of Aurora B did not disrupt tether integrity as 

evidenced by the ectopic localization of BubR1 on the acentric and tether in control 

(Figure 9A) and Binucleine-2 (Figure 9B) treated neuroblasts.  Altogether, this 

suggests that a key function of Aurora B is to locally prevent lamin assembly, 

resulting in a nuclear envelope gap through which late segregating chromatin 

separated from the main chromosome mass can enter the telophase nucleus (Figure 

10). 
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Figure 8.  Local inhibition of nuclear envelope assembly is mediated by Aurora B 
kinase.  (A) Fixed images of telophase nuclei from I-CreI-expressing control and I-
CreI with Aurora B depleted neuroblasts bearing I-CreI induced acentrics stained 
with anti-lamin (green) and DAPI (red).  Acentrics induced in I-CreI-expressing 

controls show little to no association with lamin B and form a nuclear envelope gap 
(green arrow).  In contrast, acentrics in neuroblasts with reduced Aurora B result in 
both the absence of a nuclear envelope gap and clear associations with lamins on 
acentrics (green arrowheads).  (B) I-CreI induced acentrics in control neuroblasts 
resulted in nuclear envelope gaps in 79% (N=13) of telophase nuclei. In contrast, 

acentrics in neuroblasts depleted of Aurora B resulted in a significant reduction (14%; 
p < 0.05; N=25) in the formation of nuclear envelope gaps in telophase nuclei.  (C) 
Acentrics in I-CreI-expressing control neuroblasts were coated with lamin B in 21% 
(N=13) of telophase nuclei. In contrast, telophase nuclei of neuroblasts depleted of 
Aurora B resulted in an increase (41%; N=25) of acentrics coated with lamins (not 
significant).  (D) Time-lapse images of dividing neuroblasts from I-CreI-expressing 

controls (top) and I-CreI with Aurora B RNAi (bottom, see Movie 5) expressing 
lamin B-GFP (green) and H2Av-RFP (red). I-CreI induced acentrics are present in 
both.  In I-CreI expressing controls, acentrics (red arrows) enter telophase nuclei 
through nuclear envelope gaps (green arrow).  In contrast, neuroblasts bearing 

acentrics with reduced Aurora B show no gaps. Consequently, acentrics (red arrows) 
in Aurora B depleted neuroblasts remain outside of the nucleus and form micronuclei 
coated with lamin B (green arrowheads).  (E) Bar graphs of micronuclei frequencies 

in I-CreI-expressing control, I-CreI with Aurora B RNAi, and Aurora B RNAi 
without I-CreI control neuroblasts. (F) Box plots showing the time elapsed from the 
onset of anaphase to the completion of NEF in neuroblasts expressing I-CreI and I-
CreI with Aurora B RNAi. Early-segregating I-CreI induced acentrics do not form 

gaps, whereas late-segregating I-CreI induced acentrics do form gaps.  Late-
segregating acentrics in neuroblasts with reduced Aurora B expression fail to form 

gaps and complete NEF in a similar time frame to early segregating wild-type 
acentrics.  These results indicate that Aurora B mediates the local inhibition of NEF 
in neuroblasts. Asterisks in panels indicate statistical significance.  (G) Time-lapse 

images of dividing neuroblasts from I-CreI-expressing DMSO treated controls (left) 
and I-CreI-expressing Binucleine-2 treated neuroblasts (right) expressing lamin B-

GFP (green) and H2Av-RFP (red). In DMSO treated controls, acentrics (red arrows) 
enter telophase nuclei through nuclear envelope gaps (green arrows).  In contrast, 

Binucleine-2 treated neuroblasts show no gaps. Consequently, acentrics (red arrows) 
in Aurora B depleted neuroblasts remain outside of the nucleus and form micronuclei 

coated with lamin B (green arrowhead). 
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Figure 8 
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Figure 9.  Aurora B inhibition does not disrupt tether formation.  Time-lapse images 
of dividing larval neuroblasts expressing H2Av-RFP and BubR1-GFP with I-CreI-

induced acentrics treated with DMSO alone (A) or with the Aurora B small molecule 
inhibitor Binucleine-2 (B).  BubR1 localization on I-CreI induced tethers is similar in 

both DMSO alone and Binucleine-2 treated neuroblasts.  Red arrows indicate 
acentrics.  Green arrows indicate ectopic BubR1.  Dotted lines show cell outline.  All 

scale bars are 2 µm. 
 

Figure 9 
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Figure 10.  A model of Aurora B dependent formation of nuclear envelope gaps.  (A) 
Nuclear envelope formation (NEF) is completed within 349 seconds following the 
metaphase-to-anaphase transition in non-I-CreI expressing control neuroblasts with 

undamaged chromosomes.  NEF initiates 60 seconds after cessation of poleward 
movement of the chromosomes and is quickly completed to form an intact nuclear 
envelope.  In neuroblasts with acentrics (B and C), the initiation of NEF is slightly 
delayed relative to neuroblasts with undamaged chromosomes (A).  In the event of 

early acentric segregation (B), acentrics have sufficient time to rejoin daughter nuclei 
before the initiation of NEF, thus localized delays in NEF are not induced and no 

nuclear envelope gap is observed. In contrast, late segregating acentrics (C) have less 
time with respect to the initiation of NEF to rejoin daughter nuclei and are more 

likely to exist as distinct entities when NEF initiates.  This results in localized delays 
in NEF at the site where Aurora B decorated acentrics facilitate entry into daughter 

telophase nuclei through the formation of nuclear envelope gaps. 
 
Figure 10 
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Discussion 

Much remains unknown concerning the cellular response to defects and delays in 

chromosome segregation during anaphase and telophase.  The anaphase-telophase 

transition is a complex process requiring the coordination of chromosome movements 

with cytoskeletal and membrane dynamics.  Upon completion of chromosome 

segregation during anaphase, extensive chromosome reorganization and 

decondensation occurs while reassembly of the nuclear envelope is initiated 

(Güttinger et al., 2009; Katsani et al., 2008).  Spindle disassembly is completed and 

the centrosome re-associates with the newly formed nuclear envelope (Robinson et 

al., 1999).  Directly after the chromosomes have cleared the plate during anaphase, 

cytokinesis is initiated. Because of the complexity and speed of these events, 

compensating for delays and defects in chromosome segregation is particularly 

challenging.  A number of studies demonstrate that some cells respond to delays in 

chromosome segregation by delaying initiation of cytokinesis (Norden et al., 2006) or 

alternatively elongating the spindle and daughter cells to accommodate increased arm 

length (Kotadia et al., 2012).  

 In the studies presented here, we focus on the effects of lagging acentric 

chromosomes on nuclear envelope formation (NEF).  Recent work has shown that 

delayed chromosome segregation induces a delay in NEF initiation (Afonso et al., 

2014). Here, we specifically investigated whether severely delayed acentric 

segregation results in corresponding delays in NEF completion as well. We reasoned 

that severely delayed acentric fragments must be able to enter daughter nuclei by a 
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mechanism distinct from delayed NEF initiation, as acentric segregation occurs 

around the same time as the nuclear envelope starts to reform.  By using a subset of 

nuclear envelope components (Lamin B and Nup107) to visualize nuclear envelope 

reassembly, we found that severely lagging acentrics induce highly localized delays 

in NEF completion specifically at the site where lagging acentrics rejoin the main 

chromosome mass.  

As previously reported, delays in the time interval between anaphase initiation 

(sister chromosome segregation) and initiation of NEF occur in acentric bearing cells 

compared to controls (Afonso et al., 2014).  While we observed delays in NEF 

initiation in the presence of lagging chromosomes, we also observed significant 

highly localized delays in the completion of NEF that are required for acentric entry 

into daughter nuclei.   

Previous studies revealed that acentric chromosomes segregate to daughter 

nuclei using a DNA tether-like structure connecting, and perhaps pulling, an acentric 

fragment to its centric partner (Royou et al., 2010).  Segregation of these acentric 

fragments is severely delayed. The tethers are coated with the spindle checkpoint 

components BubR1 and Polo, and the chromosome passenger proteins INCENP and 

Aurora B (Royou et al., 2010).  Of these, the Aurora B kinase is particularly 

interesting because it is responsible for maintaining the chromosomes in a condensed 

state and preventing nuclear envelope assembly until after the chromosomes have 

completed segregation (Ramadan et al., 2007; Afonso et al., 2014).   
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To investigate whether Aurora B plays a role in the formation of the acentric 

induced gaps in nuclear envelope formation, we reduced Aurora B in neuroblasts by 

RNAi.  We found that the frequency of acentric-induced nuclear envelope gaps were 

reduced in neuroblasts depleted of Aurora B.  In addition, we found that acentrics in 

neuroblasts depleted of Aurora B were coated with lamins and left outside of the main 

nuclei as micronuclei.  Increased failure of nuclear envelope gap formation when 

Aurora B levels are reduced indicates that gap formation is dependent on Aurora B.  

Because our partial knockdowns of Aurora B did not affect normal or acentric 

chromosome segregation or compaction, our results suggest that nuclear envelope gap 

formation is mediated by Aurora B through prevention of nuclear envelope 

reassembly specifically at the site of acentric entry into daughter nuclei as opposed to 

altering chromosome segregation or compaction.  In addition, the ectopic assembly of 

lamins on acentric fragments in reduced Aurora B conditions shows that the 

formation of nuclear envelope gaps is not due to an inability of the acentrics to recruit 

nuclear envelope components.  Furthermore, lamin association along the outstretched 

arms of compound chromosomes suggests but does not exclude that gaps in the 

nuclear envelope are not simply due to a physical blockage of nuclear envelope 

formation created by the tether.   

Recent studies have shown that the nuclear envelope reforms around separated 

sister chromosomes once they have segregated outside of the highly concentrated 

Aurora B gradient in the mitotic midzone (Afonso et al., 2014). In these studies, 

lagging acentrics remained free of nuclear envelope components during anaphase 
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despite the initiation of nuclear envelope reformation around the intact chromosomes 

at the poles. That is, the nuclear envelope cannot reform around lagging acentrics that 

remain in the highly concentrated Aurora B gradient in the midzone.  Although we 

have not specifically ruled out the role of the midzone gradient of Aurora B in nuclear 

envelope gap formation, we believe that the localized formation of gaps in the nuclear 

envelope is the specific result of acentrics and tethers coated with ectopic Aurora B.  

The rationale for this view is that nuclear envelope gaps do not occur in neuroblasts 

with undamaged chromosomes, despite the presence of an Aurora B midzone 

gradient.  That is, nuclear envelope gaps are only observed with acentrics associated 

with highly-localized and concentrated levels of Aurora B at the site where a gap is 

needed to include acentrics in daughter nuclei.  Our studies complement the work 

showing an Aurora B gradient in regulating nuclear envelope formation on a global 

scale (Afonso et al., 2014) by suggesting that an increased local concentration of 

Aurora B can induce a corresponding local delay in nuclear envelope reformation to 

ensure the inclusion of acentrics in daughter nuclei. 

Because Aurora B phosphorylation of histone H3 inhibits HP1 recruitment to 

the chromatin (Hirota et al., 2005) and HP1 is known to interact with the nuclear 

lamina (Ye and Worman, 1996), it would be interesting to test whether or not this 

Aurora B mediated prevention of lamin-tether interaction is the effect of disrupted 

HP1 recruitment to histone H3.  Alternatively, the Aurora B mediated regulation of 

the state of chromosome condensation at telophase may influence local lamin-

chromatin interactions and gap formation (Ramadan et al., 2007). 
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One of the most striking consequences of reducing Aurora B levels in the 

presence of I-CreI induced double stranded breaks is the formation of large numbers 

of micronuclei.  This appears to be a direct consequence of the failure to form a 

nuclear envelope gap, blocking the acentric chromosome from entering the daughter 

telophase nucleus.  Historically, micronuclei have been used as biomarkers for 

genomic instability, and their increased presence of micronuclei in human cells is 

typically associated with cancer (Bonassi et al., 2011; Santos et al., 2010; Celik et al., 

2013).  As such, there has been much interest in understanding the cellular response 

to micronuclei formation and subsequent micronuclei fate (Hatch et al., 2013; Ji et al., 

2013; Huang et al., 2011; Kirsch-Volders et al.; 2011, Fenech et al.; 2011).  Previous 

studies have shown a direct correlation between Aurora B levels and micronuclei 

frequency (Tatsuka et al., 1998). Here, we find that reducing Aurora B levels can also 

lead to an increased frequency of micronuclei in the presence of double-stranded 

breaks.  Taken together, these results suggest multiple distinct mechanisms by which 

micronuclei can form.  Furthermore, we provide an easy method for generating large 

amounts of micronuclei, which can then be used for further studies into micronuclei 

contribution toward genomic instability.  

Taken together, our results suggest that Aurora B-mediated highly localized 

delays in the final stages of NEF result in a portal through which the tethered 

acentrics pass to rejoin the daughter telophase nuclei, preserving genomic integrity.  

Whether this portal is a novel structure of the nuclear envelope remains to be 

determined. 
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Materials and Methods 

Fly Stocks 

All stocks were raised on standard Drosophila media (Sullivan et al., 2000) at room 

temperature and then incubated at 29oC for at least 24 hours before imaging.  The 

following Gal4 drivers were used: elav-Gal4 (Lin and Goodman, 1994), Wor-Gal4 

(Cabernard and Doe, 2009), Actin-Gal4 (Bloomington stock #25708) (Ito et al., 

1997).  Using these drivers the following larvae were constructed: elav-Gal4; H2Av-

RFP/UAS-lamin-GFP; I-CreI, Sb (Figures 1A-D, 3A-B, 5E, 8D, G), Wor-Gal4; I-

CreI, Sb (Figure 5A), Actin-Gal4; I-CreI, Sb (Figure 8A), elav-Gal4; H2Av-

RFP/UAS-GFP-Nup107; I-CreI, Sb (Figure 2A-C), elav-Gal4; H2Av-RFP (Figure 

7F).  For Aurora B RNAi experiments, ial RNAi (#28691 from Bloomington) was 

introduced to create the following larvae: Actin-Gal4; I-CreI/ial (Figure 8A), elav-

Gal4; H2Av-RFP/UAS-lamin-GFP; I-CreI/ial (Figure 7E, 8D), elav-Gal4l H2Av-

RFP; ial (Figure 5F).  lamin-GFP (#7376) and GFP-Nup107 (#35514) were obtained 

from the Bloomington Stock center.  The Aurora B-GFP lines, kindly provided by the 

Lipsick lab, were used to create the following larvae: elav-Gal4; H2Av-RFP/UAS-

AuroraB-GFP (Figure 6A) and elav-Gal4; H2Av-RFP/UAS-AuroraB-GFP; Icre, Sb 

(Figure 6B). For the experiments with the compound chromosome (Figure 5B), a yw; 

C(2)EN,bw,sp (Novitski et al., 1981) stock was obtained from Bloomington (#2974).  

GFP-BubR1 lines previously characterized by Buffin et al. (2005) were used to create 

elav-Gal4; H2Av-RFP/GFP-BubR1; I-CreI, Sb larvae (Figure 9). 
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I-CreI and X-irradiation induced chromosome breaks 

I-CreI expression was induced in elav-Gal4; H2Av-RFP/lamin-GFP; I-Cre, Sb larvae 

with I-CreI driven by a heat shock 70 promoter.  Female 3rd instar larvae were 

subjected to a 1 hour 37oC heat shock followed by a 1 hour recovery period at room 

temperature. The larval brains were then dissected and imaged as described below.  

To induce more generalized DNA damage, female 3rd instar larvae were exposed to 

X-irradiation using a Torrex X-ray generator.  This was followed by a 1 to 6 hour 

recovery period (higher doses required a longer recovery period).  The larval brains 

were then dissected and imaged as described below. 

 

Live and fixed neuroblast cytology 

For live imaging, female Drosophila 3rd instar larval brains were dissected in PBS 

(pH=7.4) and placed between a slide and coverslip.  The resulting capillary forces 

resulted in a gentle squashing of the preparation (Buffin et al., 2005).  The 

preparation was imaged immediately and for a maximum period of 60 minutes.  Best 

imaging was achieved using neuroblasts along the periphery of the squashed brain.  

Fixed images were obtained by dissecting female 3rd instar larval brains in 

0.7% NaCl then soaking them for 5 minutes in 0.5% Na Citrate to induce brain cell 

swelling.  Brains were squashed in fixative (1.85% formaldehyde, 45% acetic acid) 

then slides were frozen in liquid nitrogen.  After washing in PBS, samples were 

immersed in a 5% dried milk, 0.2% TX-100 solution for 1h before being incubated 
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overnight at 4oC with anti-lamin antibody (1:1000 dilution in the milk solution).  

Samples were then washed three times in PBST (PBS + 0.2% TX-100) and incubated 

at room temperature with Alexa 546-conjugated anti-rabbit secondary antibody 

(1:300 dilution).  The samples were washed three more times in PBS before the 

addition of DAPI in vectashield.  This fixing and staining procedure was adapted 

from (Cenci et al., 2003). 

 

Microscopy and image acquisition 

Figure 1D was acquired with a 60X 1.4 NA objective on an inverted spinning disk 

microscope (Improvision) equipped with a Hamamatsu C9100-50 EM CCD camera. 

Three-dimensional reconstruction and brightness adjustments were performed with 

Volocity Image Analysis software. Figure 1C and Figure 4B were acquired with a 

Leica DN5500B wide-field upright microscope equipped with a Leica DFC360 FX 

camera using a 63X objective with an NA of 1.4.  All other images were acquired 

with a Leica DMI6000B wide-field inverted microscope equipped with a Hamamatsu 

EM charge-coupled device (CCD) camera (ORCA C9100-02) with a binning of 1 and 

obtained using a 100X Plan-Apochromat objective with a NA of 1.4. Time-lapse 

movies were composed of images taken at 20 seconds intervals unless otherwise 

indicated.  All movie images were then deconvolved with LeicaAF software using 6 

iterations of a blind deconvolution algorithm with a 1.5 refractive index except with 

Figure 1C 4B, which were deconvolved with Autoquant X3 and Figures S3A-B and 

6G, which were deconvolved with Autoquant X2.  Both movies and fixed images 
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were projected 2D images (maximum intensity).  All images were assembled using 

ImageJ software (http://rsb.info.nih.gov/ij/), Adobe Photoshop (Figures 1, 2, 3, 4, 5, 

7, 8, 9), and Adobe Illustrator (Figures 3C, 6, 10).  Selected stills (both experimental 

and control) were processed with Adobe Photoshop to increase brightness. 

 

Measurements  

Anaphase initiation was determined in time-lapse movies as the last frame before 

sister chromatid separation.  Initiation of poleward movement by the final acentric 

fragment was measured as the last frame before the final two acentric chromosomes 

segregated.  The measured distance from the center of the acentrics to the center of 

the main nuclear masses at this time was used as the distance of the acentrics from the 

main nuclear mass.  The start of nuclear envelope formation was measured as the first 

frame in which a nuclear envelope reappeared around segregating sister chromatids.  

Complete nuclear envelope formation was scored as the first frame in which 

quantification of GFP-signal intensities along lines tangent to polar and opposing 

faces of daughter nuclei were of similar shape and magnitude.  These measurements 

as well as those appearing in Figure 1B-C and Figure 2B were obtained in ImageJ by 

plotting the profile of signal intensity along regions of interest tangent to polar and 

opposing faces of daughter nuclei. 

The diameter of the nuclear envelope gap was measured as the distance of the 

width of the gap in the lamin B-GFP signal using frames from time-lapse movies in 

which the acentric is passing through the gap.  Pooled data calculated from fixed 
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images required the presence of two nuclei in the same decondensaton state on the 

same Z-plane with an acentric fragment between them that was also on the same Z-

plane.  Presence or absence of a nuclear envelope gap or lamin association with the 

acentric was then scored.  The frequency of micronuclei formation was determined in 

time-lapse movies in which both the segregating chromosomes and nuclear envelope 

were clearly visible throughout the length of the movie. 

Measurements for I-CreI values from Figure 3D-F, Figure 7A-E, Figure 8E-F 

were taken from the same pool of data.  Measurements for I-CreI; Aurora B RNAi 

values from Figure 7A-E, Figure 8E-F were taken from the same pool of data. 

All measurements were made using ImageJ software.  Statistical analysis was 

calculated using SPSS.  Bonferroni one-way ANOVA tests were used to calculate p-

values for Figure 8F.  Independent sample t-tests were used to calculate p-values for 

Figure 2D-E, Figure 8B, C, E and Figure 7A, B, C, E, F.  Final graphic 

representations were created in SPSS (Figure 6F) and Excel (Figures 3C-E, 7A-F, 8B, 

C, E; Figure 2B). For box plots, boxes represent data within the 25th to 75th range. 

Black bar is data median and whiskers represent the 95th percentile range.  Circles in 

box plot are outliers.  

  



 46	

CHAPTER 2: Micronuclei Formation Is Prevented by Aurora B-Mediated Exclusion 

of HP1a from Late-Segregating Chromatin in Drosophila 

 

Abstract 

While it is known that micronuclei pose a serious risk to genomic integrity by 

undergoing chromothripsis, mechanisms preventing micronucleus formation remain 

poorly understood.  Here, we investigate how late-segregating acentric chromosomes 

that would otherwise form micronuclei instead reintegrate into daughter nuclei by 

passing through Aurora B kinase-dependent channels in the nuclear envelope of 

Drosophila melanogaster neuroblasts.  We find that localized concentrations of 

Aurora B preferentially phosphorylate H3(S10) on acentrics and their associated 

DNA tethers.  This phosphorylation event prevents HP1a from associating with 

heterochromatin and results in localized inhibition of nuclear envelope reassembly on 

endonuclease and X-irradiation-induced acentrics, promoting channel formation.  

Finally, we find that HP1a also specifies initiation sites of nuclear envelope 

reassembly on undamaged chromatin.  Taken together, these results demonstrate that 

Aurora B-mediated regulation of HP1a-chromatin interaction plays a key role 

maintaining genome integrity by locally preventing nuclear envelope assembly and 

facilitating incorporation of late-segregating acentrics into daughter nuclei. 
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Introduction 

Eukaryotic cells have evolved sophisticated mechanisms that maintain genome 

integrity.  Checkpoints halt cell cycle progression in response to damaged DNA to 

allow for repair or elimination of compromised cells (Abbas et al. 2013).  For 

example, the G1-S and the G2-M checkpoints prevent entry into S-phase and mitosis 

respectively when DNA is damaged (Elledge 1996).  An additional checkpoint at the 

metaphase-anaphase transition delays progression into anaphase if DNA is damaged 

once a cell commits to mitosis (Mikhailov et al. 2002; Royou et al. 2005).  Despite 

these checkpoints, cells sometimes enter anaphase with damaged DNA.  Unrepaired 

double-stranded DNA breaks are particularly problematic, as they result in 

chromosome fragments lacking either a telomere or centromere (Kaye et al. 2004).  

The latter, called acentrics, are unable to form traditional microtubule-kinetochore 

attachments and are therefore expected to fail to segregate and to be excluded from 

the nascent daughter nuclei, leading to the formation of micronuclei (Kanda and Wahl 

2000; LaFountain et al. 2001; Fenech et al. 2011).  Historically, micronuclei have 

been a biomarker for cancer (Santos et al. 2010; Bonassi et al. 2011), and recent 

studies reveal that micronuclei drive genomic instability either through their loss 

during subsequent cell divisions or through chromothripsis, the dramatic shattering 

and rearrangement of micronuclear DNA that is then incorporated into the genome 

(Crasta et al. 2012; Vázquez-Diez et al. 2016; Zhang et al. 2015; Ly et al. 2017).   

While the formation of micronuclei from lagging chromosomes has been 

widely documented, in some instances, lagging chromosomes avoid micronuclei 
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formation by rejoining daughter nuclei before mitosis is completed.  For example, in 

human colorectal cancer cells, a proportion of lagging whole chromosomes that 

would otherwise form micronuclei instead reincorporate into the daughter nuclei in 

late anaphase (Huang et al. 2012).  In fission yeast, lagging chromatids that remain 

distinct from the main segregating chromosomes during anaphase eventually reunite 

with daughter nuclei in telophase (Pidoux et al. 2000; Sabatinos et al. 2015).  In 

addition, in Drosophila neuroblast and papillar divisions, late-segregating acentric 

fragments induced by endonuclease activity or irradiation successfully rejoin 

daughter nuclei in late telophase (Royou et al. 2010; Bretscher and Fox 2016).  

Therefore, the fate of lagging acentric chromosomes is an important but 

underexplored area of cell biology.  Here, we specifically examine the mechanisms 

that facilitate incorporation of late-segregating acentric chromosomes into daughter 

nuclei, avoiding micronuclei formation. 

In Drosophila, acentric behavior has been studied using transgenic flies 

containing a heat-shock inducible I-CreI endonuclease (Rong et al. 2002; Royou et al. 

2010; Kotadia et al. 2012; Karg et al. 2015; Derive et al. 2015; Bretscher and Fox, 

2016; Karg et al. 2017), which targets rDNA near the base of the X chromosome 

(Rong et al. 2002; Maggert and Golic 2005; Paredes and Maggert 2009; Golic and 

Golic 2011).  I-CreI-mediated double-stranded DNA breaks result in γH2Av foci that 

persist through mitosis and chromosome fragments that do not recruit canonical 

centromere components and thus are considered acentrics (Royou et al. 2010).  Even 

though I-CreI-induced acentrics initially lag on the metaphase plate while undamaged 
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chromosomes segregate, acentrics ultimately undergo delayed but successful 

segregation (Royou et al. 2010).  Acentric segregation is achieved through protein-

coated DNA tethers connecting acentrics to their centric partners and microtubule 

bundles that encompass acentrics, enabling their poleward movement (Karg et al. 

2017).  The histone-based DNA tether is associated with Polo, BubR1, and the 

chromosome passenger proteins Aurora B and INCENP (Royou et al. 2010).   

Because lagging and acentric chromosome segregation is significantly 

delayed, occurring late in anaphase, they often remain distinct from the main mass of 

chromosomes when nuclear envelope reassembly initiates (Fenech 2000; Cimini et al. 

2002; Afonso et al. 2014; Karg et al. 2015).  Despite the presence of the nascent 

nuclear envelope surrounding the main nuclear mass, in Drosophila neuroblasts, 

lagging acentrics are not “locked out” of daughter nuclei and do not form 

micronuclei.  Rather, the late-segregating acentrics bypass the nuclear envelope 

barrier and enter telophase nuclei through channels in the nuclear envelope that are 

formed by highly localized delays in the completion of nuclear envelope reassembly 

(Karg et al. 2015).  Nuclear envelope channel formation is dependent upon the 

Aurora B kinase activity associated with the acentric and DNA tether.   When Aurora 

B activity is reduced, acentrics are unable to enter daughter nuclei and instead form 

lamin-coated micronuclei.  The pool of Aurora B responsible for channel formation 

likely comes from Aurora B persisting on the DNA tethers and acentrics, as channel 

formation is not observed in divisions which lack both acentrics and their associated 

Aurora B-coated tethers (Karg et al. 2015).   
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The formation of nuclear envelope channels suggests localized inhibition of 

important steps in nuclear envelope reassembly.  Key events in nuclear envelope 

reassembly include reformation of nuclear pore complexes, reestablishment of  

connections between chromatin and inner nuclear membrane proteins that are 

disrupted in early mitosis, and fusion of nuclear envelope membrane microdomains 

(Baur et al. 2007; Dultz et al. 2008; Anderson and Hetzer 2008; Lu et al. 2011; 

Olmos et al. 2015; Vietri et al. 2015).  Additionally, the nuclear lamina reassembles 

once nuclear pore complexes and inner nuclear membrane proteins are recruited to 

daughter nuclei (Newport et al. 1990; Chaudhary and Courvalin 1993; Daigle et al. 

2001; Katsani et al. 2008). 

Regulation of nuclear envelope reassembly is achieved through the global 

activity of mitotic kinases, among which Aurora B is a known negative regulator 

(Ramadan et al. 2007; Afonso et al. 2014; Karg et al. 2015).  One mechanism by 

which Aurora B activity may inhibit nuclear envelope reassembly is through 

disrupting chromatin interactions with the heterochromatin component HP1α/HP1a 

(Schellhaus et al. 2015).  In interphase, HP1α/HP1a binds both methylated histone H3 

and nuclear envelope components (Ye and Worman, 1996; Ye et al. 1996; Kourmouli 

et al. 2000; Polioudaki et al. 2001).  As cells enter mitosis, Aurora B-mediated 

phosphorylation of H3(S10) acts as a switch to remove HP1α/HP1a from 

chromosomes (Hirota et al. 2005; Fischle et al. 2005; Dormann et al. 2006).  During 

anaphase, when Aurora B relocalizes to the spindle midzone and H3(S10) phosphate 

groups are removed (Carmena et al. 2012), HP1α/HP1a is reloaded onto segregating 
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chromosomes and subsequently reestablishes connections with nuclear envelope-

associated components (Sugimoto et al. 2001; Poleshko et al. 2013), which is a 

possible early step in reformation of the nuclear envelope (Kourmouli et al. 2000). 

Understanding the mechanisms by which Aurora B kinase activity locally 

alters the events of nuclear envelope reassembly to mediate channel formation is of 

particular interest.  Specifically, understanding the pathway through which Aurora B 

acts to allow incorporation of late-segregating acentrics into daughter nuclei would 

reveal new mechanisms by which Aurora B prevents micronuclei formation and 

maintains genome integrity.  In addition, studying the mechanisms by which nuclear 

envelope channel formation is regulated may provide a system for understanding how 

global nuclear envelope reassembly is regulated in wild-type divisions. Here, we 

explore these issues by generating acentrics using both the I-CreI endonuclease and 

X-irradiation and find that Aurora B excludes HP1a from late-segregating acentrics 

and that HP1a exclusion allows late-segregating acentrics to reincorporate into 

daughter telophase nuclei. 

 
 
Results 

Aurora B kinase preferentially phosphorylates H3(S10) on acentrics and on chromatin 

near sites of channel formation 

Aurora B kinase, a component of the chromosome passenger complex, initially 

localizes to chromosomes in early mitosis and then localizes to the spindle midzone 

during anaphase (Carmena et al. 2012).  Aurora B modifies mitotic chromatin by 



 52	

phosphorylating histone H3 on serine 10 (Hsu et al. 2000), and previous studies 

demonstrated that the midzone-based pool of Aurora B phosphorylates segregating 

chromosomes in a spatial manner so that lagging whole chromosomes have relatively 

high phospho-H3(S10) levels (Fuller et al. 2008).  In Drosophila neuroblasts bearing 

I-CreI-induced acentrics, Aurora B kinase persists on DNA tethers stretching from the 

lagging acentrics to the newly formed daughter nuclei after Aurora B removal from 

the main mass of segregating chromosomes (Royou et al. 2010; Karg et al. 2015).  

This highly localized Aurora B activity mediates nuclear envelope channel formation 

to allow acentric entry into telophase nuclei (Karg et al. 2015).  Thus, we 

hypothesized that the Aurora B localized on the acentric and its associated tether 

might locally prohibit nuclear envelope formation.   

We tested if Aurora B-dependent phosphorylation of H3(S10) persists on 

acentrics, tethers, and channel sites despite this mark having been removed from the 

rest of the main nuclei by fixing I-CreI-expressing mitotic neuroblasts from female 3rd 

instar larvae and staining with an antibody that specifically recognizes phospho-

H3(S10) (Figure 11).  In neuroblasts fixed in metaphase, we observed phospho-

H3(S10) present along the length of all chromosomes, consistent with data from 

(McManus et al. 2006) (Figure 11A, left panel).  In anaphase neuroblasts, we 

observed a weak phospho-H3(S10) signal on segregating intact chromosomes.  In 

contrast, late-segregating acentrics that remained at or had just segregated from the 

metaphase plate (Figure 11A, middle panels, red arrows) exhibited a strong phospho-

H3(S10) signal (Figure 11A, middle panels, cyan arrows).  In neuroblasts fixed in 
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telophase, the stage at which acentrics begin to rejoin daughter nuclei, we observed a 

continued strong phospho-H3(S10) signal on acentrics.  The phospho-H3(S10) signal 

abruptly ended at the point of contact between the acentric and daughter nucleus 

(Figure 11A, right panel).   

To quantify these observations, we measured the fold change of the phospho-

H3(S10)/DNA signal intensity from the main nuclei to the acentrics for each fixed 

neuroblast division imaged (Figure 11B).  For 31 out of the 32 neuroblast divisions 

scored, we observed an increase in phospho-H3(S10)/DNA intensity on acentrics 

compared to main nuclei (mean fold change = 4.13; SD = 2.65; N=32), consistent 

with previous reports (Fuller et al. 2008; de Castro et al. 2016). 

Intriguingly, in a large proportion (47%; N=19) of anaphase- or telophase-

fixed neuroblast divisions in which at least one acentric remained distinct from the 

main nuclei, we clearly detected localized “hotspots” of strong phospho-H3(S10) 

intensity on one of the newly formed nuclei at presumptive sites of acentric entry.  

These hotspots correspond to the location where tethers contact the nuclei and nuclear 

envelope channel formation is generally observed (Figure 11A, yellow arrowheads).  

Taken together, these data demonstrate that acentrics, tethers, and the chromatin at 

sites of channel formation remain preferentially phosphorylated on H3(S10) even 

though phosphorylation of H3(S10) is broadly reduced on the chromatin in newly 

formed telophase nuclei. 
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Figure 11.  H3(S10) is preferentially phosphorylated on acentrics and tethers.  (A) 
Fixed mitotic neuroblasts expressing I-CreI in metaphase (left panel), anaphase 

(middle panels), and telophase (right panel) (red = DNA; blue = phospho-H3(S10)).  
Acentrics are indicated by red arrows.  Increased phosphorylation of H3(S10) is 
indicated by cyan arrows.  phospho-H3(S10) “hotspots” are indicated by yellow 
arrowheads.  (B) Graphical comparison of fold increases in the average phopsho-

H3(S10)/DNA pixel intensity ratio for the areas of the acentrics vs. the areas of the 
main nuclei for I-CreI-expressing neuroblasts.  Each circle represents one 

anaphase/telophase cell.  Values above 1 (green box) indicate increased phospho-
H3(S10)/DNA pixel intensity ratio on acentrics.  Values below 1 (red box) indicate 
increased phospho-H3(S10)/DNA pixel intensity ratio on main nuclei.  Black bar 

indicates mean fold change.  Scale bars are 2 µm. 
 

Figure 11 
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To determine whether Aurora B kinase activity is responsible for the observed 

preferential phosphorylation of H3(S10) on acentrics and tethers, we compared the 

fold changes of phospho-H3(S10)/DNA intensity from the main nuclei to the 

acentrics between neuroblasts with normal and RNAi-reduced levels of Aurora B.  In 

I-CreI-expressing neuroblasts fixed in anaphase and telophase (Figure 12A), we 

observed an average fold change of phospho-H3(S10)/DNA signal from main nuclei 

to acentrics of 6.39 (SD = 6.56; N=23) with 78% of divisions showing a greater than 

2-fold increase of phospho-H3(S10)/DNA intensity on acentrics compared to the 

main nuclei (and 57% of divisions showing a greater than 4-fold increase of phospho-

H3(10)/DNA intensity on acentrics compared to the main nuclei) (Figure 12C).   

In contrast, upon reduction of Aurora B (Figure S1B), we observed a 

decreased average fold change of phospho-H3(S10)/DNA signal on acentrics 

compared to main nuclei of 2.34 (SD = 2.15; N=20) (statistically significant by two-

sided independent t-test p = 0.01) with only 40% of divisions showing a greater than 

2-fold increase of phospho-H3(S10)/DNA intensity on acentrics to main nuclei 

(compare to 78% of acentrics in wild-type conditions, significant by chi-square test 

p=0.0105) (and only 20% of divisions showing a greater than 4-fold increase of 

phospho-H3(S10)/DNA intensity on acentrics compared to the main nuclei) (Figure 

12C).  These findings indicate that Aurora B kinase is responsible for the observed 

persistent phosphorylation of H3(S10) on acentric fragments during anaphase and 

telophase. 
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Figure 12.  Aurora B kinase preferentially phosphorylates H3(S10) on acentrics and 
tethers.  Images of acentrics in (A) wild-type and (B) Aurora B-depleted anaphase 

neuroblasts stained for DNA (red) and phospho-H3(S10) (cyan).  (C) Graph 
comparing fold increase in the average phopsho-H3(S10)/DNA pixel intensity ratio 
for the areas of the acentrics vs. the areas of the main nuclei for I-CreI-expressing 

neuroblasts (left) and I-CreI- and Aurora B RNAi-expressing neuroblast.  Each circle 
represents one anaphase/telophase cell.  Scale bars are 2 µm. 

 
Figure 12 
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Aurora B kinase activity blocks HP1a association on late-segregating acentrics 

Since phosphorylation of H3(S10) by Aurora B kinase is known to prevent H3 

interaction with the heterochromatin component HP1α (the mammalian ortholog of 

HP1a) (Hirota et al. 2005; Fischle et al. 2005), we hypothesized that the observed 

increase in phosphorylation of H3(S10) on acentrics with respect to the main nuclei 

would lead to an Aurora B-dependent preferential exclusion of HP1a on late-

segregating acentrics.  To test this hypothesis, we performed live imaging of dividing 

neuroblasts from female larvae expressing I-CreI, H2Av-RFP, and GFP-HP1a in 

control conditions (Dimethyl sulfoxide (DMSO)-treated neuroblasts) and conditions 

in which Aurora B kinase activity was partially inhibited through introduction of the 

Aurora B-specific small molecule inhibitor Binucleine-2 (Smurnyy et al. 2010) 

(Figure 13). 

In control DMSO-treated mitotic neuroblasts (Figure 13A, see Movie 6), we 

observed the following patterns of HP1a association: in metaphase, little or no HP1a 

was detected on the chromosomes; and in anaphase, a strong HP1a signal was 

detected on the main segregating chromosomes, primarily on the pericentric 

heterochromatin (Figure 13A, green arrowheads).  These results are consistent with 

previous data showing that a large proportion of HP1α/HP1a dissociates from 

chromosomes in early mitosis and re-associates with segregating chromosomes in 

anaphase (Hirota et al. 2005; Fischle et al. 2005; Dormann et al. 2006; Poleshko et al. 

2013).  Interestingly, in contrast to the anaphase recruitment of HP1a on the main 

chromosomes, little or no HP1a was detected on late-segregating acentrics, despite 
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the expected high heterochromatin content of I-CreI induced acentrics (Figure 13A, 

red arrows). In total, we only clearly detected HP1a on acentrics in about 22% of 

neuroblast divisions we imaged (N=37) (Figure 13C).  

In mitotic neuroblasts that were treated with the Aurora B inhibitor 

Binucleine-2 dissolved in DMSO (Figure 13B, see Movie 7), we observed a similar 

pattern of HP1a association on the main intact nuclei: little or no HP1a on metaphase 

chromosomes followed by anaphase recruitment of HP1a on the main segregating 

chromosomes (Figure 2B, green arrowheads).  However, in contrast to DMSO-treated 

neuroblasts, in which HP1a was not detected on late-segregating acentrics, we 

observed strong HP1a association on anaphase acentrics in neuroblasts treated with 

DMSO + Binucleine-2 (Figure 13B, green arrows).  In all the DMSO + Binucleine-2-

treated neuroblasts imaged, clear HP1a association was observed 55% of the time 

(N=31) (Figure 13C) (compare to 22% of the time in control divisions, a statistically 

significant difference determined by a chi-square test p = 0.005).  

To more stringently quantify the levels of HP1a associated with segregating 

acentrics in wild-type and Aurora B inhibited conditions, we measured the pixel 

intensity of GFP-HP1a on acentrics as they began to segregate poleward in both 

DMSO- and DMSO + Binucleine-2-treated neuroblasts imaged using spinning disk 

confocal microscopy (Figure 13D).  This analysis revealed two key differences: 1) in 

Aurora B inhibited neuroblasts (red line), segregating acentrics were associated with 

higher levels of HP1a than acentrics from control neuroblasts (blue line); and 2) HP1a 

association with acentrics from Aurora B inhibited neuroblasts increased over time 
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while HP1a association with acentrics from control neuroblasts slightly decreased.  

Taken together, these results indicate that Aurora B activity preferentially excludes 

HP1a from late-segregating acentrics. 

Additionally, we observed that acentrics from DMSO-treated control 

neuroblasts segregated normally and rejoined daughter nuclei in telophase (Figure 

13A).  We observed micronucleation in 40% of divisions (N=30) (Figure 13E).  

Micronuclei were defined as acentrics that failed to enter daughter nuclei, remaining 

either physically distinct from nuclei or directly adjacent to nuclei but moving 

independently.  However, In DMSO + Binucleine-2-treated neuroblasts, acentrics 

mostly failed to rejoin daughter nuclei, instead forming micronuclei (Figure 13B, red 

arrowheads).  When we inhibited Aurora B activity, we observed micronucleation 

71% of the time (N=28) (Figure 13E) (a statistically significant increase compared to 

the 40% micronucleation observed in control divisions, determined by a chi-square 

test p = 0.02). 

We next determined whether HP1a association with acentrics was correlated 

with micronucleation. We scored individual acentrics for the presence of HP1a and 

whether the acentric formed a micronucleus (Figure 13F).  We grouped the scored 

acentrics into four categories: 1) acentrics that were HP1a-free and formed 

micronuclei (Figure 13F, blue box); 2) acentrics that were HP1a-free and rejoined 

daughter nuclei (Figure 13F, green box); 3) acentrics that were HP1a-coated and 

formed micronuclei (Figure 13F, red box); and 4) acentrics that were HP1a-coated 

and rejoined daughter nuclei (Figure 13F, yellow box).  Overall, we found that 79% 
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of acentrics that were HP1a-free (N=58) rejoined daughter nuclei, while only 16% of 

acentrics that were HP1a-coated were able to rejoin daughter nuclei (N=32) 

(statistical significance determined by chi-square test p=5.34 x 10-9).  The remaining 

84% of acentrics that were HP1a-coated formed micronuclei.  Thus, the absence or 

presence of HP1a is a strong predictor of the fate of the I-CreI-induced acentric, 

either entering the daughter nucleus or forming a micronucleus. 
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Figure 13.  Aurora B kinase activity blocks HP1a association with late-segregating 
acentrics.  (A) Stills from a time-lapse movie of a mitotic neuroblast expressing I-
CreI, H2Av-RFP (red), and GFP-HP1a (green) treated with DMSO (control) (see 

Movie S1). GFP-HP1a detected on the centric heterochromatic region of segregating 
intact chromosomes is indicated by green arrowheads.  Acentrics are indicated by red 
arrows.  (B) Stills from a time-lapse movie of a mitotic neuroblast expressing I-CreI, 

H2Av-RFP (red), and GFP-HP1a (green) treated with the Aurora B inhibitor 
Binucleine-2 dissolved in DMSO (see Movie S2).  GFP-HP1a observed on acentric 

chromosomes is indicated by green arrows.  Micronuclei are indicated by red 
arrowheads.  (C) Comparison of the percentage of divisions in which GFP-HP1a was 

detected on acentrics in DMSO-treated (left) and DMSO + Binucleine-2-treated 
(right) I-CreI-expressing neuroblasts.  Asterisk indicates statistical significance by a 

chi-square test (p = 0.005).  (D) Comparison of GFP-HP1a pixel intensity on 
acentrics from DMSO-treated neuroblasts (blue line) and DMSO + Binucleine-2-
treated neuroblasts (red line).  Error bars represent 2 SE.  (E) Comparison of the 

percentage of divisions in which acentrics formed micronuclei in DMSO-treated (left) 
and DMSO + Binucleine-2-treated (right) I-CreI-expressing neuroblasts.  Asterisk 

indicates statistical significance by a chi-square test (p = 0.02).  (F) Graph depicting a 
strong correlation between the lack of HP1a on the acentric and the ability of the 

acentric to rejoin the daughter nucleus.  Each circle represents one acentric: blue and 
red circles depict single acentrics derived from DMSO and DMSO + Binucleine-2 
treated I-CreI-expressing neuroblasts respectively.   Asterisk indicates statistical 

significance by a chi-square test (p = 5.34 x 10-9).  Time is written as min:sec after 
anaphase onset.  Scale bars are 2 µm. 
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Figure 13 
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Aurora B kinase activity promotes nuclear envelope channel formation through HP1a 

exclusion from acentrics and tethers 

Due to the correlation of HP1a-acentric association and the formation of micronuclei 

as well as the ability of HP1α/HP1a to interact with and recruit the nuclear envelope 

(Ye and Wormann 1996; Kourmouli et al. 2000), we tested whether Aurora B-

mediated HP1a exclusion from acentrics might be a key factor in channel formation 

through localized inhibition of nuclear envelope reassembly.  We performed live 

imaging of mitotic neuroblasts from female larvae expressing I-CreI, H2Av-RFP, and 

the nuclear envelope marker Lamin-GFP and asked whether depletion of HP1a 

rescued the ability to form nuclear envelope channels when Aurora B was inhibited.  

The rationale is that while chromatin containing H3-HP1a is a strong promoter of 

nuclear envelope assembly, chromatin containing H3 by itself is only a neutral 

substrate for assembly, and thus prevention of H3-HP1a formation on the acentric and 

tether, either through Aurora B-mediated phosphorylation of H3(S10) or through 

depletion of HP1a, would be conducive to channel formation (Figure 14).   
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Figure 14.  Schematic illustrating logic of HP1a co-depletion with Aurora B 
inhibition.  (A) In wild-type conditions, highly localized Aurora B on the acentric and 

the tether inhibits recruitment of both HP1a and nuclear envelope components 
specifically to the acentric and tether, leading to the formation of nuclear envelope 

channels and the reincorporation of acentrics into daughter nuclei.  (B) When Aurora 
B is inhibited, HP1a and nuclear envelope components can now be recruited to 

acentric and tether and channels do not form.  Therefore, acentrics are “locked out” as 
micronuclei.  (C) If Aurora B activity mediates nuclear envelope channel formation 
through the preferential exclusion of HP1a from the acentric and the tether, RNAi 

depletion of HP1a should rescue nuclear envelope channel formation in conditions in 
which Aurora B is inhibited, allowing acentrics to reintegrate into daughter nuclei.  

NER = nuclear envelope reassembly. 
 
Figure 14 
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HP1α/HP1a is essential: homozygous null mutants result in embryonic 

lethality in Drosophila (Kellum and Alberts 1995).  Therefore, to address the role of 

HP1a in nuclear envelope channel formation, we made use of the transgenic 

UAS/Gal4 system (for review, see Duffy 2002) to deplete HP1a through RNA 

interference (RNAi).  In our setup, we expressed UAS-HP1a-dsRNA in the larval 

central nervous system.  One of the additional benefits of using the transgenic 

UAS/Gal4 system is the ability to fine-tune the degree of Gal4 activity by altering the 

temperature at which flies are grown (Duffy 2002).  Using this property, we found 

that HP1a depletion was stronger when larvae were grown at 29oC as opposed to a 

more mild depletion when larvae were grown at room temperature (measured as 

22oC) (Figure 15).  When larvae were grown at 29oC, we observed an increase in 

chromosome segregation errors (Figure 15A-A’), a previously observed phenotype in 

HP1a mutants (Kellum and Alberts 1995) and a decrease in survivability (Figure 

15B) compared to larvae grown at 22oC.   
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Figure 15.  Growth temperature influences strength of HP1a depletion.  (A) Stills 
from time-lapse movies of a wild-type neuroblast expressing H2Av-RFP (top panel) 
and a neuroblast expressing H2Av-RFP and HP1a RNAi (bottom panel) from larvae 
grown at 29ºC. In the wild-type neuroblast, chromosomes separate normally.  In the 

HP1a RNAi-expressing neuroblast, there are lagging chromosomes (arrow) and a 
chromosome bridge (arrowhead).  (A’)  Comparison of the percentage of 

chromosome segregation errors in wild-type neuroblasts (dark blue bars) and HP1a 
RNAi-expressing neuroblasts (light blue bars) from larvae grown at 22ºC (left bars) 
and 29ºC (right bars).  14% (N=7) and 13% (N=8) of wild-type neuroblast divisions 

had chromosome segregation errors when larvae were grown at 22ºC and 29ºC 
respectively.  29% (N=7) and 45% (N=20) of HP1a RNAi-expressing neuroblast 

divisions had chromosome segregation errors when larvae were grown at 22ºC and 
29ºC respectively.  (B) Comparison of the mean survival of wild-type larvae (dark 
blue bars) and larvae expressing HP1a RNAi (light blue bars) when grown at 22ºC 

(left bars) and 29ºC (right bars).  Error bars represent standard deviation.  On average, 
wild-type larvae developed into adults 85% (SD = 30%, N=13) and 78% (SD = 21%, 

N=13) when grown at 22ºC and 29ºC respectively.  On average, HP1a RNAi-
expressing larvae developed into adults 73% (SD = 23%, N=13) and 29% (SD= 31%, 

N=13) when grown at 22ºC and 29ºC respectively.  Asterisks indicate statistical 
significance by unpaired one-sided t-tests (HP1a RNAi-expressing larvae at 22ºC and 
29ºC: p=0.0002; and wild-type and HP1a RNAi-expressing larvae at 29ºC: p=5.5 x 

10-5).  Time is written as min:sec after anaphase onset.  Scale bars are 2 µm. 
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Figure 15 

  



 68	

To determine the role of Aurora B-mediated exclusion of HP1a from 

acentrics/tethers in nuclear envelope channel formation, we performed live imaging 

on neuroblasts from female larvae in which levels of Aurora B and HP1a were 

modulated, and compared the rates of nuclear envelope channel formation and 

micronucleation.  All larvae were grown in conditions of mild HP1a depletion (22oC).  

In DMSO-treated neuroblasts (Figure 16A-A’, see Movie 8), we observed that late-

segregating acentrics (red arrows) entered daughter nuclei through channels in the 

nuclear envelope (green arrows) and successfully rejoined the main nuclear mass, 

consistent with previously reported data (Karg et al. 2015).  In DMSO + Binucleine-

2-treated neuroblasts (Figure 16B-B’, see Movie 9), we observed that late-segregating 

acentrics (red arrows) failed to form channels in the daughter nuclear envelope and 

were subsequently locked out of the nuclei to form micronuclei (red arrowheads), as 

previously reported (Karg et al. 2015).  In DMSO-treated HP1a RNAi-expressing 

neuroblasts (Figure 16C-C’, see Movie 10), we observed that late-segregating 

acentrics (red arrows) entered daughter nuclei through channels in the nuclear 

envelope (green arrows), successfully rejoining the intact DNA.  However, in contrast 

to the decreased rates of nuclear envelope channel formation and increased 

micronucleation observed upon inhibition of Aurora B in neuroblasts with wild-type 

HP1a levels, in DMSO + Binucleine-2-treated HP1a RNAi-expressing neuroblasts 

(Figure 16D-D’, see Movie 11), we observed that late-segregating acentrics (red 

arrows) were once again capable of forming nuclear envelope channels (green 

arrows), through which acentrics rejoined daughter telophase nuclei. 
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In total, 67% of DMSO-treated control neuroblasts divisions (N=21) resulted 

in visible nuclear envelope channels, and inhibition of Aurora B resulted in a decrease 

in divisions with visible nuclear envelope channels (36%; N=45) (significance 

determined by a chi-square test p = 0.02) (Figure 16E).  In contrast, RNAi depletion 

of HP1a alone (73%; N=22) or in combination with Aurora B inhibition (63%; N=35) 

showed no difference in the percentage of divisions with visible nuclear envelope 

channels (no statistical significance determined by a chi square test p = 0.44) (Figure 

16E).  In accord with these observations, we also measured an increase in 

micronucleation from DMSO-treated control neuroblasts (26%; N=19) to Aurora B 

inhibited neuroblasts (74%; N=42) (statistical significance determined by a chi-square 

test p = 0.003), while there was no difference in the rate of micronucleation when 

HP1a was depleted alone (33%; N=18) or in combination with Aurora B inhibition 

(34%; N=32) (no statistical significance determined by a chi-square test p = 0.94) 

(Figure 16F).  Taken together, these results indicate that forming an H3-HP1a 

complex along the acentric and tether promotes local nuclear envelope assembly, and 

preventing the formation of this complex, either through Aurora B-dependent H3 

phosphorylation or depletion of HP1a, reduces nuclear envelope assembly and 

facilitates channel formation.  

  



 70	

Figure 16.  Aurora B-mediated HP1a exclusion from acentrics/tethers results in 
nuclear envelope channel formation.  (A-A’) Stills from time-lapse movies of two 
different mitotic neuroblasts expressing I-CreI, H2Av-RFP (red), and Lamin-GFP 
(green) treated with DMSO (see Movie 8).  Acentrics are indicated by red arrows.  

Channels are indicated by green arrows.  (B-B’) Stills from time-lapse movies of two 
different mitotic neuroblasts expressing I-CreI, H2Av-RFP, and Lamin-GFP treated 

with DMSO + Binucleine-2 (see Movie 9).  Micronuclei are indicated by red 
arrowheads.  (C-C’) Stills from time-lapse movies of two different mitotic neuroblasts 
expressing I-CreI, H2Av-RFP, Lamin-GFP, and HP1a RNAi treated with DMSO (see 
Movie 10).  (D-D’) Stills from time-lapse movies of two different mitotic neuroblasts 
expressing I-CreI, H2Av-RFP, Lamin-GFP, and HP1a RNAi treated with DMSO + 

Binucleine-2 (see Movie 11).  (E) Comparison of the percentage of neuroblast 
divisions in which nuclear envelope channels were observed when I-CreI-expressing 

neuroblasts were treated with DMSO or DMSO + Binucleine-2 (asterisk indicates 
statistically significant to I-CreI; DMSO neuroblasts; p = 0.02, determined by a chi-
square test) and when I-CreI- and HP1a RNAi-expressing neuroblasts were treated 

with DMSO or DMSO + Binucleine-2 (asterisk indicates statistically significant to I-
CreI; DMSO + Binucleine-2 neuroblasts; p = 0.01, determined by a chi-square test).  

NS indicates no statistical significance.  (F) Comparison of the percentage of 
neuroblast divisions in which micronuclei were observed when I-CreI-expressing 
neuroblasts were treated with DMSO or DMSO + Binucleine-2 (asterisk indicates 

statically significant to I-CreI; DMSO neuroblasts; p = 0.0005, determined by a chi-
square test) and I-CreI- and HP1a RNAi-expressing neuroblasts were treated with 

DMSO or DMSO + Binucleine-2 (asterisk indicates statistical significance to I-CreI; 
DMSO + Binucleine-2 neuroblasts; p = 0.0006, determined by a chi-square test).  NS 
indicates no statistical significance. Time is written as min:sec after anaphase onset.  

Scale bars are 2 µm.   
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Figure 16 
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HP1a exclusion and Aurora B-mediated channel formation are important to prevent 

micronuclei formation in response to irradiation-induced acentrics 

All of the above experiments relied on I-CreI-induced double-stranded breaks 

specifically in the centric heterochromatin of the X chromosome (Rong et al. 2002; 

Maggert and Golic 2005; Paredes and Maggert 2009; Golic and Golic 2011).  We 

next sought to determine whether similar results would be obtained regarding HP1a-

acentric association and channel formation when the acentrics were generated through 

X-irradiation (Figure 4).  Unlike I-CreI-induced double-stranded breaks, ionizing 

radiation produces single- and double-stranded DNA breaks in both euchromatin and 

heterochromatin to yield late-segregating acentrics that vary both in size and 

chromatin composition (Bajer 1957; Roots et al. 1985; Puerto et al. 2001).  Despite 

these differences between I-CreI and irradiation-induced acentrics, acentrics 

generated by X-irradiation also form BubR1-coated tethers, undergo delayed 

poleward segregation, and enter daughter telophase nuclei through nuclear envelope 

channels (Royou et al. 2010, Karg et al. 2015). 

To test if Aurora B activity preferentially inhibited HP1a recruitment to X-

irradiation-induced acentrics and their tethers, we X-irradiated H2Av-RFP- and GFP-

HP1a-expressing female larvae.  We observed a similar pattern of HP1a-acentric 

dynamics during neuroblast division as we did upon I-CreI expression.  In control 

conditions (DMSO-treated neuroblasts), we observed GFP-HP1a exclusion (yellow 

arrows) from X-irradiation-induced late-segregating chromatin (red arrows) despite 
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its recruitment to main nuclei (green arrowheads) in 8/8 divisions (Figure 17A), with 

2/8 divisions resulting in micronuclei.  Upon Aurora B inhibition (DMSO + 

Binucleine-2-treated neuroblasts), we observed a small increase in GFP-HP1a 

association (3/11 divisions with detectable GFP-HP1a on acentrics (green arrows)) 

and a decreased ability for acentrics to rejoin daughter nuclei (6/9 divisions resulting 

in micronuclei) (red arrowheads) (Figure 17B-B’).   It should be noted that the sample 

of X-irradiated acentric data is much smaller than that of I-CreI-induced acentrics, 

because the ionizing radiation was much less efficient at generating double-strand 

breaks that would result in detectable acentrics in dividing neuroblasts than I-CreI 

expression. 

Intriguingly, we observed one way in which the recruitment of HP1a to X-

irradiation-induced acentrics differed from that of I-CreI-induced acentrics: whereas 

I-CreI-induced acentrics recruited HP1a upon Aurora B inhibition in a majority of 

divisions (55%, N=31) (Figure 17C), X-irradiation-induced acentrics only recruited 

HP1a upon Aurora B inhibition in a minority of divisions (27%, N=11) (Figure 17B’ 

green arrow).  Nevertheless, these X-irradiation-induced HP1a-free acentrics still 

formed micronuclei (4/6 observed micronuclei were HP1a-free) (Figure 17B red 

arrowhead), suggesting that exclusion of HP1a from acentrics is one of several 

pathways through which Aurora B mediates channel formation and acentric entry into 

daughter nuclei. 

We additionally monitored nuclear envelope channel formation in response to 

X-irradiation-induced acentrics by X-irradiating H2Av-RFP- and Lamin-GFP-
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expressing neuroblasts.  In X-irradiated DMSO-treated neuroblasts, we observed X-

irradiation-induced lagging chromatin (red arrow) reintegrate into telophase daughter 

nuclei by passing through channels in the nuclear envelope (green arrow) in 6/9 

divisions (Figure 17C), with only 3/8 divisions resulting in micronuclei, similar to 

previous results (Karg et al. 2015).  Treatment of neuroblasts with DMSO + 

Binucleine-2 to inhibit Aurora B resulted in decreased channel formation (4/9 

divisions with detectable channels) and increased micronucleation (5/9 divisions 

resulting in micronuclei) (red arrowheads) (Figure 17D).  Furthermore, upon 

reduction of HP1a by RNAi and Aurora B inhibition (DMSO + Binucleine-2-treated 

neuroblasts), we once again observed increased channel formation (9/12 divisions 

with detectable channels) (green arrows) and reduced micronucleation (2/12 divisions 

resulting in micronuclei), suggesting that Aurora B-mediated HP1a exclusion from 

lagging chromatin to promote channel formation is not simply limited to I-CreI-

induced acentrics. 
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Figure 17.  X-irradiation-induced acentrics fail to recruit HP1a and re-enter daughter 
nuclei through Aurora B-mediated nuclear envelope channels.  (A) Stills from a time-
lapse movie of an X-irradiated neuroblast expressing H2Av-RFP (red) and GFP-HP1a 

(green) and treated with DMSO.  Acentrics are indicated by red arrows.  HP1a 
association with the main daughter nuclei is indicated by green arrowheads.  Lack of 

HP1a on segregating acentrics is depicted by yellow arrows.  (B-B’) Stills from a 
time-lapse movie of an X-irradiated neuroblast expressing H2Av-RFP (red) and GFP-

HP1a (green) and treated with DMSO + Binucleine-2.  (B) A micronucleus is 
indicated by a red arrowhead. (B’)  A micronucleus is indicated by a red arrowhead 

and coated with GFP-HP1a (indicated by a green arrow).  (C) Stills from a time-lapse 
movie of an X-irradiated neuroblast expressing H2Av-RFP (red) and Lamin-GFP 

(green) and treated with DMSO.  (D) Stills from a time-lapse movie of an X-
irradiated neuroblast expressing H2Av-RFP  (red) and Lamin-GFP (green) and 

treated with DMSO + Binucleine-2.  (E) Stills from a time-lapse movie of an X-
irradiated neuroblast expressing H2Av-RFP (red), Lamin-GFP (Green), and RNAi 
against HP1a and treated with DMSO + Binucleine-2.  Time is written as min:sec 

after anaphase onset.  Scale bars are 2 µm. 



 76	

Figure 17 
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HP1a specifies preference for nuclear envelope reassembly initiation on the leading 

edge of segregating chromosomes of the self-renewing neuroblast daughter nucleus 

Given that the association of HP1a on acentrics influences local nuclear envelope 

reassembly at the site of nuclear envelope channels, we hypothesized that HP1a might 

also play a direct role in global nuclear envelope reassembly in wild-type Drosophila 

neuroblast divisions.  Support for this idea comes from studies demonstrating a 

requirement for HP1α/HP1a to tether heterochromatin to the nuclear envelope 

following mitosis (Poleshko et al. 2013) and in which the expression of a truncated 

form of HP1 disrupts artificial nuclear envelope assembly in mammalian cells 

(Kourmouli et al. 2000), leading to speculation that HP1a may promote nuclear 

envelope reassembly in vivo (Schooley et al. 2012). 

To test this hypothesis, we performed live analyses of neuroblast divisions 

from female larvae and found GFP-HP1a was always recruited to segregating 

chromosomes before initiation of nuclear envelope reassembly in the daughter 

neuroblast (Figure 18A-A’).  This is consistent with previous reports of HP1α/HP1a 

behavior in mitosis (Sugimoto et al. 2001; Poleshko et al. 2013).  On average, we 

observed that GFP-HP1a was recruited to segregating chromosomes 150 (SD = 50 

sec; N=16) after anaphase onset and 210 (SD = 100 sec; N=15) before nuclear 

envelope reassembly (Figure 18B).  Furthermore, we observed that GFP-HP1a was 

recruited to the leading edge of segregating chromosomes (Figure 18C).  In 

Drosophila neuroblast divisions, which give rise to a self-renewing neuroblast 

daughter and a ganglion mother cell daughter (GMC), nuclear envelope reassembly 
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initiates on the pole-proximal side of chromosomes segregating to the neuroblast 

daughter (Katsani et al. 2008; Karg et al. 2015).  Therefore, HP1a is located at the 

proper place and time to mediate nuclear envelope reassembly in neuroblast 

daughters. 
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Figure 18.  HP1a is recruited to the leading edge of segregating chromosomes prior 
to nuclear envelope reassembly.  (A) Stills from a time-lapse movie of a wild-type 

neuroblast expressing H2Av-RFP (red) and GFP-HP1a (green).  Also shown is DIC 
(grey).  GFP-HP1a recruited to segregating chromatin is indicated by green arrows.  

Nuclear envelope reformation is indicated by a yellow arrow.  (A’) Graph of the time 
(sec) from anaphase onset to HP1a recruitment (left circles), anaphase onset to 
nuclear envelope reassembly (middle circles), and HP1a recruitment to nuclear 
envelope reassembly (right circles (B) Graphical representation of the average 

timeline from anaphase to HP1a recruitment to nuclear envelope reassembly.  (C) 
Still image of a wild-type neuroblast expressing H2Av-RFP (red) and GFP-HP1a 
(green) (left panel) and a graph of the pixel intensity of both H2Av-RFP (red) and 
GFP-HP1a (green) of the yellow dashed line.  Peaks of GFP-HP1a intensity are on 
the outside shoulders of the peaks of H2Av-RFP intensity, showing GFP-HP1a is 

recruited to the leading edge of segregating chromosomes.  Time is written as min:sec 
after anaphase onset.  Scale bars are 2 µm. 

 
Figure 18 
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To test the role of HP1a in global nuclear envelope reassembly, we performed 

live imaging of mitotic neuroblasts from female larvae expressing H2Av-RFP and 

Lamin-GFP and monitored nuclear envelope reassembly of neuroblast daughters in 

wild-type conditions or conditions in which HP1a was strongly depleted through 

RNAi (Figure 19).  As previously reported, in wild-type divisions, we observed a 

dramatic asymmetry in nuclear envelope reassembly initiation on the self-renewing 

neuroblast daughter cell (Katsani et al. 2008).  Nuclear envelope reassembly first 

initiated on the pole-proximal edge of chromosomes segregating to the neuroblast 

daughter (Figure 19A, green arrows, see Movie 12) before completion on the 

midzone-proximal face of the segregated chromosomes.   As this asymmetry was not 

as distinct in the differentiating GMC, we focused our studies on the self-renewing 

neuroblast daughter. 

In wild-type neuroblast daughters, we observed nuclear envelope reassembly 

initiate on the pole-proximal edge of chromosomes 70% of the time, on the midzone-

proximal edge of chromosomes 0% of the time, and around all sides of the 

chromosomes at once 30% of the time (N=37) (Figure 19C).  In contrast, in HP1a-

depleted neuroblast daughters (Figure 19B, see Movie 13), we observed nuclear 

envelope reassembly initiate on the pole-proximal edge of chromosomes only 47.5% 

of the time (statistical significance determined by a chi-square test p = 0.04), on the 

midzone-proximal edge of chromosomes 7.5% of the time, and around all sides of the 

chromosome at once (Figure 19B, green arrows) 45% of the time (N=40) (Figure 

19C). 
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In spite of this difference in nuclear envelope reassembly initiation preference, 

we observed no change in the timing of nuclear envelope reassembly initiation 

(Figure 19D) (no statistical significance determined by an independent two-sided t-

test p = 0.312) or the amount of nuclear envelope deformities (Figure 19E) (no 

statistical significance determined by a chi-square test p = 0.45) upon HP1a depletion.  

Taken together, these results suggest that HP1a specifies the pole-proximal location 

of nuclear envelope reassembly initiation in self-renewing neuroblast daughter cells. 
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Figure 19.  Preferential initiation of nuclear envelope reassembly at the poleward 
face of segregating chromosomes requires HP1a.  (A) Stills from a time-lapse movie 

of a mitotic neuroblast expressing H2Av-RFP (red) and Lamin-GFP (green) (see 
Movie 12).  Nuclear envelope reassembly initiation is indicated by the green arrows.  

(B) Stills from a time-lapse movie of a mitotic neuroblast expressing H2Av-RFP 
(red), Lamin-GFP (green), and RNAi against HP1a (see Movie 13).  (C) Graph of 

location frequency for nuclear envelope reassembly initiation in wild-type (left) and 
HP1a RNAi (right) daughter neuroblasts.  Asterisk indicates statistical significance by 

a chi-square test(p = 0.04).  (D) Graph of the time interval between anaphase onset 
and initiation of nuclear envelope reassembly in wild-type and HP1a-depleted 

neuroblast divisions.  Each circle represents one division.  (E) Graph of the 
percentage of divisions resulting in nuclear envelope deformities in wild-type and 

HP1a-depleted divisions.  Time is written as min:sec after anaphase onset.  Scale bars 
are 2 µm. 

 
Figure 19 
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Discussion 

Despite the inability of acentric chromosomes to form kinetochore-microtubule 

attachments, studies show that while some acentrics fail to segregate properly 

(Fenech et al. 2011), others are capable of efficient poleward segregation (Bajer, 

1957; Malkova et al. 1996; Ahmad and Golic 1998; Galgoczy and Toczyski 2001; 

Titen and Golic 2008; Royou et al. 2010; Bretscher and Fox 2016; Karg et al. 2017). 

Failure of acentrics to reincorporate into daughter telophase nuclei leads to the 

formation of micronuclei, which result in aneuploidy or DNA damage and are a 

hallmark of cancer (Santos et al. 2010; Bonassi et al. 2011; Crasta et al. 2012; Zhang 

et al. 2015; Vázquez-Diez et al. 2016; Ly et al. 2017).  In Drosophila, I-CreI-induced 

acentrics avoid this fate by passing through Aurora B-mediated channels in the 

nuclear envelope (Karg et al. 2015).  

Here, we observed that late-segregating acentrics in anaphase and telophase 

neuroblast divisions are marked with strong phospho-H3(S10) signal despite the 

removal of the majority of this mark from the main nuclei (Figure 11).  Consistent 

with previous reports (Fuller et al. 2008), the strength of this signal is dependent upon 

Aurora B (Figure 12).  Intriguingly, in addition to the high phospho-H3(S10) signal 

on the acentrics, we observed high levels of phospho-H3(S10) on areas of the main 

nuclei at sites where tethers normally contact the main nuclei.  During late anaphase 

when the normal chromosomes begin to reassemble a nuclear envelope, acentrics and 

the sites of acentric entry into daughter nuclei remain nuclear envelope-free (Karg et 

al. 2015), suggesting an inverse correlation between nuclear envelope reassembly and 
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phospho-H3(S10) modification.  This finding is consistent with studies suggesting 

that, in addition to the phosphorylation state of nuclear envelope components (Steen 

et al. 2000; Onischenko et al. 2005), nuclear envelope reassembly is also regulated by 

various chromatin remodeling events, including the removal of phospho-H3(S10) 

(Vagnarelli et al. 2011; Schooley et al. 2015). 

Our studies also demonstrate that HP1a is excluded from late-segregating I-

CreI-induced acentrics despite HP1a recruitment to the main nuclei (Figure 13).  We 

note the chromatin makeup of I-CreI-induced acentrics should be sufficient to recruit 

HP1a, as I-CreI creates double-stranded breaks in the pericentric region of the X 

chromosome, resulting in an acentric fragment which contains a large portion of 

heterochromatin (Rong et al. 2002; Maggert and Golic, 2005).  Presumably, the 

difference in recruitment of HP1a to acentrics and the main nuclei is due to the 

difference in the phosphorylation state of H3(S10) on acentrics and the main nuclei, 

as Aurora B-mediated phospho-H3(S10) is prohibitive to HP1α/HP1a binding (Hirota 

et al. 2005; Fischle et al. 2005).  In support of this view, inhibition of Aurora B 

kinase activity resulted in increased HP1a association with acentrics (Figure 13).  

However, no increase in HP1a at tether contact sites on the main nuclei was detected 

upon Aurora B inhibition, possibly due to a limited ability to consistently observe 

tethers at our imaging resolution.   

Furthermore, we found that acentrics possessing high levels of HP1a are 

largely unable to reintegrate into daughter nuclei and instead form micronuclei 

(Figure 13).  Under the same Aurora B inhibition conditions in which we detected 
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HP1a association with acentrics and micronucleation, we observed increased nuclear 

envelope reassembly around acentrics and decreased nuclear envelope channel 

formation on the main nuclei (Figures 13, 16).  We hypothesized that HP1a presence 

on I-CreI-induced acentrics was prohibitive to acentric entry into daughter nuclei, 

possibly due to the inability to form a nuclear envelope channel.  This hypothesis 

predicts that 1) in wild-type conditions, Aurora B activity would inhibit formation of 

an H3-HP1a complex on the acentric and tether and lead to slow nuclear envelope 

assembly at these sites and the formation of a channel; 2) when Aurora B is inhibited, 

H3 on the acentric and tether would bind to HP1a which would stimulate nuclear 

envelope assembly at these sites and prevent channel formation; and 3) when Aurora 

B is inhibited and HP1a is depleted, no H3-HP1a complex would form on the acentric 

and tether, leading to slow nuclear envelope assembly at these sites and the formation 

of a channel, reminiscent of wild-type conditions (Figure 14).  Our data show upon 

co-depletion of HP1a with Aurora B inhibition, nuclear envelope reassembly on 

acentrics is reduced and channel formation occurs at frequencies similar to those 

detected in wild-type Aurora B and HP1a conditions (Figure 16).  Essentially, 

depletion of HP1a masks the phenotype of Aurora B inhibition, evocative of a classic 

epistatic relationship in which Aurora B mediates nuclear envelope channel formation 

through preferentially excluding HP1a from acentrics and their tethers.   

Therefore, we propose a model for nuclear envelope channel formation in 

which highly localized concentrations of Aurora B kinase phosphorylate H3(S10) 

specifically on acentrics, their associated tethers, and at sites where the tethers contact 
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the main nuclei.  This prevents local heterochromatic recruitment of HP1a and 

subsequent recruitment of nuclear envelope lamina on the acentrics and at the sites 

where acentrics rejoin daughter nuclei, leading to the formation of channels through 

which acentrics pass to maintain genome integrity (Figure 20).  
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Figure 20.  Model for Aurora B-mediated nuclear envelope channel formation.  (A) 
During metaphase, Aurora B (blue) phosphorylates H3(S10) (yellow) on 

chromosomes (red), acentrics are pushed to the edge of the metaphase plate, and the 
nuclear envelope (lime green) is partially disassembled.  (B) During anaphase, Aurora 

B, a component of the chromosome passenger complex, is removed from the main 
chromosomes and relocalizes to the spindle midzone.  Phospho-H3(S10) marks on the 

main nuclei are removed, and HP1 (dark green) is recruited to the main nuclei.  
However, persistent Aurora B on the acentric and tether continues to phosphorylate 
H3(S10) and inhibits HP1a recruitment to the acentric/tether.  (C) During telophase, 
nuclear envelope components reform connections with chromatin through HP1a and 

nuclear envelope reassembly proceeds.  However, the exclusion of HP1a from Aurora 
B-coated tether/acentrics prevents accumulation of nuclear envelope components on 
the tether/acentrics and at the site where the tether contacts the main nucleus, leading 
to local delays in nuclear envelope reassembly and the formation of nuclear envelope 
channels.  (D) Successful incorporation of late-segregating acentrics into telophase 

nuclei through nuclear envelope channels results in euploid daughter cells. 
 
Figure 20 
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Interestingly, channel formation mediated by HP1a exclusion is similar to the 

mechanism of human polyomavirus egress from its host nucleus.  Viral angoprotein 

binds to HP1α/HP1a and disrupts its binding with the inner nuclear membrane protein 

LBR, causing sections of weakened nuclear envelope through which virions leave the 

nucleus (Okada et al. 2005).  Thus regulation of chromatin-HP1a-nuclear envelope 

interactions may represent a conserved method for bypassing the barrier of the 

nuclear envelope.  

By generating acentrics through X-irradiation, we found that the general 

pattern of HP1a recruitment driving nuclear envelope reassembly on acentrics was 

not dependent upon the system used to generate acentrics or due to the exact physical 

nature of an I-CreI-induced acentric (Figure 17).  However, we note that while 

micronuclei derived from I-CreI-induced acentrics were generally HP1a-coated, a 

higher proportion of micronuclei derived from irradiation-induced acentrics were 

HP1a-free.  It is tempting to speculate that these HP1a-free micronuclei were derived 

from largely euchromatic acentrics that simply lack a sufficient amount of 

heterochromatin to recruit HP1a.  This observation suggests that Aurora B may 

mediate acentric entry into daughter nuclei through multiple pathways of which 

preferential exclusion of HP1a is one.  It is possible these HP1a-free acentrics remain 

capable of recruiting a nuclear envelope through an HP1a-independent pathway, 

perhaps involving an interaction between LEM domain-containing inner nuclear 

membrane proteins and the DNA-crosslinking factor barrier-to-autointegration factor 

(Haraguchi et al. 2001; Samwer et al. 2017).  
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To support our finding that HP1a promotes nuclear envelope assembly in vivo, 

we examined its role in assembling the nuclear envelope on normal intact chromatin.  

We observed HP1a localize to the leading edge of segregating chromosomes before 

nuclear envelope reassembly (Figure 18).  As previously reported, we observed 

nuclear envelope reassembly initiate on the leading edge of chromosomes segregating 

to daughter neuroblasts, proceeding to wrap around and complete reassembly on the 

midzone-proximal face of the nascent nucleus (Robbins and Gonatas 1964; Katsani et 

al. 2008; Karg et al. 2015).   However, reducing HP1a levels disrupts the preferential 

nuclear envelope assembly on the pole-proximal face of the segregating 

chromosomes (Control = 70% pole-proximal initiation; HP1a depletion = 47.5% 

pole-proximal initiation) (Figure 19).  This result is complementary to a growing 

body of evidence demonstrating HP1 proteins may play key roles in nuclear envelope 

reassembly.  For example, in mammalian cells, HP1α/HP1a recruits PRR14 to 

segregating chromosomes where it tethers heterochromatin to the nuclear envelope 

(Poleshko et al. 2013), and in vitro experimentation shows HP1β/HP1b to be 

important for recruiting nuclear envelope components to interphase-like chromatin 

(Kourmouli et al. 2000).  In addition, depletion of the PP1γ subunit Repo-Man leads 

to retained phospho-H3(S10) marks on chromatin, loss of HP1α/HP1a recruitment to 

mitotic chromosomes, and defects in nuclear envelope reassembly (Vagnarelli et al. 

2011).  One mechanism by which HP1a might bias nuclear envelope reassembly to 

initiate on the leading edge of segregating chromosomes is by enhancing the natural 

ability of nuclear envelope components to bind to chromatin, possibly through its 
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interaction with the inner nuclear membrane protein, LBR (Ulbert et al. 2006; Ye and 

Wormann 1996).   

Despite the clear preference for initiation of nuclear envelope reassembly on 

the leading edge of chromosomes segregating to daughter neuroblasts, we observed 

no such preference on the chromosomes segregating to the daughter GMC (Figure 

19).  It is possible this difference is due to the relatively small size of the GMC 

daughter, or that in Drosophila neuroblast divisions, the endoplasmic reticulum, from 

which the nuclear envelope extends during mitotic exit, is asymmetrically localized to 

the spindle pole of the neuroblast daughter (Smyth et al. 2015).   

Our data also address a key question regarding nuclear envelope channel 

formation: how do late-segregating acentrics near the spindle midzone act at a 

distance to influence nuclear envelope reassembly dynamics on main nuclei near the 

poles?  In our system, we believe there are two pools of Aurora B: a constitutive 

midzone-based pool (Fuller et al. 2008; Afonso et al. 2014), and a tether-based pool, 

which stretches from the acentric to the main nucleus (Royou et al. 2010).  Given that 

nuclear envelope channels are only observed on the main nuclei when acentrics and 

the tether-based pool of Aurora B are present, we proposed that the pool of Aurora B 

responsible for channel formation is the tether-based Aurora B (Karg et al. 2015).  

Our observation of phospho-H3(S10) “hotspots” on the main nuclei at sites closest to 

acentrics is consistent with the hypothesis that tether-based Aurora B activity controls 

channel formation (Figure 13A, yellow arrowheads).  Since the midzone pool of 

Aurora B is confined away from the main telophase nuclei, it is probable that these 
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hotspots are due to the activity of Aurora B along tethers, which stretch from 

acentrics and contact main nuclei at sites closest to the acentrics.  These phospho-

H3(S10) hotspots could then locally prevent HP1a association and nuclear envelope 

reassembly.  Thus, while nuclear envelope reassembly can still proceed around the 

rest of the nucleus, it is inhibited at the site of these hotspots, resulting in channels.   

In summary, our results reveal a novel mechanism by which genome integrity 

is maintained.  Late-segregating acentric fragments pose a significant hazard, as they 

are at high risk of forming micronuclei that induce dramatic rearrangements in the 

genome (Fenech et al. 2000; Zhang et al. 2015; Ly et al. 2017).  Consequently it is 

likely that cells have evolved mechanisms to prevent the formation of micronuclei.  

Here, we provide evidence for one such mechanism in which Aurora B-mediated 

inhibition of HP1a-chromatin association during anaphase/telophase prevents the 

formation of micronuclei from late-segregating acentric fragments. 

 
 

Material and Methods 

Fly stocks 

All stocks were raised on standard Drosophila food (Sullivan et al. 2000).  

Chromosome dynamics were monitored using H2Av-RFP (stock #23651, 

Bloomington Drosophila Stock Center (BDSC), Bloomington, IN).  The following 

Gal4 drivers were used: elav-Gal4 (Lin and Goodman 1994), Wor-Gal4 (Cabernard 

and Doe 2009), and Actin-Gal4 (#25708, BDSC; (Ito et al. 1997)).  To monitor 

nuclear envelope dynamics, we expressed UAS-lamin-GFP (#7376, BDSC) driven by 
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elav-Gal4.  HP1a localization was assessed through use of GFP-HP1a (#30561, 

BDSC). UAS-ial-shRNA (#28691, BDSC) driven by Wor-Gal4 was used to deplete 

Aurora B.  UAS-Su(Var)205-shRNA (#33400) driven by either Actin-Gal4 or elav-

Gal4, depending on the experiment, was used to deplete HP1a. 

 

Fixed neuroblast cytology 

Crawling female 3rd instar larvae bearing either hs-I-CreI and Wor-Gal4 or hs-

I-CreI, Wor-Gal4, and UAS-ial-shRNA were heat shocked for 1 hour at 37oC.  

Following 1 hour recovery at room temperature, brains were dissected in 0.7% NaCl 

then fixed in 3.7% formaldehyde for 30 min.  Brains were washed in 45% acetic acid 

in PBS for 3 min then placed between siliconized coverslips and glass slides in 60% 

acetic acid in PBS.  Brains were squashed by tracing over coverslips with watercolor 

paper.  Slides were frozen in liquid nitrogen for 10 min and then washed in 20% 

ethanol for 10 min at -20oC.  After washing with PBST (10 min) and PBS (2 X 5 

min), slides were blocked in a 5% dried milk solution in PBST for 1 hour.  Samples 

were incubated with rabbit anti-histone phospho-H3(S10) antibody (abcam #ab5176) 

at a 1:500 dilution overnight at 4oC.  Samples were subsequently washed in PBST 

before incubation with goat anti-rabbit-alexa488 (ThermoFisher #A-11008) at a 1:300 

dilution for 1 hour at room temperature.  Slides were washed in PBST, counterstained 

with DAPI in vectashield, and imaged the following day.  Procedure adapted from 

(Bonaccorsi et al. 2003; Cenci et al. 2003). 
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Quantitative immunofluorescence imaging 

Fixed slides were imaged on a Leica DMI6000B wide-field inverted 

microscope equipped with a Hamamatsu EM CCD camera (ORCA C9100-02) with a 

binning of 1 and a 100x Plan-Apochromat objective with NA 1.4.  For experiments 

determining the ratio of phospho-H3(S10)/DNA on the acentrics vs. on the main 

nuclei, phospho-H3(S10)/DNA pixel intensity was determined in ImageJ (National 

Institutes of Health, Bethesda, MD) by drawing individual region of interests (ROIs) 

around both main nuclei and the acentrics (as determined from DAPI staining) from 

sum projections of all z-slices in which the nuclei and acentrics were in focus.  

Corrected total fluorescence (CTF) was calculated for each ROI (acentrics and nuclei) 

for both DAPI and phospho-H3(S10) channels by subtracting the product of the ROI 

area and the mean pixel intensity of an arbitrarily-selected background region from 

the measured integrated density of the ROI.  For each division set, CTFs were 

averaged for the two main nuclei and for the acentrics when more than one acentric 

ROI was drawn.  Phospho-H3(S10)/DAPI ratios were calculated by dividing the CTF 

of phospho-H3(S10) by the CTF of DAPI for the averaged acentrics and the averaged 

nuclei.  To determine the fold change for acentrics vs. main nuclei phospho-

H3(S10)/DAPI ratios, the phospho-H3(S10)/DAPI ratio of acentrics was divided by 

that of the main nuclei for each imaged division. 

To compare phospho-H3(S10) levels on acentrics in I-CreI vs. I-CreI; Aurora 

B RNAi neuroblasts, control and Aurora B-depleted brains were imaged at the same 
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laser settings.  Quantification of phospho-H3(S10)/DAPI ratios were calculated as 

detailed above. 

 

Live neuroblast cytology 

For experiments involving acentrics, crawling female 3rd instar larvae bearing 

hs-I-CreI, elav-Gal4, H2Av-RFP, and a combination of GFP-HP1, UAS-Lamin-GFP, 

and/or UAS-Su(Var)205-dsRNA were heat shocked for 1 hour at 37oC.  Larvae were 

allowed to recover for at least 1 hour following heat shock.  For experiments with no 

acentrics, female 3rd instar larvae bearing elav-Gal4, H2Av-RFP, and a combination 

of GFP-HP1, UAS-Lamin-GFP, and/or UAS-Su(Var)205-dsRNA were used.  Brains 

were dissected in PBS and gently squashed between a slide and coverslip (Buffin et 

al. 2005).  Neuroblasts along the periphery of the squashed brain provided the best 

imaging samples.  Slides were imaged for up to 1 hour. 

Data from time-lapse imaging experiments were acquired with both a Leica 

DMI6000B wide-field inverted microscope equipped with a Hamamatsu EM CCD 

camera (ORCA C9100-02) with a binning of 1 and a 100x Plan-Apochromat 

objective with NA 1.4 and an inverted Nikon Eclipse TE2000-E spinning disk (CSLI-

X1) confocal microscope equipped with a Hamamatsu EM-CCD camera (ImageE 

MX2) with a 100X 1.4 NA oil immersion objective.  Successive time points were 

filmed at 20 sec for the wide-field microscope and 8 sec for the spinning disk 

microscope.  Spinning disk images were acquired with MicroManager 1.4 software.   
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Small molecule inhibition of Aurora B kinase 

For experiments involving the depletion of Aurora B kinase, following 

dissection, brains were washed in a 25.5µM solution containing Binucleine-2 (Sigma 

B1186) for 5 min, after which brains were squashed in PBS between a slide and 

coverslip.  For control experiments, dissected brains were washed in 0.15% DMSO 

(final concentration of DMSO in solution used to dissolve Binucleine-2) for 5 min 

and then squashed in PBS between a slide and coverslip.  Neuroblasts entering 

anaphase were selected for imaging, and slides were imaged for only one division. 

 

Quantitative GFP-HP1a analysis 

 Live neuroblasts expressing H2Av-RFP, GFP-HP1a, and I-CreI were imaged 

with a Nikon Eclipse TE2000-E spinning disk (CSLI-X1) confocal microscope 

equipped with a Hamamatsu EM-CCD camera (ImageE MX2) with a 100X 1.4 NA 

oil immersion objective.  Neuroblasts treated with DMSO and DMSO + Binucleine-2 

were imaged with the same laser settings.  GFP-HP1a pixel intensity was calculated 

by creating sum projections of movies and then measuring the background-subtracted 

integrated density of GFP signal on the acentric region.  Measurements began at the 

initial point of acentric segregation and continued for 160 sec.   

 

Temperature-regulated expression of RNAi and lethality studies 

Flies bearing either Actin-Gal4 or Actin-Gal4 and UAS-Su(Var)205-dsRNA 

were grown at room temperature (measured as 22oC) until they reached 3rd instar 
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stage.  At this point, larvae were collected into vials and either allowed to continue to 

grow at room temperature or were shifted to grow at 29oC.  Survivability was 

determined by counting the number of adult flies that eclosed in each vial. 

 

Irradiation studies 

Crawling 3rd instar female larvae were placed in an empty plastic vial and 

irradiated with 605 rads using a Faxitron CP160 X-ray machine.  Larvae were 

allowed to recover for at least 1 hour before brains were dissected and mitotic 

neuroblasts were imaged as described above. 

 

Statistical analyses 

Statistical analyses were determined by chi-square tests (Figure 12C, Figure 

13C, E-F; Figure 16E-F, Figure 19C and E) and t-tests (Figure 12C, 19D and Figure 

15B) performed in R (R Core Team (2014)).  For analyses involving chi-square tests, 

we assumed a null hypothesis that there should be no difference in values between 

control and experimental conditions.  Therefore, in these cases, the values measured 

for the control conditions served as the theoretical predictions for what we should 

observe in the experimental conditions.  We then compared the actual values 

measured in the experimental conditions to these theoretical predictions and 

determined the significance of difference with a chi-square test. 
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Figure preparation 

Figures were assembled using ImageJ software and Adobe Illustrator (Adobe, 

San Jose, CA).  Graphs were assembled in Microsoft Excel (Microsoft, Redmond, 

WA).  Selected stills from experiments involving live imaging were adjusted for 

brightness and contrast using ImageJ to improve clarity. 
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CHAPTER 3: ESCRT-III-mediated membrane fusion drives late-segregating 

chromosome fragments through nuclear envelope channels 

 

Abstract 

Mitotic cells must form a single nucleus during telophase or else exclude part of their 

genome into damage-prone micronuclei.  While much research has detailed how 

micronuclei arise from cells entering anaphase with lagging broken or misoriented 

chromosomes, cellular mechanisms that allow late-segregating chromosomes to 

rejoin daughter nuclei remain relatively unexplored.  Here, we find that late-

segregating acentric chromosome fragments that rejoin telophase daughter nuclei are 

associated with nuclear membrane but devoid of lamin and nuclear pore complexes.  

Using a combination of confocal and lattice light sheet microscopy, we show that 

acentrics pass through membrane-, lamin-, and nuclear pore-based channels in the 

nuclear envelope that extend and retract as acentrics enter daughter nuclei.  

Furthermore, membrane on acentrics fuses to membrane on daughter nuclei.  Fusion 

is mediated by the conserved membrane fusion gene comatose/NSF and the ESCRT-

III component shrub/CHMP4B.  We show that fusion between the membrane on 

acentrics and the membrane on daughter nuclei facilitates reintegration of the 

acentrics into the daughter nuclei.  Taken together, these results suggest a previously 

unsuspected role for membrane fusion events in the formation of a single nucleus 

during mitotic exit and the maintenance of genomic integrity.  
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Introduction 

The goal of mitosis is to produce two genetically identical daughter cells.  Failure to 

undergo accurate mitosis results in aneuploidy and the loss of key genetic 

information.  To guarantee accurate production of daughters, cells have evolved 

mechanisms ensuring proper genome replication and segregation.  However, simply 

segregating sister chromatids equally to each daughter cell is insufficient to maintain 

euploidy.  Instead, the entire segregating chromosome complement must also be 

gathered into a single daughter nucleus (Zhang et al., 2015; Ly et al., 2017; Samwer 

et al., 2017).  Failure to form a single nucleus results in the formation one or more 

micronuclei, unstable structures that can undergo chromothripsis, a type of 

catastrophic DNA damage in which the micronuclear DNA is shattered, rearranged, 

and then reincorporated into the genome (Stephens et al., 2011; Crasta et al., 2012; 

Zhang et al., 2015; Ly et al., 2017).  Chromothripsis results in aneuploidy (Zhang et 

al., 2015).  Multiple studies link chromothripsis to the development and progression 

of cancer, and the presence of micronuclei has long been considered a hallmark of 

cancer cells (Stephens et al., 2011; Santos et al., 2010; Bonassi et al., 2011). 

Lagging of whole or fragmented chromosomes during anaphase is perhaps the 

most common origin of micronuclei (Fenech et al., 2011).  Lagging chromosomes can 

be “locked out” of daughter nuclei if they remain distinct from the main nuclei at the 

time when the nuclear envelope reassembles around the main chromosome 

complement.  During nuclear envelope reassembly, nuclear membrane is recruited to 

chromatin, the nuclear lamina is reestablished, and nuclear pore complexes reform.  
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Different domains of nuclear membrane are then sealed together via the action of 

conserved membrane fusion proteins such as N-ethylmaleimide sensitive factor (NSF) 

and the endosomal sorting complexes required for transport (ESCRT)-III complex 

(Baur et al., 2007; Vietri et al., 2015; Olmos et al., 2015).  The reassembled nuclear 

envelope would be expected to act as a physical barrier that prevents lagging 

chromosome entry into the daughter nucleus and therefore result in the formation of a 

micronucleus. 

While lagging chromosomes certainly pose a significant risk to the genetic 

integrity of a dividing cell, in actuality, not every lagging chromosome is destined to 

form a micronucleus.  In some instances, lagging chromosomes enter telophase 

daughter nuclei, preserving euploidy.  For example, lagging whole chromosomes can 

rejoin daughter nuclei in human colorectal cancer cells (Huang et al., 2012) and 

fission yeast (Pidoux et al., 2000; Sabatinos et al., 2015).  In addition, late-

segregating acentric fragments sometimes rejoin daughter nuclei in cultured 

mammalian cells (Liang et al., 1993) and several insect species, including 

Chortophaga (Carlson, 1938) and Drosophila (Royou et al., 2010; Bretscher and Fox, 

2016).   

These examples suggest the presence of mechanisms that alter normal mitotic 

events to allow the inclusion of late-segregating chromatids into daughter nuclei, 

maintaining genome integrity.  While many studies have documented how a 

micronucleus could contribute to genomic instability (Terradas et al., 2009; Crasta et 

al., 2012; Terradas et al., 2012; Hatch et al., 2013; Zhang et al., 2015; Ly et al., 2017; 
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de Castro et al., 2017; Maass et al., 2018; Liu et al., 2018), the mechanisms that 

instead facilitate incorporation of lagging chromosomes into daughter nuclei to 

maintain euploidy remain underexplored.  Here, we address this issue by studying the 

reintegration of late-segregating acentric chromosome fragments in Drosophila 

neuroblast divisions, which rejoin daughter nuclei with high fidelity (Royou et al., 

2010).  

Acentric behavior in Drosophila can be studied with transgenic flies 

containing a heat-shock inducible I-CreI endonuclease (Rong et al., 2002).  I-CreI 

generates double-stranded DNA breaks in the rDNA repeats at the base of the X 

chromosome and results in fragments with persistent γH2Av foci that are incapable of 

recruiting key kinetochore components and are therefore truly acentric (Royou et al., 

2010).  Despite lacking a centromere, acentrics undergo a delayed but successful 

poleward segregation, mediated by a protein-coated DNA tether that connects the 

acentrics to the main chromosome mass (Royou et al., 2010) and microtubules that 

bundle around the segregating acentric (Karg et al., 2017).  Because acentric 

segregation is severely delayed, by the time acentrics begin their initial segregation 

poleward, the nuclear envelope has already begun to reform on daughter nuclei (Karg 

et al., 2015).  Surprisingly, the presence of acentrics and their associated tether 

triggers the formation of highly localized channels in the nuclear envelope through 

which the acentrics pass to rejoin daughter nuclei (Karg et al., 2015; Warecki and 

Sullivan, 2018). 
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Initial poleward segregation of acentrics and nuclear envelope channel 

formation are clearly important steps in allowing reintegration of late-segregating 

acentrics into daughter nuclei.  However, it is unclear how these two processes are 

linked to ensure passage of the acentrics through the channels.  Here we find that 

acentric velocity decreases when acentrics first enter nuclear envelope channels, 

suggesting the presence of an additional mechanism involved in acentric 

reintegration.  We also show that the nuclear envelope channel is highly dynamic, 

extending outward to reach toward segregating acentrics and retracting back as 

acentrics enter channels.  Finally, we find that acentrics reintegrating into daughter 

nuclei recruit nuclear envelope membrane despite lacking lamin and nuclear pore 

complexes (Afonso et al., 2014; Karg et al., 2015).  In addition, we find that the 

conserved membrane fusion protein Comt/NSF and the ESCRT-III component 

Shrub/CHMP4B are required for efficient entry of acentrics into daughter nuclei.  

Taken together, these results suggest a novel mechanism for nuclear membrane fusion 

in maintaining genome integrity in which fusion between membrane on acentrics and 

membrane on daughter nuclei guides poleward-segregating acentrics through nuclear 

envelope channels and into daughter nuclei. 
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Results 
 
Velocity of poleward-segregating acentrics decreases as acentrics pass through 

nuclear envelope channels 

I-CreI-induced acentrics segregate equally to each daughter cell and move poleward 

through the combined action of protein-coated DNA tethers and bundled 

microtubules in Drosophila neuroblasts (Royou et al., 2010; Karg et al., 2017).  

Acentrics then pass through channels in the nuclear envelopes of telophase daughter 

nuclei to rejoin the undamaged chromosomes (Karg et al., 2015).  To explore the 

functional link between initial acentric segregation, nuclear envelope reassembly and 

acentric reintegration into daughter nuclei, we imaged live Drosophila neuronal stem 

cells (neuroblasts) from third-instar larvae.  These larvae bore H2Av-RFP, and 

Lamin-GFP transgenes and heat-shock inducible I-CreI.  This enabled us to observe 

chromosome and nuclear envelope dynamics and to generate X chromosome 

acentrics, respectively (Figure 21).  We exclusively imaged female Drosophila 

larvae, which produce four acentric X chromosome fragments upon I-CreI induction 

(Rong et al., 2002).   

Errors in initial poleward segregation often manifest in an unequal partitioning 

of acentrics to each daughter cell (Karg et al., 2017).  Therefore, we determined 

whether divisions in which acentrics were unequally partitioned had an increased rate 

of micronuclei formation.  However, we found no correlation between unequal 

acentric segregation and micronuclei formation (Figure 21A).  Euploid daughter cells 

that received two acentrics (arrows) were just as likely to reincorporate their acentrics 
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into daughter nuclei through nuclear envelope channels (arrowhead; 67%; N = 12) as 

aneuploid daughter cells that received either one or three acentrics (67%; N = 9).  

This suggests that initial poleward segregation and reintegration into daughter nuclei 

may be mechanistically uncoupled.   

Additionally, we observed that acentrics (arrows) slowed as they passed 

through nuclear envelope channels (arrowheads) compared to their poleward 

movement from the metaphase plate (Figure 21B-D).  In the division shown in Figure 

21B (see Movie 14), the acentric moving toward the bottom nucleus moved at an 

average of roughly 12 nm/sec as it segregated from the metaphase plate to the 

beginning of the nuclear envelope channel.  As the acentric passed through the 

channel, its velocity decreased to about 4 nm/sec.  To determine if this slowing is a 

consistent feature of acentric segregation, we measured the velocity changes in our 

live-imaging of 23 acentrics that reentered daughter nuclei.  We deemed the period of 

acentric segregation from their movement off the metaphase plate to their first contact 

with nuclear envelope channels as their “initial poleward phase” and the period of 

acentric movement from when acentrics first contact nuclear envelope channels to 

when the nuclear envelope has completely surrounded acentrics as their “channel 

passage phase.”  We calculated distance by measuring from the furthest tip of the 

acentric to the nearest point on the daughter nucleus (see Figure 21C).  Overall, we 

found that acentrics moved through the initial poleward phase with an average 

velocity of about 10 nm/sec (N = 23; SD = 3 nm/sec), while they moved through the 

channel passage phase with an average velocity of about 7 nm/sec (N = 23; SD = 5 
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nm/sec) (Figure 21D).  This decrease in acentric velocity while passing through 

channels was statistically different from acentric velocity during initial poleward 

segregation as determined by a paired t-test (p = 0.004).  On average, acentrics began 

to contact channels around 149 sec (N = 23; SD = 40 sec) after they began poleward 

segregation.  Taken together, these results suggest that acentric poleward segregation 

prior to reaching the nuclear envelope and acentric passage through the nuclear 

envelope involve distinct forces and perhaps distinct mechanisms. 
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Figure 21.  Velocities of poleward-segregating acentrics decrease as acentrics pass 
through nuclear envelope channels.  (A) Percentage of neuroblast divisions in which 
acentrics formed micronuclei when segregating equally to each daughter cell (left) 
and when segregating unequally to each daughter cell (right).  Additionally, stills 
from movies of mitotic neuroblasts expressing I-CreI, H2Av-RFP (magenta), and 

Lamin-GFP (green) when acentrics (arrows) segregated equally (left) and unequally 
(right) and entered daughter nuclei through channels in the nuclear envelope 

(arrowheads). Scale bar is 2 µm.  (B) Stills from a movie (see Movie 14) of a mitotic 
neuroblast expressing I-CreI, H2Av-RFP (magenta) and Lamin-GFP (green).  

Acentrics (arrows) moved off the metaphase plate and towards daughter nuclei during 
the “initial poleward phase” (0-270 sec) before entering nuclear envelope channels 
(arrowheads) and being surrounded by a complete nuclear envelope (270-396 sec) 

during the “channel passage phase.”  Time is written in seconds after initial acentric 
poleward movement.  Scale bar is 2 µm.  Yellow dashed boxes indicate magnified 

regions.  (C) Diagram illustrating how acentric velocities were measured.  The time 
between when acentrics first move poleward and when they enter nuclear envelope 
channels is deemed the “initial poleward phase.”  The time between when acentrics 
first enter channels and when the nuclear envelope reassembles completely around 
them is termed the “channel passage phase.”  Distance was measured between the 

furthest point on the acentric and the closest point on the daughter nucleus (red 
brackets).  Velocity was calculated as the difference in measured distances at the 
beginning and ending of each phase divided by the time it took for acentrics to 

complete each phase.  (D) Velocities of acentrics during their initial poleward phase 
(left) and during their channel passage phase (right).  Each dot represents one 

acentric.  Lines connect the measured initial poleward and channel passage velocities 
of the same acentric.  The velocities of 18/23 acentrics decreased from their initial 
poleward phase to their channel passage phase (blue dots).  The velocities of 5/23 

acentrics increased from their initial poleward phase to their channel passage phase 
(red dots).  Boxes represent interquartile ranges and lines represent medians of the 

measured data.  Asterisk indicates statistical significance (p = 0.004) determined by a 
paired t-test. 
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Figure 21 
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Nuclear envelope channels extend towards acentrics and retract as acentrics rejoin 

daughter nuclei 

Because velocity decreases as acentrics pass through nuclear envelope channels, we 

hypothesized that the environment of the channel itself may contribute to the 

observed change in acentric velocity.  We therefore imaged neuroblasts expressing I-

CreI, H2Av-RFP, and Lamin-GFP and performed a detailed analysis of the dynamics 

of channels at the time when acentrics passed through them to reenter daughter nuclei 

(Figure 22).   

Figure 22A (see Movie 15) shows the typical dynamics of nuclear envelope 

channels as acentrics enter and pass through to rejoin daughter nuclei.  As acentrics 

(arrows) segregated, we observed lamin assembly on the poleward side of daughter 

nuclei as has been previously reported (Katsani et al., 2008; Warecki and Sullivan, 

2018).  Nuclear envelope channels (arrowheads) were clearly visible in the lamin as 

acentrics approached daughter nuclei.  We observed lamin extend outwards from 

channels (brackets) and towards acentrics.  Lamin extensions did not completely 

envelop the acentric but only extended partway along the segregating acentric, 

leaving the midzone-facing tip of the acentric lamin-free.  As the acentrics passed 

through channels, the lamin extensions retracted toward the daughter nuclei.  After 

this retraction, lamin completed reassembly around the distal tips of the acentrics to 

ensure the acentrics and daughter nuclei were completely surrounded by an intact 

nuclear envelope.   



 109	

We measured the longest length of the lamin extensions during acentric 

segregation and the length of the retracted extension at the time of completion of 

lamin reassembly for all divisions imaged (Figure 22B).  On average, we found that 

lamin extended 1.9 µm (N = 18; SD = 0.5 µm) away from daughter nuclei at their 

longest extension.  Upon complete lamin reassembly, extensions were 1.5 µm (N = 

18; SD = 0.7 µm) away from daughter nuclei.  The retraction of lamin extensions was 

statically significant as determined by a paired t-test (p = 0.005).  We hypothesized 

that the observed variation in the lamin extension length might be due to variation in 

the distance of each acentric from its daughter nucleus.  However, we observed only a 

weak positive correlation (r = 0.23) between the distances of the nearest point on the 

acentric to the daughter nucleus at the time when channels begin to form and of the 

longest lamin extension measured (Figure 22C).  We observed a mild positive 

correlation (r = 0.32) between the distance the lamin extensions retracted and the 

distance acentrics travelled during the time of retraction (Figure 22D).  

This suggests that the extension and retraction of the lamin may be mechanistically 

linked to acentric passage through the channel. 

 

Acentric entry through channels is associated with global disruptions in nuclear 

morphology 

We subsequently asked how the lamin extensions from channels affected the overall 

morphology of daughter nuclei.  We performed lattice light-sheet microscopy on 

neuroblasts expressing I-CreI, H2Av-RFP, and Lamin-GFP (Figure 22E).  In this 
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experiment, we observed neuroblasts that divided without acentrics, neuroblasts that 

divided with acentrics that entered daughter nuclei through nuclear envelope 

channels, and neuroblasts that divided with acentrics that formed micronuclei due to a 

lack of nuclear envelope channels on the daughter nuclei.  We focused our attention 

on the phase when lamin reassembly had just completed encompassing the daughter 

nucleus.  In general, we found that daughter nuclei from divisions with no acentrics 

were fairly smooth and spherical.  In contrast, divisions with acentrics (arrows) that 

entered daughter nuclei through nuclear envelope channels often exhibited global 

disruptions in morphology: they were wrinkled and adopted an elongated shape.  

Surprisingly, we sometimes also observed nuclear envelope protrusions in regions of 

the daughter nucleus opposite to the acentric entry-point  (asterisk).  Daughter nuclei 

from divisions with acentrics that formed micronuclei due to a lack of channels 

exhibited an intermediate morphology and were somewhat elongated but not as 

wrinkled as nuclei from divisions with acentrics that had entered through channels.   

To quantify these observations, we measured the sphericity of each daughter 

nucleus (Figure 22F; also see Methods).  Perfect spheres have a sphericity of 1.  

Daughter nuclei from divisions with no acentrics had an average sphericity of 0.823 

(SD = 0.010; N = 6).  The average sphericity of daughter nuclei from divisions with 

acentrics that entered nuclei through channels decreased to 0.731 (SD = 0.059; N = 

7), a statistically significant decrease (p = 0.003) by a Mann-Whitney-Wilcoxon test.  

Daughter nuclei from divisions with acentrics that formed micronuclei due to the 

absence of channels had an average sphericity of 0.804 (SD = 0.039; N = 3) with a 
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range of values corresponding to both outcomes.  Taken together, these data suggest 

that lamin reassembly around daughter nuclei is globally altered when nuclear 

envelope channels form in response to the presence of acentrics. 
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Figure 22.  Lamin extends from nuclear envelope channels and retracts as acentrics 
rejoin daughter nuclei.  (A) Stills from a movie (see Movie 15) of a mitotic neuroblast 

expressing I-CreI, H2Av-RFP (magenta) and Lamin-GFP (green).  As acentrics 
(arrows) approached nuclear envelope channels (arrowheads), lamin extended 

outward from the channels towards the acentric (brackets).  As the acentrics passed 
through channels to rejoin nuclei, these lamin extensions retracted back.  Time is 
written in seconds after initial acentric poleward movement.  Scale bars is 2 µm.  

Yellow dashed boxes indicate magnified regions.  (B) Lengths of lamin extensions at 
their longest point during acentric segregation (left) and at the time the nuclear 

envelope has completed reassembly (right).  Each dot represents the length of a lamin 
extension from one nucleus.  Lines connect the extension lengths at their longest 
value and at completed nuclear envelope reassembly for the same nucleus.  The 

lengths of 16/18 lamin extensions decreased from their longest value during acentric 
segregation to complete nuclear envelope reassembly (blue dots).  The lengths of 2/18 

lamin extensions increased from their longest value during acentric segregation to 
complete nuclear envelope reassembly (red dots).  Boxes represent interquartile 

ranges and lines represent medians of the measured data.  Asterisk indicates statistical 
significance (p = 0.005) determined by a paired t-test.  (C) Correlation between the 

distance of the nearest point on the acentric to the nucleus at the time of channel 
formation (x-axis) and to the longest length of the lamin extension during acentric 

segregation (y-axis).  Each dot represents one acentric/nucleus pair.  Blue dots 
represent acentric/nucleus pairs whose lamin extensions decreased by the time of 
complete nuclear envelope reassembly.  Red dots represent acentric/nucleus pairs 

whose lamin extensions increased by the time of complete nuclear envelope 
reassembly.  The black line is the regression line for all data points.  (D) Starting at 

the time of maximum lamin extension, the correlation between the distance an 
acentric travels (x-axis) and the distance the lamin extension retracts during the same 

time period (y-axis).  Each dot represents one acentric/nucleus pair.  Blue dots 
represent acentric/nucleus pairs whose lamin extensions decreased by the time of 
complete nuclear envelope reassembly.  Red dots represent acentric/nucleus pairs 

whose lamin extensions increased by the time of complete nuclear envelope 
reassembly.  The black line is the regression line for all data points.  (E) Three-

dimensional reconstructions from movies of mitotic neuroblasts expressing I-CreI, 
H2Av-RFP (magenta), and Lamin-GFP (green) imaged on a lattice light-sheet 

microscope (left panels).  Constructed surface models of the nuclear envelope are 
shown to the right of each image.  Images are representative of I-CreI-expressing 

neuroblasts that had no acentrics (left), had acentrics and nuclear envelope channels 
(middle), or had acentrics (arrows) and no channels (right).  While divisions with no 

acentrics and divisions with acentrics but no channels formed smooth daughter nuclei, 
divisions with acentrics and channels had daughter nuclei that were wrinkled and 

protruded, including at locations far from where the acentric had entered (asterisk).  
Scale bars are 2 µm.  (F) Measurement of the sphericity of the nuclear envelopes of 

daughter nuclei from neuroblasts expressing I-CreI that had no acentrics (left), 
acentrics and channels (middle), or acentrics but no channels (right).  Divisions with 
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both acentrics and channels had daughter nuclei with relatively lower sphericities 
than those from divisions with no acentrics and divisions with acentrics but no 

channels.  Boxes represent interquartile ranges and lines represent medians of the 
measured data.   Asterisk indicates statistical significance (p = 0.003) by a Mann-

Whitney-Wilcoxon test.  The difference between divisions with channels and 
divisions with micronuclei was not statistically different (p = 0.07) as was the 

difference between divisions without acentics and divisions with micronuclei (p = 
0.5), determined by Mann-Whitney-Wilcoxon tests. 
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Figure 22 
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Late-segregating acentrics are associated with nuclear envelope membrane but not 

lamina or nuclear pore complexes 

Due to the observed extension and retraction of lamin as acentrics contact and pass 

through nuclear envelope channels, we next examined whether the acentrics were 

associated with certain components of the nuclear envelope and whether the 

reassembling nuclear envelope mediates acentric reintegration into daughter nuclei.  

The nuclear envelope consists of the lamina, a double phospholipid bilayer, nuclear 

pore complexes, and a subset of proteins that are embedded in the inner nuclear 

membrane (INM) termed INM proteins (for review, see Schooley et al., 2012).  At the 

beginning of mitosis, these structures disassemble and remodel as the nuclear 

envelope breaks down.  We and others have shown that while lamin and nuclear pore 

complexes can reassemble on telophase daughter nuclei, lagging chromatin remains 

free of these two components (Afonso et al., 2014; Karg et al., 2015; de Castro et al., 

2017; Liu et al., 2018).  Interestingly, lagging whole chromosomes that form 

micronuclei recruit a nuclear membrane despite initially lacking lamin or nuclear pore 

complexes (Liu et al., 2018; de Castro et al., 2017; Maass et al., 2018).  However, it is 

unknown whether lagging acentrics that rejoin daughter nuclei also recruit a nuclear 

membrane.  To explore the behavior of different components of the nuclear envelope 

during acentric segregation and reintegration into daughter nuclei, we live-imaged 

dividing neuroblasts expressing I-CreI, H2Av-RFP, and either Lamin-GFP, GFP-

Nup107, or Protein Disulfide Isomerase (PDI)-GFP (Figure 23).  PDI is a luminal 

endoplasmic reticulum (ER) protein.  The lumen of the ER is continuous with the 
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perinuclear space between the outer nuclear membrane and the INM, and so marking 

luminal ER proteins is a strategy to visualize nuclear membrane dynamics (Bobinnec 

et al., 2003; Bergman et al., 2015; Yao et al., 2018). 

First, we examined lamina reformation during divisions with acentrics.  We 

monitored lamin dynamics by imaging neuroblasts expressing Lamin-GFP, a 

ubiquitously-expressed lamin orthologous to mammalian Lamin B (Reimer et al., 

1995) (Figure 23A, see Movie 16).  As we had previously found, segregating 

acentrics (arrows) remained free of Lamin-GFP when daughter nuclei (arrowheads) 

accumulated Lamin-GFP (Karg et al., 2015).  We quantified this observation for all 

imaged divisions by measuring the fluorescence intensities of the Lamin-GFP signals 

around both the main nuclei and the acentrics for 342 sec (20 time points) from when 

acentrics began segregating poleward (Figure 24).  We found that Lamin-GFP signal 

intensity increased around the main nuclei as nuclear envelope reassembly began, but 

Lamin-GFP signal intensity around acentrics remained relatively low and constant 

(Figure 23A’). 

We next monitored nuclear pore complex reassembly when neuroblasts 

divided with acentrics.  The nuclear pore complex is composed of nucleoporins, 

among which Nup107 is a component of the core Nup107-160 subcomplex (Walther 

et al., 2003).  We monitored nuclear pore complex dynamics by imaging neuroblasts 

expressing GFP-Nup107 (Figure 23B, see Movie 17).  As we observed before (Karg 

et al., 2015), segregating acentrics (arrows) were mostly free of GFP-Nup107 while 

daughter nuclei (arrowheads) accumulated GFP-Nup107.  We sometimes detected 
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GFP-Nup107 localize to acentrics as they neared daughter nuclei, similar to the 

behavior of lamin extensions we had previously observed.  We quantified the 

fluorescence intensities of the GFP-Nup107 signals on the main nuclei and acentrics 

for 342 sec for all divisions imaged.  As we observed with the nuclear lamina, we 

found GFP-Nup107 signal intensities increased around the main nuclei when the 

nuclear envelope began reassembling, while GFP-Nup107 signal intensity around 

acentrics remained low and constant (Figure 23B’). 

Finally, we monitored nuclear membrane recruitment in divisions with 

acentrics using PDI-GFP (Figure 23C, Movie 18).  In contrast to Lamin-GFP and 

GFP-Nup107, which were not recruited to late-segregating acentrics, we observed 

PDI-GFP signal on daughter nuclei and in varying levels on acentrics (arrows).  Late-

segregating acentrics first recruited PDI-GFP soon after they moved off the 

metaphase plate.  We quantified the fluorescence intensities of PDI-GFP signals on 

acentrics and main nuclei for 342 sec from when acentrics began poleward movement 

for all divisions imaged.  Unlike with the signal intensities for Lamin-GFP and GFP-

Nup107, PDI-GFP signal intensity around the main nuclei decreased as cells 

progressed from anaphase to telophase (Figure 23C’).  Presumably, the observed 

decrease in PDI-GFP signal intensity around main nuclei was due to the fluorophore 

photobleaching, as it has been well-established that nuclear membrane is recruited to 

reforming nuclei (Chaudhary and Courvalin, 1993; Ellenberg et al., 1997).  In 

contrast to the Lamin-GFP and GFP-Nup107 signal intensities on segregating 

acentrics, which were lower than those on the main nuclei and remained constant 
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while signal intensity around the main nuclei increased, we found that PDI-GFP 

signal intensity around acentrics was higher than that of main nuclei and stayed 

constant while the signal intensity around the main nuclei decreased (Figure 23C’).  

Given the observed decrease in PDI-GFP signal intensity on the main nuclei during 

the time period of nuclear envelope reassembly, we interpret the high, constant PDI-

GFP signal intensity on acentrics as indicative of PDI-GFP recruitment to acentrics.   

Despite the high levels of PDI-GFP on late-segregating acentrics, we observed 

acentrics reenter daughter nuclei through highly localized gaps in all three major 

components of the nuclear envelope surrounding daughter nuclei, including in the 

PDI-GFP signal (Figure 23D, arrows).  While the main nuclei were almost 

completely coated with a layer of PDI-GFP, the acentrics exhibited highly variable 

association with PDI-GFP, with some acentrics almost completely surrounded by 

PDI-GFP while others had only one or two sides coated (compare acentrics in Figures 

23C-E).  In addition, the PDI-GFP signal associated with acentrics was dynamic and 

could dissociate and reassociate with acentrics as they moved towards daughter nuclei 

(Figure 23E).  In comparison, the PDI-GFP that localized to main nuclei was 

relatively static.  As acentrics began to pass through the channels formed in the 

nuclear membrane around main nuclei, we observed the PDI-GFP signal on acentrics 

(Figure 23E, arrow) and the PDI-GFP signal on main nuclei (arrow) merge (asterisk).  

Taken together, these results suggest that late-segregating acentrics rejoining daughter 

nuclei recruit a nuclear membrane that fuses with the membrane on the daughter 
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nuclei as acentrics pass through channels in the nuclear envelope to rejoin undamaged 

chromosomes. 
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Figure 23.  Late-segregating acentrics are associated with nuclear envelope 
membrane but not lamina or nuclear pore complexes.  (A-C) Stills from movies of 

mitotic neuroblasts expressing I-CreI, H2Av-RFP (magenta) and either Lamin-GFP 
(A, see Movie 16; green), GFP-Nup107 (B, see Movie 17; cyan), or PDI-GFP (C, see 

Movie 18; yellow).  Images are max projections.  Daughter nuclei (arrowheads) 
accumulated Lamin-GFP, GFP-Nup107, and PDI-GFP during late anaphase/early 

telophase.  However, acentrics (arrows) did not associate with Lamin-GFP, often did 
not associate with GFP-Nup107, but did associate with PDI-GFP (yellow arrows).  
We sometimes observed GFP-Nup107 localize to acentrics near daughter nuclei 
(Figure 2B; 144-234 sec).  Scale bars are 2 µm.  Yellow dashed boxes indicate 

magnified regions.  (A’-C’) Fluorescent intensity of Lamin-GFP (A’), GFP-Nup107 
(B’), or PDI-GFP (C’) measured on the nuclei (black lines) and on the acentrics 
(purple lines).  Lines represent averages.  Dark shaded regions represent +/- SE.  

Light shaded regions represent +/- 2 x SE.  Dashed green lines represent the 
previously measured average time when acentrics begin passing through channels 
(149 sec post acentric segregation).  Lamin-GFP and GFP-Nup107 fluorescence 

intensity increased over time as the nuclear envelope reformed on daughter nuclei but 
remained consistently low on acentrics.  PDI-GFP fluorescence intensity decreased 

during the time corresponding to nuclear envelope reassembly on daughter nuclei but 
was consistently high on acentrics.  (D) Stills from movies of mitotic neuroblasts 
expressing I-CreI, H2Av-RFP, and either Lamin-GFP (left panel), GFP-Nup107 
(middle panel), or PDI-GFP (right panel).  Each Image is a single z-slice of one 
daughter nucleus.  Channels in the nuclear envelope (arrows) formed in all three 
major components of the nuclear envelope, allowing acentrics to enter daughter 

nuclei. Scale bar is 2 µm.  (E) Stills from a movie of a mitotic neuroblast expressing 
I-CreI, H2Av-RFP, and PDI-GFP.  As the acentric approached the daughter nucleus, 

nuclear membrane on the acentric and daughter nucleus (arrows) fused (asterisk).  
Time is written in seconds after initial acentric poleward movement.  Each image is a 

single Z-slice.  Scale bar is 2 µm. 
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Figure 23 
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Figure 24.  Schematic of fluorescence intensity quantification.  (A) Diagram 
illustrating where fluorescence intensity quantifications were measured.  A region of 
interest was drawn around the nucleus (dashed black line) and each acentric (dashed 
purple lines).  The fluorescence intensity of the nuclear envelope marker was then 

measured.  Values were normalized (see Methods).  (B) Theoretical graph depicting 
the normalized fluorescence intensity on nuclei (black line) and acentrics (purple line) 

over time.  The red box represents the hypothetical values measured from (A).   
 

Figure 24 
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Membrane fusion proteins Comt/NSF and Shrub/CHMP4B are required for efficient 

acentric reintegration into daughter nuclei 

Because of the apparent fusion between nuclear membrane on late-segregating 

acentrics and nuclear membrane surrounding main nuclei as acentrics pass through 

nuclear envelope channels, we hypothesized that membrane fusion genes may play an 

important role in acentric reintegration into daughter nuclei.  The time required for 

fusion events between membrane on acentrics and membrane on nuclei may also 

explain the marked decrease in the velocity of acentrics as they pass through nuclear 

envelope channels.  During nuclear envelope reassembly in divisions lacking lagging 

chromatin, the ER restructures to extend membrane that first contacts and then 

spreads over decondensing chromatin to form the nuclear membrane (Ellenberg at al., 

1997).  Canonical membrane fusion genes, including NSF and soluble NSF 

attachment protein receptor (SNARE) proteins, mediate fusion of distinct nuclear 

membrane sections to form a continuous membrane sheet around daughter nuclei 

(Baur et al., 2007).  Nuclear membrane fusion also requires the ESCRT-III complex 

(Vietri et al., 2015; Olmos et al., 2015).  We hypothesized that membrane fusion 

events between nuclear membrane on acentrics and nuclear membrane on the main 

nuclei would require a similar set of proteins.   

To determine if membrane fusion is required for efficient acentric 

reintegration into daughter nuclei, we performed a candidate-based RNA interference 

(RNAi) screen where we depleted single membrane fusion proteins and used live-

imaging to monitor if the rate of acentrics forming micronuclei increased compared to 



 124	

control divisions.  We also included several proteins involved in ER organization and 

function in our screen.  In total, we depleted 12 different proteins.  We classified 

acentrics as forming micronuclei if they visibly failed to rejoin daughter nuclei.  We 

considered hits from this screen to be proteins that when knocked down resulted in a 

greater than two-fold increase in the measured rate of micronuclei formation for 

control divisions.  The results of this screen are summarized in Table 1.  In control 

divisions, acentrics segregated equally in 89% of divisions (N = 27).  We observed 

acentrics form micronuclei in only about 17% (N = 24) of control divisions.  Figure 

25A (see Movie 19) shows a typical control division in which the acentrics (arrows) 

successfully rejoin daughter nuclei.  Of note, we observed significant increases in the 

rate of acentrics forming micronuclei when the levels of Comt/NSF (46%), 

Rtnl2/RTN2 (53%), or Shrub/CHMP4B (50%) were decreased with RNAi compared 

to control divisions (Table 1).   
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Table 1.  Summary of results from candidate-based RNAi screen for genes involved 
in acentric reintegration into daughter nuclei.  Micronucleation and equal segregation 
rates for lines used in the candidate-based RNAi screen for genes involved in acentric 
entry into daughter nuclei.  Stock numbers are based off the Bloomington Drosophila 

Stock Center 
 
Table 1 

Genotype Stock # Micronuclei Equal Segregation 

y1v1 1509 17% (N = 24) 89% (N = 27) 

Rtnl2 RNAi 58208 53% (N = 32) 89% (N = 35) 

Shrub RNAi 38305 50% (N = 24) 67% (N = 21) 

Comt RNAi 31666 46% (N = 46) 89% (N = 44) 

Comt RNAi 31470 43% (N = 40) 73% (N = 40) 

comt6/+ 26708 62% (N = 13) 64% (N = 11) 

Snap24 RNAi 28719 38% (N = 8) 83% (N = 6) 

Membrin RNAi 50515 33% (N = 12) 86% (N = 7) 

Snap RNAi 29587 33% (N = 18) 56% (N = 18) 

Spastin RNAi 53331 33% (N = 24) 70% (N = 20) 

Atlastin RNAi 36736 33% (N = 18) 75% (N = 20) 

Usnp RNAi 25862 31% (N = 16) 67% (N = 9) 

Rtnl1/+ 12425 31% (N = 13) 75% (N = 8) 

Syb RNAi 38234 27% (N = 20) 80% (N = 20) 

Snap 25 RNAi 34377 23% (N = 13) 67% (N = 9) 
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Figure 25.  Comt/NSF, Rtnl2/RTN2, and Shrub/CHMP4B are required for efficient 
acentric reintegration into daughter nuclei.  (A-D) Stills from movies of mitotic 
neuroblasts expressing I-CreI and H2Av-RFP (gray) only (A, see Movie 19), or 

expressing I-CreI and H2Av-RFP in combination with RNAi against Comt (B, see 
Movie 20), Rtnl2 (C, see Movie 21), or Shrub (D, see Movie 22).  Each panel is 
composed of a row of max projections (top row) above their corresponding sum 

projections that are pseudo-colored to illustrate differences in Z-position (bottom row; 
red = upper Z-planes, blue = lower Z-planes).  Acentrics (arrows) segregated 

poleward and reentered daughter nuclei in control movies. However, acentrics in 
dividing neuroblasts expressing RNAi against Comt, Rtnl2, or Shrub initially 
segregated but failed to reintegrate into daughter nuclei and instead formed 

micronuclei (arrowheads).  Time is written in seconds after initial acentric poleward 
movement.  Scale bars are 2 µm.  Yellow dashed boxes indicate magnified regions.  

Asterisks indicate statistical significance to control as determined by chi-square tests 
(B: p = 0.016; C: p = 0.005; D: p = 0.014).  (A’-D’) Distance of acentrics from main 
nuclei in control (A’-D’; black line), Comt-depleted (B’; purple line), Rtnl2-depleted 
(C’; purple line), and Shrub-depleted (D’; purple line) neuroblasts.  Lines represent 

averages.  Dark shaded regions represent +/- SE.  Light shaded regions represent +/- 2 
x SE.  Dashed green lines represent the previously measured average time when 

acentrics begin passing through channels (149 sec post acentric segregation).  
Although initially following a similar trajectory as acentrics in control neuroblasts, 
acentrics in both Comt- and Rtnl2-depleted neuroblasts ultimately remained further 
apart from daughter nuclei at 400 sec after initial acentric segregation than those in 
control divisions.  The point of divergence was approximately the measured time 

when acentrics begin passing through channels.  In contrast, the trajectory of acentrics 
in Shrub-depleted neuroblasts, which likewise remained further apart from daughter 

nuclei at 400 sec after initial acentric segregation than those in control divisions, 
diverged from acentrics in control neuroblasts soon after initial acentric segregation. 
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Figure 25 
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Figure 25B (see Movie 20) shows a typical Comt-depleted neuroblast division 

in which an acentric (arrows) forms a micronucleus (arrowhead).  Comt is one of two 

Drosophila homologs of NSF, a protein that disassembles trans-SNARE complexes 

and allows repeated cycles of membrane fusion (Ordway et al., 1994).  In Comt-

depleted neuroblasts, sister acentrics were equally segregated in 89% (N = 44) of 

divisions imaged (compare to control divisions: 89%), indicating that Comt-depletion 

does not affect the initial poleward segregation of acentrics.  However, RNAi-

depletion of Comt resulted in a dramatic increase in acentrics failing to reintegrate 

into daughter nuclei, leading to the formation of micronuclei (micronuclei formed in 

46% of divisions; N = 46; compare to control divisions: 17%).  We confirmed this 

result by using a second RNAi line against Comt and again observed a high rate of 

micronuclei formation (43%; N = 40; control: 17%).  Additionally, we used the well-

characterized comt6 temperature-sensitive mutant (Krishnan et al., 1996; Sanyal and 

Krishnan, 2012) and likewise observed acentrics form micronuclei at a high rate in 

heat shocked comt6/+ heterozygotes (62%, N=13; control: 17%) (Table 1). 

Figure 25C (see Movie 21) shows a typical Rtnl2-depleted neuroblast division 

in which an acentric (arrows) forms a micronucleus (arrowhead).  Rtnl2 is likely the 

Drosophila ortholog of human RTN2 (Thurmond et al., 2019), a reticulon family 

protein involved in the restructuring of the ER (Voeltz et al., 2006; Montenegro et al., 

2012).  In Rtnl2-depleted neuroblasts, acentrics were also equally segregated 89% (N 

= 35) of the time (compare to control divisions: 89%), indicating that Rtnl2 is not 

involved in initial acentric segregation.  However, upon RNAi-depletion of Rtnl2, 
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acentrics failed to enter daughter nuclei and instead formed micronuclei in 53% (N = 

32) of divisions filmed (compare to control divisions: 17%).  

 Figure 25D (see Movie 22) shows a typical Shrub-depleted neuroblast 

division in which an acentric (arrows) forms a micronucleus (arrowhead).  Shrub is 

the Drosophila ortholog of charged multivesicular body protein (CHMP)4B, a major 

component of the ESCRT-III complex (Sweeney et al., 2006).  In Shrub-depleted 

neuroblasts, we observed decreased equal acentric segregation (67%; N = 21) 

compared to controls (89%), suggesting that Shrub may be involved in the initial 

segregation of acentrics.  RNAi depletion of Shrub also resulted in acentrics forming 

micronuclei in 50% (N = 24) of divisions imaged (compare to control divisions: 

17%).  However, equivalent high rates of micronuclei formation were observed in 

divisions in which acentrics were partitioned equally (5/12) and in which acentrics 

were partitioned unequally (4/7).  This suggests that the increased rate of micronuclei 

formation was not due to any defect in initial acentric poleward segregation. 

We next determined whether the increased micronucleation observed upon 

depletion of Comt, Rtnl2, and Shrub were due to differences in the initial distances of 

acentrics from daughter nuclei or differences in timing of acentric segregation (Figure 

26).  While acentrics in Shrub-depleted neuroblasts were initially slightly further from 

daughter nuclei, we found no statistically significant differences in the initial 

distances of acentrics from daughter nuclei between control neuroblasts and Comt-, 

Rtnl2-, or Shrub-depleted neuroblasts (Figure 26A).  Moreover, for each condition, 

acentrics that formed micronuclei were not initially further away from daughter 
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nuclei than acentrics that entered nuclei.  We also found no statistically significant 

differences in the time from anaphase onset to acentric segregation between all the 

conditions, although acentrics from Rtnl2-depleted divisions segregated slightly later 

than controls (Figure 26B).  In general, we observed no definitive correlation that 

linked the time between anaphase onset and acentric segregation to the ability of an 

acentric to enter the nucleus.  Table 2 summarizes these data.  Taken together, these 

results indicate that the increased micronucleation we observed upon RNAi depletion 

of Comt, Rtnl2, and Shrub was not due to defective initial behavior of segregating 

acentrics.  
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Figure 26.  Micronuclei formation is not correlated to changes in distance of 
acentrics from nuclei or time of acentric segregation.  (A-B) Comparison of the 

distances of acentrics from daughter nuclei (A) and the times between anaphase onset 
and acentric segregation (B).  Each dot represents one acentric.  Blue dots represent 

acentrics that rejoin daughter nuclei.  Red dots represent acentrics that form 
micronuclei.  For each condition, there is no strong correlation between acentrics that 
form micronuclei and how far acentrics are from main nuclei at the time of acentric 

segregation.  For each condition, there is no strong correlation between acentrics that 
form micronuclei and how long after anaphase acentrics began to segregate.  Boxes 

represent interquartile ranges and lines represent medians of the measured data. 
 
Figure 26 
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Table 2.  Key characteristics of hits from the candidate-based RNAi screen.  
Micronucleation and equal segregation rates, the average distance of acentrics from 

daughter nuclei at the time of acentric segregation, and the time from anaphase onset 
to acentric segregation are shown for each hit from our screen 

 
Table 2 

Genotype Stock # Micronuclei 
Equal 

segregation 

Distance 

of acentric 

to nucleus 

(µm) 

Time of 

acentric 

segregation 

(sec) 

y1v1 1509 
17% (N = 

24) 

89% (N = 

27) 

3.6 (SD = 

1.5; N = 

15) 

200 (SD = 60; 

N = 7) 

Comt 

RNAi 
31666 

46 % (N = 

46) 

89% (N = 

44) 

3.5 (SD = 

1.2; N = 

32) 

180 (SD = 50; 

N = 12) 

Rtnl2 

RNAi 
58208 

53% (N = 

32) 

89% (N = 

35) 

3.2 (SD = 

1.2; N = 

23) 

300 (SD = 

110; N = 7) 

Shrub 

RNAi 
38305 

50% (N = 

24) 

67% (N = 

21) 

3.8 (SD = 

0.7; N = 

19) 

230 (SD = 

103; N = 9) 
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To more thoroughly understand when acentric reintegration was affected in 

Comt-, Rtnl2-, and Shrub- depleted neuroblasts, we measured the distance of the 

lagging end of the acentric to the nearest point on the main nucleus every 10 sec for 

400 sec after acentrics began their initial poleward movement for an additional set of 

control and Comt-, Rtnl2-, and Shrub-depleted divisions (Figure 25A’-D’).  We then 

compared the trajectory of acentrics in Comt-, Rtnl2-, and Shrub-depleted divisions to 

the trajectory of acentrics in control divisions (Figure 25A’-D’; black line).  We 

reasoned that acentrics failing to enter daughter nuclei should exhibit a measurable 

increase in distance from main nuclei than those that reenter nuclei (Figure 27).  In 

Comt-depleted divisions, the trajectory of acentrics (Figure 25B’; purple line) initially 

matched the trajectory of acentrics from control divisions.  However, at the time 

when acentrics in control divisions begin to enter into nuclear envelope channels 

(previously measured at 149 sec after acentrics begin their poleward movement; 

dashed green line), acentrics from Comt-depleted neuroblasts began to become 

measurably further away from daughter nuclei.  This pattern was also seen for 

acentrics from Rtnl2-depleted divisions (Figure 25C’; purple line): acentrics from 

Rtnl2-depleted neuroblasts closely matched the trajectory of acentrics from control 

divisions until the point when acentrics from control divisions enter channels (149 

sec; dashed green line), at which point acentrics from Rtnl2-depleted neuroblasts 

began to become measurably further away from daughter nuclei.  Interestingly, 

acentrics from Shrub-depleted neuroblasts (Figure 25D’; purple line) exhibited a 

distinct trajectory even during the initial segregation stages.  However, after the point 
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when acentrics from control divisions enter channels (149 sec; dashed green line), the 

trajectory of acentrics from Shrub-depleted neuroblasts became even further away 

from the trajectory of control acentrics than during the initial segregation period. 

Taken together, these results indicate that Comt and Rtnl2, and Shrub are 

required for efficient acentric entry during the final stage of acentric integration, 

suggesting that nuclear membrane fusion and ER restructuring events are important 

mechanisms that ensure late-segregating acentrics pass through nuclear envelope 

channels. 
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Figure 27.  Schematic detailing the measured distance between acentrics and 
daughter nuclei as acentrics segregate toward nuclei.  (A) Diagram illustrating that 

acentrics rejoining daughter nuclei will have a decreasing distance between the tail of 
the acentric and the closest point on the daughter nucleus.  As time progresses, and 

the acentric completely reenters the daughter nucleus, the distance between the tail of 
the acentric and the daughter nucleus will approach 0.  (B) Diagram illustrating that 
acentrics forming micronuclei will have a decreasing distance between the tail of the 
acentric and the closest point on the daughter nucleus until the acentric reaches the 
location where it is incapable of entering the daughter nucleus.  As time progresses, 
the acentric will remain distinct from the main nucleus, and the distance between the 

tail of the acentric and the daughter nucleus will be measured as greater than 0. 
 

Figure 27 
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Shrub/CHMP4B localizes to acentrics as they reintegrate into daughter nuclei 

To determine the role of Shrub/CHMP4B in acentric reintegration into daughter 

nuclei, we analyzed the location of Shrub in neuroblasts dividing with acentrics.  We 

reasoned that if Shrub were involved in acentric reintegration, we would observe 

Shrub localize to acentrics beginning to contact daughter nuclei.  Therefore, we 

performed live imaging on neuroblasts expressing I-CreI, H2Av-RFP, and Shrub-

GFP and quantified when Shrub-GFP localized to acentrics and daughter nuclei 

(Figure 28).   

Figure 28A (see Movie 23) shows the typical pattern of Shrub-GFP 

localization during the division of a neuroblast with acentrics.  At the time when the 

acentrics began their initial poleward movement, Shrub-GFP did not localize to either 

the acentrics (arrows) or the daughter nuclei (arrowheads).  In contrast, at the time 

when the acentrics began to rejoin daughter nuclei, Shrub-GFP puncta localized both 

to acentrics (arrowheads) and strongly to daughter nuclei.  Shrub-GFP puncta 

localized along the periphery of daughter nuclei, presumably mediating fusion of 

nuclear membrane on daughter nuclei as previously described (Vietri et al., 2015; 

Olmos et al., 2015).  Shrub-GFP puncta localized to the main body of the acentric and 

also specifically at the point where the acentric contacted the daughter nucleus prior 

to reintegration (Figure 28A, 180 sec; arrowhead). 

We quantified the amount of Shrub-GFP puncta localized to acentrics and 

daughter nuclei for all divisions imaged (Figure 28B).  We observed very low Shrub-

GFP localization on acentrics (purple line) and on nuclei (black line) in the time 
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period between 90 sec before and 90 sec after acentrics began their poleward 

movement. During this time period, only 2/15 acentrics were associated with more 

than 1 Shrub-GFP punctum at any given time, and 6/15 acentrics were associated 

with Shrub-GFP puncta at consecutive time points.  Similarly, only 4/15 daughter 

nuclei were associated with more than 1 Shrub-GFP punctum at any given time, and 

8/15 daughter nuclei were associated with Shrub-GFP puncta at consecutive time 

points.  The average number of GFP-puncta on acentrics and daughter nuclei at the 

time when acentrics began moving poleward was 0 (N = 15; SD = 0) and 0.33 (N = 

15; SD = 0.47) respectively.   

In contrast, we observed increased Shrub-GFP localization to both acentrics 

and daughter nuclei in the time period between 90 sec before and 90 sec after 

acentrics first contacted daughter nuclei.  During this time period, 11/14 acentrics 

were associated with more than 1 Shrub-GFP punctum at any given time, and 12/14 

acentrics were associated with Shrub-GFP puncta at consecutive time points.  

Likewise, 14/14 daughter nuclei were associated with more than 1 Shrub-GFP 

punctum at any given time, and 14/14 daughter nuclei were associated with Shrub-

GFP puncta at consecutive time points.  The average number of Shrub-GFP puncta on 

acentrics and daughter nuclei at the time when acentrics contacted daughter nuclei 

was 0.86 (N = 14; SD= 0.76) and 4.08 (N = 1.75; SD = 1.75) respectively.  The 

average number of Shrub-GFP puncta on acentrics was highest at 72 sec after 

acentrics contacted daughter nuclei (1.64; N = 14; SD = 1.17).  The average number 
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of Shrub-GFP puncta on daughter nuclei was highest at 54 sec after acentrics 

contacted daughter nuclei (4.54; N = 14; SD = 2.37). 

Taken together, these results indicate that Shrub/CHMP4B localizes to 

reintegrating acentrics.  Therefore, Shrub/CHMP4B is in the correct place at the 

correct time to mediate the fusion between membrane on acentrics and membrane on 

daughter nuclei that allows acentric reintegration into daughter nuclei. 
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Figure 28.  Shrub/CHMP4B localizes to acentrics as they reintegrate into daughter 
nuclei.  (A) Stills from a movie (see Movie 23) of a mitotic neuroblast expressing I-

CreI, H2Av-RFP (magenta), and Shrub-GFP (green).  At the time when acentrics 
began their initial poleward movement, neither acentrics (arrows) nor daughter nuclei 

were associated with any Shrub-GFP puncta.  When acentrics began to rejoin 
daughter nuclei, Shrub-GFP puncta localized to both acentrics and daughter nuclei 

(arrowheads), including to the location where the acentric is contacting the daughter 
nucleus. Time is written in seconds after initial acentric poleward movement.  Scale 
bar is 2 µm.  Yellow dashed boxes indicate magnified regions.  (B) Average number 

of Shrub-GFP puncta that localized to acentrics (purple line) and to nuclei (black line) 
when acentrics initially segregated poleward (left) and when acentrics rejoined 

daughter nuclei (right).  For 90 sec before and after when acentrics initially 
segregated poleward, little to no Shrub-GFP puncta localized to acentrics or nuclei.  
For 90 sec before and after acentrics began to contact and reintegrate into nuclei, 
Shrub-GFP puncta frequently localized to acentrics and to daughter nuclei.  Lines 
represent averages.  Dark shaded regions represent +/- SE.  Light shaded regions 

represent +/- 2 x SE. 
 
Figure 28 
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Discussion 

Chromosome fragments enter telophase nuclei through channels in all major 

components of the nuclear envelope 

Cells dividing with lagging whole or broken chromosomes risk losing or damaging a 

significant part of their genome if these wayward chromosomes are not included in 

daughter nuclei.  Chromosomes and chromosome fragments that fail to incorporate 

into a daughter nucleus form micronuclei, which can undergo chromothripsis (Zhang 

et al., 2015; Ly et al., 2017).  Chromothripsis leads to the development of aneuploidy 

and is linked to the progression of cancer (Bonassi et al., 2011).  While lagging 

chromosomes are relatively rare in healthy cells due to the evolution of safeguards 

such as the spindle assembly checkpoint (for review, see Sacristan and Kops, 2015) 

and the DNA damage response (Mikhailov et al., 2002), they are much more frequent 

in cancer cells, in which these safeguards are often compromised (Thompson and 

Compton, 2008).  For example, colorectal cancer cells frequently bypass these 

checkpoints to divide with lagging chromosomes (Stewénius et al., 2005; Green and 

Kaplan, 2003).  Intriguingly, not every lagging chromosome forms a micronucleus: 

some reincorporate into daughter nuclei to maintain euploidy.  In cultured colorectal 

cancer cells for example, some lagging chromosomes can reintegrate into daughter 

nuclei up to 38% of the time (Huang et al., 2012).  In addition, lagging whole 

chromosomes can enter daughter nuclei in fission yeast (Pidoux et al., 2000; 

Sabatinos et al., 2015), and late-segregating acentric fragments are capable of 
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reintegrating into telophase daughter nuclei in PTK2 (Liang et al., 1993), grasshopper 

(Carlson, 1938), and Drosophila cells (Royou et al., 2010; Bretscher and Fox, 2016). 

In spite of the fact that incorporation of late-segregating chromosomes and 

chromosome fragments into daughter nuclei has been documented in multiple 

systems, the mechanisms that facilitate entry remain relatively unexplored.  Previous 

work has established that late-segregating acentric fragments remain connected to 

daughter nuclei through DNA tethers in Drosophila neuroblasts (Royou et al., 2010).  

BubR1 kinase, Polo kinase, Aurora B kinase, and INCENP coat these tethers (Royou 

et al., 2010).  Poleward movement of acentrics is mediated by microtubules (Karg et 

al., 2017), and acentrics enter daughter telophase nuclei by passing through highly 

localized channels in the layers of lamin and nuclear pore complexes that assemble 

around daughter nuclei (Karg et al., 2015).  Aurora B kinase, a well-established 

inhibitor of nuclear envelope formation, activity along the tether is integral to the 

formation of these channels (Karg et al., 2015; Warecki and Sullivan, 2018).   

These studies lead to questions regarding channel formation, structure, and 

closure.  The data presented here demonstrate that channels result from local 

inhibition of the reassembly of all three major components of the nuclear envelope at 

the sites of channel formation.  Acentrics enter daughter nuclei by passing through 

clear gaps in the nuclear membrane surrounding daughter nuclei as well as in the 

lamina and nuclear pore complexes (Figure 23).  This indicates that nuclear envelope 

channels are specialized structures in the nuclear envelope that allow acentric entry 

into daughter nuclei.  Moreover, as discussed below, we conclude that the 
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reassembling nuclear envelope is not just a passive structure to be bypassed via 

passage through channels but is actively involved in incorporating acentrics into 

daughter nuclei as well. 

 

Acentric incorporation involves localized extension and retraction of the nuclear 

lamina 

We found that late-segregating acentric fragments moved off the metaphase plate at a 

higher velocity than when passing through nuclear envelope channels (Figure 21).  

Initial acentric movement poleward occurs through the action of microtubules that 

bundle around the acentrics (Karg et al, 2017).  During this initial, microtubule-

mediated phase of acentric movement, we measured an average acentric velocity of 

10 nm/sec (N = 23; SD = 3 nm/sec), which corresponds to previously reported 

segregation rates of undamaged chromosomes in Drosophila S2 cells (9.8 nm/sec; de 

Lartigue et al., 2011).  The attenuated velocities of acentrics (7 nm/sec; N = 23; SD = 

5 nm/sec) indicate different and/or additional forces are imposed on these 

chromosome fragments as they pass through channels.   This finding also suggests 

distinct mechanisms drive the acentric through the channel. 

Insight into the mechanisms driving acentric channel passage comes from our 

observation that lamin extends outward from nuclear envelope channels and towards 

the poleward-segregating acentrics (Figure 22).   Nuclear envelope-chromatin 

connections might promote acentric movement.  The transmission of force from the 

cytoskeleton across the nuclear envelope to chromatin via the linker of 
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nucleoskeleton and cytoskeleton (LINC) complex requires nuclear envelope-

chromatin connections (Tajik et al., 2016).  LINC-mediated forces lead to chromatin 

stretching in response to mechanical stress (Tajik et al., 2016) and the characteristic 

rapid chromosome movements necessary for homolog pairing in meiosis (Ding et al., 

2007; Schmitt et al., 2007; Conrad et al., 2008; Sato et al., 2009).  In accord with a 

model in which nuclear envelope-chromatin connections promote acentric movement, 

we observed the lamin extensions retract back toward nuclei as acentrics passed 

through channels.  It is tempting to speculate that the retraction of lamin extensions is 

evidence of a mechanical link between the lamin extensions and the acentric.  

Retracting lamin extensions “taking over” from microtubules to drive acentrics into 

nuclei could also explain the different velocities of acentrics moving off the 

metaphase plate and entering daughter nuclei.  However, the mild correlation we 

measured between lamin retraction and acentric movement suggests that factors in 

addition to lamin extension and retraction drive acentrics through nuclear envelope 

channels. 

The signals guiding lamin extension remain unclear, but one possibility is 

based on studies demonstrating that the reassembling nuclear envelope recognizes 

chromosomes via the Ran-GTP gradient emanating from chromatin (for review, see 

Hetzer et al., 2002), and lamin can bind both directly and indirectly to chromatin 

(Goldberg et al., 1999). In neuroblast divisions with acentrics, highly localized 

Aurora B kinase activity along the tether initially prevents the recruitment of lamin to 

the acentric and to the site of channel formation (Warecki and Sullivan, 2018).  It is 
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possible that the lamin we observe extending from channels towards acentrics might 

therefore represent an attempt to reestablish lamin-DNA connections once Aurora B 

is cleared from the acentric guided by the local Ran-GTP gradient originating from 

the acentric. 

 

Acentrics are encompassed by a membrane distinct from the nuclear envelope 

In contrast to the behavior of the nuclear envelope components at the site of channels, 

in which all three major components were excluded from the sites of acentric entry to 

form nuclear envelope channels, we observed nuclear membrane localize to late-

segregating acentrics despite the absence of lamin and nuclear pore complexes 

(Figure 23).  The discrepancy in the ability of core and non-core components of the 

nuclear envelope to localize to lagging chromosomes was previously observed in 

cancer cells in which lagging whole chromosomes subsequently formed micronuclei 

(Liu et al., 2018).  In these cells, the inability of micronuclei to recruit a fully 

functional nuclear envelope was proposed as the first step on the path toward 

chromothripsis.  In contrast, in Drosophila, the exclusion of lamin and nuclear pore 

complexes from lagging chromosome fragments is important for the inclusion of the 

fragments into daughter nuclei and the maintenance of euploidy (Afonso et al., 2014; 

Karg et al., 2015).  Lagging acentrics that fail to exclude lamin form micronuclei at 

high rates (Karg et al., 2015).  Therefore, the exclusion of key nuclear envelope 

components from late-segregating chromosomes may represent both a blessing and a 

curse for a dividing cell: laggards that are free of non-core components are better 
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equipped to rejoin daughter nuclei; however, should the laggards fail to enter 

daughter nuclei, the resulting micronuclei would be particularly susceptible to 

chromothripsis and subsequent aneuploidy. 

 

Membrane fusion drives the final stage of acentric incorporation into daughter nuclei  

Despite the presence of nuclear membrane encompassing lagging acentrics, we 

observed efficient entry of membrane-coated acentrics into daughter nuclei.  We 

hypothesized that membrane fusion between membrane on acentrics and membrane 

on daughter nuclei would be required for acentric integration into daughter nuclei.  In 

accord with this hypothesis, we observed decreased acentric entry into daughter 

nuclei when cells were depleted of the conserved membrane fusion proteins 

Comt/NSF and Shrub/CHMP4B (Figure 25).  In the canonical model of membrane 

fusion, the assembly of SNAREs on opposing membranes into a trans-SNARE 

complex mediates fusion of the membranes.  NSF uses ATP hydrolysis to 

disassemble the trans-SNARE complex, freeing SNAREs for additional rounds of 

membrane fusion (for review, see Ryu et al., 2016).  SNARE and NSF membrane 

fusion activity are essential for proper nuclear envelope reassembly: mutants result in 

membrane targeting to but not sealing around daughter nuclei (Baur et al., 2007). 

Since NSF disassembles trans-SNARE complexes, the involvement of Comt/NSF in 

efficient acentric entry into daughter nuclei suggests the involvement of SNARE 

proteins as well.  However, the SNARE RNAi lines we tested did not result in 

increased micronucleation in our screen.  This could be due to a defective RNAi line, 
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possible functional redundancy among the SNAREs, and/or the involved SNARE(s) 

not being included in our screen.  Nevertheless, we believe the failure of acentric 

entry into daughter nuclei in Comt-depleted neuroblasts is due to an inability of these 

cells to undergo repeated rounds of SNARE-mediated membrane fusion necessary to 

fuse the membrane on acentrics to the membrane on nuclei. 

Like Comt/NSF, Shrub/CHMP4B has conserved membrane fusion functions.  

CHMP4B is a major component of the ESCRT-III complex, which mediates 

membrane fusion in many processes, including cytokinesis (Carlton and Martin-

Serrano, 2007; Morita et al., 2007), viral budding (Arii et al., 2018; Johnson et al., 

2018), and plasma membrane repair (Jimenez et al., 2014).  Recent work has shown 

that ESCRT-III also mediates membrane sealing during nuclear envelope reassembly 

(Vietri et al., 2015; Olmos et al., 2015) and nuclear envelope repair (Denais et al., 

2016; Raab et al., 2016).  Previous studies have shown that ESCRT-III localizes to 

lagging chromosomes that form micronuclei (Liu et al., 2018) and to micronuclei in 

interphase (Sagona et al., 2014; Willan et al., 2019).  In these cells, ESCRT-III seals 

the nuclear membrane around the lagging chromosome, preventing their entry into 

daughter nuclei and resulting in the formation of micronuclei (Liu et al., 2018).  

Membrane sealing prevents proper recruitment of nuclear pore complexes and can 

subsequently lead to increased chromothripsis (Liu et al., 2018).  In addition, ESCRT-

III activity on micronuclei in interphase might also be linked to micronuclei 

degradation through autophagy (Sagona et al., 2014). 
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In contrast to these reports, in which ESCRT-III activity results in the damage 

to or loss of key genetic information, we believe ESCRT-III activity on late-

segregating acentrics in Drosophila neuroblasts promotes maintenance of euploidy.  

We observed a failure of acentrics to enter into daughter nuclei in Shrub/CHMP4B-

depleted neuroblasts.  In our Shrub-depleted cells, acentrics exhibited segregation 

defects in addition to a decreased ability to reenter nuclei.  However, increased 

micronucleation in Shrub-depleted neuroblasts could not be explained due to either 

the increased distance of Shrub-depleted acentrics from daughter nuclei or their 

unequal segregation off the metaphase plate.  Neither of these variables correlated 

with increased micronucleation (Figure 26).  We hypothesize that the failure of 

acentrics to enter daughter nuclei when Shrub is depleted is likely due to the same 

inability to fuse membrane on acentrics to membrane on daughter nuclei as we 

believe occurs in Comt-depleted cells.  This could mechanistically explain the 

previously reported increase in in the frequency of cells with micronuclei observed 

when ESCRT-III components are depleted (Willan et al., 2019).  Additionally, we 

found Shrub localized to acentrics during acentric reintegration into daughter nuclei 

but not during acentric initial poleward movement (Figure 28), suggesting the main 

activity of Shrub on acentrics is during reintegration. 

We believe the Shrub-mediated acentric reintegration into daughter nuclei is 

most analogous to ESCRT-III’s role in nuclear envelope repair.  In our system, 

Shrub/CHMP4B-mediated membrane fusion between membrane on acentrics and 

membrane on nuclei is the first step in surrounding the acentric and the daughter 
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nucleus in the same nuclear envelope.  At this stage, a continuous sheet of membrane 

surrounds the acentric and the nucleus.  Most of the nucleus is encircled by lamin and 

nuclear pore complexes with the exception of a gap at the site of the channel (Figure 

23).  This geometry is reminiscent of transient nuclear envelope rupture events that 

can occur in migrating cancer cells (Denais et al., 2016).  In these cells, mechanical 

pressure on nuclei creates lamin- and nuclear pore complex-free membrane blebs 

through which chromatin protrudes.  Subsequent rupture of the membrane at these 

sites is followed by the restoration of nuclear envelope integrity through the action of 

ESCRT-III (Raab et al., 2016; Denais et al., 2016).  ESCRT-III can similarly repair 

ruptured membranes that occur on interphase micronuclei (Willan et al., 2019), 

highlighting that ESCRT-III’s nuclear membrane repair activity is not limited to 

primary nuclei.  Because of the striking similarity in the morphology of the ruptured 

nucleus to that of a telophase daughter nucleus on which a nuclear envelope channel 

has formed, it is possible that the ESCRT-III complex recognizes channels as if they 

were nuclear envelope ruptures and subsequently performs the same membrane 

sealing actions in both cases, thereby fusing the acentric-associated membrane with 

the daughter nucleus-associated membrane.  

A key unresolved issue is to identify the factors that govern ESCRT-III 

activity on reintegrating acentrics.  Addressing this issue might explain why ESCRT-

III activity on lagging chromosomes in human cells promotes the formation of 

damage-prone micronuclei (Liu et al., 2018), while ESCRT-III activity on lagging 

acentric fragments in Drosophila promotes the entry of those fragments into daughter 
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nuclei.  In budding yeast and human cells, ESCRT-III assembles on telophase 

chromatin through interactions between one of its components, CHMP7, and the 

nuclear membrane (Olmos et al., 2016) and LEM2, an INM protein (Gu et al., 2017).  

CHMP7 then recruits additional ESCRT-III components to form a functional 

complex.  Because nuclear membrane is recruited to both lagging whole 

chromosomes destined to form micronuclei (Liu et al., 2018) and to acentrics 

rejoining daughter nuclei, we would imagine that CHMP7 recruitment is similar in 

these two cases.  A potential candidate for differentially regulating ESCRT-III 

activity on lagging whole chromosomes and acentric fragments is Aurora B kinase.  

In humans and Drosophila, Aurora B inhibits ESCRT-III activity during abscission 

through phosphorylation of CHMP4C (Carlton et al., 2012; Capalbo et al., 2012).  It 

has been proposed that CHMP4C phosphorylation prevents formation of active 

ESCRT-III polymers (Capalbo et al., 2012).  Aurora B initially localizes to the DNA 

tethers connecting acentrics to daughter nuclei (Royou et al., 2010) and is necessary 

for channel formation (Karg et al., 2015).  Presumably, there is no Aurora B-coated 

tether connecting the lagging whole chromosome back to the main nucleus.  In this 

view, perhaps Aurora B specifically on the acentric and tether inhibits formation of a 

fully functional ESCRT-III complex until acentrics near daughter nuclei.  Thus, 

membrane sealing is delayed until reintegration.  On whole lagging chromosomes in 

human cells, ESCRT-III may be active much earlier and might therefore lead to 

“premature” membrane sealing and micronuclei formation.  
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The Shrub/CMP4B we observe localize to reintegrating acentrics may be 

involved in additional processes besides fusing membrane on acentrics to membrane 

on daughter nuclei.  Channel formation requires the disruption of nuclear pore 

complex assembly (Karg et al., 2015).  It is possible that localized inhibition of 

nuclear pore complex assembly results in malformed nuclear pore complexes 

specifically where the acentric will enter the nucleus.  In budding yeast, ESCRT-II/III 

component Chm7/CHMP7 is involved in sealing nuclear membrane around 

improperly formed nuclear pore complexes (Webster et al., 2016; Bauer et al., 2015).  

It is possible that ESCRT-III localizing to acentrics performs a similar function once 

acentrics begin to enter nuclei if channel formation had resulted in improper nuclear 

pore complexes. 

Finally, we found that efficient acentric reintegration was dependent upon the 

endoplasmic reticulum protein Rtnl2/RTN2 (Figure 25).  Rtnl2 is a member of the 

reticulon family, a group of proteins that play crucial roles in restructuring the 

endoplasmic reticulum throughout the cell cycle, including during mitosis (Voeltz et 

al., 2006).  Reticulon proteins stabilize areas of high membrane curvature (Voeltz et 

al., 2006), and altering the levels of different reticulons in the cell can affect the 

dynamics of nuclear envelope reassembly (Anderson and Hetzer, 2008).  It is possible 

that Rtnl2 is required to form or to stabilize curved nuclear membranes that may 

manifest as acentrics enter daughter nuclei.  Failure to form these curved membranes 

in Rtnl2 knockdowns may prevent fusion between acentric-associated and daughter 

nuclei-associated membrane ultimately resulting in micronuclei formation. 
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Acentric entry into daughter nuclei results in global changes to nuclear morphology  

Surprisingly, as the acentric entered the telophase nucleus, we often observed global 

disruptions in the organization of the nuclear envelope in addition to the local 

perturbations at the sites of acentric entry.  While the elongated shape of nuclei was 

expected due to the lamin extended from channels, we were surprised by the presence 

of additional blebs distant from this site and an overall wrinkled appearance to the 

nuclei.  One explanation for the global nuclear dysmorphia after acentrics rejoined 

daughter nuclei could be that restructuring the entire nuclear envelope is required to 

provide sufficient membrane, lamin and other components for the extensions.  

Abnormal nuclear shape might also result from acentric movement after it has been 

fully encompassed by a nuclear envelope.  I-CreI creates double-stranded DNA 

breaks in the pericentric heterochromatin of the X chromosome (Rong et al., 2002).  

I-CreI induction does not affect the viability of the fly (Royou et al., 2010), 

suggesting that the break between the acentric and the centric fragments is eventually 

repaired.  In Drosophila, heterochromatic breaks are moved to the nuclear periphery 

and are tethered to nuclear envelope components before they are repaired (Ryu et al., 

2015).  During homolog pairing in budding yeast meiosis, movement of 

chromosomes tethered to the nuclear envelope is correlated with nuclear envelope 

blebbing (Koszul et al., 2008).  Thus, the nuclear blebbing we observe after acentrics 

enter daughter nuclei through channels could be due to repair events occurring at the 

nuclear envelope that rejoin the acentric and centric fragments. 
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Misshapen nuclei have long been observed in diseased and cancerous cells, 

including both primary tumors and cultured cell lines (Zink et al., 2004).  Nuclear 

blebs are common in human diseases caused by mutations in A/C-type lamins, termed 

laminopathies (for review, see Capell and Collins, 2006).  In these diseases, blebs are 

marked by the presence of A-type lamins and the absence of B-type lamins (Goldman 

et al., 2004). In addition to laminopathies, cancer cells also frequently form nuclear 

envelope blebs absent of Lamin B.  For example, the prostate cancer-derived LNCaP 

and PC-3 cell lines have abnormal nuclear envelopes characterized by Lamin B-free 

blebs (Helfand et al., 2012).  Intriguingly, both LNCaP and PC-3 cells often divide 

with lagging chromosomes (Wang and Kung, 2012; Cosenza et al., 2017), and 

abnormal nuclear blebs in these cells were only detected following cell division 

(Helfand et al., 2012).  It would be interesting to see if these cancer cells undergo 

similar nuclear envelope reassembly modifications that facilitate the incorporation 

and repair of lagging and broken chromosomes.   

There is a key difference between the blebbing observed in cancer cells and 

those observed in our system.  In the former, lamin B is largely undetected in blebs 

(Helfand et al., 2012; Goldman et al., 2004), while in our system, we observe blebs 

forming with Lamin Dm0, the Drosophila ortholog of B-type lamins (Reimer et al., 

1995).  Computer modeling suggests that lamin B-free blebs form due to the result of 

local domains of lamin A expanding and adopting a distinct curvature (Funkhouser et 

al., 2013).  Lamin A blebbing is associated with high energy states where the blebs 

originate (Funkhouser et al., 2013).  We suspect that lamin Dm0-positive blebs 
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present when acentrics enter nuclei through channels are caused by localized bending 

and stretching of lamin Dm0.  We would likewise expect the presence of lamin Dm0-

positive blebs (Figure 22E; asterisk) to indicate an energetically unfavorable nuclear 

shape.  If so, the energy required to bend and bleb the lamin Dm0 might be a sign of 

an active mechanism for incorporating acentrics into daughter nuclei.  

Smaller than blebs, nuclear herniations are caused when malformed and/or 

malfunctioning nuclear pore complexes are sealed behind a nuclear membrane 

(Webster et al., 2016).  Because we observe local defective nuclear pore complex 

assembly on acentrics and at the sites of channel formation, it is possible these 

surveillance mechanisms contribute to the abnormal nuclear shapes observed when 

acentrics enter daughter nuclei.  However, it is hard to imagine how surveillance of 

defective nuclear pore complex assembly at the site of channels might lead to 

herniations elsewhere along the nuclear envelope unless global nuclear pore complex 

assembly was also disrupted.  We do not believe there is a global disruption of 

nuclear pore complex assembly in our system, as we observe strong peripheral GFP-

Nup107 localization along the rest of the nucleus.  Furthermore, nuclei with acentrics 

passing through channels still remain capable of sequestering GFP-NLS, albeit at 

lower levels compared to normal nuclei, which is likely due to the formation of 

channels (Montembault et al., 2017).  We therefore do not believe that the lamin 

blebs are caused by membrane sealing around malformed nuclear pore complexes. 

The work presented here focuses on the final steps in which late segregating 

chromatids enter daughter nuclei.  In summary, our results support a model in which 
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fusion of the reassembling nuclear membrane drives entry of chromosome fragments 

into daughter nuclei (Figure 29).  To our knowledge, this represents a novel 

mechanism by which cells dividing with lagging chromosomes are able to maintain 

their genome integrity. 
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Figure 29.  Model for membrane fusion-mediated acentric reintegration into daughter 
nuclei.  Acentrics (magenta arrow) lag behind on the metaphase plate while the 

undamaged sister chromatids segregate.  Acentrics remain connected to daughter 
nuclei by a previously described DNA tether (Royou et al., 2010).  In late anaphase, 
acentrics begin segregating poleward via the action of microtubules (not shown).  In 

telophase, all three major components of the nuclear envelope (dark green arrow: 
lamin, blue arrow: nuclear pore complexes, and yellow arrow: membrane) assemble 
on daughter nuclei, but only membrane assembles on acentrics.  Nuclear envelope 

channels form in the lamin, nuclear pore complex, and membrane on daughter nuclei 
to provide a passageway through which acentrics can enter nuclei.  Membrane fusion 

proteins such as NSF and ESCRT-III (light green arrow) localize to acentrics and 
daughter nuclei at the sites where acentrics first contact nuclei and mediate fusion 
between the membrane that is on acentrics and the membrane that is on daughter 
nuclei.  These membrane fusion events guide acentrics through channels and into 

nuclei allowing the dividing cell to maintain euploidy. 
 

Figure 29 
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Materials and Methods 

Drosophila stocks 

All Drosophila stocks were raised on brown food (Sullivan et al., 2000).  Crosses 

were performed at 25oC with the exception of crosses involving Shrub-GFP (Figure 

28), which were performed at 18oC.  Chromosome behavior was monitored using 

H2Av-RFP (stock #23561; Bloomington Drosophila Stock Center (BDSC, 

Bloomington Indiana).  elav-Gal4 (Lin and Goodman, 1994) was used to drive 

expression of transgenes under control of an upstream activating sequence (UAS).  

We used the following lines to monitor nuclear envelope components: UAS-Lamin-

GFP (#7376; BDSC), GFP-Nup107 (#35514; BDSC), and PDI-GFP (#6839; BDSC).  

y1v1 flies (#1509) were used as a control for the RNAi screen (Table 1).  The 

following RNAi lines were used: UAS-Rtnl2-shRNA (#58208; BDSC), UAS-Shrub-

shRNA (#38305; BDSC), UAS-Comt-shRNA (#31666, #31470; BDSC), UAS-

Snap24-shRNA (#28719; BDSC), UAS-Membrin-shRNA (#50515; BDSC), UAS-

Snap-shRNA (#29587; BDSC), UAS-Spastin-shRNA (#53331; BDSC), UAS-

Atlastin-shRNA (#36736; BDSC), UAS-Usnp-shRNA (#25862; BDSC), UAS-Syb-

shRNA (#38234; BDSC), and UAS-Snap25-shRNA (#34377).  We rebalanced RNAi 

stocks originally segregating Cyo to now segregate Cyo-GFP to allow for selection of 

the RNAi transgene at the larval stage.  In addition, we used the following mutant 

flies: comt6 (#26708; BDSC), and Rtnl1 (#12425; BDSC).  Flies containing UAS-

Shrub-GFP transgenes were generously provided by Dr. Fen-Biao Gao. 
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Live neuroblast cytology 

For experiments involving live imaging of acentrics, crawling female third-instar 

larvae were heat shocked for 1h at 37oC.  After 1-6h of recovery, brains were 

dissected in PBS and squashed between a slide and coverslip (Buffin et al., 2005).  

We filmed neuroblasts along the periphery of the squashed brain.  Slides were imaged 

for up to 1h. 

Time-lapse imaging for the RNAi screen was performed using both a Leica 

DM16000B wide-field inverted microscope equipped with a Hamamatsu EM-CCD 

camera (ORCA 9100-02) with a binning of 1 and a 100X Plan-Apochromat objective 

with NA 1.4 and an inverted Nikon Eclipse TE2000-E spinning disk (CSLI-X1; 

Nikon, Garden City, NY) confocal microscope equipped with a Hamamatsu EM-

CCD camera (ImageE MX2) with a 100 x 1.4 NA oil immersion objective.  

Successive time points were filmed at 20 sec on the wide-field microscope and 10-18 

sec on the spinning disk microscope.  Spinning disk images were acquired with 

MicroManager 1.4 software. 

All imaging experiments involving distance and fluorescence quantification 

(Figure 21B-D, Figure 22A-D, Figure 23, Figure 25A’-D’, Figure 28) were 

performed exclusively using the spinning disk microscope.  Successive time points 

for experiments presented in Figures 21B-D, 22A-D, 23, and 28 were filmed at 18 

sec.  Successive time points for experiments presented in Figure 25A’-D’ were filmed 

at 10 sec.   
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Lattice Light Sheet Microscopy 

We performed lattice light sheet microscopy at the Advanced Imaging Center (AIC) 

of the Howard Hughes Medical Institute (HHMI) Janelia research campus.  Larvae 

were prepared as described above.  After dissection, whole brains were mounted 

unsquashed in a drop of 2% agar and then imaged in a slide bath containing PBS.  

Brains were excited by a Special Optics 0.65 NA 3.74 mm working water dipping 

objective and detected with a Nikon CFI Apo LWD 25X water dipping 1.1 NA 

objective.  Neuroblast divisions were filmed with a Hamamatsu Orca Flash 4.0 v2 

sCMOS camera.  Time-lapse movies were deskewed and deconvolved (Chen et al., 

2014) prior to analysis.   

 

Quantitative measurements 

The distances of acentrics to daughter nuclei was calculated either as the distance of 

the furthest point on the acentric to the nearest point on the daughter nucleus (Figures 

21D, 22D, and 25A’-D’) or as the distance of the nearest point on the acentric to the 

nearest point on the daughter nucleus (Figures 22C and 26A).  Distances were 

calculated at the time points indicated in the sections describing each figure.  The 

lengths of lamin extensions were measured from the nearest point on the nucleus to 

the furthest point of the extension (Figure 22B-D) at the time points mentioned while 

describing each panel.  All distances were measured in 3D space from Z-stacks taken 

during spinning disk microscopy.  
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The sphericities of daughter nuclei (Figure 22F) were measured in Imaris v9.2 

(Bitplane) by generating contour surfaces of the nuclear envelopes at the time of 

completed lamin reassembly (Figure 22E, right panels).  In brief, we drew regions of 

interest that aligned to the peripheral fluorescence intensity of Lamin-GFP in 

successive cross-sections throughout each Z-plane of the nucleus.  These regions 

were then use to construct the surface.  Sphericity values were calculated from the 

constructed surfaces. 

The distances of acentrics from daughter nuclei in our RNAi screen (Figure 

26A) were measured as described above.  Distances were measured at the point when 

acentrics began their poleward movement.  The time of acentric segregation (Figure 

26B) was determined by measuring the time between anaphase onset and when 

acentrics first began their poleward movement.  Measurements were performed in Fiji 

(Schindelin et al., 2012).  Distance measurements were only made on movies 

acquired using spinning disk confocal microscopy, while time measurements were 

made on movies filmed both with the wide-field and spinning disk microscopes. 

Quantitative measurements of nuclear envelope components on acentrics 

(Figure 23A’-C’) were made in Fiji.  We created a region of interest around the 

acentric or nucleus at each time point and measured the background-subtracted 

fluorescence intensity of the GFP signal from sum projections for the drawn region 

(Figure 24).  Intensities were divided by the areas of the regions of interest.  Each 

acentric was paired with the nucleus to which it was segregating.  All values in an 
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acentric/nucleus pair were then normalized to the highest value in the 

acentric/nucleus pair. 

 

Statistical analyses 

All statistical tests were performed in R (R Core Team 2018).  We used the following 

tests: paired t-tests (Figures 21D, 22B), independent two-sample t-tests (Figure 26), 

Mann-Whitney-Wilcoxon tests (Figure 22F), and chi-square tests (Figure 25).  

Additionally, we calculated the Pearson’s correlations for data presented in Figure 

2C-D in R. 

 

Figure Preparation 

Figures were assembled in Adobe Illustrator (Adobe, San Jose, CA).  Imaging data 

was processed in Fiji.  Selected stills were adjusted for brightness and contrast to 

improve clarity.  Images for experiments involving lattice light sheet microscopy 

were processed and analyzed using Imaris.  Graphs were created in R using the 

ggplot2 package (Wickham, 2016). 
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