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proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

Substrate specificity characterization for
eight putative nudix hydrolases. Evaluation of
criteria for substrate identification within the
Nudix family
Vi N. Nguyen,1 Annsea Park,1 Anting Xu,2 John R. Srouji,1,3 Steven E. Brenner,1,2,3* and

Jack F. Kirsch1,2*
1 Molecular and Cell Biology Department, University of California, Berkeley, California 94720

2 Graduate Program in Comparative Biochemistry, University of California, Berkeley, California 94720

3 Plant and Microbial Biology Department, University of California, Berkeley, California 94720

ABSTRACT

The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the cata-

lyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some

degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investi-

gated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These pro-

teins were screened for hydrolase activity against a 74-compound library of known Nudix enzyme substrates. We found

substrates for four enzymes with kcat/Km values >10,000 M21 s21: Q92EH0_LISIN of Listeria innocua serovar 6a against

ADP-ribose, Q5LBB1_BACFN of Bacillus fragilis against 5-Me-CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridi-

um perfringens against 8-oxo-dATP and 3’-dGTP, respectively. To ascertain whether these identified substrates were physio-

logically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty-two Nudix enzymes are

reported to have activity against canonical NTPs. With a single exception, we find that the reported kcat/Km values exhibited

against these canonical substrates are well under 105 M21 s21. By contrast, several Nudix enzymes show much larger kcat/Km

values (in the range of 105 to >107 M21 s21) against noncanonical NTPs. We therefore conclude that hydrolytic activities

exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of

unavoidable collateral damage occasioned by the enzymes’ inability to distinguish completely between similar substrate

structures.

Proteins 2016; 84:1810–1822.
VC 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
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INTRODUCTION

The Nudix protein superfamily is vast and diverse.1,2

It comprises about 50,000 members in the Nudix clan

(Pfam ID: CL0261) of the Pfam database (version

27.0),3,4 and all members share a characteristic �130

amino acid beta-grasp domain architecture5 classified as

the Nudix fold (SCOPe v2.03 SUNID 55810, SCCSID

d.113;6,7). Many Nudix proteins are pyrophosphohydro-

lases. They catalyze the hydrolysis of nucleoside diphos-

phates linked to some other moiety, X.1 These Nudix

hydrolases are typically characterized by a sequence of 23

amino acids [Gx5Ex7REUxEExGU], where U can be Ile,

Leu, or Val, and x represents any amino acid. The
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common structural theme amongst Nudix hydrolases is

that the active site contains a magnesium binding site

that serves to recognize the pyrophosphate linkage com-

mon to all Nudix substrates.4 In the Pfam database,

non-hydrolase proteins are also classified under the

Nudix clan. For these proteins, one or a few conserved

residues of the 23-amino-acid Nudix box vary. They do

still share a characteristic �130 amino acid beta-grasp

domain architecture5 classified as the Nudix fold (SCOPe

v2.03 SUNID 55810, SCCSID d.1136,7).

Although Nudix proteins were originally proposed to

catalyze reactions that “sanitize” the nucleotide pool, and

thus act as “housecleaning” enzymes,1 they are now

known to exhibit a wide range of activities apparently

delimited only by the common recognition of a pyro-

phosphate bond of the substrate. As of July 2013, 171

Nudix proteins had been experimentally characterized (J.

R. Srouji et al. Submitted), which serve a variety of cellu-

lar functions, including messenger RNA decapping,8

alternative mRNA polyadenylation,9 30!50 RNA exonu-

clease activity,10 isopentenyl pyrophosphate isomeriza-

tion,11 ADP-ribose responding calcium channel

gating,12 ADP-ribose responding transcriptional regula-

tion,13 SIRT1 or related deacetylase regulation,14,15 and

hydrolysis of a large group of nucleoside diphosphate

derivatives.16 Specifically, a large subset of enzymes in

this family hydrolyzes potentially mutagenic NTPs, such

as 8-oxo-dGTP,17 2-OH-dATP,18 and 5-methyl-UTP.19

Although sequences for about 50,000 Nudix family

genes are available, X-ray or NMR structures of only 78

Nudix proteins are found in the PDB database (Feb 1st,

2013).20 Some experimental characterization data are

available for �2/3 of these 78 proteins, but the identities

of the true physiological substrates for many of them are

uncertain. The eight proteins selected for functional char-

acterization in this study were chosen because: (1) X-ray

structures were available; (2) none had been characterized

experimentally; and (3) they fall into well separated clades

of the Nudix family tree, based on sequence and structure

analysis (J. R. Srouji et al. Submitted). Thus substrate

identification for these enzymes would be expected to

provide a resource that would enhance computational

functional annotation of additional Nudix genes.

A screening library of 74 chemicals was assembled and

initially 63 of these were divided into 11 groups that

were screened as mixtures, and 11 chemicals were

screened individually. Chemicals from the most active

groups were selected and screened individually. The most

reactive compounds were assayed carefully to determine

the kinetic parameters. The medium throughput assays

were carried out with a phosphate sensor fluorescence

assay.21

Finally, many of the previously characterized enzymes,

as well as some of those investigated here, were found to

exhibit catalytic activity on a variety of substrates with

disparate values of kinetic constants. Thus, identifying

the true physiological substrates can often be a challenge.

In the Discussion Section, we suggest a series of criteria

to facilitate this process.

MATERIALS AND METHODS

Materials

One functionally characterized Nudix protein in this

study, B9WTJ0_STRSU, was encoded in a plasmid con-

structed by the Joint Center for Structural Genomics.

The other seven were encoded in plasmids supplied by

the New York SGX Research Center for Structural Geno-

mics. All eight were purchased from the PSI:Biology-

Materials Repository using the Clone IDs provided in

Table I.

The PBP A197C22 E. coli expression strain was a gift

from Dr. Martin Webb (National Institute for Medical

Research, UK). The BL21 (DE3) Escherichia coli expres-

sion strain was purchased from Invitrogen (Carlsbad,

CA).

The Novagen BugBuster protein extraction reagents

were from EMD4Biosciences (Gibbstown, NJ, USA). The

Gene Jet Plasmid Miniprep Kit was from Fermentas

(Glen Burnie, MA). Amicon Ultra-15 and 24 NMWL

10,000 and 0.22 lm PES syringe membranes were from

Millipore (Bedford, MA).

Modified nucleotides were purchased from TriLink

Biotechnologies (San Diego, CA), Jena Bioscience (Jena,

Germany), USB (Santa Clara, CA, USA), Fisher Scientific

Table I
Nudix Hydrolases Functionally Characterized in This Article

UniProt
Entry Name UniProt AC Clone ID Species PDB ID

A0ZZM4_BIFAA A0ZZM4 BbCD00291849 Bifidobacterium adolescentis 3FJY62

Q5LBB1_BACFN Q5LBB1 BfCD00292626 Bacteroides fragilis 3GWY63

Q9K704_BACHD Q9K704 BhCD00312276 Bacillus halodurans 3FK964

Q0TTC5_CLOP1 Q0TTC5 CpCD00291844 Clostridium perfringens 3FCM65

Q0TS82_CLOP1 Q0TS82 CpCD00291806 Clostridium perfringens 3F6A66

Q92EH0_LISIN Q92EH0 LiCD00291913 Listeria innocua 3I9X67

Q8PYE2_METMA Q8PYE2 MmCD00291907 Methanosarcina mazei 3GRN68

B9WTJ0_STRSU B9WTJ0 SsCD00104454 Streptococcus suis 3O8S69

Characterization of 8 Putative Nudix Hydrolases
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(Pittsburg, PA), and MP Biomedicals (Santa Ana, CA).

MDCC, common biochemicals and enzymes were from

Sigma-Aldrich (St. Louis, MO).

Fast Protein Liquid Chromatography (FPLC) was per-

formed on a BioLogic DuoFlow 10 workstation (from

Bio-Rad, Hercules, CA). The HisTrap HP liquid chroma-

tography column was supplied by GE Healthcare (Piscat-

away, NJ). Pi-sensor assays were performed on either a

FluoroMax-4 spectrofluorometer (from HORIBA Jobin

Yvon, Edison, NJ) or a GENios microplate reader (from

Tecan, Switzerland).

Nudix protein purification

The eight enzymes investigated here were purified with

a His-Tag protein purification protocol. The vector har-

boring Q8PYE2_METMA fused with the C-terminal 6-

His tag was extracted from the storage strain of the

PSI:Biology-Materials Repository (kanamycin resistant,

grown in LB medium) using the standard protocol of the

Gene Jet Plasmid Miniprep Kit. The plasmid was trans-

formed into BL21(DE3) cells.

Q8PYE2_METMA was expressed and purified as

described by Harris et al.23 with the following changes:

The BL21(DE3) cells bearing the pSGX3-

Q8PYE2_METMA plasmid were grown overnight in LB

at 378C, diluted with LB (1:50) to 4 L, and grown at

378C for about 2.5 h until Abs600 was between 0.5 and

1.0. IPTG was added to a final concentration of 0.5 mM

to induce protein production for 2 h. The cells were har-

vested by centrifugation at 4500g, at 48C for 20 min. The

cell pellets were stored at 2808C. Frozen cell pellets cor-

responding to 0.5 L of cell culture were lysed with Bug-

Buster reagents as described in the kit protocol. Cell

debris was removed by centrifugation at 5000g, at 48C

for 20 min.

The cell lysate was filtered through a 0.22 lm PES

syringe membrane, and the filtrate applied to a HisTrap

HP column equilibrated with 50 mM Tris-HCl buffer,

pH 7.6 containing 10 mM imidazole. Q8PYE2_METMA

was eluted with 0–100% gradient of buffer containing

500 mM NaCl and 500 mM imidazole. Q8PYE2_-

METMA fractions were combined and concentrated

to< 500 lL by Amicon filtration. The final preparation

of Q8PYE2_METMA was> 95% pure as judged from

SDS-PAGE. These fractions were combined, concentrated

to � 100 lM, divided into 20-lL aliquots, and stored at

2808C.

A0ZZM4_BIFAA, Q9K704_BACHD, B9WTJ0_STRSU,

Q0TTC5_CLOP1, Q0TS82_CLOP1, Q92EH0_LISIN and

Q5LBB1_BACFN were similarly purified. Additionally,

1 mM DTT was included throughout the purification

procedure for Q5LBB1_BACFN, Q92EH0_LISIN,

B9WTJ0_STRSU, Q0TTC5_CLOP1, Q0TS82_CLOP1,

Q9K704_BACHD and A0ZZM4_BIFAA to protect their

cysteine residues.

Preparation of the pi-sensor

Fluorescently labeled phosphate binding protein (PBP)

was expressed and purified as described in Xu et al.21

Mass spectrometric analysis of selected
substrates

Nanospray mass spectrometry was performed on 16 of

the 74 substrates for which high activities were found in

the initial screening assay. They were ADP-ribose, ADP-

glucose, cADP-ribose, 5-Me-dCTP, 5-MeOH-dCTP, 5-

OH-dCTP, 5-Me CTP, CTP, dCTP, 8-oxo-dATP, 8-oxo-

dGTP, 8-oxo-GTP, dGTP, GTP, 3’-dGTP, and ddGTP.

Negative mode nano spray was used for 5-Me-dCTP, 5-

MeOH-dCTP, 5-OH-dCTP, 8-oxo-dATP, 8-oxo-dGTP, 8-

oxo-GTP, dGTP, GTP, 3’-dGTP, and ddGTP. Positive

mode nano spray was used for ADP-ribose, ADP-glucose,

cADP-ribose, CTP, and dCTP. All substrates were >90%

pure.

Enzyme assays

The Pi-sensor kinetic assays were performed on a

GENios microplate reader (reaction volume 5 100 lL)

for initial screening and with a FluoroMax-4 spectro-

fluorometer (reaction volume 5 500 lL) for accurate

determination of the kinetic parameters. The standard

reaction mixture contained: 10 mM Tris-HCl, pH 7.6,

1 mM MgCl2, 5–10 lM PBP-MDCC (depending on the

concentration of background phosphate introduced by

the substrates impurities), 0.05 U/mL of yeast pyrophos-

phatase (PPase) where pyrophosphate was one of the

products, or 1 U/mL of alkaline phosphatase (APase),

where a nucleoside monophosphate was a Nudix enzyme

product. Experiments were done in all cases to verify

that sufficient coupling enzyme was present to ensure

that the rates of reaction were linearly dependent on the

concentration of the Nudix hydrolase. Nudix enzymes

concentrations ranged from 1–100 nM. The mixtures

were incubated at 378C and monitored continuously for

30 min on the microplate reader or for 5 min on the

spectrofluorometer. (GENios: kex 425 nm, kem 465 nm,

gain 50, 100 cycles, 378C; FluoroMax-4: kex 430 nm, slit

width 1 2 2.5 nm, kem 465 nm, slit width 1–5 nm,

378C).

A screening library of 74 commercially available puta-

tive substrates was assembled primarily from compounds

that had been shown to be active with one or more

Nudix hydrolases (J. R. Srouji et al. Submitted). Chemi-

cals were grouped initially by structural similarity and by

considerations of the necessity and choice of either alka-

line phosphatase or inorganic pyrophosphatase as a cou-

pling enzyme in the Pi-sensor assay.21 Typically the 74

substrates were screened in about 22 wells of the micro-

plate. Sixty three of the substrates were assembled into

11 groups; 11 others were assayed individually because of

V.N. Nguyen et al.
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Figure 1
Substrate specificity screening of eight putative Nudix hydrolases against a 74-compound library by Pi-sensor assay. Approximate kcat/Km values

(M21 s21) are reported with error bars. Each reaction was carried out at pH 7.6 and 378C with each substrate at 5 lM. Enzyme concentrations var-
ied from 1 to 100 nM. Sixty-three of the potential substrates were mixed into 11 groups and screened as indicated by the numbers in the left

brackets. The eleven substrates shown in the “ungrouped” bracket were initially screened individually in one plate. The kinetic values for com-

pounds that were assayed only in the specified group are reported with the grouped activity, which thus represents the upper limits for each com-
ponent substrate (white bars). Substrates that were assayed individually are reported with mean (gray bars) and standard errors if tested more than

three times. The X axes are scaled linearly and are different for each enzyme.



their high free phosphate background (Fig. 1, left brack-

ets and numbers).

Each substrate concentration was 5 lM in both

grouped and individual screenings. The compounds from

individual screening that showed significant activity over

background (600 RFU above background) were assayed

from 0 to 20 lM, with enzyme concentrations varied

from 1 to 100 nM. The kinetics were typically evaluated

for each substrate concentration three or more times,

with enzyme concentrations varying from 0.26 to 52 nM,

to determine the values of the Michaelis-Menten

parameters.

Data processing

The regression calculations below were performed with

scripts written in R.24 Pi-sensor standard curves for nor-

malizing fluorescence readings were obtained by titrating

inorganic phosphate under the same conditions as were

used in the experimental reactions. Fluorescence readings

were plotted against reaction time, and the linear regions

of the plots (RFU/s) yielded initial velocities, vi (lM Pi/

s). Plots of vi/[E0] were fit to the Michaelis-Menten

equation:

vi5
kcat S½ �
Km1 S½ �

or its transformation:

vi

E0½ �
5

kcat

Km
S½ �

11
S½ �

Km

respectively, by nonlinear regression to yield values of

kcat, Km and kcat/Km. For some reactions, nonlinear

regression failed to converge, or the standard errors for

kcat and Km were comparable to the fitted values them-

selves; in these cases, only the kcat/Km ratio was obtained

by linear regression with a fixed intercept of zero:

vi

E0½ �
5

kcat

Km

S½ �

Two equivalents of inorganic phosphate are ultimately

produced for those reactions that initially yield pyro-

phosphate in the presence of inorganic pyrophosphatase.

The values of vi were corrected for this factor. Data from

multiple trials were fitted into the same equation to yield

weighted average values of the kinetic parameters.

RESULTS

Functionally characterized nudix proteins

Enzymes Q0TTC5_CLOP1 and Q0TS82_CLOP1 are

from Clostridium perfringens (strain ATCC 13124/NCTC

8237/Type A), a Gram-positive, spore-forming, obligate

anaerobic bacterium. Bacterial alpha toxin produced by

C. perfringens is responsible for histotoxic infections,

such as gas gangrene. There are 13 putative Nudix pro-

teins in C. perfringens strain ATCC 13124, as annotated

by UniProt (release 2013_12),25 none of which had been

functionally characterized previously. Nudix proteins

have been shown to facilitate pathogenicity in the host26

as well as enhancing virulence of the pathogen.27

Enzyme Q92EH0_LISIN is from Listeria innocua

(strain CLIP 11262), a Gram-positive, non-spore forming

bacillus, which is a facultative anaerobe. L. innocua is

ubiquitous because it can survive in extreme pH and

temperature.28 It is important because it is very similar

to the food-borne pathogen Listeria monocytogenes, but is

non-pathogenic. In UniProt release 2013_12,25 none of

the functions of the nine putative Nudix proteins in L.

innocua (strain CLIP 11262) is reported as having been

functionally characterized.

Enzyme Q5LBB1_BACFN is from Bacteroides fragilis

(strain ATCC 25285/NCTC 9343). Bacteroides species is a

Gram-negative obligate gut anaerobe. B. fragilis is the

most frequent isolate from clinical specimens, and is

regarded as the most virulent Bacteroides species.29 Eight

genes from B. fragilis strain ATCC 25285 are annotated

as coding for putative Nudix proteins by UniProt release

2013_12,25 There are no experimental functional charac-

terization data for any of them.

Enzyme A0ZZM4_BIFAA is from Bifidobacterium ado-

lescentis, a gram-positive organism that is non-motile

and often observed in a Y-shaped form. The bacteria col-

onize human and animal intestinal tracts.30

Enzyme B9WTJ0_STRSU is from Streptococcus suis, a

Gram-positive bacterium. It is a pathogen of pigs and is

also a causative agent for zoonotic disease.31

Enzyme Q9K704_BACHD is from Bacillus halodurans,

a rod-shaped Gram-positive, spore-forming soil bacteri-

um that can survive in alkaline environments.32,33

Enzyme Q8PYE2_METMA is from Methanosarcina

mazei, a methane-producing archaeon. M. mazei is a

freshwater organism that can adapt to grow at elevated

salinities.34

Initial substrate screening

Figure 1 shows the results from substrate screening of

74 compounds for eight potential Nudix hydrolases, in

the presence of the appropriate secondary enzyme, name-

ly PPase or APase. Approximate kcat/Km values

(M21 s21) are reported with error bars when applicable.

The substrate screening results presented here emerged

from a two-step strategy. The substrates were initially

grouped by structural similarity and screened in groups.

Secondly, those substrates from the most reactive

group(s) were separated and screened individually. The

substrate concentrations for each compound—both in

V.N. Nguyen et al.
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the grouped mixtures and in the individual screenings—

were 5 lM. Sixty-three compounds were initially divided

into 11 groups, and screened in the mixtures. The mean

kcat/Km values of each group is represented by a white

bar. Compounds that passed the initial screening in

groups were assayed individually. Those activities are

shown in grey bars. Compounds were not assayed indi-

vidually in cases where the grouped activities were low

(for example, Q0TS82_CLOP1 and group 11). Eleven

compounds could not be grouped because of their high

phosphate background, and were screened individually.

Those activities are also depicted by grey bars.

High values for the specificity constant (kcat/

Km> 10,000 M–1 s21) were found for Q0TTC5_CLOP1,

Q0TS82_CLOP1, Q92EH0_LISIN and Q5LBB1_BACFN

with at least one substrate, and these reactions were

characterized extensively (see below).

Q8PYE2_METMA exhibits moderate activity toward

dinucleotide polyphosphates, where at least one of the

bases is adenine (Fig. 1, Q8PYE2_METMA, groups 3 and

4), with kcat/Km values of ca. 5,000 M21 s21; however,

Q8PYE2_METMA shows no preference with respect to

the structure of one of the two bases. This is consistent

with our previous report,21 where Q8PYE2_METMA

was shown to have moderate activities toward Ap3A,

Ap4A, and Ap5A, but has none with 8-oxo-dGTP.

B9WTJ0_STRSU catalyzes the hydrolysis of a variety

of dinucleotide polyphosphates such as Ap5U and Gp5G.

The kcat/Km value for Ap5U is �10-fold greater than that

found for the other tested substrates of this group; how-

ever, all of their kcat/Km values are <3000 M–1 s21.

No significant activity was found for A0ZZM4_BIFAA

or Q9K704_BACHD against any substrate tested, as all

kcat/Km values are< 1000 M21 s21.

Theoretically, the apparent kcat/Km value of grouped

activity should be equal to the sum of the kcat/Km values

from individual screening of the same group. This is,

however, generally not true for the data presented in Fig-

ure 1. Part of the inconsistency can be explained by the

large errors that are inherent in compound library

screening exercises. Specific examples include the reac-

tions of Q0TTC5_CLOP1 with 8-oxo-dATP, and of

Q8PYE2_METMA with Ap5U. Further the microplate

reader used here has lower precision than does the

cuvette spectrofluorometer. Finally, some compounds in

a grouped mixture might act as nonhydrolyzable sub-

strate analogs, thus they behave as competitive inhibitors

for an otherwise active substrate.

Michaelis-menten parameters for the most
active substrates

The enzyme-substrate pairs with approximate kcat/

Km> 10,000 M–1 s21 as identified from screening were

further characterized to determine the kinetic parameters

more precisely. Figure 2 shows the results for the

reactions of Q0TTC5_CLOP1, Q0TS82_CLOP1,

Q92EH0_LISIN, and Q5LBB1_BACFN with their most

reactive substrates. The kinetic parameters and their

standard errors are given in Table II.

Q0TTC5_CLOP1

The most reactive substrate tested for

Q0TTC5_CLOP1 is 8-oxo-dATP with kcat/Km 5 (2.8 6

0.7) 3 106 M21 s21. This value approaches the

diffusion-controlled limit (see Discussion). The next

most reactive substrates are in order: 8-oxo-GTP, which

is about one-third as reactive, followed by 8-oxo-dGTP,

dGTP, dATP, and GTP. Based on considerations elaborat-

ed in the Discussion section, it is tentatively concluded

that 8-oxo-dATP and 8-oxo-GTP are the target substrates

for this housekeeping enzyme. Q0TTC5_CLOP1 discrim-

inates variously between the ribose and deoxyribose moi-

eties of the substrate; for example, the kcat/Km ratio for

8-oxo-GTP >8-oxo-dGTP is 3, but it is 100 for dGTP

versus GTP. Comparison of the vi/[E0] values in the

absence of PPase (data not shown) indicated that

Q0TTC5_CLOP1 cleaves the substrates mainly at the a-b

pyrophosphate bond.

Q0TS82_CLOP1

30-dGTP is the most reactive substrate for

Q0TS82_CLOP1 with a kcat/Km value 5 (1.6 6 0.06) 3

104 M21 s21. This figure is not sufficiently large to war-

rant the conclusion that this compound is a physiological

target for this enzyme. dGTP is half as reactive as 3’-

dGTP. ddGTP follows with about one-third of the activi-

ty of 3’-dGTP. The vi/[E0] values in the presence of

PPase are substantially greater than those recorded in its

absence (data not shown), indicating that

Q0TS82_CLOP1 predominantly catalyzes the hydrolysis

of the tested substrates at the a-b pyrophosphate bond.

Q92EH0_LISIN

Q92EH0_LISIN is most reactive toward ADP-ribose in

the presence of APase with a kcat/Km value of

(1.85 6 0.08) 3 106 M21 s21, ADP-glucose and cADP-

ribose are 30% and about 13% as reactive, respectively.

Q5LBB1_BACFN

Q5LBB1_BACFN efficiently catalyzes the hydrolysis of

5-substituted cytidine nucleotide triphosphates, that is,

5-Me-dCTP, 5-MeOH-dCTP, and 5-OH-dCTP (Fig. 2,

Q5LBB1_BACFN). This enzyme does not discriminate

between the 5-Me (kcat/Km 5 (4.8 6 1.0) 3 106 M21 s21)

and 5-MeOH (kcat/Km 5 (4.4 6 1.0) 3 106 M21 s21)

substitutions. However, its activity against 5-OH-dCTP is

about 50-fold lower (kcat/Km 5 (8.5 6 1.4) 3 104

M21 s21). Comparison of the vi/[E0] values in the

Characterization of 8 Putative Nudix Hydrolases
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absence of PPase indicated that Q5LBB1_BACFN cleaves

the substrates mainly at the a-b pyrophosphate bond.

Some of the kinetic parameter determinations presented

have large standard errors, especially those for

Q5LBB1_BACFN (36% for 5-Me-CTP). We performed

control experiments to maximize the reproducibility of the

assay, including diluting the enzyme stock with different

protocols, repeating the experiment with different batches

of enzymes, washing the cuvette extensively with nitric

acid, stirring the reaction solution with magnetic bars, and

so forth In total, we repeated the measurement of 5-Me-

CTP activity on 6 different days and that of 5-Me-dCTP

on 14 different days, respectively. However, large standard

errors were found on each of the different days, and when

using each of the different approaches above. Therefore,

the large error bars (Fig. 2, Q5LBB1_BACFN)—represent-

ing the entirety of the experiments—were not due to any

of the factors that were considered.

In summary, a total of eight putative Nudix hydrolases

was screened for activity against our library of 74 demon-

strated substrates for this group of enzymes. Three of the

enzymes were found to exhibit kcat/Km values of >106

M21 s21 for either ADP ribose or for a noncanonical

NTP, and, by the criterion presented in the Discussion,

can be reasonably assigned the designated physiological

function. The highest activity for the fourth enzyme is

hydrolysis of the noncanonical 3’-dGTP, but the kcat/Km

value of 1.6 3 104 M21 s21 is too low to allow a confi-

dent assignment of this activity to this enzyme.

To explore whether protein structure might help the

assignment of function for the eight newly assayed

enzymes, we studied the structures of the proteins consid-

ered herein and their similarities to other structurally char-

acterized Nudix proteins. The results were unrevealing.

DISCUSSION

Principles to identify the physiological
substrates for Nudix enzymes

Historically, enzymes were usually identified by pursu-

ing a predefined assay to the point of highest specific

Figure 2
Kinetic characterization of 4 Nudix hydrolases against their most reactive substrates. The highly active substrates were identified in the initial plate

reader screen. The reaction rates were monitored spectrofluorometrically in the Pi-sensor assay. The substrates specified in the legends are sorted by
decreasing values of kcat/Km. Error bars are shown when where replicate determinations were carried out. All assays were performed at pH 7.6 and

378C, with enzyme concentrations varying from 0.26 to 52 nM. The coupling enzymes employed are listed in Table II. The fitted curves were calcu-
lated by either linear or nonlinear regression, as specified in the methods section.
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activity as the enzyme was purified in stages. The homo-

geneity of the purified protein was usually ascertained by

the available technology, and a limited range of alternate

substrates was sometimes investigated. It is now recog-

nized that many enzymes have more than a single

activity.35,36

The results presented in this article report an explora-

tion of possible substrates for eight putative Nudix hydro-

lases. However, the mere observation of significant catalytic

activity with a given substrate does not necessarily serve to

define it as the physiological target. Here we propose a set

of criteria to help to achieve such target identification for

Nudix enzymes. We argue that a diffusion-controlled kcat/

Km value (ca.> 106 M21 s21) is usually definitive. When

kcat/Km is much less than this figure, genetic evidence and,

to a lesser extent, genomic methods (see below), may pro-

vide conclusive evidence for an assignment. Although

many Nudix hydrolases are reported to have activities for

canonical nucleoside triphosphates (Table III), only one of

these activities exhibits a kcat/Km value> 105 M–1 s21, and

almost all the others have values of <104 M21 s21 (Table

III). Furthermore, many enzymes capable of hydrolyzing

canonical NTPs show higher activities to noncanonical

NTPs with similar structures. We therefore conclude that

the apparent activities against canonical NTPs likely repre-

sent collateral damage. This criterion could potentially be

applied generally when assigning physiological functions to

other proteins of this family. We used that gauge to assign

probable physiological activities for the three putative

Nudix hydrolases (Q0TTC5_CLOP1, Q92EH0_LISIN, and

Q5LBB1_BACFN) functionally characterized in this article

(Table II).

A nearly diffusion-controlled value of kcat/Km may

serve as a sufficient condition to identify a likely

physiological substrate, because virtually every enzyme

substrate encounter is catalytically productive, assuming

that said enzyme has physical access to that sub-

strate.37,38 Enzymes that catalyze such reactions have

been called “perfect” because they cannot be improved

by further evolution.39 The observation of a significantly

smaller kcat/Km value means that the investigated com-

pound may not be the physiological substrate for the

enzyme, or that such low activity is acceptable for the

enzyme’s cellular role. In cases where the substrate is

poorly hydrolyzed, the observed activity might provide

some hint regarding the structure of the physiological

substrate, which might be similar to that of the less

active substrate.

It is also possible that the physiological substrate for a

given Nudix hydrolase may exhibit a low value of kcat/

Km, if for example, the enzyme were allosterically regu-

lated. There are few reports of regulation of Nudix activ-

ity. The only biochemical evidence of allosteric

regulation of Nudix enzymes is for the ADP-ribose pyro-

phosphatase of E. coli (UniProt Entry Name: ADPP_E-

COLI). Although this enzyme’s kcat/Km of 1.75 3 106

M21 s21 for ADP-ribose40 is not low, this parameter is

increased by 8-fold in the presence of glucose 1,6-

diphosphate.41

Functional assignments based on lower than diffusion-

controlled values of kcat/Km may be ambiguous, due to

either catalytic promiscuity of the enzyme or significant

structural relationships among many substrates. The

results of genetic probes (for example, gene knockouts,

and complementation tests), alongside enzymatic assays,

are often definitive, as they provide orthogonal informa-

tion regarding the physiological role of the enzyme in

the cellular environment. For example, prior to genetic

Table II
Kinetic Parameters for Nudix Hydrolase Catalyzed Reactions

Enzyme Namea Substrate kcat (s21) Km (lM) kcat/Km (M21 s21)

Q0TTC5_CLOP1 8-oxo-dATP 2.5 6 0.1 0.93 6 0.26 (2.8 6 0.7) 3 106

8-oxo-GTP 2.6 6 0.1 2.2 6 0.4 (1.2 6 0.2) 3 106

8-oxo-dGTP 0.60 6 0.03 1.4 6 0.3 (4.3 6 0.9) 3 105

dGTP 6.9 6 1.5 38 6 12 (1.8 6 0.2) 3 105

dATP NDb NDb (2.2 6 1.5) 3 104

GTP NDb NDb 1,700 6 50
Q0TS82_CLOP1 30-dGTP NDb NDb (1.6 6 0.1) 3 104

dGTP NDb NDb 8,080 6 40
ddGTP NDb ND 5,200 6 400

GTP 0.26 6 0.02 59 6 6 4,400 6 100
Q92EH0_LISIN ADP-ribose NDb NDb (1.85 6 0.08) 3 106

ADP-glucose NDb NDb (2.97 6 0.04) 3 105

cADP-ribose NDb NDb (2.18 6 0.05) 3 105

Q5LBB1_BACFN 5-Me-CTP 16 6 3 2.5 6 1.2 (6.7 6 2.4) 3 106

5-Me-dCTP 14 6 1 3.0 6 0.8 (4.8 6 1.0) 3 106

5-MeOH-dCTP 45 6 11 10 6 5 (4.4 6 1.0) 3 106

5-OH-dCTP 0.78 6 0.11 9.2 6 2.8 (8.5 6 1.4) 3 104

aReactions were carried out at pH 7.6 and 378C. Inorganic pyrophosphatase was the coupling enzyme for Q0TTC5_CLOP1, Q0TS82_CLOP1 and Q5LBB1_BACFN, and

alkaline phosphatase for Q92EH0_LISIN.
bND, not determined as kcat/Km was obtained from linear regression fitting.
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analysis, the highest kcat/Km value for any examined sub-

strate reacting with E. coli RNA pyrophosphohydrolase

(gene name: rppH; UniProt Entry Name: RPPH_ECOLI)

was 2800 M21 s21 for Ap5A.42 The criteria introduced

above would cast doubt on the assignment of this as the

primary activity of this enzyme. Indeed, subsequent

experiments showed that this enzyme cleaves the pyro-

phosphate entity from the 50 triphosphate end of RNA to

yield a pyrophosphate ion (note that this is different

from mRNA decapping activity in eukaryotes, as the

eukaryotic mRNA has a m7G cap at the 50 end of RNA),

and in vivo accelerates the degradation of transcripts43;

these data support the contention that RNA is the physi-

ological substrate of RppH.

In addition to experimental characterization, function-

al assignment of enzyme activity is currently facilitated

by genomic methods including operon and protein fami-

ly evolution analyses.44–47 An illustrative example is

gmm from E. coli (UniProt Entry: GMM_ECOLI), which

has been designated as a GDP-mannose mannosyl hydro-

lase.48 Both the low kcat/Km value of 1600 M21 s21 for

GDP-mannose and biosynthetic considerations call the

Table III
Likely Physiological Substrates for Nudix Proteins With Canonical NTP Hydrolase Activities

Canonical NTP Likely physiological substrate

Uniprot Entry
Namea Substrate

kcat/Km

(1023 3 M21 s21) Substrate
kcat/Km

(1023 3 M21 s21) Non-kinetic evidence

MUTT_ECOLI dGTP 1053 8-oxo-dGTP 61,00053 Mutator strains show an increase in A:T-C:G
transversion70

Q9RRX6_DEIRA GTP 9071 Ap5A 12,00071

8ODP_HUMAN dGTP 6018 2-OH-dATP 1,70018

8-oxo-dGTP Complementation of E.coli MutT deficient cells72

NUDG_ECOLI CTP 4773 5-methyl-dCTP 1,30074

2-OH-dATP The gene knockout exhibited increased frequen-
cies of spontaneous and H2O2-induced muta-
tions, including G:C-T:A transversion, which is
elicited by 2-OH-dATP; Over-expression sup-
pressed such mutations75

DIPP_ASFB7 GTP 1.076 m7G-mRNA Hydrolysis of mRNA cap tethered to an RNA
moiety (gel)77

NUDB_ECOLI dATP 7.550 DHNTP Gene knockout reduced folate synthesis;
restored by plasmid with the gene51

NUDT1_ARATH TTP 1578 8-oxo-dGTP Complementation of E. coli MutT deficient cells78

Q6MPX4_BDEBA dGTP 2379 mRNA Complementation of E. coli RppH deficient cells80

A0R2K6_MYCS2 dCTP 4.481 8-oxo-dGTP Complementation of E. coli MutT deficient cells81

NUDJ_ECOLI GDP 5.482 CF3-, MeO-HMP-PP,
MeO-TPPb

Identified as one of the genes conferring resis-
tance to bacimethrin or CF3-HMP; Gene prod-
uct hydrolyzed CF3-HMP-PP, MeO-HMP-PP,
and MeO-TPP, the previously identified toxic
forms of the antibiotics Hydrolysis of HMP-PP
(genetic screening)83

YTKD_BACSU dGTP 4.684 mRNA Gene knockout prolonged half-life of plasmid-
encoded transcripts and reduced the yield of
monophosphorylated RNA 5'ends; A wild-type
copy restored it to normal85

YJ9J_YEAST GDP 4.452 Oxy-, oxo-ThDPc Gene knockout lowered oxythiamin resistance;
over-expression raised it52

NUD20_ARATH GDP 0.5452 Oxy-, oxo-ThDP Expression of the gene in S. cerevisiae
YJ9J_YEAST deletant strain increased oxy-
thiamin resistance53

TNR3_SCHPO GDP 252

B4FMB8_MAIZE GDP 0.3352

Q7CX66_AGRT5 UTP 5119

Q9HYD6_PSEAE UTP 3019

Q9A8K7_CAUCR UTP 13019

Y079_DEIRA CDP 2086

NUDI_ECOLI dTTP 1182

Q9RVP7_DEIRA dGDP 1.787

MUTT2_MYCTU dCTP 1.281

All of the Nudix enzymes that have had kcat/Km values determined for at least one canonical NTP are included in this table. The probable physiological substrates for

these were evaluated based on the criteria proposed herein and/or in the literature. The likely physiological substrate is unknown for several of the listed proteins.
aAll of the listed enzymes have reported kcat/Km values� 1.3 3 105 M21 s21 for the most reactive canonical NTP investigated.
b4-amino-2-trifluoromethyl-5-hydroxymethylpyrimidine pyrophosphate, 4-amino-2-methoxy- 5-hydroxymethylpyrimidine pyrophosphate, 2’-methoxythiamin pyrophosphate.
cOxythiamin diphosphate, oxothiamin diphosphate.
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assignment into question. gmm is part of an operon

responsible for the synthesis of colanic acid. The two

genes immediately upstream and downstream of gmm

encode a GDP-fucose synthase (fcl) and a predicted

colanic biosynthesis glycosyl transferase (wcal), respec-

tively.49 Moreover, GDP-mannose is synthesized by an

enzyme coded by cpsB in the same operon, immediately

downstream of wcal. It would be biologically wasteful for

the same operon to also code for an enzyme that hydro-

lyzes GDP-mannose, thus completing a futile cycle,

although it cannot be ruled out as a regulatory

mechanism.

Activities observed for canonical NTPs may
be the result of collateral damage

As of July 2013, 161 activities associated with 171

Nudix enzymes have been reported in a total of 192

papers (J. R. Srouji et al. Submitted). A total of 107

enzymes have Michaelis-Menten kinetic parameters

reported for at least one substrate. Twenty enzymes

exhibit kcat/Km values of 1062107 M21 s21 (37 enzyme-

substrate pairs); thus the physiological substrates of these

proteins may be assigned with a high degree of confi-

dence (see above). High quality genetic data support the

assignments of another 51 of the 171 enzymes. Therefore,

assignments are relatively secure for 71 of the 171 char-

acterized Nudix enzymes.

Twenty-two of the 171 have reported kcat/Km values

for the hydrolysis of canonical nucleotide triphosphates

(NTPs), including (d)GTP, (d)ATP, (d)CTP, TTP, and

UTP (Table III). However, none of the kcat/Km values is

>105 M21 s21, with the exception of one enzyme

(Q9A8K7_CAUCR), which exhibits a kcat/Km value of 1.3

3 105 M21 s21 for UTP.19 It is uncertain whether UTP

is or is not the physiological substrate. Notably, three of

these 22 Nudix hydrolases do have kcat/Km values> 106

M21 s21 for noncanonical NTPs (MUTT_ECOLI,

8ODP_HUMAN, and NUDG_ECOLI), providing evi-

dence that their true function may be to eliminate non-

canonical NTPs, supporting Bessman’s earlier

conclusion.1 The activity against canonical NTPs is

therefore likely collateral damage. Furthermore, function-

al assignments for 12 of these 22 enzymes have been

secured from genetic experiments, as discussed below.

Notably, not one of the physiological substrates for these

12 enzymes is a canonical NTP, despite the enzymes’

having some activity against them. There is a good

chance that the physiological substrates for the remaining

putative Nudix hydrolases have yet to be discovered.

An illustrative example of an enzyme function secured

with strong genetic evidence is nudB (UniProt Entry:

NUDB_ECOLI), which was originally characterized to

preferably hydrolyze dATP with kcat/Km of

6,600 M21 s–1.50 It was later found to hydrolyze

DHNTP, the substrate of the committed step in folic

acid synthesis, but the kcat/Km value is not high enough

(4.3 3 104 M21 s21) for definitive function assignment

based on the kinetic constant alone.51 However, the

deletion of nudB led to a reduction in folate biosynthesis,

which was completely restored by a plasmid carrying the

same gene.51

Genetic evidence also establishes that YJ9J_YEAST and

its homolog, NUD20_ARATH, catalyze the hydrolysis of

oxo- and oxy-thiamine diphosphate in vivo.52 Specifi-

cally, deletion of YJ9J_YEAST decreases the oxythiamin

resistance of its host Saccharomyces cerevisiae, and over-

expression of NUD20_ARATH restores the oxy-thiamine

resistance in YJ9J_YEAST-deleted S. cerevisiae. However,

the kcat/Km values are only on the order of 1000 M21 s21

for oxo- and oxy-thiamine diphosphate, while both

enzymes show higher activity for the canonical substrate

GDP.52 One explanation is that the low hydrolase activi-

ty for oxo- and oxy-thiamine diphosphate suffices

because thiamine diphosphate is not produced in the cell

in high quantities. Therefore, neither high catalytic activ-

ity for the designated substrate nor the perfection of sub-

strate selectivity is evolutionarily mandated.

It is likely that the activities observed for the hydroly-

sis of the canonical NTPs may simply be the result of

unavoidable collateral damage. For example, the well-

characterized MutT from E. coli effects the hydrolysis of

the potentially mutagenic, 8-oxo-dGTP with a kcat/

Km 5 6.1 3 107 M21 s21, but also catalyzes the hydroly-

sis of dGTP with a kcat/Km 5 1.0 3 104 M21 s21.53 A

factor of 103 corresponds to 4.2 kcal/mol, which is about

the degree of specificity that might be gained by a single

optimally placed charged hydrogen bond.54 The crystal

structure of the MutT complex with 8-oxo-dGMP shows

that MutT strictly recognizes the overall conformation of

the 8-oxo-guanine base through multiple hydrogen

bonds.55 Greater distinctions between similar molecules

by the hydrolase might be achievable, but evolutionary

considerations argue that substrate optimization would

progress only to the point where further differentiation

provides little or no added biological advantage. DNA,

RNA, and protein biosynthesis all require far more

robust selection of the component monomers, but this is

achieved subsequent to the committed steps by repair or

editing mechanisms, respectively at the ultimate expense

of further energy consumption.56

It does take considerable energy to make NTP and

other naturally biosynthesized Nudix substrates, such as

coenzyme A, NADH and FAD. Why would they be made

only to be subsequently discarded in a futile cycle? While

low values (<105 M–1 s21) of kcat/Km observed with

physiological substrates (for example, canonical NTPs,

CoA and its derivatives, and NAD1) might indicate that

the observed activity is not the major function of the

enzyme, it has to be recognized that these molecules in

addition to their major roles in central metabolism, have

additional regulatory functions. For example, hydrolysis
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of NAD1 may be a means for regulating the size of the

peroxisomal pool of nicotinamide coenzymes indepen-

dently of those in other subcellular compartments in

response to a change in available carbon source.57 Thus,

their concentration levels must be carefully monitored

and controlled.

While the data collected in Table III and elsewhere in

this article support the contention that unregulated

canonical NTP hydrolase activity is not a defining char-

acteristic of any enzymatically characterized Nudix

hydrolase, they do not allow the conclusion that it is

never purposeful to drive the hydrolysis of canonical

NTPs. For example, the enzyme, SAMHD1, which is

induced by HIV infection is allosterically activated by

dGTP, and converts dNTPs to the corresponding nucleo-

sides and inorganic triphosphate, presumably to reduce

the rate of viral replication.58 SAMHD1 is unrelated to

the Nudix family.

Newly functionally characterized nudix
hydrolases

Prior to this investigation, 20 Nudix enzymes had

been shown to have kcat/Km values >106 M–1 s21 for at

least one substrate. We screened eight new ones, whose

structures are known, against our library, and found

three (Q0TTC5_CLOP1, Q92EH0_LISIN, and

Q5LBB1_BACFN) to have kcat/Km >106 M21 s21 for at

least one substrate, expanding by 15% the group of char-

acterized Nudix enzymes with high kcat/Km values. These

three Nudix enzymes are also the first reported character-

ized examples from their respective host organisms. Five

of eight do not show significant activity against the com-

pounds in the library; their true activity remains to be

discovered.

Two of the previously functionally uncharacterized

Nudix hydrolases, Q0TTC5_CLOP1 and Q5LBB1_BACFN,

demonstrate higher kcat/Km values toward mutagenic

nucleoside triphosphates than for the closest canonical

NTPs. Q0TTC5_CLOP1 distinguishes the mutagenic NTPs

(for example, 8-oxo-dATP) from the canonical NTPs (for

example, dGTP) with a 10-fold difference in kcat/Km.

Q5LBB1_BACFN is most active against a mutagenic

nucleotide (5-substituted (d)CTP), with kcat/Km values are

>106 M21 s21. Q5LBB1_BACFN has much lower activity

against the canonical NTPs, as was shown in the screening

result (Fig. 1). The third enzyme, Q92EH0_LISIN, hydro-

lyzes ADP-ribose, also with a kcat/Km value >106 M–1 s21.

Therefore, based on these nearly diffusion-controlled spe-

cificity constants, it is likely that the physiological sub-

strates for these three hydrolases are now identified.

Q0TS82_CLOP1 shows significant activity only for

nucleoside triphosphates containing a guanine base (Fig.

1). Detailed kinetic analysis for four of these showed that

the best substrate assayed is 3’-dGTP (kcat/Km � 2 3 104

M–1 s21). There are no reports showing that this is a

naturally occurring molecule, although it is possible that

it may be formed following an aberrant reduction by

ribonucleotide reductase.59–61

The approximate kcat/Km values obtained for

Q8PYE2_METMA, B9WTJ0_STRSU, A0ZZM4_BIFAA,

and Q9K704_BACHD from the screening experiments

are fairly low (<5,000 M–1 s21); thus it is unlikely that

the appropriate substrates have been identified.

Our characterization of these enzymes will aid the pre-

diction of the functions of others in the Nudix protein

family. However, the huge size of the superfamily and its

functional plasticity mean that common approaches

often yield misleading results and even the most sophisti-

cated protein function prediction methods must be used

with care and deftness in this superfamily.88
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