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ABSTRACT
This work surveys the performance of several 
empirical models, all recalibrated to a common 
data set, that were developed over the past 25 
years to relate freshwater flow and salinity in the 
San Francisco Estuary (estuary). The estuary’s 
salinity regime—broadly regulated to meet urban, 
agricultural, and ecosystem beneficial uses—is 
managed in spring and certain fall months to 
meet ecosystem objectives by controlling the 
2 parts per thousand bottom salinity isohaline 
position (referred to as X2). We tested five 
empirical models for accuracy, mean, and 
transient behavior. We included a sixth model, 
employing a machine learning framework and 
variables other than outflow, in this survey to 
compare fitting skill, but did not subject it to 
the full suite of tests applied to the other five 
empirical models. Model performance was 
observed to vary with hydrology, year, and season, 
and in some cases exhibited unique limitations as 
a result of mathematical formulation. However, 

no single model formulation was found to be 
consistently superior across a wide range of 
tests and applications. One test revealed that the 
models performed equally well when recalibrated 
to a uniformly perturbed input time-series. 
Thus, while the models may be used to identify 
anomalies or seasonal biases (the latter being 
the subject of a companion paper), their use as 
inverse models to infer freshwater outflow to the 
estuary from salinity observations is not expected 
to improve upon the absolute accuracy of existing 
outflow estimates. This survey suggests that, for 
analyses that span a long hydrologic record, an 
ensemble approach—rather than the use of any 
individual model on its own—may be preferable to 
exploit the strengths of individual models.

KEY WORDS
San Francisco Estuary, Sacramento–San Joaquin 
Delta, estuarine salinity, X2, empirical model

INTRODUCTION 
Salinity intrusion in estuarine and deltaic waters 
is a natural phenomenon, although in developed 
watersheds the extent and timing can be heavily 
influenced by freshwater withdrawals and 
upstream water management and use. Excessive 
salinity intrusion is widely reported, notably in 
drier climates (Alber 2002). Salinity intrusion can 
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adversely affect native estuarine ecosystems as 
well as human uses of freshwater in proximity 
to estuaries and has therefore been subject to 
study and management in many parts of the 
world (Sklar and Browder 1998; Murray Darling 
Basin Ministerial Council 1999; Reinert and 
Peterson 2008; Fernández-Delgado et al. 2007). 
This is particularly true in California, with its 
relatively dry and variable (both intra- and inter-
annually) Mediterranean climate. San Francisco 
Estuary (the estuary), composed of a series of 
interconnected embayments, rivers, sloughs, and 
marshes as well as the Sacramento-San Joaquin 
Delta (referred to hereafter as the Delta), is an 
ecosystem of vital international importance, 
and is also the location of several diversion 
facilities that export freshwater to agricultural 
and municipal users across large parts of the 
state (Kimmerer 2004; Luoma et al. 2015). Water 
management has been concerned with salinity 
intrusion adversely affecting water supply and 
agriculture in the Delta since the early part of the 
20th century (CDPW 1931), and in more recent 
decades these concerns have evolved to include 
effects on the native ecosystem. Over the past 
8 decades, beginning with the construction of 
major upstream surface reservoirs, the salinity 
regime of the Delta has been highly managed. 
During most of the year, reservoir releases and 
freshwater exports are controlled to maintain 
downstream salinity targets based on water 
supply and ecosystem goals (Lund et al. 2010; 
Luoma et al. 2015). 

Salinity intrusion into the Delta varies as a 
function of freshwater outflow and tidal mixing, 
ranging from near-ocean salinity at the mouth 
of San Francisco Bay at Golden Gate, to near-
freshwater salinity in the upstream Delta 
channels (Figure 1), with an intermediate zone 
of freshwater influence where salinity moves 
landward and seaward seasonally as a function 
of Delta outflow. Other drivers of mixing include 
wind forcing, barometric pressure, and coastal 
effects (such as sea level and currents); however, 
these drivers are not typically considered in 
empirical models that we present here. The low 
salinity zone occurs at the landward edge of the 
estuary, where average daily salinities range from 

approximately 1 to 6 parts per thousand (ppt). 
X2—defined as the daily average position of the 
2 ppt bottom salinity isohaline, and measured as 
the distance in kilometers from Golden Gate—is 
a common indicator of the location of the low 
salinity zone, and has been correlated with the 
abundance of several estuarine species (Jassby et 
al. 1995). The position of the X2 isohaline during 
the months of February through June has been 
used as a basis of flow management in the Delta 
since 1995 and is regulated under the California 
State Water Resources Control Board’s Water Right 
Decision D-1641 (CSWRCB 2000). Currently, the X2 
position is also being managed during September 
and October at the end of wet, above- normal, 
and below-normal water years (WYs). Water years 
in California begin on October 1 of the previous 
calendar year. A large and growing published 
literature on the use of X2 position as a variable 
in fish abundance relationships will continue to 
shape future management of the estuary (e.g., 
Jassby et al. 1995; Feyrer et al. 2007; Kimmerer et 
al. 2009, 2013; Mac Nally et al. 2010; Cloern et al. 
2017; Tamburello et al. 2019; Murphy and Weiland 
2019).

Aside from its regulatory role, X2 also functions 
as a compact metric for describing the salinity 
distribution in the estuary. Jassby et al. (1995) 
observed that X2 “collapses” salinity data about 
an equilibrium mean salinity distribution and 
concluded that one can infer the entire mean 
salinity distribution if the isohaline position is 
known. Monismith et al. (2002) elaborated on the 
approximate self-similar characteristics of the 
estuary’s mean salinity distribution, and given 
assumptions of near self-similarity, Hutton et al. 
(2015) proposed an empirical model that predicts 
salinity as a function of X2 and longitudinal 
distance along the estuary.

Given the key role of X2 position in Delta water 
management and to California water resources 
in general, considerable effort has been devoted 
to understanding X2 behavior under various 
conditions, notably as a function of freshwater 
outflow and coastal water level. The seminal 
work that defined X2 and proposed its use as a 
regulatory metric, published in Schubel (1993), 
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included a detailed description of an empirical 
model that related observed salinity and Delta 
outflow. This model, subsequently published 
in Jassby et al. (1995), is well established in 
practice and has been shown to possess a balance 
of general accuracy, parsimony, and ease of 
implementation.

Over the following 25 years, several other 
empirical X2 models were published. Motivations 
for these efforts varied, and included an 
aspiration for greater empirical accuracy, a need 
to evaluate historically low flow conditions, 
and a desire to explore particular hypotheses 
concerning estuarine circulation and outflow. 
Examples of the latter motivation include the 
appropriate power law relationships to apply 
over the estuary’s diverse terrain, and whether 
the time rate of the estuarine response is more 
proportional to flow or salinity (which has 
implications for system response at fortnightly 
frequencies). The empirical models assume 
relationships between freshwater flow and 
intrusion length that are formally simple, 
ignoring system complexities such as estuarine 
geometry and the tidal operation of the nearby 
Suisun Marsh Salinity Control Structure (see 
Figure 1) that reroutes flow in the vicinity of the 
Sacramento and San Joaquin rivers’ confluence. 
The models were generally calibrated with 
observed salinity monitoring data in the estuary 
(Monismith et al. 2002; Hutton et al. 2015, 
Monismith 2017; Rath et al. 2017); however, one 
model (MacWilliams et al. 2015) was calibrated 
with salinity data from a spatially detailed 
hydrodynamic model. Because these models 
were published over a lengthy time horizon, 
different data sets and time-periods were used 
in their development. Although the Jassby et al. 
(1995) model arguably remains the most widely 
used empirical X2 model, to our knowledge, no 
comprehensive comparison of the published 
models has been undertaken.

The research objectives of this work include 
evaluating and comparing the performance of the 
different empirical X2 model formulations under 
a wide range of hydrologic conditions; testing 
their steady state, mean, and transient responses 

at different flow rates; and evaluating whether 
such models can be effectively used inversely 
as tools for estimating freshwater outflow 
from a known X2 position. This last objective 
is of interest because the measurement of net 
freshwater outflows from the Delta is challenged 
by large tidal flows in the region of the river 
confluence (especially under low flow conditions). 
Others have hypothesized that Delta outflow can 
be effectively estimated from the salinity state or 
gradient, which can be more easily measured in 
the field (CDWR 2016; Fleenor et al. 2016). 

To meet these research objectives, we first 
recalibrated the empirical models using outflow 
and X2 data from a common and relatively recent 
10-year period of record. Recalibration was a key 
part of this study and involved constraining all 
models with the same flow and X2 data to ensure 
that differences among models described in this 
work were the result of the model formulation 
and not the period of data used for calibration, 
which in many cases were decades apart from 
one another. We recalibrated the models to place 
them all on the same footing, and to ensure that 
differences in behavior could be attributed to 
the formulation and not the particular data set 
embedded in the original published calibrations. 
Therefore, it is important to note that when we 
use the term “model” in this analysis, we are not 
referring to the equations and parameters as 
published, but rather to recalibrated versions of 
the original empirical formulations.

We examined recalibrated model performance by 
comparing predictions with X2 position (using a 
variety of statistical methods) as estimated from 
a longer 50-year observed salinity record. Next, 
we examined recalibrated model residual trends 
over the longest available observed salinity record 
(that spanned nearly a century) to determine 
if the estuary’s flow-salinity response appears 
significantly altered over the past century. We 
also explored steady state and dynamic model 
responses to step changes and oscillations in 
outflow, using tests analogous to ones applied 
by Monismith (2017). Finally, we subjected the 
recalibrated models to outflow time-series 
perturbations, to evaluate whether they can be 

https://doi.org/10.15447/sfews.2021v19iss4art3
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effectively used inversely as tools for estimating 
freshwater outflow from a known X2 position. 
This survey of published empirical X2 models for 
the estuary provides insight into their behavior 
under typical and extreme conditions relevant 
for management and planning activities, and 
also provides insight into their broader utility 
in understanding the estuary’s flow-salinity 
response.

BACKGROUND
Geographic and Physical Setting 
The geographic focus of this paper is the upper 
portion of the estuary, including Carquinez Strait, 
Suisun Bay, and the western edge of the Delta 
(Figure 1). The Delta is the entry point of over 90% 
of the freshwater inflow to San Francisco Bay 
(Cheng et al. 1993) with inflow primarily from 
the Sacramento and San Joaquin rivers. The basic 
conceptual model of freshwater-saltwater mixing 
in estuaries with seasonally varying flow patterns 
such as the estuary is as follows: freshwater 
flows repel salinity downstream (seaward) across 
a mixing zone (with longitudinal and vertical 
gradients), and saltwater intrudes upstream 
(landward) during periods of low freshwater flow. 
The extent of the salinity gradient varies with 
tides on hourly to daily time-scales, and varies 
with the time history of freshwater flows on daily 
to seasonal time-scales. Salinity management in 
the estuary is primarily concerned with daily, 
fortnightly, and seasonal variability.

Definition of X2
X2, a measure of intrusion length, was originally 
defined in terms of bottom salinity, i.e. the 
position of the 2 ppt bottom salinity isohaline, 
and measured as the distance in kilometers 
from Golden Gate along the estuary centerline 
(Schubel 1993). However, the body of work on 
model development, model application, and 
regulatory compliance generally relies on 
surface salinity measurements computed from 
specific conductance. Use of surface salinity as 
a surrogate for bottom salinity is facilitated by 
an abundance of surface salinity measurements 
throughout the estuary, which developed in 
part because of precedent and the operational 

challenges of maintaining salinity sensors at 
depth. The estuary is known to be vertically 
stratified, with increasing stratification at greater 
river flows (Monismith et al. 2002). Jassby et 
al. (1995) accommodated stratification by using 
a constant factor to relate the bottom salinity 
to surface salinity, i.e. 2 ppt bottom salinity 
is assumed to correspond to 1.76 ppt surface 
salinity. MacWilliams et al. (2015) discussed 
this assumption and evaluated its accuracy 
and limitations; further examination of this 
assumption was beyond the scope of our work. We 
note that in some previous work, empirical model 
calibrations were performed using observed 
bottom salinity measurements (of which a more 
limited data set exists) or synthetic data from 
spatially resolved numerical models. When X2 is 
estimated from observed data at fixed locations, 
the value is computed by interpolation; however, 
a standardized interpolation methodology 
has not been identified within the scientific 
community, and the stations vary with respect 
to their representativeness laterally across the 
estuary. Even the definition of axial distance in 
various published works lacks a prescribed set 
of landmarks or routes. Based on variations in 
the authors’ own work and that of the referenced 
models, this introduces approximately 2 km of 
uncertainty to intrusion length estimates. For 
example, details on the route along the San 
Joaquin River upstream of the confluence—
through New York Slough or Broad Slough 
(Figure 1)—are occasionally omitted. When X2 is 
estimated from a numerical model, the value is 
obtained directly from a spatially resolved grid. 
For regulatory purposes, X2 is defined as the 
position of the 2.64 milliSiemens per cm (mS cm–1) 
surface isohaline (CSWRCB 2000). 

Published models and analyses often define 
the X2 isohaline, when located upstream (i.e., 
east) of the Sacramento and San Joaquin rivers’ 
confluence, to reflect an average position along 
the river branches. Hutton et al. (2015), by 
reporting unique model fits for each river branch, 
demonstrated greater salinity intrusion along the 
San Joaquin River branch for a given outflow. For 
consistency with other published work, here we 
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assume an average isohaline value when X2 is 
located upstream of the river confluence.

Salinity Intrusion Modeling
Because of sustained interest in salinity intrusion 
in the Delta, a variety of modeling tools have 
been developed and applied since the 1980s. Our 
subject here is one-dimensional (1-D) empirical 
models. Another category of tools includes 
numerical (1-, 2-, and 3-D) hydrodynamic and 
water-quality transport models. These process-
based models have been successfully used in 
numerous applications, ranging from operations 
and facility planning (CDWR 2020) to scientific 
exploration of fundamental estuarine mechanics 
(Cheng et al. 1993; Gross et al. 1999; Chua and 
Fringer 2011; Ateljevich et al. 2014; MacWilliams 
et al. 2015, 2016; Martyr–Koller et al. 2017). 

Although theoretically rigorous and capable 
of providing insight into the basic physics of 
freshwater-saltwater mixing in the estuary, 
the data and computational requirements of 
these tools—especially 3-D models—often limit 
application for studies that require consideration 
of extensive (i.e., multi-decade) hydrologic 
sequences. Also, given that none of these process-
based models have been exercised over the full 
range of historical hydrologic and geometric 
conditions, they are of unknown reliability in 
simulating extreme low flow conditions that 
occurred in the early part the 20th century. 
Therefore, empirical models remain useful for 
analysis of hypothesis testing of long hydrologic 
sequences as well as sequences that fall outside 
of typical calibration ranges and which may be 

Figure 1  Map of the San Francisco Estuary

https://doi.org/10.15447/sfews.2021v19iss4art3
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preferable under certain budget and schedule 
constraints. 

Empirical Models for X2
This work focuses on an evaluation of six 
empirical X2 models (see Table 1) published 
since 1995. Following the conceptual model 
of freshwater-saltwater mixing in estuaries 
previously described, all these models are driven 
by the time history of Delta outflow in some 
form. Figure 2 presents a simplified diagram that 
shows common elements of the empirical models. 
These model frameworks, the data used for 
calibration, and the interpolation methodologies 
are introduced below in chronological order.

Model 1: Jassby et al. (1995)
This model, the seminal empirical X2 model for 
the estuary, was formulated as an autoregressive 
equation (Schubel 1993) and is commonly referred 
to as the Kimmerer-Monismith equation after its 
developers. Estimates of historical X2 position 
from this widely used model are reported and 
updated in CDWR’s Dayflow model. Jassby et al. 
(1995) was originally calibrated using X2 values 

interpolated from surface salinity data and 
outflow estimates from the Dayflow model (with 
modified estimates of water consumption in the 
Delta) from October 1967 to November 1991—the 
most complete data set available at the time of 
publication in 1995:

	 	 (1)

where Q(t) is Delta outflow and X2(t – 1) is the 
previous isohaline position expressed as distance 
from the Golden Gate, and a, b, and c are fitted 
constants. The 2 ppt bottom salinity target was 
converted to an equivalent surface salinity 
target of 1.76 ppt for X2, assuming this ratio was 
fixed under all flow conditions, as noted above. 
Salinity values from fixed locations were linearly 
interpolated to obtain the distance corresponding 
to the X2 position. Several variations of the 
original equation coefficients have been reported, 
as summarized in Bernstein (2012). In more 
recent work (Roy et al. 2014), the model was 
recalibrated for each river branch using data for 
several different time-periods. Because a static 

Table 1  Summary of empirical X2 models for the San Francisco Estuary

Empirical model
Model 

no.
Independent  

variablesa
No. of fitting 
parameters Formulation comments Numerical limitations

Jassby et al. 1995 1 Q(t); X2(t – 1) 3 Seminal work utilizing an autoregressive 
formulation

Undefined at low 
outflow (Q(t) ≤ 0)

Monismith et al. 
2002 2 Q(t); X2(t – 1) 3

Modified Model 1 formulation based on argument 
that theoretical predictions for salinity intrusion 
involve power-law relations rather than logarithms

Undefined at low 
outflow (Q(t) ≤ 0)

MacWilliams et 
al. 2015 3 Q(t); X2(t – 1) 5 Modified Model 2 formulation to allow time 

constant for daily X2 changes to vary with outflow
Undefined at low 
outflow (Q(t) ≤ 0)

Hutton et al. 2015 4 G(t)b 3

Adapted antecedent outflow approach (Denton 
1993) to X2 prediction such that model is defined 
under low outflow conditions as frequently 
observed under early 20th- century conditions

None

Monismith 2017 5 Q(t); X2(t – 1) 3c Formulation based on dynamic behavior of salt and 
velocity fields, albeit represented in simplified form

Unstable at low 
antecedent X2

Rath et al. 2017 6

G(t);  
coastal water level 
and tidal range at 

Golden Gate

N/Ad

“Hybrid” formulation, modifying Model 4 by 
integration with a Bayesian artificial neural network 
(ANN) model and incorporation of additional tidal 
inputs

None

a.	 Q(t) = Delta outflow; X2(t – 1) = previous position of X2 isohaline; G(t) = antecedent outflow.
b.	 Formulation can be algebraically manipulated to become a function of Q(t) and X2(t - 1).
c.	 The original publication presents Model 5 with one fitting parameter. However, in our work, we refit three constants to improve predictive 

performance over the period of record.
d.	 The ANN-based formulation has many empirically determined parameters and is not directly comparable to algebraic model formulations.
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nonlinearity is applied to the model input (Q) and 
the model is otherwise linear, the time-series may 
be regarded to be of the Hammerstein type of 
block-structured model as described by Billings 
(2013). In particular, the logarithmic term in 
Equation 1 precludes its direct use when extremely 
low outflow conditions are being examined, and 
potentially introduces a mean bias under some 
flow conditions. The Jassby et al. (1995) model is 
hereafter referred to as “Model 1” for brevity. 

Model 2: Monismith et al. (2002)
This model is conceptually similar to Model 
1 described above, but the authors argue on 
theoretical grounds that power law relationships 
are superior to a logarithmic dependence on flow:

	 	 (2)

where a, b, and c are fitted constants. This model 
was originally calibrated with the same data used 
in Model 1.

To illustrate the assertion that these empirical 
models are driven by the time history of Delta 
outflow, Equation 2 is expanded to assist in 
evaluating the salinity “memory” of the Delta, 
where n is the number of antecedent time-steps 
evaluated:

	 	 (3)

By substituting typical values into the above 
expansion (not shown here for brevity), one can 

easily show that the antecedent term X2(t – n) has 
little influence on current salinity X2(t) beyond 
approximately 90 days. Put another way, the 
value of X2(t) is effectively resolved by the time 
history of Delta outflow over the preceding 3 
months. As with Model 1, this model’s formulation 
precludes direct use under extremely low outflow 
conditions, and the model’s nonlinearity is of the 
Hammerstein type. The Monismith et al. (2002) 
model is hereafter referred to as “Model 2.”

Model 3: MacWilliams et al. (2015)
Following an approach reported by Gross et al. 
(2009), this model (MacWilliams et al. 2015) was 
calibrated with synthetic bottom salinity X2 
values and Delta outflow data as produced by 
a 3-D hydrodynamic model of the estuary. The 
model was calibrated over a 3-year (April 1994–
March 1997) simulation period. The conceptual 
basis of this model is a dynamic weighting 
between the two terms in Model 2:

	 	 (4)

where α(t) is a dynamic function of outflow: 
α(t)= α0 · (m · Q(t) + b) that is bounded between 0 
and 1 and α0, m, b, c and d are fitted constants. 
This work relates the dynamic α(t) to the 
flow dependence of estuarine response time 
described by Lerczak et al (2009), but the 
development is intentionally agnostic as to 
causes of salinity adjustment, which may include 
stirring and dispersion processes. Noting the 
intuitive appeal of relating response time with 
flow after MacCready (1999), Monismith et 
al. (2002) discussed a potential refinement to 
their empirical X2 formulation that was later 
adopted by MacWilliams et al. (2015). Assuming 
a linear relationship between X2(t – 1) and Q(t), 
Monismith et al. (2002) found that the response 
time varied between 7 days at the highest 
flows and approximately 11 days at the lowest 
flows; however, they found that “… this more 
complicated model did not improve the fit to 
[surface salinity] observations nor did it reduce 
autocorrelation of the residuals.” Like Model 2, 
the power formulation in MacWilliams et al. 
(2015) precludes its direct use under extremely 

Figure 2  Simplified diagram showing common elements of the 
empirical X2 models

https://doi.org/10.15447/sfews.2021v19iss4art3
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low outflow conditions that occurred during some 
periods of the historical record. We note that, 
by substituting an antecedent outflow term for 
Q(t), the model’s time-scale of change would be 
related to X2 instead of instantaneous flow, and 
would be conceptually similar to models reported 
by Hutton et al. (2015) and Monismith (2017). 
The MacWilliams et al. (2015) model is hereafter 
referred to as “Model 3.”

Model 4: Hutton et al. (2015)
In contrast to the autoregressive formulations 
adopted by the previously introduced models, 
Hutton et al. (2015) does not explicitly utilize 
X2(t – 1) as an independent model variable. 
Rather, it transforms the outflow variable into 
an antecedent flow, G(t), a term that encodes 
the time history of outflow into each day’s value 
(Denton 1993). The model, a steady state solution 
of Equation 2 noted in Monismith et al. (2002)—see 
their Equation (10)—is formulated as a simple 
power function of antecedent outflow:

	 	 (5)

where a and b are fitted constants, and antecedent 
outflow is defined by the following routing 
function similar to one proposed by Harder (1977):

	 	 (6)

where Q(t) is Delta outflow and β is a fitting 
constant with units of flow · time. Denton (1993) 
observed that the term β/G(t) is a time constant 
that governs the rate at which G(t) approaches 
steady state. Algebraic manipulation of 
Equations 5 and 6 leads to an expression in terms 
of Delta outflow, Q(t), and antecedent salinity 
X2(t – 1):

	 	 (7)

where . The full Hutton et al. (2015) model 
includes an accompanying estimate of salinity at 

any position along the channel, not just the X2 
isohaline. This model was originally calibrated 
with X2 values interpolated (log-linear) from 2000 
through 2009 surface salinity data (assuming 
equivalence to 2.64 mS cm-1 specific conductance) 
and outflow values from the Dayflow model. 
In contrast to the aforementioned models, this 
model is well behaved under negative outflow. 
The Hutton et al. (2015) model is hereafter 
referred to as “Model 4.”

Model 5: Monismith (2017)
Monismith (2017), which was derived by the 
author from first principles through integration 
of the tidally averaged salinity balance equation, 
adopted simplifying assumptions to yield the 
following autoregressive form:

	 	 (8)

where v is a fitted constant, L0 is a reference 
intrusion length, Q0 is a reference outflow, and 
n = 5. The model is fully dynamic for intrusion 
length, rather than being derived from steady-
state relationships with lagged or integration 
terms added to accommodate dynamics. It 
incorporates work by Chen (2015) that suggests the 
response rate of intrusion length is proportional 
to the salinity state of the estuary (rather than 
flow) and should respond faster to outflow events 
when X2 is low. 

The model’s original calibration was based on 
observed bottom salinity measurements from five 
locations in the estuary, along with corresponding 
Dayflow-based outflow data, for a 9-month period 
that spanned October 2014 through June 2015, 
which is a period of extreme drought punctuated 
by high flow. X2 values were estimated from 
observed bottom salinity data that were low-
pass filtered with a Godin filter then smoothed 
spatially with a spline interpolation. Monismith 
(2017) also speculatively manipulated the training 
outflow time-series, reducing it by 2000 cfs. The 
sensitivity of the empirical X2 models to such a 
manipulation is described later in this paper. The 
Monismith (2017) model is hereafter referred to as 
“Model 5.”
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Model 6: Rath et al. (2017)
This model employs machine learning techniques 
to improve upon the X2 estimates produced by 
a reference model (Model 4). Artificial neural 
networks (ANNs), trained on several flow moving 
averages and tidal variables (water level and tidal 
range at Golden Gate), were fit to the residuals 
between observed X2 and predictions from the 
reference model:

	 	 (9)

where ε is the reference model residual. Two 
ANNs were developed to distinguish between the 
Sacramento and San Joaquin rivers’ branches of 
the estuary. For this work, X2 predictions from 
Rath et al. (2017) are reported as the average value 
from the two ANN model outputs. The model, 
which uses a more complex fitting algorithm 
and additional inputs besides Delta outflow, is 
not as easily implemented as the aforementioned 
models. The model was included in this survey 
to provide an empirical point of comparison with 
the other five empirical models on skill. The 
Rath et al. (2017) model is hereafter referred to as 
“Model 6.”

METHODS 
The methods used in this survey of X2 isohaline 
empirical models of the estuary were founded 
on the development and assembly of outflow 
and salinity data sets spanning nearly a century 
(WYs 1922 through 2017), and recalibration 
of the empirical models described above 
(excepting Model 6) to a common period. These 
recalibrated models were then subjected to a 
variety of statistical and perturbation tests of 
model performance. We used the more complex 
ANN-based Model 6 to compare the performance 
of models but did not recalibrate it. Details 
associated with the survey methodology are 
summarized below.

Data
Net freshwater flows out of the Delta are 
difficult to measure directly. As a result, several 
estimation approaches have been proposed 

over the years (CDWR 2016; Fleenor et al. 2016). 
While advances in direct flow measurements 
continue to occur, the regulatory definition 
of Delta outflow continues to be quantified 
through a water balance procedure known as 
the “Net Delta Outflow Index” (NDOI). NDOI—a 
quantity that represents daily average flow at the 
confluence of the Sacramento and San Joaquin 
rivers—is calculated as the sum of daily Delta 
river inflows along its periphery, minus net 
Delta channel depletions and Delta exports, and 
is reported in the Dayflow model. Monismith 
(2016) examined differences between NDOI and 
direct flow measurements over a recent historical 
interval (WYs 2008 through 2014) and found the 
two measures were coherent as time-series, 
although he observed that the root mean square 
difference between the two values is comparable 
to the magnitude of typical low flow NDOI values. 
Any systematic flaws in outflow will affect the 
calibration of parameters and the long-term 
accuracy of both empirical and mechanistic 
models, particularly in the upper estuary. For 
our work, NDOI was used as an estimate for 
daily outflow for the period spanning WYs 1930 
through 2017. We assembled daily outflow before 
October 1929 from work presented in Hutton et al. 
(2015).

An extensive data synthesis and cleaning effort 
reported in Hutton et al. (2015) that spanned 
WYs 1922 through 2012 provided most of the 
salinity data and X2 estimates used for our study. 
As summarized in the following paragraph, we 
updated this data set through WY 2017 as part of 
this work. Hutton et al. (2015) queried databases 
with continuous conductivity data from several 
sources, including the California Data Exchange 
Center, the Interagency Ecological Program 
and the US Environmental Protection Agency’s 
STORET. These data were further supplemented 
by US Geological Survey (USGS) data to represent 
high outflow periods when the low salinity zone 
extended far downstream into San Francisco 
Bay. The Hutton et al. (2015) procedures resulted 
in a master database with relatively complete 
conductivity-based records for the sub-period 
that spanned WYs 1968 through 2012; this sub-
period represents the system after completion of 
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major surface water storage and export projects 
in and upstream of the Delta. Some stations had 
a conductivity record before October 1967, but 
the coverage of stations across the gradient was 
incomplete until WY 1968. Hutton et al. (2015) also 
assembled legacy grab sample data across the 
estuary to develop a daily X2 record for the earlier 
sub-period that spanned WYs 1922 through 1967. 

We used the same procedures to extend the data 
set through WY 2017. We downloaded the latest 
flow and salinity data from CDEC and USGS to 
update the interpolated X2 data set from October 
2012 through September 2017. We downloaded 
these updated data from the stations along 
the estuary, and they are summarized in the 
supplemental information (Table A1 in Appendix 
A). For consistency with other published work, 
we used an average isohaline value when X2 
is located upstream of the confluence of the 
Sacramento and San Joaquin rivers. Our analysis 
focused on the more recent period that spanned 
WYs 1968 through 2017; however, a limited 
evaluation also considered the full period of 
record back to WY 1922. 

Model Recalibration
We recalibrated the empirical X2 models 
identified above (excluding Model 6) with 
common salinity (X2) and outflow (NDOI) data 
sets from WYs 2000 through 2009. We selected 
the calibration period to span a wide range of 
flow conditions that have been observed since 
construction of major reservoir and Delta export 
facilities. The 10-year period includes 1 wet 
water year, 4 above/below water years, and 
5 dry/critical water years. Although the original 
calibration period of Model 4 aligned with our 
study’s recalibration period, for consistency 
with the other models we recalibrated it to 
X2 values that represented average positions 
along the Sacramento and San Joaquin river 
branches. We recalibrated all models with X2 
values interpolated from near-surface salinity 
observations (we also refer to this as “observed” 
X2) using a consistent log-linear interpolation 
methodology. Recalibration for all models used 
a Markov Chain Monte Carlo (MCMC) procedure 
applied to a Bayesian normal likelihood. The prior 

distributions used in the inference procedure 
were informative but very weak relative to the 
amount of training data. Model 3 was originally 
fit using a Bayesian MCMC procedure, and for 
this work we used priors similar to those reported 
in MacWilliams et al. (2015). Details on model 
recalibration are provided in the supplemental 
information (Appendix A).

Statistical and Sensitivity Analyses
We tested and compared empirical X2 model 
performance in several ways using statistical 
and sensitivity analyses. The methodologies 
associated with each approach are described 
below.

We tested model performance statistically over 
the 50-year period of record (WYs 1968 through 
2017) using standard metrics, including the square 
of the correlation coefficient (R-squared), the 
Nash-Sutcliffe efficiency (NSE) index, the mean 
residual, and the RMSE. The NSE index indicates 
a perfect model fit for a value of 1. An NSE index 
approaching 0 indicates a model fit that is no 
more accurate than simply using the observed 
mean; an index value below zero indicates a 
model fit that is poorer than simply using the 
observed mean. We also used Sen’s slope (Sen 
1968)—a robust estimate of time trend—to evaluate 
potential model residual trends over the full 
period of record (WYs 1922 through 2017). 

We partitioned X2 and outflow data in several 
ways to conduct the statistical tests for the 
50-year period of record, including three bins that 
represented calibration (WYs 2000 through 2009) 
and validation (WYs 1968 through 1999 and 2010 
through 2017) periods, 12 bins that represented 
months, 50 bins that represented individual 
water years, and 9 bins that represented different 
hydrologic ranges as measured by current day 
outflow and antecedent (previous-day) isohaline 
position X2(t – 1). The empirical X2 models 
tend to perform best under conditions in the 
neighborhood of equilibrium, when antecedent X2 
and outflow are inversely related. Conditions that 
are inconsistent with this relationship (e.g., a high 
outflow event after an extended period of high 
salinity intrusion) tend to be poorly replicated 
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by the empirical X2 models, and reflect highly 
dynamic conditions not easily encapsulated in 
a single outflow time history. To differentiate 
empirical X2 model performance accordingly, we 
used a 9-bin data partition (as cited above). The 
number of data points in each bin are presented 
in Table 2.

After the statistical analyses, we explored steady 
state and dynamic model behaviors through a 
variety of sensitivity tests. First, we evaluated 
steady state flow at three characteristic X2 
positions in the estuary that are of regulatory 
importance. Next, we tested dynamic response 
by evaluating the immediate (single-day) rates 
of change in intrusion length excited by various 
changes in flow in a neighborhood around steady 
state. We further confirmed time-scales of change 
by evaluating dynamic model response to a step 
change in flow as reported in Monismith (2017). 
Specifically, we tested how long it took each model 
to make each possible one-step transition (high 
to mid, mid to low, and vice versa) between the 
three characteristic positions under a step change 
in steady-state flows. We further tested dynamic 
model response by imposing a 14-day period 
outflow oscillation around three equilibrium 
conditions. 

Given the regulatory importance associated 
with quantifying Delta outflow, and given the 
aforementioned difficulties associated with 
directly measuring net flows in the highly tidal 
environment around the Sacramento and San 
Joaquin rivers’ confluence, some have proposed 
the use of salinity data to infer outflow (CDWR 
2016; Fleenor et al. 2016). Implicit in this proposal 
is the assumption that a given salinity and salinity 

gradient tightly constrain the outflow history. To 
test this assumption, we again recalibrated the 
empirical X2 models, but this time with perturbed 
outflow time-series. Specifically, we adjusted the 
Dayflow outflow time-series uniformly upward 
and downward by 2,000 cfs, similar to a change 
reported by Monismith (2017). Thus, this analysis 
compared the frequency of model residuals 
from three distinct outflow scenarios: baseline 
NDOI (the initial recalibration), increased NDOI, 
and decreased NDOI. We compared residual 
time-series from these scenarios to see if the 
contrived outflow modifications produced poorer 
model fits. We hypothesize that poorer fits 
would indicate a tightly constrained relationship 
between salinity and outflow, and lend support 
to the use of salinity measurements to infer 
Delta outflow. Model 6 was not subjected to 
these sensitivity analyses because similar flow 
conditions were not incorporated in its training 
data set.

RESULTS 
Results from this survey of X2 isohaline empirical 
models of the estuary are presented below, 
following the methodology outlined above. 

Model Recalibration
The original and recalibrated parameter values 
for each of the empirical X2 models (excluding 
Model 6) are shown in Table 3. Recalibration 
to a common data set generally modified the 
original published values of the fitting parameter 
values; however, the changes are not dramatic. 
Although Model 5 constants Q0, L0, and n were 
not presented by the author as fitting constants, 
we refit the first two constants as part of this 

Table 2 Number of daily outflow and X2 data points (WYs 1968–2017) by hydrologic ranges as defined by current day outflow Q(t) and antecedent (previous-
day) isohaline position X2(t – 1)

Bin Q(t) < 5,000 cfs
5,000 < Q(t) 
< 30,000 cfs Q(t) > 30,000 cfs

N Bin no. N Bin no. N Bin no.

X2(t - 1) < 65 km 1 11 1,131 12 2,971 13

65 km < X2(t - 1) < 85 km 1,038 21 6,715 22 515 23

X2(t - 1) > 85 km 3,538 31 1,901 32 53 33
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work to improve predictive performance over the 
period of record. Figure 3 shows an illustrative 
time-series result for a specific year (WY 2008) 
comparing observed X2 and modeled X2 values 
from the updated calibrations. The bottom panel 
shows the NDOI value for each day on a log scale 
to compare salinity behavior with its primary 
driver. The models generally capture observed 
salinity behavior during this representative 
calibration period, although prediction across 
models varies from 5 to 10 km. For this period, 
none of the recalibrated models appear to fully 

capture the high flow winter events. Across other 
calibration years (data not shown), we similarly 
observe that general patterns are reasonably 
replicated, but more extreme events are not 
reproduced as well. 

Model 1, formulated as a logarithmic relationship, 
is undefined when outflow is less than or equal 
to zero. Similarly, Models 2 and 3 are formulated 
as power-law relationships, and are generally 
undefined when outflow is less than or equal 
to zero. Extreme salinity intrusion events 

Table 3  Original and revised empirical X2 model parameters after recalibration. Units are consistent with original publications; all are reported in metric 
units except Model 4 (which reports in mixed metric and English units). Recalibrated parameter values shown here are posterior means.

Model 1: Jassby et al. (1995)

a 
(km) b c

(km m-3s)

Original 10.2 0.945 – 2.30

Recalibrated 12.8 0.917 – 2.60

Model 2: Monismith et al. (2002)

a b  
(km m-3s) c

Original 0.919 13.57 – 0.141

Recalibrated 0.919 17.50 – 0.186

Model 3: MacWilliams et al. (2015)

 
c 

(km m–3s) d α0
m 

(m–3s) b

Original 284 – 0.23 1.025 – 1.12 x 10–4 0.977

Recalibrated 241 – 0.20 1.018 – 1.12 x 10–4 0.977

Model 4: Hutton et al. (2015)

X2(t) = a ∙ G(Q(t), β)b a  
(km * cfs–b) b β  

(cfs-years)

Original (Sacramento River) 456 – 0.193 475

Original (San Joaquin River) 502 – 0.203 475

Recalibrated (Average) 473 – 0.197 475

Model 5: Monismith (2017)

v  
(km)

Q0 
(m3s–1)

L0 
(km) n

Original 0.50 141 85 5

Recalibrated 0.31 143 87 5
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associated with persistent negative net outflow 
conditions are seen in the historical NDOI 
record, particularly before construction of Shasta 
Reservoir in 1944. Under such conditions, these 
models are incapable of producing a complete 
time-series of salinity predictions. In Schubel 
(1993), Kimmerer and Monismith recommend 
constraining the outflow record to a minimum 
value of 316 cfs when applying Model 1. In 
Bernstein (2012), challenges associated with 
predicting salinity under extreme salinity 
intrusion were noted; as a remedy, the outflow 
record was constrained to a minimum value of 
50 cfs when applying the same model. Through 
sensitivity analysis, we found that imposing a 
substantially higher minimum outflow constraint 
of 1,800 cfs minimized model residuals; we 

imposed this constraint on the NDOI time-series 
as part of the full period (WYs 1922 through 2017) 
evaluation process of Models 1, 2, and 3. As part 
of the recalibration process, these models were 
reinitialized with observed X2 positions when 
predictions were undefined.

As part of this work, we discovered that Model 5 is 
subject to oscillatory behavior under extremely 
high outflow conditions, resulting in alternating 
sequences of large and small X2 estimates during 
the high flow event. Specifically, the term 

 in Equation 8 becomes very large when 

the numerator X2(t – 1) is small compared to the 
denominator (i.e., reference isohaline length (L0) 
with a recalibrated value of 87 km) and dominates 

Figure 3  Time-series of observed and 
predicted X2 (upper panel) and Delta outflow 
(lower flow) for a representative year. Model 
predictions are based on recalibrations 
conducted as part of this work.

https://doi.org/10.15447/sfews.2021v19iss4art3


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

14

VOLUME 19, ISSUE 4, ARTICLE 3

the term . To censure the relatively few data 
points associated with these extremely high 
outflow conditions, a minimum constraint of 45 
km was imposed on model output as part of the 
model’s recalibration and evaluation process.

Using the 50-year surface salinity data set (WYs 
1968 through 2017), we compared the recalibrated 
model residuals on a monthly basis with those 

obtained using the original models (i.e., using 
the parameter values exactly as published) 
(Figure 4). The comparisons are shown for WYs 
1968 through 1999, WYs 2000 through 2009 (the 
calibration period), and WYs 2010 through 2017 
(a period including some extreme drought years 
in 2014-2015; this also included a year, 2015, 
where a salinity barrier was installed to reduce 
salinity intrusion). This is a broader comparison 

Figure 4  Comparison of daily X2 model residuals under the originally published parameters and the recalibrated parameters used in the rest of this 
work. Residual distributions are shown as boxplots for three different WY time-periods: 1968–1999 (left), 2000–2009 (center, the calibration period for 
recalibration), and 2010–2017 (right). Each combination of model and time-period then shows the daily residual distribution for each month within that 
category.
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than reported in the original publications. An 
important observation from this multi-decade 
comparison is that, with some exceptions, 
the original and recalibrated models perform 
similarly, thus confirming that we have not 
fundamentally altered model behavior through 
our recalibration process. A closer review of 
the plots shows that the performance of the 
recalibrated models is generally better than or 
similar to the original models (residuals closer to 
zero indicate better performance). Henceforth, 
results are presented only for the recalibrated 
models. 

Statistical Analyses
Water Years 1968 through 2017
Formal statistical comparison of empirical X2 
model performance over different time-periods 
is reported in tabular form using different 
metrics. Table 4 summarizes model statistics for 
three different sub-periods of the 50-year data 
record that spans WYs 1968 through 2017. As 
discussed earlier, the preceding sub-period (WYs 
1968 through 1999) encompasses the multi-year 

drought of WYs 1987 through 1992, WYs 2000 
through 2009 represent the model recalibration 
period, and the following sub-period (WYs 2010 
through 2017) encompasses the recent multi-year 
drought of WYs 2012 through 2016. Performance is 
reasonably strong across all models as measured 
by the reported metrics. The recent period 
of WYs 2010 through 2017 is associated with 
somewhat worse model performance relative to 
the calibration period; the recent period is more 
challenging to replicate according to the binning 
scheme of Table 2: outflow and salinity data fall 
in Bins 13, 22, and 31 (representing quasi-steady 
state conditions) an average of 142 days per year 
during the calibration period; whereas, the 
data fall in the same bins only 124 days per year 
during the recent period. This recent period is 
characterized by more dynamic conditions and 
includes more days of very high flow (Bin 13) 
and high X2 despite medium outflow (Bin 32). 
Model performance by month is presented in the 
supplementary information (Table A2). 

Table 4  Model performance statistics across three sub-periods of the 50-year time-series spanning WYs 1968–2017

Period (WYs) Model Model no. N R2 NSE
Mean residual 

(km)
RMSE  
(km)

1968–1999 Jassby et al. 1995 1 11375 0.92 0.91 – 0.29 4.04

Monismith et al. 2002 2 11375 0.92 0.91 0.22 4.17

MacWilliams et al. 2015 3 11375 0.94 0.93 0.10 3.54

Hutton et al. 2015 4 11394 0.94 0.94 0.05 3.46

Monismith 2017 5 11393 0.94 0.93 0.60 3.51

Rath et al. 2017 6 11394 0.96 0.96 0.23 2.85

2000–2009 Jassby et al. 1995 1 3586 0.90 0.90 0.00 3.85

Monismith et al. 2002 2 3586 0.89 0.89 0.01 3.97

MacWilliams et al. 2015 3 3586 0.92 0.92 0.01 3.39

Hutton et al. 2015 4 3589 0.92 0.92 0.01 3.33

Monismith, 2017 5 3589 0.93 0.90 0.19 3.72

Rath et al. 2017 6 3589 0.95 0.94 0.28 2.87

2010–2017 Jassby et al. 1995 1 2880 0.90 0.88 – 1.82 4.55

Monismith et al. 2002 2 2880 0.90 0.88 – 1.80 4.64

MacWilliams et al. 2015 3 2880 0.93 0.91 – 1.49 3.93

Hutton et al. 2015 4 2880 0.94 0.92 – 1.57 3.75

Monismith 2017 5 2880 0.94 0.89 – 1.29 4.40

Rath et al. 2017 6 2880 0.93 0.91 – 1.27 4.00
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Figure 5 shows the annual average RMSE for each 
model over the 50-year data record. Data points 
are color-coded according to the Sacramento 
Valley Index water year classification. Some 
consistent trends are visually apparent. For 
example, WY 2015 records the highest RMSE 
for all models, coincident with extreme drought 
conditions and placement of a temporary rock 
barrier in the western Delta to manage salinity 
(Lund et al. 2018). Another commonly observed 
trend (see Models 1, 2, and 5) is relatively high 
model residuals coincident with the extended 
drought of WYs 1987 through 1992. Empirical X2 
model performance does not appear to depend 
entirely on water year type: although the most 
poorly simulated years tend to be critical years, 

poor model performance is not universally 
associated with critical conditions.

Table 5 shows model statistics partitioned in 
9 bins according to antecedent salinity (previous-
day X2 position) and NDOI as defined in Table 2. 
As previously discussed under Methods, 
examining model performance in this manner 
is helpful because these models tend to be most 
accurate under quasi-steady state conditions. 
When antecedent salinity is consistent with 
the prevailing outflow regime, one can be 
reasonably confident that outflow conditions 
have not changed drastically over a very short 
time interval (e.g., a sudden storm event), and the 
notion of a daily average X2 is close to a single 
position in the estuary. The influence of quasi-

Figure 5  Annual average root mean square error (RMSE) for recalibrated X2 models for WYs 1968–2017. Each point represents the mean of the square 
of the daily residuals for a given model and water year. Points are colored according to the water year classification derived from the Sacramento Valley 
Index.
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Table 5  Model skill statistics across nine data bins that represent different hydrologic ranges over the 50-year time-series spanning WYs 1968–2017. The 
data bins are defined by current day outflow Q(t) and antecedent (previous day) isohaline position X2(t – 1). 

Bin no. X2(t – 1) Bin Q(t) Bin Model Model no. N
Mean residual 

(km)
RMSE  
(km)

12 X2(t – 1) < 65 km 5,000 cfs < Q 
< 30,000 cfs

Jassby et al. 1995 1 1131 0.94 3.91

Monismith et al. 2002 2 1131 0.78 3.61

MacWilliams et al. 2015 3 1131 1.71 3.55

Hutton et al. 2015 4 1131 1.76 3.38

Monismith 2017 5 1131 4.12 4.94

Rath et al. 2017 6 1131 1.47 3.07

13 X2(t – 1) < 65 km Q > 30,000 cfs

Jassby et al. 1995 1 2971 – 1.46 5.09

Monismith et al. 2002 2 2971 0.83 4.52

MacWilliams et al. 2015 3 2971 0.17 3.42

Hutton et al. 2015 4 2971 – 0.40 3.39

Monismith 2017 5 2971 3.03 4.60

Rath et al. 2017 6 2971 0.33 3.07

21 65 km < X2(t – 1) < 85 km Q < 5,000 cfs

Jassby et al. 1995 1 1026 3.00 3.95

Monismith et al. 2002 2 1026 3.01 4.25

MacWilliams et al. 2015 3 1026 – 0.08 2.88

Hutton et al. 2015 4 1038 1.03 2.55

Monismith 2017 5 1038 0.18 2.09

Rath et al. 2017 6 1038 0.53 2.19

22 65 km < X2(t – 1) < 85 km 5,000 cfs < Q 
< 30,000 cfs

Jassby et al. 1995 1 6714 0.07 2.95

Monismith et al. 2002 2 6714 – 0.73 3.03

MacWilliams et al. 2015 3 6714 – 0.05 3.27

Hutton et al. 2015 4 6715 0.02 2.88

Monismith 2017 5 6714 0.73 2.85

Rath et al. 2017 6 6715 0.42 2.61

23 65 km < X2(t – 1) < 85 km Q > 30,000 cfs

Jassby et al. 1995 1 515 – 2.19 4.66

Monismith et al. 2002 2 515 – 2.20 4.68

MacWilliams et al. 2015 3 515 – 3.71 5.47

Hutton et al. 2015 4 515 – 4.85 6.11

Monismith 2017 5 515 – 2.27 4.38

Rath et al. 2017 6 515 – 0.72 3.45

31 X2(t – 1) > 85 km Q < 5,000 cfs

Jassby et al. 1995 1 3529 0.24 3.82

Monismith et al. 2002 2 3529 1.42 4.81

MacWilliams et al. 2015 3 3529 0.51 3.48

Hutton et al. 2015 4 3538 0.62 3.44

Monismith 2017 5 3538 – 1.74 3.25

Rath et al. 2017 6 3538 – 0.38 3.35
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steady state conditions on model performance 
is visually demonstrated in Figure 6, where the 
panels aligned with the diagonal that runs from 
bottom-left to top-right (Bins 13, 22, and 31) show 
model residuals more closely centered on 0 km.

Table 6 sorts the magnitude of the mean residual 
for each model and bin into three different 
subjective skill categories: excellent (0 km 
to 2 km), adequate (2 km to 5 km), and poor 
(> 5 km). The span of the first category is meant 

Figure 6  Boxplot of model residuals (predicted–observed) for the recalibrated empirical X2 models over the 50-year time-series spanning WYs 1968–2017. 
The data are partitioned by hydrologic ranges as defined by current day outflow and previous day isohaline position. Plot range is restricted to – 10 km 
to 10 km for visual clarity, censoring only a very small number of points that fall outside that range. The first panel is empty because only 1 data point 
is associated with that bin. For each category, the box spans the 25th to 75th percentiles, and the horizontal line is the median value of the residuals. 
The vertical lines extend to the most extreme residual located less than 1.5 times the height of the box away from it. All other points are shown as semi-
transparent discrete points.
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to represent our experience with the limits of 
current practice to resolve daily X2 as a specific 
single value, even with the most flexible models 
and in well-behaved hydrodynamic conditions. 
All models provided excellent skill under quasi-
steady conditions of “medium outflow, medium 
antecedent X2” (Bin 22) and “low outflow, high 
antecedent X2 conditions” (Bin 31); all but Model 5 
provided excellent skill under the remaining 
quasi-steady condition of “high outflow, low 
antecedent X2” (Bin 13).

For data bins that represent less common outflow 
and antecedent salinity conditions (representing 
unsteady conditions), all but Model 5 provided 
excellent skill under “medium outflow, low 
antecedent X2” conditions (Bin 12), and all but 
Models 1 and 2 provided excellent skill under 
“low outflow, medium antecedent X2” conditions 
(Bin 21). All models provided adequate skill under 
“medium outflow, high antecedent X2” (Bin 32). 
For the remaining and relatively rare data bins, 
Model 6 was identified as the best performer by 
providing excellent skill under “high outflow, 
medium antecedent X2” conditions (Bin 23) 
and adequate skill under “high outflow, high 
antecedent X2” conditions (Bin 33). 

Water Years 1922 through 2017
Prior analysis of historical data (Hutton 2014; 
Hutton et al. 2015) indicates little change over 
the past 9 decades in the accuracy or nature 
of flow–salinity relationships. We tested this 
assertion against the suite of empirical X2 model 
predictions over the full observational record that 
spans WYs 1922-2017.

Figure 7 depicts the time-series of monthly 
average model residuals extending back to WY 
1922. Consistent and significant residual trends 
over this time-frame would indicate systematic 
changes in the estuary’s flow-salinity relationship 
that could not be explained by models as 
calibrated to conditions for WYs 2000-2009. The 
sample size is sufficiently large that a robust 
estimate of time trend using Sen’s slope (Sen 
1968) was nominally significant for all cases. 
However, the estimated trends are generally no 
more than a few tenths of a kilometer per decade, 
which is small compared to the general noise 
scale of model predictions (which is on the order 
of 1 to 2 km for the best fits). Residual trends are 
generally negative, and typically reflect greater 
model variance in the early part of the record. 
Residual trends are positive in 14 of the 72 panels 

Table 6  Mean residual performance statistics from Table 5 sorted into three subjective skill categories: excellent (0 km to 2 km) (green); adequate (2 km 
to 5 km) (yellow); and poor (> 5 km) (red). Skill categories reflect absolute values.

Bin 
no. Q(t) bin X2(t – 1) bin

Model 1
Jassby et al. 

(1995)

Model 2
Monismith et al. 

(2002)

Model 3
MacWilliams et 

al. (2015)

Model 4
Hutton et al. 

(2015)

Model 5
Monismith 

(2017)
Model 6

Rath et al. (2017)

12 5,000 cfs < Q(t)  
< 30,000 cfs X2(t – 1) < 65 km

13 Q(t) > 30,000 cfs X2(t – 1) < 65 km

21 Q(t) < 5,000 cfs 65  km < X2(t – 1)  
< 85 km

22 5,000 cfs < Q(t)  
< 30,000 cfs

65 km < X2(t – 1)  
< 85 km

23 Q(t) > 30,000 cfs 65km < X2(t – 1)  
< 85 km

31 Q(t) < 5,000 cfs X2(t – 1) > 85 km

32 5,000 cfs < Q(t)  
< 30,000 cfs X2(t – 1) > 85 km

33 Q(t) > 30,000 cfs X2(t-1) > 85 km
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Figure 7  Trends in monthly average residuals by month for each of the recalibrated empirical X2 models over the full period of record spanning WYs 
1922–2017. The red lines depict Theil–Sen linear trend estimates (Sen 1968). The range of the y-axis on each panel is restricted to +/- 10 km for visual clarity, 
even though a small number of points (occurring predominantly in the early part of the record) have larger absolute residuals that fall outside that range. 
Red numbers are the estimate of the decadal time trend in residuals. 
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displayed in Figure 7; these occur primarily in 
the summer and fall months of July through 
October (all but Model 4 show positive trends in 
September). Downward trends of notably high 
magnitude are associated with Models 1 and 2 
during the summer months of June, July, and 
August. These downward trends are associated 
with persistent model over-prediction in the early 
part of the record, and may reflect the limited 
ability of these models to simulate extremely 
low flow conditions observed in the pre-Shasta 
Reservoir data record (resulting from their 
logarithmic and power-law formulations). Other 
notably high downward trends are associated 
with Models 3, 4, 5, and 6 during the month of 
November. For all practical purposes, except for 
the low flow limitations previously identified for a 
subset of the models, the empirical models show 
no meaningful error patterns as represented by 
the residuals, and therefore appear adequate for 
representing X2 behavior over the past century.

Sensitivity Analyses
We explored steady state and dynamic behaviors 
of the empirical X2 models (excluding Model 6) 
through five sensitivity analyses. Results from 
these analyses are reported below.

Steady-State Relationships
Table 7 shows the outflow required to maintain a 
steady X2 value at three characteristic isohaline 
positions for all empirical X2 models except 
Model 6. The three positions correspond to 
monitoring locations associated with current 
X2 regulations (CSWRCB 2000): Port Chicago 
(i.e., Roe Island) at 64 km, Mallard Island (i.e., 
Chipps Island) at 75 km, and Collinsville at 81 km 
(Figure 1). These calculations used high-precision 

recalibrated model parameters (rounded values 
are provided in Table 3) and were adjusted 
analytically or manually until a steady state 
condition was achieved (with X2 changing by less 
than 0.01 km). The results demonstrate similar 
steady state relationships between outflow and 
X2, with required outflows ranging between 
25,100 to 32,400 cfs to maintain X2 at 64 km, 10,700 
to 12,800 cfs to maintain X2 at 75 km, and 7,000 to 
8,700 cfs to maintain X2 at 81 km. The variation in 
required flow between models is commensurate 
with the uncertainty usually associated with 
outflow measurement. For comparison, flow-
based alternatives to the X2 regulations at Roe 
Island, Chipps Island, and Collinsville are 
29,200 cfs, 11,400 cfs, and 7,100 cfs, respectively. 

Time Rates of Change Away from Equilibrium
The empirical X2 models differ more in their 
dynamic behavior than in their steady state or 
equilibrium behavior. Figure 8 shows model 
response to a single day change in outflow for 
each empirical model (excluding Model 6) at five 
selected antecedent X2 positions: 55 km, 65 km, 
75 km, 85 km, and 95 km. The antecedent X2 can 
be considered a reference and the perturbations 
the rate of change normalized to a day. The 
model predictions tend to converge under quasi-
steady state conditions when X2(t) ≈ X2(t – 1), with 
Model 5 being an exception when the previous-
day X2 (i.e., antecedent X2) is further downstream 
at 55 km. When outflow deviates from steady 
conditions, however, the models begin to differ in 
their rate of response. Models 3, 4, and 5 generally 
exhibit flatter X2 responses, meaning that they 
do not tend to move away from steady state except 
under low-salinity equilibrium conditions (e.g., 
X2(t – 1) = 55 km). During a freshet, however, these 

Table 7  Steady-state outflow required to maintain X2 at a characteristic position in the San Francisco Estuary. Outflow is reported in units of cubic feet 
per second (cfs).

Model Model no. X2 = 64 km X2 = 75 km X2 = 81 km

Jassby et al. 1995 1 26,200 11,600 7,400

Monismith et al. 2002 2 25,100 10,700 7,000

MacWilliams et al. 2015 3 28,600 12,800 8,700

Hutton et al. 2015 4 26,400 11,800 8,000

Monismith 2017 5 32,400 12,500 7,900
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three models can exhibit a steep second-order 
effect such that they respond more—and more 
quickly—under large increases in flows. The 
remaining models share a different qualitative 
response that is approximately log-proportional 
over the full range of outflow change.

Step Response
Figure 9 shows model response to a step change 
in Delta outflow for each empirical X2 model 
(excluding Model 6). Specifically, the figure 
shows the transitions between neighboring 
characteristic isohaline positions of 64, 75, or 
81 km currently used for X2 regulations (CSWRCB 
2000). The double e-folding time (86%)—or the 
time taken for X2 to change by 1/e2 of its initial 
value—is indicated with a dot; this notation is 
common in describing exponential decay or 
growth functions. 

Models 1 and 2 have a transition time that is 
mostly independent of the state of the estuary. 
These models predict that it takes approximately 
25 days to make any of the transitions. By 
contrast, Models 3, 4, and 5 strongly exhibit 
salinity-dependent time-scales, with values that 
vary from 14 to 57 days—a range which straddles 
the 25 days of response time of the other models. 
Models 3, 4, and 5 react more rapidly under low 
antecedent X2 conditions (i.e., moving toward or 
away from a steady state position of 64 km) than 
they do under high antecedent X2 conditions 
(i.e., moving toward or away from a steady 
state position of 81 km) and respond faster to 
decreasing (freshening) X2 than increasing X2. 

Fortnightly Oscillation
Fortnightly excitation is a common feature of 
tidal forcing in the estuary, and 14 days is also 

Figure 8  This figure shows the dynamic response to a 1-day change in Delta outflow associated with each empirical X2 model (excluding Model 6) at five 
selected antecedent salinity conditions. For a given antecedent condition, the model predictions tend to converge under quasi-steady conditions when 
X2(t) ≈ X2(t – 1) as highlighted by the red circle.
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close to the characteristic time-scale of the 
response of the estuary. Therefore, empirical X2 
model behavior at this frequency is an important 
characteristic, even without considering other 
possible characteristics at this time-scale, such 
as modulation of dispersion. We tested the 
sensitivity of the models (excluding Model 6) by 
imposing an outflow oscillation around three 
equilibrium conditions: X2 = 64 km, 75 km, and 
81 km. A 14-day flow oscillation period was 
simulated with the series A sin  , where A 
is 50% of the mean of the equilibrium flow 
values for each model, and t is time in days. We 

performed this test focusing on two questions: (1) 
How do model responses differ at this frequency? 
and (2) Are model responses sufficiently 
nonlinear to affect mean X2 predictions? We 
acknowledge that the oscillation magnitude of 
50% is a rather large perturbation; significant 
variations of this magnitude are uncommon, and 
the analysis was intended to elicit nonlinearity.

The responses to these oscillations differ greatly 
across models and flow regimes (see Figure 10). 
Models 1 and 2 exhibit a larger response to the 
flow perturbation and a positive bias after several 

Figure 9  This figure shows the dynamic response to a multi-day step change in Delta outflow associated with each recalibrated empirical X2 model 
(excluding Model 6). Specifically, the figure shows the predicted response time of each model when transitioning between two steady-state positions. This 
test compares all possible combinations of steady transition between isohaline positions of 64, 75, or 81 km currently used for X2 regulations. The double 
e-folding time (86%) is used as the standard of completion, as indicated with a dot.
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cycles. Models 3, 4, and 5 exhibit similar or 
greater-amplitude response at the low equilibrium 
condition (i.e., X2 = 64 km); however, this response 
diminishes at higher-equilibrium X2 values. 
In the case of Model 5, this tendency can be 
explained for small amplitudes by linearizing the 

model around a nominal equilibrium X2 value 
and examining the time constant of the resulting 
first-order system. This time constant can be 
shown to be proportional to and crosses over 
14 days as X2 ranges between 64 km and 75 km. 
A longer time constant is associated with lower 

Figure 10  This figure shows the dynamic model response to 14-day period outflow oscillations around three equilibrium conditions (X2 = 64 km, 75 km, 
and 81 km) for each recalibrated empirical X2 model (excluding Model 6). The dashed red lines show the initial equilibrium X2 position before oscillatory flow 
forcing begins.
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frequency response to this (or any) frequency. 
Arguments by Chen (2015) and Monismith (2017), 
as well as the present experiments, agree that 
these characteristics are reasonable: oscillations 
at this frequency are admitted when X2 is low and 
suppressed when it is high. Models 1 and 2 exhibit 
responses that stay the same or grow with X2. 
For large-amplitude oscillations, the asymmetry 
between freshening and intrusion would augment 
this response, which was noted by Monismith 
(2017), but the effect seems to be modest here.

The other striking outcome of the 14-day 
oscillations is the generation of mean bias 
(positive for Models 1 and 2, negative for Model 3). 
Since this is a transfer of energy from one 
frequency (14-day period) to the mean (zero 
frequency), it is of nonlinear origin. The 
phenomenon is easiest to explain using Model 1 as 
an example. As stated before, this model is of the 
Hammerstein class of “block stationary” models, 
meaning that it can be written as the combination 
of a static nonlinearity (log) function on the 
inputs, followed by an otherwise linear model for 
the dynamics. Because the linear dynamic system 
is incapable of transferring energy from one band 
to another, it follows that the static nonlinear flow 
transformation,  in the case of 

Model 1, is responsible for altering the mean. To 
the best of our knowledge, this side effect of log 
transformation has not been investigated or 
shown to be desirable.

Besides the oscillations we investigated in this 
experiment, smaller oscillations at fortnightly 
scales are apparent in Figure 3 under higher 
salinity conditions. These are produced 
by rectified tidal processes and cannot be 
reproduced with NDOI inputs, which are 
inherently non-tidal. Model 6, which requires 
tidal range as well as outflow as model input, 
is better able to transition from one cause of 
fortnightly wiggles to the other. 

Outflow Perturbation
Our final sensitivity analysis explored a 
proposition by Monismith (2017) that uniformly 
perturbed outflows might yield better empirical 

performance. Figure 11 presents results from our 
evaluation of empirical X2 model performance 
when subjected to outflow time-series that 
were adjusted upward or downward by 2,000 cfs 
and then recalibrated. For each model (except 
Model 6), residual density histograms are 
presented by month for each outflow scenario. 
The range of the x-axis on each panel is restricted 
to +/– 10 km for visual clarity, even though a small 
number of points have larger absolute residuals 
that fall outside that range.

Model 5 exhibits the greatest difference in 
residual distribution between flow scenarios. 
Model 5 generally fits better to the reduced 
outflow scenario than to the base case, which 
may have to do with its tendency to over-respond 
to freshets. The remaining models show few 
systematic differences in residual distribution 
between outflow scenarios. Finally, we note that 
the models show common patterns of systematic 
seasonal bias; this observation is explored in a 
companion paper (Hutton et al. 2021, this volume). 

DISCUSSION
Several empirical X2 models for the estuary, 
conceived as improvements over the seminal work 
published in Jassby et al. (1995) (Model 1), have 
been published over the past 2 decades. Here, 
we surveyed and compared the performance of 
Model 1 with other empirical models published 
in Monismith et al. (2002) (Model 2), MacWilliams 
et al. (2015) (Model 3), Hutton et al. (2015) (Model 
4), and Monismith (2017) (Model 5). As part of this 
work, we recalibrated the models to a common 
data set and tested them for accuracy, mean, and 
transient behavior. A sixth model (Rath et al. 
2017), developed with a more complex machine 
learning formulation, was included in this survey 
to provide an empirical point of comparison with 
the other five empirical models on skill but was 
not subjected to the full suite of model tests. 

We found the empirical models to perform 
reasonably well across a wide range of conditions 
that were observed over the last 5 decades 
(WYs 1968 through 2017), a period that followed 
completion of large water management facilities 
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in the estuary and its watershed. Relative skill 
varied with hydrologic conditions, but across the 
span of years, seasons, and outflow conditions, 
it is not evident that a single empirical model is 
superior to all others. Model 6 showed the best 
overall empirical performance with somewhat 
lower residuals; however, it has a more complex 
formulation with additional inputs. 

As an ensemble, the models agree on the 
basic stability of the estuary’s outflow-salinity 
relationship over the last century. Although this 
work generally focused on the last 50 years, we 
conducted limited model testing using an X2 

data set that extends back to WY 1922 (Hutton 
et al. 2015). This century-long period has seen 
extensive change in virtually all aspects of the 
study area’s land and water use as well as the 
estuary’s bathymetry. Despite these changes, 
the empirical X2 models surveyed in this work 
generally perform robustly over this period, with 
no obvious meaningful patterns in the model 
residuals. The exception to this finding is that 
the formulations of Models 1, 2, and 3 preclude 
their use in effectively simulating extremely low 
outflow conditions observed in the early part 
of the data record. This finding suggests that 
the outflow-salinity relationship in the estuary 

Figure 11  This figure shows posterior residuals for each empirical X2 model (excluding Model 6) when subjected to outflow time-series that were 
uniformly adjusted upward or downward by 2,000 cfs and further recalibration. The plot shows residual density estimates by month for three outflow 
scenarios: baseline NDOI (red), decreased NDOI (green), and increased NDOI (blue). The range of the x-axis on each panel is restricted to +/– 10 km for 
visual clarity, even though a small number of points have larger absolute residuals that fall outside that range.



27

DECEMBER 2021

https://doi.org/10.15447/sfews.2021v19iss4art3

has evolved very modestly. As with the 50-year 
evaluation (WYs 1968 through 2017), no single 
model appears to be uniformly superior when 
performance is evaluated by month. Overall, the 
empirical models are shown to be adequate for 
the long-term analysis of different hydrologic 
conditions (noting the exception of extremely 
low outflows), especially when looking at the 
past, where sea level change was limited (1.8 mm/
year over the 20th century; Ryan and Noble 
2007). Indeed, in an analysis of X2 trends with a 
constant sea level (corresponding to a 1920 level 
of development), Rath el al. (2017) estimated that 
the previous century’s sea level rise affected X2 by 
1 to 2 km or less under most flow conditions, and 
even this sensitivity may have been confounded 
with other time-varying inputs since the main 
trend of sea level is monotonic over time. 

In contrast to the finding of outflow-salinity 
stability over the last century (i.e., during a period 
of continued development), Andrews et al. (2017) 
found through 3-D hydrodynamic modeling that 
salt intrusion in the pre-development estuary 
(circa 1850) was slightly more sensitive to outflow 
and responded faster to changes in outflow than 
in the contemporary system. They reported that 
tidal trapping and other unsteady processes were 
more important in the pre-development estuary 
than in the contemporary one. As part of their 
analysis, Andrews et al. (2017) re-calibrated the 
empirical X2 relationship of Hutton et al. (2015) to 
represent daily-averaged bottom salinity for both 
pre-development and contemporary simulations. 
Gross et al. (2018), in their comparison of pre-
development, pre-project (circa 1920), and 
contemporary outflow and salinity scenarios, 
built upon the Andrews et al. (2017) work by 
extending the empirical simulation period from 
3 years to 82 years. Confirming our findings for 
outflow-salinity stability over the last century, 
Gross et al. (2018) showed that the empirical X2 
relationship developed by Andrews et al. (2017) for 
contemporary conditions provided a good fit to 
observed pre-project data that spanned WYs 1922 
through 1941.

We found that the empirical X2 models exhibit 
different dynamic responses to outflow changes; 

these responses essentially fall into two groups. 
Models 3, 4, and 5 demonstrate a slower response 
under more saline conditions, both to step 
changes and to fluctuations. The time constant 
of those models is considerably longer than 14 
days when X2 is upstream of 75 km, and is closer 
to 14 days when X2 is downstream of 64 km. 
These models not only respond faster under less 
saline conditions; they accelerate the process of 
freshening. In contrast, the nonlinear responses 
in Models 1 and 2 follow logarithmic or power-
law relationships inherent in their formulations. 
While we believe that the empirical skill of 
Models 1 and 2 are adequate, their application 
should be limited to situations where these 
dynamic and mean behaviors are acceptable. 

An alternative analytical approach for evaluating 
model uncertainty, not covered in this work, 
would be to focus on a single empirical model 
and consider the propagation of uncertainty in 
parameters—including errors and biases in the 
measurements used for calibration—to develop 
ranges of X2 predictions. Such an approach was 
beyond our scope here but may be studied in 
future work to better understand flow-X2 behavior 
in the estuary.

As part of this work’s sensitivity analyses, we 
evaluated the consequences of calibrating these 
empirical X2 models to an uncertain outflow 
history. We found that four of the five models 
(excepting Model 5) could be calibrated equally 
well to a uniformly perturbed outflow time-series. 
Recalibration produced new fitting constants 
for each model, with any potential errors or 
improvements in the outflow time-series simply 
absorbed in the parameterization. A corollary 
of this finding is that the inverse capabilities of 
the models are limited. The possibility of using 
salinity to infer Delta outflow estimates has been 
proposed (CDWR 2016; Fleenor et al. 2016), and 
Monismith (2017) essentially took this step by 
altering the flow record. The models do not seem 
to warrant faith that they can be used to identify 
structural flaws in outflow over the long run, 
but they agree very well when applied to infer 
seasonal anomalies or departures—a point taken 
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up in a companion paper (Hutton et al. 2021, this 
volume). 

The above discussion, including evaluation of 
long hydrologic records and inverse applications 
using empirical X2 models, illustrates the possible 
utility of an ensemble approach. While it is naïve 
to ignore the fact that most users of this class of 
model desire an analysis tool that is quick and 
easy to use, incorporating more than one of the 
above models into an analysis framework can 
be accomplished with little added difficulty. 
The models are generally easy to implement in a 
spreadsheet, and together they provide a range 
of X2 estimates with some diversity of approach 
and across calibration niches. Of course, model 
diversity is limited because they share many 
similarities in their assumptions: single dominant 
power law or scaling with flow, homogenous 
spatial treatment with no consideration of 
bathymetry, omission of flow control structures 
(e.g., Suisun Marsh Salinity Control Structure and 
Delta Cross Channel), no treatment of wind and—
with the exception of Model 6—no modulation 
of mean processes by the tide. Furthermore, 
given the difficulties inherent in defining X2 or 
accurately measuring Delta outflow, the resulting 
uncertainty in these estimates may be a bigger 
limitation on accurately predicting the position 
of the X2 isohaline than the choice of empirical 
model. Despite these limitations, the models 
perform well individually and as a group, and 
are expected to remain in application for years to 
come.
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