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ABSTRACT OF THE DISSERTATION

Numerical and analytical investigations of non-isothermal fluids

by

Prabakaran Rajamanickam

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2019

Professor Antonio L. Sánchez, Chair
Professor Forman A. Williams, Co-Chair

Theoretical and numerical techniques are used to investigate three different problems

involving non-isothermal fluid flow.

The first part of the dissertation investigates flame dynamics in a strained mixing layer

established between two-dimensional counterflowing streams of fuel and oxidizer. When a

one-step Arrhenius chemistry model is employed for the chemistry description, the numerical

computations for small values of the stoichiometric mixture fraction yield a C-shaped premixed

front with a trailing diffusion flame attached to one of its ends, a structure that is markedly

different to the tri-brachial structure found in previous studies. Analytic predictions from the G

xii



equation are found to agree well with the numerical results. An explanation for these unexpected

shapes is obtained by analyzing the variation with dilution of the burning velocity of planar

premixed flames. Detailed-chemistry results are presented next for H2-O2-N2 systems with high

degrees of N2 dilution, such that the resulting flame temperature lies close to the crossover value.

Under these near-critical conditions, the flame dynamics is found to be strongly dependent on the

initial conditions. A bifurcation diagram is presented in the stoichiometric mixture-fraction vs.

strain-rate plane that identifies six different combustion regimes involving four different flame

types, namely, one-dimensional diffusion flames, propagating/retreating edge flames, broken

flame tubes, and isolated flame tubes.

Spherically symmetric heterogeneous fuel-oxidizer system is investigated next as an

ignition model for hypergolic gelled propellants. Depending on the conditions, the fuel-oxidizer

system may approach an explosive mode or it may settle into a steady-state mode. The critical

condition defining the transition between these two states is determined analytically and the

ignition time for the explosive mode is approximated by solving an integral equation for the

interface temperature, employing activation-energy asymptotics.

A non-Boussinesq stability analysis of natural-convection boundary-layer flows over hot

inclined surfaces is presented in the last part of the dissertation. Depending on the inclination

angle, the disturbances are seen to evolve into either streamwise vortices or spanwise traveling

waves. The critical inclination angle at which transition between the two instability modes occurs

is calculated as a function of wall-to-ambient temperature ratio. For sufficiently large values of

this ratio, wave modes are found to be always predominant, regardless of the inclination angle.

xiii



Part I

Unstrained and strained flame dynamics

1



Brief overview

A brief overview of each chapter of Part I is given in the following three paragraphs,

respectively.

Aspects of predictions of activation-energy asymptotics concerning the dependence of

the burning velocity on the equivalence ratio are examined in chapter 1 through both asymptotic

analyses and numerical computation. In typical hydrocarbon-air flames, the burning velocity

achieves its maximum value for fuel-rich mixture, the cause being generally attributed to the

effects of detailed chemical kinetics and unequal diffusivities of the reactants. The present results

demonstrate the possibility of this attribute of the burning velocity occurring even when these

two effects are absent. This is accomplished by parametrically studying the burning-velocity

formula valid for all equivalence ratios under the conditions specified in the title of this article,

with special attention paid to implications for hydrocarbon-air flames.

Most studies of triple flames in counterflowing streams of fuel and oxidizer have been

focused on the symmetric problem in which the stoichiometric mixture fraction is 1/2. There

then exist lean and rich premixed flames of roughly equal strengths, with a diffusion flame trailing

behind from the stoichiometric point at which they meet. In the majority of realistic situations,

however, the stoichiometric mixture fraction departs appreciably from unity, typically being quite

small. With the objective of clarifying the influences of effects of stoichiometry, attention is

focused on one of the simplest possible models, including what has commonly been called the

thermo-diffusive approximation, addressed in chapter 2 mainly by numerical integration. When

the stoichiometric mixture fraction departs appreciably from 1/2, one of the premixed wings is

found to be dominant to such an extent that the diffusion flame and the other premixed flame are

very weak by comparison. These curved, partially premixed flames, whose characteristics are

explored in chapter 2, are expected to be relevant to flames in realistic counterflow triple-flame

configurations. In addition, a simple kinematic balance is shown to predict the shape of the front

2



and the propagation velocity reasonably well in the limit of low stretch and low curvature.

Numerical computations employing detailed chemistry are used in chapter 3 to charac-

terize the different combustion modes emerging in mixing layers separating nitrogen-diluted

counterflowing planar streams of hydrogen and oxygen. Attention is focused on high degrees of

dilution, resulting in near-limit flames, with peak temperatures close to the crossover temperature.

A bifurcation diagram is presented in a plane, having the stoichiometric mixture fraction and

normalized strain rate as coordinates, that identifies six different combustion regimes involving

four different flame types, namely, diffusion-flame sheets, advancing and retreating edge flames,

multiple flame tubes, and single isolated flame tubes. Multiple-tube flame configurations vary

from small, round, widely separated flame strings at high strain rates to wide, flat, densely packed

flame strips, with narrow flame-free gaps between them, at lower strain rates, and they are steady

and stable in various arrays over a continuum of tube-separation distances. The observed flame

behavior exhibits hysteresis in a certain range of parameters, with the structure that is established

depending on the ignition mechanism, as it also does at high strain rates, and a continuum of

different stable steady-state flame configurations exists, each accessed from a different initial

condition.

3



Chapter 1

Activation-energy asymptotics for planar

premixed flames

1.1 Introduction

Concepts of activation-energy asymptotics (AEA) have played important roles in the

description of premixed laminar flame structures ever since the work of Zel’dovich and Frank-

Kamenetskii [1]. Resulting asymptotic formulas for burning velocities of two-reactant flames [2],

when plotted as functions of the equivalence ratio, possess attributes that depend on how individual

factors in the formulas are varied. Study of the dependence of the burning velocity on the

equivalence ratio was initiated by Clarke [3], for reactants with unity Lewis number. While he

anticipated that the burning velocity would reach a maximum for fuel-rich mixtures depending on

how the mixture is formed, he did not quantify that idea. It was Sen and Ludford, who carried

out the analysis, in a series of publications [4–8], emphasizing mainly Lewis-number effects and

product-dissociation effects, addressing an open question of the late 1970’s, namely the extent to

which the observed fuel-rich location of the burning-velocity maximum could be attributed to

Lewis-number effects rather than to the detailed chemistry. They specifically identified two of

4



the various conditions (to be mentioned later) under which the equivalence ratio can be varied, a

constant fraction of inert (case I) and a constant ratio of inert fraction to oxidizer fraction (case II).

Most of the experimental burning-velocity measurements that have been reported are for fuel-air

mixtures, which correspond to their case II, and which is the condition to be discussed here.

The works of Sen and Ludford emphasized near-stoichiometric conditions, based on the

assumption that the peak burning-velocity occurs for slightly fuel-rich conditions, as has been

summarized by Bechtold and Matalon [9]. Although this analysis was completed nearly forty

years ago, there has been no more recent discussion of their considerations for equivalence ratios

not close to unity. It is the purpose of this study to address all equivalence ratios, without making

any reference to Lewis-number effects. For the example of methane-air mixtures, application

of leading-order AEA and numerical integration will be shown in this article to demonstrate

that, the rich shift predicted by AEA and numerics is large, beyond the range of accuracy of

near-stoichiometric AEA, lying instead in the range of the analysis of Clarke, as extended by

Mitani [10] and Rogg [11]. Prospects for accurate use of AEA for other hydrocarbon-air mixtures

also will be considered.

1.2 Formulation and asymptotic solution

Although complicating factors such as variable properties and Stefan-Maxwell transport

have been included in previous work [12], the points to be addressed here may be based on

simpler formulations [10, 11, 13], for one-step Arrhenius chemistry with arbitrary reaction orders

m and n with respect to the fuel and oxidizer, respectively. In addition, all Lewis numbers will

be set equal to unity, thereby purposely ruling out influences of differential diffusion. Most of

the discussion will pertian to m = n = 1, the values assumed in the work of Clarke [3] and of

Sen and Ludford [4]. The gas density ρ and the thermal diffusivity DT are both constant in the

formulation and in the numerical integrations to be reported.
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Under the given approximations, a temperature-explicit formulation applies. With To and

T∞ denoting the fresh-mixture and burnt-gas temperatures, the normalized dependent variable

for the temperature T is τ = (T −To)/(T∞−To), and the parameter α = (T∞−To)/T∞ measures

the heat release. In terms of the laminar burning velocity SL, the characteristic length DT/SL is

introduced to define the nondimensional spatial coordinate x. The symbol φ will be employed

for the conventional fuel-air equivalence ratio, so that 0 < φ < ∞. In terms of the activation

energy E and the universal gas constant R, the Zel’dovich number, β = αE/(RT∞), is the large

parameter of expansion. Given an appropriate characteristic reciprocal-time pre-factor constant

for the reaction rate, B, the burning-rate eigenvalue is Λ = (BDT/S2
L)e
−E/(RT∞). The differential

equation to be solved, for instance for a lean mixture, then becomes

d2τ

dx2 =
dτ

dx
−Λ(1− τ)m(1−φτ)n exp

[
− β (1− τ)

1−α(1− τ)

]
, (1.1)

subject to τ approaching zero as x approaches −∞ and τ approaching unity as x approaches +∞.

As is well known, in the limit of β approaching infinity, there is an upstream convective-

diffusive zone in which τ is proportional to ex, followed by an inner zone, with thickness of

order x/β , that is reactive-diffusive at leading order and within which the order-unity dependent

variable y = β (1− τ) must match the convective-diffusive solution as that variable approaches

infinity. The problem is independent of α at leading order, when it is of order unity or smaller,

and the equation depends on the scaling of φ , the most general choice for fuel-lean mixtures

being that γl = β (1−φ)/φ is a parameter of order unity. With this selection, matching at leading

order produces
β m+n+1

2Λφ n =
∫

∞

0
tm(t + γl)

ne−tdt ≡ G (m,n,γl). (1.2)

The function G (m,n,γl) is a confluent hypergeometric function, expressible in the form G (m,n,γl)=

γ
m+n+1
l Γ(m+1)U(m+1,m+n+2,γl), where Γ is the gamma function and U is the Kummer’s

function of the second kind, and it reduces to Γ(m+n+1) at the stoichiometric condition γl = 0,
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while approaching γn
l Γ(m+1) as γl approaches infinity. The corresponding result for fuel-rich

mixture turns out to be
β m+n+1

2Λφ 1−m = G (n,m,γr), (1.3)

where γr = β (φ − 1). Although the results seem to reduce to the stoichiometric result when

γl = γr = 0, care is required to infer these results for near-stoichiometric conditions.

1.3 Variations with equivalence ratio

Although some one-step empirical correlations, especially, for autoignition times [14],

but also occasionally for burning velocities [15], exhibit negative reaction orders for the fuel, for

the great majority of fuels, as well as in studies directed towards revealing qualitative attributes

of flame propagation, both m and n are positive. Under these usual conditions, G achieves a

minimum value at φ = 1, increasing monotonically in moving away from stoichiometry. The fact

that G usually does not exhibit a maximum value at φ = 1 affords the possibility of predicted

burning velocities achieving maximum values at conditions far from stoichiometric. The specific

form of the function SL(φ) for given values of m and n depends on the variations with φ that

are selected for other parameters, such as B and T∞. The reciprocal time B, for example, is

proportional to the product of two factors, one being the initial concentration of the oxidizer

raised to the power n and the other the initial concentration of the fuel raised to the power m−1;

at least one of these two factors must be changed to vary φ . In addition, the variation of T∞ with

φ depends on the specific set of experiments to be addressed.

The adiabatic flame temperature T∞ may be held fixed as φ is changed - a selection often

made in counterflow flame experiments to remove the large effect of temperature variations on the

chemical kinetics [16]. When that is done, the Arrhenius factor does not influence the function

SL(φ), but achieving a constant value of T∞ necessitates decreasing the dilution of the mixture in

moving away from the stoichiometric condition φ = 1, for typical experiments in which the initial
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temperature To remains constant. There often is interest in varying the stoichiometry at fixed

dilution, in which case the influence of the Arrhenius factor on SL can be dominant, producing a

maximum of the predicted burning velocity very close to φ = 1 when the activation energy E is

large. When realistic values of E and of other parameters are employed in the formula, at constant

dilution the maximum of SL(φ) often occurs away from stoichiometric conditions, which can

be advantageous in fitting burning-velocity data for real flames that achieve maxima at fuel-rich

conditions.

Graphical presentations of computed laminar burning velocities serve to illustrate these

results and to test the accuracies of the predictions of the asymptotic formulas. This is done

here for a situation in which φ is varied by isothermal mixing of a fuel stream with an oxidizer

stream, both streams being at the same temperature To. The variation of the adiabatic flame

temperature T∞ with φ is chosen to correspond to a constant heat capacity for the mixture, thereby

determining the variation of β with the equivalence ratio. If the mixture is formed by combining

diluted fuel and oxidizer streams, then the predicted variations of burning velocities depend on a

stoichiometry parameter, the ratio of the mass of the oxygen required to burn the fuel in the fuel

stream completely to the actual mass of the oxygen in the oxidizer stream, which will be denoted

by S, resulting in,

T∞

T∞,s
= 1−αs +αs

S+1
S+φ


φ , for φ ≤ 1

1, for φ ≥ 1,
(1.4)

where the subscript s identifies values evaluated at the stoichiometric condition, φ = 1. For case

I of Sen and Ludford [4], S = ν , the stoichiometric mass ratio and for case II, S = ν(1+ b),

where b is the inert to oxidizer mass ratio; the curves to be shown here correspond to case II. The

stoichiometry parameter S defined here will become the natural choice for non-uniform reactant

mixtures, such as in premixed wings of the triple flames, upon which the study is motivated.

Through its relationship to the adiabatic flame temperature T∞(φ), the variation of the Zel’dovich
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number and the heat-release parameter can be found from,

β

βs
=

(
T∞,s

T∞

)2


φ(S+1)/(S+φ), for φ ≤ 1

(S+1)/(S+φ), for φ ≥ 1,
(1.5)

and
α

αs
=

β

βs

T∞

T∞,s
, (1.6)

at constant E. The reciprocal-time pre-exponential factor defined before becomes

B
Bs

= φ
m−1

(
S+1
S+φ

)m+n−1

. (1.7)

1 2 3 4

0

0.2

0.4

0.6

0.8

1

Figure 1.1: Numerical (solid curve) and asymptotic (dashed curve) result for S = 1 with βs = 8,
αs = 0.85 and (m,n) = (1,1).

To increase the generality of the results by avoiding the necessity of selecting particular

values for other properties, such as ρ and DT , the figures will show the ratio of the calculated

burning velocity to the value of the burning velocity obtained from the (leading-order) asymptotic

formula at the stoichiometric point (φ = 1), plotted in terms of the equivalence ratio φ . In this
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scale, the leading-order asymptotic expression for the burning velocity is given by

φ ≤ 1 :
SL

SL∞,s
=

{(
φ(S+1)

S+φ

)m+n−1(
βs

β

)m+n+1 G (m,n,γl)

Γ(m+n+1)
eβs/αs−β/α

}1/2

, (1.8a)

φ ≥ 1 :
SL

SL∞,s
=

{(
S+1
S+φ

)m+n−1(
βs

β

)m+n+1 G (n,m,γr)

Γ(m+n+1)
eβs/αs−β/α

}1/2

, (1.8b)

where the first term in each of the foregoing expressions raised to the power m+ n− 1 is the

ratio of upstream concentration of deficient reactant to its stoichiometric value. In the near-

stoichiometric limit, only the last two factors in these expressions vary with φ at leading order,

as noted by Sen and Ludford in their analysis [8]. Farther away from stoichiometric conditions,

however, these terms vary at leading order, and there are other relevant variations, such as B(φ)

and β (φ) that need to be taken into account. No previous publications have shown results which

do that.

1.4 Representative results

Figure 1.1 compares the leading-order asymptotic prediction (dashed curve) with the

result of the numerical integration (solid curve), for the representative values βs = 8 of the

Zel’dovich number of the stoichiometric mixture and αs = 0.85 of the heat-release parameter,

in the symmetric case S = 1. Since the Zel’dovich number increases in moving away from

stoichiometry, this is its minimum value, whence the asymptotic formula should be increasingly

accurate as the departure from φ = 1 increases. The figure indicates that expectation to be true

and shows that the formula overpredicts the burning-velocity by nearly 30% at stoichiometric

conditions. There is a discontinuity in the slope of the AEA curve of the formulas given above

at φ = 1 that arises from plotting only the leading-order solution and that can be removed by

considering distinguished near-stoichiometric limit where φ = 1+ c/β−1 (rich) or φ = 1− c/β
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(lean) and c is an order unity constant. The burning velocity

φ ≤ 1 :
SL

SL∞,s
=

{
G (m,n,c)

Γ(m+n+1)
e−cS/(S+1)

}1/2

, (1.9a)

φ ≥ 1 :
SL

SL∞,s
=

{
G (n,m,c)

Γ(m+n+1)
e−c/(S+1)

}1/2

(1.9b)

then exhibits continuous slope at φ = 1. Since emphasis of this work is on fuel-rich conditions,

near-stoichiometric limit will not be discussed further here.

2 4 6 8 10

0

0.5

1

1.5

Figure 1.2: Numerical (solid curve) and asymptotic (dashed curve) result for S = 17 with βs = 8,
αs = 0.85 and (m,n) = (1,1).

Figure 1.2 shows similar results for S = 17, the value applicable when the fuel stream

is pure methane and the oxidizer stream is air. The values of βs and αs have been selected to

correspond to reasonable flame temperatures and burning-velocity variations. The results seen

here, which are much more representative for the combustion of hydrocarbon fuels (and many

others) in air, are quite different from those in Fig. 1.1. The numerical result remains roughly 30%

below the asymptotic prediction at the stoichiometric point, φ = 1. This figure illustrates clearly

the facts that, not only the result of the numerical integration, but the prediction of the asymptotic

formula as well, can give burning velocities that are larger than those for stoichiometric conditions
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by a significant amount - the differences being of order unity. For the asymptotic prediction, this

behaviour is due entirely to the variation of the function G , the variation of the Arrhenius factor

with T∞ at the fixed value of E opposing this effect but not strong enough to overcome it in rich

flames, as may be seen from the T∞ curve in Fig. 1.2. The dilution does decrease with φ in this

mixing process when S > 1, but that decrease is not great enough to produce a decrease in T∞.

This figure also illustrates that, with βs = 8 and m = n = 1, the equivalence ratio at which the

laminar burning velocity is maximum is in close agreement for asymptotic and numerical results,

but it exceeds the value that typically would be obtained using the correct detailed chemistry

for methane, and it occurs at a value of φ for which predictions of near-stoichiometric AEA

would be highly inaccurate. The predictions shown here are found to differ by approximately

25% from the near-stoichiometric expansion of (8) and (9), a result that is not plotted here. These

far-from-stoichiometric results are not addressed in the earlier publications, such as those of Sen

and Ludford.
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Figure 1.3: Maximum burning-velocity and its location as a function of stoichiometric ratio, S
with αs = 0.85 and (m,n) = (1,1).

12



1.5 Discussions

A general observation of this study is that influences of the Arrhenius factor decrease

compared with influences of G as departures from S = 1 increase. For m = n, the magnitudes of

departures are the same at the same value of | lnS|, whether lnS is positive or negative as shown

in Fig. 1.3(a), but this symmetry is lost for m 6= n. Figure 1.3(b) shows how the equivalence

ratio at which the maximum burning velocity is achieved varies increasingly strongly with S

as βs decreases. The large increase in the burning velocity in rich flames, above its value at

stoichiometric condition, shown in Fig. 1.2, demonstrates how poor this one-step Arrhenius

chemistry approximates methane-air flames. In this case the burning-velocity maximum occurs

well beyond the range of accuracy of a near-stoichiometric expansion and at much more fuel-rich

condition than found experimentally. Although this reaction-rate approximation is poor for

methane-air, it may be better for other hydrocarbon-air mixtures, such as ethylene-air, for which

the burning-velocity maximum occurs at higher equivalence ratios. For ethylene-air flames, Lewis

numbers are close enough to unity for the assumptions of the present formulation to apply, but

for flames of propane and higher hydrocarbons, effects of differential diffusions, excluded here,

might be expected to become increasingly important, although Fig. 7.7.4, on page 277 of the

textbook by Law [17], showing essentially identical burning-velocity curves for higher normal

alkanes when plotted against the equivalence ratio, suggests that this effect may not be noticeably

large.

1.6 Conclusions

The Arrhenius factor is not always dominant in AEA predictions, in that the factors may

produce off-stoichiometric burning-rate maxima even without differential diffusion. Formulas of

AEA may provide reasonable fits to burning-velocity data for some hydrocarbon-air mixtures,

such as ethylene-air systems, but such results are inaccurate for methane-air mixtures. In addition,
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reaction orders m and n can be adjusted to fit to burning-velocities of different hydrocarbon-air

mixtures, although this is not addressed here.

This chapter, in part, has been published in Combustion Theory and Modelling, “On the

two-reactant one-step activation-energy asymptotics for steady, adiabatic, planar flames with

Lewis numbers of unity”, by P. Rajamanickam (2018) 22, 913-920. The dissertation author is the

primary investigator in this publication.
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Chapter 2

Influences of stoichiometry on steadily

propagating flames in counterflows

2.1 Introduction

Triple flames, first identified by Phillips over fifty years ago [1], play a fundamental role in

many practical combustion systems. Since they have been observed to move along mixing layers

that are strained in laminar and turbulent jet flows, for example, there is interest in investigating

their response to the imposed strain rate. The counterflow mixing layer separating two opposed

planar jets of fuel and oxidizer, used in previously in theoretical [2, 3] and experimental [4, 5]

studies, provides an attractive canonical problem for analyzing these effects. An appreciable

literature has now been developed on the subject, as may be seen from a relatively recent

publication that contains a thorough review [6].

The present contribution is intended to offer some clarifications concerning such steadily

propagating triple flames, by building on a simplification of the formulation of Daou and Liñán [3],

who emphasized effects of Lewis numbers by parametrically studying, both numerically and

analytically, these triple flames in mixtures with unequal diffusivities. Since underlying influences
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of stoichiometry tend to be obscured by varying Lewis numbers, the present considerations are

restricted to equi-diffusional systems in which all Lewis numbers are unity. Under that restriction,

implications are considered here for systems with stoichiometries that are quite likely to be

encountered in practice. The simplifications that will be introduced in the formulation will be

identical to those in this previous reference [3], simplifications which also are employed in a

number of other publications, thereby facilitating comparisons.

2.2 The chemistry and the specific configuration addressed

Oxidizer

Fuel

x′y′

z′
δm

YF,F
TF

YO2,A
TA

Figure 2.1: A Schematic diagram of the counterflow mixing layer considered.

The analysis adopts a one-step irreversible reaction for the chemistry, one unit mass of

fuel reacting with s units of mass of oxygen to generate products, according to

Fuel+ sO2→ (1+ s)Products+q, (2.1)

where q denotes the amount of energy released in the process per unit mass of fuel consumed.
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The number of moles of fuel burned per unit volume per unit time,

ω = B
(

ρYF

WF

)(
ρYO2

WO2

)
e−Ea/RT , (2.2)

is assumed to have a first-order dependence on each reactant concentration and an exponential

dependence on the temperature T through an Arrhenius function involving a pre-exponential

factor B and an activation energy Ea. Here, ρ and T are the density and temperature of the gas

mixture, and R is the universal gas constant. Mass fractions and molecular weights of species i are

represented by Yi and Wi, respectively. The one-step description with unity reaction orders for fuel

and oxidizer considered here has been shown to provide excellent accuracy in computations of

methane-air flames under a wide range of conditions [7]. Although for many other fuels empirical

fits of detailed chemistry to this one-step approximation usually do not conform to the first-order

dependences selected for the reactants [8], this generic choice is made in most previous studies of

the present type and therefore is needed here for making comparisons.

Following [3], we investigate triple-flame propagation in a strained mixing layer separating

two-dimensional counterflowing streams of fuel and oxidizer, with the front propagating at a

constant speed U in the direction perpendicular to the plane of counterflow motion. To render

the problem steady, a reference frame moving with the front will be used in the description, as

indicated in figure 5.1, with the counterflowing streams approaching from y′ =±∞ and leaving

at z′ = ±∞, and with the front propagating in the negative x′ direction. The mixture fraction

then will vary from unity in the lower stream to zero in the upper stream, the equivalence ratio

correspondingly varying from fuel-rich values greater than unity to fuel-lean values less than

unity.
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2.3 The starting formulation

In the analysis, the thermo-diffusive approximation (i.e. constant density and constant

transport properties) is adopted, following the earlier work [2, 3]. The counterflow velocity field

then reduces to the familiar stagnation-point solution (v,w) = (−Ay′,Az′) in terms of the strain

rate A, which defines, together with the thermal diffusivity DT , the characteristic mixing-layer

thickness δm = (DT/A)1/2. Although the velocity varies in the z′ direction, the temperature and

composition fields are independent of z′ in the configuration considered. Studies with variable-

density models [9, 10] and other elaborations, such as, propagating flames in counterflow spray

mixtures [11] introduce a number of additional interesting phenomena and are available in the

literature but are not considered further here because the emphasis is on other aspect of the

problem that can be addressed more clearly without introducing these complications.

With the dimensionless variables

x =
x′

δm
, y =

y′

δm
, ŶF =

YF

YF,F
, ŶO =

YO2

YO2,A
, T̂ =

T −TA

γTA
, (2.3)

and the dilution-adjusted stoichiometric ratio S (i.e. the amount of oxygen needed to burn the unit

mass of the fuel stream completely), the non-dimensional heat release γ , and the reciprocal-time

pre-exponential factor B̂, namely

S =
sYF,F

YO2,A
, γ =

qYF,F

cpTA(1+S)
, B̂ =

ρBYO2,A

WO2

(2.4)
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(where cp is the specific heat at constant pressure), the relevant conservation equations become

U
(DT A)1/2

∂ŶF

∂x
− y

∂ŶF

∂y
=

∂ 2ŶF

∂x2 +
∂ 2ŶF

∂y2 −
B̂
A

ŶFŶOe−Ea/RT , (2.5)

U
(DT A)1/2

∂ŶO

∂x
− y

∂ŶO

∂y
=

∂ 2ŶO

∂x2 +
∂ 2ŶO

∂y2 −S
B̂
A

ŶFŶOe−Ea/RT , (2.6)

U
(DT A)1/2

∂ T̂
∂x
− y

∂ T̂
∂y

=
∂ 2T̂
∂x2 +

∂ 2T̂
∂y2 +(1+S)

B̂
A

ŶFŶOe−Ea/RT . (2.7)

The temperatures and compositions of the feed streams provide the boundary conditions

T̂ − T̂F = ŶF−1 = ŶO = 0 as y→−∞ and T̂ = ŶF = ŶO−1 = 0 as y→ ∞, (2.8)

where T̂F = (TF−TA)/(γTA) measures the difference in temperature between the fuel and oxidizer

streams. Upstream from the flame, the mixture is chemically frozen, corresponding to the

boundary distributions

T̂/T̂F = ŶF = 1− ŶO =
1
2

erfc
(

y√
2

)
as x→−∞, (2.9)

whereas the trailing diffusion flame that emerges downstream leads to the boundary condition

∂ T̂
∂x

=
∂ŶF

∂x
=

∂ŶO

∂x
= 0 as x→ ∞. (2.10)

The two-dimensional boundary–value problem defined by (2.5)–(2.10) constitutes an eigenvalue

problem in that the propagation velocity U must be determined as an eigenvalue.
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2.4 Simplifications of the formulation

The problem can be simplified by noting that, when Lewis numbers are unity, species

mass fractions and the temperature are related to the mixture fraction according to

Z =
SŶF− ŶO +1

S+1
=

T̂ +(1+S)ŶF

T̂F +1+S
. (2.11)

The mixture fraction Z is unity in the fuel feed stream and zero in the oxidizer feed stream; it

also satisfies a convective-diffusive balance, so that, under the present assumptions, its solution is

given simply by

Z =
1
2

erfc
(

y√
2

)
. (2.12)

Local stoichiometric conditions, defined by the equation SŶF = ŶO, are reached on the planar

surface y = ys, where

Zs =
1

S+1
=

1
2

erfc
(

ys√
2

)
, (2.13)

as follows from (2.11) and (2.12). The problem then reduces to that of integrating (2.7) sup-

plemented with (2.11) and (2.12), employing for T̂ its boundary conditions given in (2.8), (2.9)

and (2.10).

In looking for an appropriate scale for U , one may note that, for weakly strained systems,

the front becomes thinner than the mixing layer, and its propagation velocity U then may logically

be normalized by a relevant planar-deflagration speed. The specific value used below is

SL∞,s =
[
4(1−Zs)β

−3
s B̂DT e−Ea/RTs

]1/2
, (2.14)

the propagation velocity of the stoichiometric planar deflagration, as obtained at leading order in
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the limit of large activation energy. Here

Ts = (1+ γ)TA +(TF −TA)Zs (2.15)

is the adiabatic flame temperature of the stoichiometric mixture and

βs =
Ea

RTs

Ts−TA

Ts
(2.16)

is the stoichiometric Zel’dovich number. The accompanying value of the flame residence time

DT/S2
L∞,s is selected as scale for the strain rate Ã (or Karlovitz number). Introduction of these

dimensionless variables

Ũ =
U

SL∞,s
and Ã =

DT A
S2

L∞,s
, (2.17)

reduces (2.7) to
Ũ√

Ã

∂ T̂
∂x
− y

∂ T̂
∂y

=
∂ 2T̂
∂x2 +

∂ 2T̂
∂y2 +

ω̂

ZsÃ
, (2.18)

where

ω̂ =
β 3

s ŶFŶO

4(1−Zs)
exp
[
− βs(T̂s− T̂ )

1−σs(T̂s− T̂ )

]
(2.19)

is the dimensionless reaction rate, with σs = γTA/Ts and T̂s = (Ts−TA)/(γTA) = 1+ T̂FZs. The

problem then finally reduces to that of integrating (2.18) subject to the boundary conditions

y→−∞ : T̂ = T̂F , y→ ∞ : T̂ = 0, (2.20)

x→−∞ : T̂ = T̂FZ, x→ ∞ :
∂ T̂
∂x

= 0, (2.21)

the value of Ũ serving as an eigenvalue that enables (2.21) to be satisfied. The reaction rate (2.19)

must be evaluated with use of ŶF = ZT̂s−ZsT̂ and ŶO = (1−Z)+ (1−Zs)(ZT̂F − T̂ ), obtained

from (2.11), with Z(y) given in (2.12).

22



The propagation velocity U varies with the imposed counterflow strain rate A, from

positive values for advancing triple flames at low values of A, to smaller positive values for

advancing edge flames at higher values of A, where the fuel-rich and fuel-lean premixed flames

have been folded back into the trailing diffusion flame, to negative values for retreating edge

flames, at still larger values of A. Since the extinction strain rate AE for the one-dimensional

diffusion flame that develops behind the triple flame is of order S2
L∞,s/DT , the solution for the

propagating triple flame can be anticipated to exist only for values of Ã in the range 0 < Ã < ÃE

with ÃE = AE/(S2
L∞,s/DT ) ∼ 1. At higher strain rates than this limiting value, the only steady

solutions that exist are those for non-reacting flows. The present work explores characteristics of

the solutions over the range of strain rates for which reacting-flow solutions exist, for values of

parameters of practical interest.

2.5 Numerical methods and principal values of parameters

A pseudo-transient finite-element scheme with adaptive grid is employed in the numerical

integration, which is marched in time until a steady solution is reached. The integration domain

is a rectangular box chosen to be sufficiently large to satisfy the boundary conditions smoothly.

The results shown below correspond to xmin =−20, xmax = 20, ymin =−8, ymax = 8. Since the

problem defined above exhibits invariance under translations in the x direction, to anchor the

flame the additional condition T̂ = 0.3 is imposed at x = 0 along the stoichiometric line y = ys.

The parametric values βs = 8 & 20, representative of the range of overall activation energies

usually encountered, σs = 0.85 (corresponding to typical amounts of heat release in flames)

and T̂F = 0 (equal feed temperatures) are used in the integrations for three different values of

stoichiometric ratio S = (1,4,17.2). Here S = 4 and S = 17.2 are selected as representative of

the conditions found in methane-oxygen and methane-air combustion, respectively.
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Figure 2.2: Extinction strain rate ÃE as a function of stoichiometric ratio S for βs = 8, 20, σs =
0.85 and T̂F = 0. The solid lines are obtained from numerical integration of (2.22). The dashed
line is from [12] and the points are from [13].

2.6 Extinction strain rates

As previously mentioned, the steady triple flame cannot exist for strain rates above the

extinction value ÃE of the one-dimensional diffusion flame that emerges for x→ ∞, described by

integration of
d2T̂d

dy2 + y
dT̂d

dy
+

ω̂

ZsÃ
= 0, T̂d(−∞) = T̂F , T̂d(∞) = 0, (2.22)

obtained by neglecting x-derivative terms in (2.18). The value of ÃE , obtained as the maximum

value of Ã for which there exists a solution to (2.22), is shown in figure 2.2 as a function of S for

the two values of βs considered here. For completeness, the numerical results are compared with

the asymptotic predictions for βs� 1 [12, 13].

It is interesting to observe that in this figure the results are symmetric about S = 1 when

plotted on the log scale shown and that in the limit of large Zel’dovich numbers the curves exhibit

an inflection point for S < 1 and another for S > 1. This aspect is present in both the numerical

computation and the correlation formula shown by the dashed line, which gives a zero slope at
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S = 1, and in this limit these results are independent of the value selected for σs, which appears

only at the next order in the expansion. The asymptotic analysis for large Zel’dovich numbers

involves stretching about the position of peak temperature, with matching to solutions in the outer

inert zones. For the asymptotic predictions in the figure, the inner-zone equations are those of the

diffusion-flame regime [12], which exhibit a smooth maximum for this curve when expanded

about S = 1 but a positive (negative) slope when expanded for large (small) S, consistent with the

existence of the inflection points seen in the figure. The figure shows that these inflection points

disappear at realistic values of the Zel’dovich number, the decrease in the temperature sensitivity

of the reaction rate reversing the dependence on S found in the diffusion-flame regime.

2.7 Numerical Results

The influence of the stoichiometry of the fuel stream on the structure of the propagating

flame is investigated in figure 2.3 for βs = 8, σs = 0.85, T̂F = 0, and S = 1,4,17 at different strain

rates Ã, by exhibiting contours of reaction rates ω̂ defined in (2.19). The front shapes for βs = 20,

not shown here, were found to be quite similar to those for βs = 8, except for an overall reduction

in the spatial extent of the reaction region, consistent with the stronger temperature sensitivity

associated with the increase in activation energy.

To better identify the relative position of the flame, the stagnation plane y = 0 and the

stoichiometric plane y = ys are represented in each plot by a dot-dashed line and a solid line,

respectively. Two values of the strain rate are selected in the figure for each value of S, with the

smaller value on the left corresponding to an advancing front with Ũ > 0 and the higher value on

the right corresponding to a retreating front with Ũ < 0.

The symmetric solutions for S = 1, similar to those reported earlier [2, 3], result in a

triple-flame structure for low strain rates and a retreating edge-flame structure for near-extinction

strain rates, as is well known. It can be seen, however, that the symmetric character is lost for
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Figure 2.3: Left plots correspond to advancing fronts and right plots show retreating fronts.
Solid lines represent stoichiometric locations, and the dash-dotted line is the stagnation plane.
The dashed curves are flame shapes calculated from the thin-flame analysis.
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S = 4, with the flame migrating to the oxidizer side of the mixing layer and the associated lean

flame that develops for y > ys becoming very weak. At the higher strain rate for this value of

S, the retreating edge flame bends away from stoichiometry, towards the stagnation plane, as it

broadens.

The fading lean branch disappears altogether for S = 17.2, at which value the propagating

front takes on a C shape, with one of the wings of the premixed front evolving into the trailing

diffusion flame as x→ ∞. Also of interest is that at the lower strain rate selected for this figure,

the front at S = 17.2 is found to propagate at a velocity Ũ = 1.15 > 1, that is, higher than its

stoichiometric value. This behavior, already reported without explanation for the range Ã�

β−2
s [3] through asymptotic analysis, is clear from the investigation of composition dependence

of one-dimensional planar flames [14], discussed in chapter 1, where it is shown that the peak

of the laminar planar burning velocity for these large values of S, in general does not lie at the

stoichiometric point, but instead is found at fuel-rich conditions. This aspect of earlier predictions

of activation energy asymptotics for planar flames is a reflection of the leakage of the reactant

in excess diminishing as stoichiometric conditions are approached, thereby tending to make the

reaction rate asymptotically smaller.

Although the density decrease across curved flames is well known to increase propagation

velocities in configurations such as this, that influence is absent in the present constant-density

analysis, leading to the higher speed arising from the effect of the planar burning velocity. While

the density-change influence would be largest at stoichiometric conditions, it is seen in the left-

hand figure that, on the contrary, this C-shaped flame lies entirely in a fuel-rich region, bounded

by the stoichiometric and the stagnation plane. From the right-hand plot, the retreating front

is seen in the figure at this value of S� 1 to become hook-shaped, with the reaction rate of

the retreating edge flame actually beginning to increase very far from stoichiometry, near the

stagnation plane, where the available residence times are longer, allowing the heating of the

mixture by the diffusion flame to have had more time to increase the reaction rate.
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Figure 2.4: Triple-flame propagation velocity U as a function of strain rate Ã for S = 1, 4, 17.2,
σs = 0.85 and T̂F = 0. Solid curves correspond to βs = 8 and dashed curves to βs = 20. The
asterisk marks for S = 1 are from [3].

The computed dependence of the flame velocity on the strain rate is shown in figure 2.4

for the same three different values of S. Since for a given activation energy βs, in the thermo-

diffusive approximation the two-dimensional flame propagation velocity cannot exceed its one-

dimensional planar maximum speed, SL,max, for any strain rate Ã between ignition and extinction,

i.e, Ũ < S̃L,max, where S̃L,max is the maximum value of numerically calculated planar propagation

speed, S̃L = SL/SL∞,s, it is appropriate to plot the two-dimensional flame velocity normalized by

its one-dimensional maximum velocity calculated in chapter 1. Besides the well-known decrease

in U with increasing Ã, the value of U is seen to increase with S at a fixed value of Ã, as a result

of the leading point of the flame moving away from the stagnation plane into fluid moving more

slowly in the direction of propagation of the triple flame. As can be seen, for each value of S there

exists an Ã at which Ũ = 0, thereby defining the boundary between advancing fronts and retreating

fronts. The magnitude of the negative value of the propagation velocity of the retreating front

goes to infinity as the strain rate approaches the extinction value ÃE , although the computations

have not been carried far into the range Ũ < 0, where convergence difficulties become more

accute. The limiting strain rate is different for the solid and dashed curves, consistent with the

results shown in figure 2.2 for the two different activation energies considered here, the limiting

28



values being indicated by vertical arrows at the bottom of the figure.

2.8 Kinematics of thin fronts

As the strain rate becomes small, the flame becomes thin compared with its radius of

curvature, enabling a more general analysis to be developed that is not necessarily restricted to

the chemical kinetics selected for the numerical work discussed above. The initial analytical

description of flame-front structures and propagation velocities in this limit of thin fronts, corre-

sponding to low-strain feed streams in the present configuration, is due to Dold et al. [15–17],

later extended to fuels with non-unity Lewis numbers by Daou & Liñán [2, 3], both works invok-

ing activation-energy asymptotics in the description. It is, however, not necessary to adopt that

approach in addressing the thin-flame limit, which may be analyzed directly by treating ε =
√

Ã

as a small parameter of expansion, thereby admitting reactions with more complex chemistry.

A front propagating at velocity Vf into a fluid whose velocity field is v may be described

in a level-set approach by any constant value of a continuous and differentiable field function G

that obeys the equation

v ·∇G =Vf |∇G|, (2.23)

when n = −∇G/|∇G| is the local unit vector in the direction of propagation. To apply this

description to the present problem, the components of v are taken to be (u,v) = (U,−Ay′), and

the field function is selected to be G(x,y) = x− f (y) with G = 0 along the front. The flame shape

is then given by x = f (y), conditions along the flame sheet being treated as functions of y. A

similar type of kinematic balance has been used previously in computing shapes of lifted flames

in axisymmetric fuel jets under the additional approximation of negligible front-curvature effects

[18].

In terms of the previously defined non-dimensional planar adiabatic laminar burning

velocity S̃L(y), which can be obtained as an eigenvalue from (2.18), in place of Ũ/
√

Ã, after
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Figure 2.5: The dashed lines are obtained from the numerical integration of (2.25) and the
dashed-dotted curves are the results of the perturbation analysis given in the final equation in
the appendix. All solid curves are the actual two-dimensional computational results.

neglecting transverse gradient terms (irrespective of the functional form of the reaction rate), a non-

dimensional laminar-flame thickness for a low strain rate can be defined as δL(y)/δm =
√

Ã/S̃L.

Based on this definition, with chemical-kinetic descriptions that result in identical Markstein

numbers for curvature and strain, for fronts with small curvature, the local burning velocity can

be expressed in dimensional form [19–21] as

Vf = SL−SLM δLκ +M δLn ·∇v ·n. (2.24)

Here M is the Markstein number, n is the unit normal pointing towards unburnt gas, and κ = ∇ ·n

is the front curvature, −n ·∇v · n being the imposed strain rate associated with the velocity

gradients.

After non-dimensionalization, for small flame curvature, the curvature term in the preced-

ing equation becomes of order ε , while the strain-rate term becomes of order ε2. Both of these

terms are retained in the analysis given in the appendix, the results of which are employed in the

comparisons to be given below, but in order to reveal the character of the problem more simply

and clearly, the higher-order strain-rate term is neglected here. Following geometrical resolution
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in the (x,y) plane, in terms of the unknown function g(y) = d f/dy, the equation then simplifies

to the nonlinear first-order ordinary differential equation

Ũ + εyg = S̃L
√

1+g2− ε
M

1+g2
dg
dy

, (2.25)

where M is the Markstein number for curvature, which, in general, varies with y along the

front. The solution to this equation for g describes a C-shaped flame when d f/dx approaches

zero with a positive slope at a higher value of y, to be denoted by y∞, and also approaches zero

with a negative slope at a lower value of y, to be denoted by y−∞. These requirements translate

into the requirements that g approaches positive infinity at y∞ and negative infinity at y−∞. This

then defines a two-point boundary-value problem that possesses a continuous and differentiable

solution g(y) only for a particular value of the constant Ũ , thus constituting a nonlinear eigenvalue

problem. Since the curvature term vanishes in the extreme wings of the C, the boundary conditions

are found to be

g→ Ũ
±(S̃L)− εy

, (2.26)

the upper sign applying at y∞ and the lower sign at y−∞.

Through its relationship to the mixture-fraction function, Z(y), the variation of the planar

laminar burning velocity with the equivalence ratio defines the function S̃L(y), which will achieve

its maximum value Sm = SL,max/SL∞,s at a value of y denoted by ym. It is evident from (2.25) that

in the limit ε = 0 the constant Ũ cannot be less than Sm since the magnitude of the square root is

never less than unity, nor can it be greater than Sm, since then the entire pattern would propagate

faster than any element of the front. Hence, at leading order in ε , the pattern must propagate in

the x direction at the velocity Ũ = Sm. The solution for the shape of the front at this leading order

then becomes simply

g(y) =±
(

S2
m

S̃2
L
−1
)1/2

, (2.27)
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the upper sign applying for y > ym and the lower sign for y < ym.

Since Ũ = Sm at leading order, the first correction to Ũ arising from the front curvature

is determined by the variation of S̃L(y) in the vicinity of the point y = ym. This observation

motivates considering an expansion of the burning velocity about S̃L(y) = Sm. With the normal

quadratic variation about the maximum, in the first approximation S̃L(y) = Sm− (a/2)(y− ym)
2,

where the positive constant a is the negative of the second derivative of the planar burning velocity

with respect to y at y = ym. When this expansion is substituted into (2.25) and terms of order ε

are collected, it is found that the perturbation to g(y) diverged in proportion to 1/(y− ym) as y

approaches ym unless Ũ = Sm− εM (ym)(a/Sm)
1/2. This determines the first correction to the

propagation velocity of the pattern, and further pursuit of the perturbation analysis, summarized

in the appendix for the value M = 1, which applies in the thermo-diffusive approximation in the

limit of infinite Zel’dovich number, serves to determine subsequent corrections to the location

y = ym of the turning point, y = yt , as well as the front shape.

It may be noted that, in this analysis, the propagation velocity is determined by imposing

analyticity of the solution at the turning point, the nose of the pattern, where the front is normal

to the x direction. This critical point in the analysis coincides with the leading point only in the

symmetric case, S = 1; for other values of S, this vertical slope does not occur at y = 0, so the

flow velocity is not normal to the front at that point. From the viewpoint of this development,

therefore, conditions at the turning point, rather than at the the leading point, serve to determine

the propagation velocity of the pattern.

2.9 Comparisons of thin-front predictions

Although limited to a Markstein number of unity, the starting differential equation in the

appendix includes the effects of both curvature and strain rate, the latter not having been addressed

previously for a problem of this type. That differential equation was integrated numerically,
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employing the planar burning-velocity functions associated with our initial formulation, also

obtained by numerical integration, for various stoichiometries S, with different values of ε .

Representative results are shown as dashed curves in the plots on the left in figure 2.3. The dashed

curves are seen to coincide well with the contours of maximum reaction rate, irrespective of

whether the front lies mainly in the fuel-rich region. While this general agreement would be

anticipated at these low counterflow strain rates, it may be noted that even in the lower left-hand

graph, where the value of the small parameter is ε > 0.2, the agreement remains quite good. Thin-

flame descriptions therefore may be considered to be quite robust for describing the C-shaped

curves in these problems. Computations also were made employing the expansion developed in

the appendix in place of a numerical integration, and the results were practically indistinguishable

from those shown in the figure. Even the simple leading-order result given in equation (2.27)

provides fairly reasonable curved premixed-flame shapes.

Predictions of propagation velocities of C-flame patterns are compared in the inner plot of

figure 2.4 for a Zel’dovich number of βs = 8. As can be seen in this figure, at this value of the

Zel’dovich number the thin-flame propagation-velocity predictions begin to depart noticeably from

those of the complete numerical integrations at a value of ε that increases as S increases, reaching

ε = 0.1 at S = 17.2. The thin-flame propagation-velocity predictions thus are somewhat less

robust than the corresponding flame-shape predictions. Although the predicted linear dependence

on ε is seen to be good, the propagation velocities calculated here in the thin-flame limit decrease

more rapidly with increasing ε than is found by the full integration. This is likely a consequence

of selecting a Markstein number of unity for the thin-front description; this value of the Zel’dovich

number is small enough that the variation with the counterflow strain rate may be expected to

be weaker than would occur in the limit of infinite Zel’dovich number, so the departure of the

Markstein number from unity may be expected to exert a noticeable influence on the thin-flame

behavior. The thin-flame description employing the expansion derived in the appendix is seen

in this plot to be in good agreement with results of the numerical integration of the thin-flame

33



equation over the values of ε shown, whence the thin-flame formulation is likely to be reasonably

accurate over this range, but proper evaluations of Markstein numbers are needed to achieve good

accuracy.

2.10 Conclusions

The main conclusion to be drawn from this investigation is that not all partially premixed

flames in counterflow configurations may be expected to exhibit the classical tribrachial structure

of rich and lean premixed flames with a diffusion flame trailing behind. Especially at high values

of the dilution-adjusted stoichiometric fuel-air ratio, such as values appropriate for methane-air

flames, the diffusion flame may fade into the lean wing, with the triple flame then evolving into

a fuel-rich C-shaped premixed flame. Since the analysis leading to this prediction employs the

thermo-diffusion approximation, heat release may modify this configuration, bringing the trailing

diffusion flame back into visibility, yet the asymmetry in the direction identified here is likely

to remain. Totally symmetric triple flames therefore should not be anticipated to be prevalent in

practical situations.

A further notable finding is that, although not at all applicable to retreating or even to

advancing edge flames, thin-flame approximations enable Markstein numbers to be applied,

employing quite general chemical kinetics, to reduce the problem involving ordinary differential

equations in place of more complex partial differential equations, to quantify the flame shape

and the propagation speed, even though full equations or activation energy asymptotics [3] are

needed to resolve the flame structure. Moreover, in the limit of small strain rates, instead of

integrating ordinary differential equations, sequential solutions of purely algebraic equations

suffice to produce the results that are needed. It could be worthwhile to extend simpliïňĄcations

of that type to address the important influences of density changes associated with the heat release.

These are known to modify appreciably the velocity field, including an outward deflection of

34



the incoming streamlines upstream from the triple flame, which in turn results in an order-unity

increase of the propagation velocity. Associated changes to the mixture-fraction fields can be

expected to modify quantitatively the results presented above, and these should be investigated in

future work.

This chapter, in part, has been published in Proceedings of the Combustion Institute,

“Influences of stoichiometry on steadily propagating triple flames in counterflows”, by P. Raja-

manickam, W. Coenen, A. L. Sánchez and F. A. Williams (2019) 37, 1971-1977. The dissertation

author is the primary investigator in this publication.

Appendix

It is convenient to employ the re-scalings Û = Ũ/Sm, ŜL = S̃L/Sm and ε̂ = ε/Sm, whence,

with a Markstein number of unity, as in earlier work [3, 22], equation (2.24) becomes

Û + ε̂yg = ŜL
√

1+g2− ε̂
dg/dy
1+g2 − ε̂

2 g2

ŜL
√

1+g2
. (2.28)

After introducing the perturbation series g = go+ ε̂g1+ ε̂2g2+ · · · and Û =Uo+ ε̂U1+ ε̂2U2+ · · ·

into (2.28), the resulting problem becomes purely algebraic in nature for the unknown quantities

at each successive order. A unique choice of the eigenvalue at each order makes the solution

uniformly valid in y by eliminating non-analyticity at the turning point. A Taylor’s expansion of

S̃L(y) around the maximum point is needed,

ŜL = 1+δ
2 Ŝ′′m

2!
+δ

3 Ŝ′′′m
3!

+δ
4 Ŝiv

m
4!

+ · · ·, (2.29)

where δ = y− ym, and Ŝ′′m, Ŝ
′′′
m , ... are derivatives of ŜL(y) evaluated at the maximum location.

The turning-point location is also an unknown quantity that can be expanded in series yt =
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ym + ε̂y1 + ε̂2y2 + · · ·. The boundary conditions at y±∞,

g→ Û
±(ŜL− ε̂2/ŜL)− ε̂y

, (2.30)

obtained from equation (2.28) as limiting forms, are satisfied automatically at each order. The

domain interval (y−∞,y∞) itself is obtained by setting the denominator of (2.30) to zero.

The leading-order equation then leads to

go(y) =±(δ )
(

U2
o

Ŝ2
L
−1

)1/2

. (2.31)

The choice Uo > 1 will result in a discontinuity for go(y) at δ = 0, and the choice Uo < 1 gives a

complex solution, so the only way that go(y) can be made real and continuous at the inner region

(i,e., in the vicinity of δ = 0, since, at leading order, the turning point is simply yt = ym) is to

choose Uo = 1.

Collecting terms of O(ε̂) and solving for g1(y) gives

g1(y) =
U1

Ŝ2
Lgo

+
y

Ŝ2
L
+

1
go

dgo

dy
. (2.32)

The behaviour of g1(y) as it approaches the turning point y→ yt = ym + ε̂y1 is found to be

g1(y)∼ δ
−1

 U1√
−Ŝ′′m

+1

+O(1). (2.33)

The choice U1 =−
√
−Ŝ′′m is needed to make g1(y) be bounded as the inner region is approached.

Through terms of first order, then,

g(y) =±|go(y)+ ε̂g1(y)|+O(ε̂2). (2.34)
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from which ym + ε̂y1 is obtained as the value of y at which go(y)+ ε̂g1(y) = 0.

In the same spirit, the equation for g2(y) is obtained at the next order from,

g2(y) =
U2

Ŝ2
Lgo

+
yg1

Ŝ2
Lgo
− g2

1
2go

+
Ŝ2

Lgog2
1

2
+

1
go

dg1

dy
−2Ŝ2

Lg1
dgo

dy
+

go

Ŝ2
L
, (2.35)

its behaviour as y→ ym + ε̂y1 + ε̂2y2 being given by

g2(y)∼
δ−1√
−Ŝ′′m

[
U2 + ymγ1−

γ2
1
2
+ γ2

]
+O(1), (2.36)

where

γ1 = ym−
Ŝ′′′m

3(−Ŝ′′m)
, γ2 = 1− 7Ŝ′′′2m

72Ŝ′′2m
− Ŝiv

m

8(−Ŝ′′m)
, (2.37)

and U2 is chosen so as to remove the divergence at δ = 0. The selection of the value of U1 has

eliminated a term of order δ−2, which otherwise would appear. The uniform solution at this order

is given by

g(y) =±
∥∥±|go + ε̂g1|+ ε̂

2g2
∥∥+O(ε̂3), (2.38)

with the new turning point yt = ym+ ε̂y1+ ε̂2y2 now being determined by requiring the expression

inside the outer absolute value signs to vanish there. At this order, the eigenvalue is

Û = 1− ε̂

√
−Ŝ′′m + ε̂

2
(

γ2
1
2
− γ2− ymγ1

)
+O(ε̂3). (2.39)
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Chapter 3

Near-limit H2-O2-N2 combustion in

nonpremixed counterflow mixing layers

3.1 Introduction

Criticality conditions in hydrogen-oxygen combustion are fundamentally related to the

existence of a chemical-kinetic crossover temperature Tc at which the effective rates of high-

temperature chain branching, associated with the shuffle reactions, and chain recombination,

mainly controlled by the three-body reaction H+O2+M→ HO2+M, are equal [1]. Chain branch-

ing dominates when the temperature in the reaction region lies above crossover, leading to the

existence of a well-populated radical pool that maintains a high fuel oxidation rate, with char-

acteristic times on the order of 1 ms. This branching path is no longer active below crossover,

where chain-terminating processes are dominant. In this low-temperature regime, sustained

hydrogen combustion relies instead on an extremely slow branching path involving HO2 and

H2O2, resulting in negligibly small oxidation rates. This is known to have a dramatic effect on

ignition processes, for example, with associated induction times increasing to very large values

(exceeding one second at p = 1 atm) when the initial temperature falls below crossover. Because
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of this drastic change of reactivity, H2-O2 premixed and nonpremixed flames can exist only when

the reaction-layer temperature lies above Tc which thus determines the flammability limit.

Since branching and recombination tend to balance as the peak temperature approaches

Tc, the effective rate of hydrogen oxidation becomes small in near-limit flames. The resulting

weakly reactive solutions are affected by preferential-diffusion interactions that lead to known

diffusive-thermal instabilities, which play a central role in the dynamics of near-critical H2-O2

combustion. For instance, they are responsible for the emergence of pulsating planar deflagrations

in rich H2-O2 mixtures and for the formation of cellular flames in very lean H2-O2 mixtures [2]. In

the latter case, the resulting curved flames, approaching flame-ball structures as limiting solutions

[3], display superadiabatic flame temperatures, so that they can exist under conditions where

planar deflagrations cannot, thereby extending significantly the lean flammability limit. A wide

variety of similar dynamic phenomena has been recently observed [4] in experiments of H2-O2-N2

nonpremixed flames in a slot-jet facility when the conditions of dilution and strain produce peak

temperatures approaching Tc. These conditions are to be further investigated in the present chapter

with the objective of providing a more complete characterization of the dynamical behavior of

nonpremixed H2-O2 combustion through additional experiments and numerical computations.

The new results presented below, exploring extended ranges of strain rate, stoichiometry,

and dilution, will be related to those of previous numerical analyses of differential-diffusion

effects in counterflow nonpremixed systems [5–9]. These previous studies considered reactants

with general Lewis numbers undergoing an irreversible reaction with a rate having unity reaction

orders and a power-law [6, 8] or Arrhenius [5, 7, 9], temperature dependence. Instead, our

computations will focus directly on the specific chemistry and transport properties pertaining to

H2-O2-N2 mixtures, as is needed to enable quantitative comparisons with the experimental mea-

surements for given conditions of reactant-feed composition and strain to be made. Exploratory

computations using a chemical-kinetic mechanism with 12 elementary reactions, which has been

shown to provide excellent accuracy for most combustion conditions [10], revealed that for the
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nonpremixed flames investigated here the effects of reactions involving H2O2 and of the initiation

steps H2+O2
6b→ HO2+H and H2+M 9b→ H+H+M are negligibly small, so that the needed chemistry

description reduces to the nine elementary reactions shown in Table 3.1. As shown recently [11],

an even simpler chemistry description can be developed sufficiently close to crossover by ex-

ploiting the fact that all radicals obey a steady-state approximation, so that hydrogen oxidation

can be described with a single overall reaction, whose rate can be expressed in explicit form in

terms of the temperature and the reactant concentrations. The present investigation focuses on

near-extinction highly strained flames, for which steady-state approximations tend to deteriorate,

as demonstrated recently [12]. For this reason, although the one-step reduced mechanism is

in principle well-suited for the near-limit flames investigated here, for increased reliability the

computations presented below will employ instead the complete short mechanism of Table 3.1.

Table 3.1: Rate coefficients in Arrhenius form k = BT n exp(−Ta/T ) for the skeletal mechanism
with rate parameters in mol, s, cm3, kJ, and K.

Reaction B n Ta

1f H+O2→ OH+O 3.52 1016 -0.7 8590
1b OH+O→ H+O2 1.05 1014 -0.313 132
2f H2+O→ OH+H 5.06 104 2.67 3165
2b OH+H→ H2+O 2.94 104 2.64 2430
3f H2+OH→ H2O+H 1.17 109 1.3 1825
3b H2O+H→ H2+OH 1.42 1010 1.18 9379
4f H+O2+M→ HO2+Ma k0 5.75 1019 -1.4 0.0

k∞ 4.65 1012 0.44 0.0
5f HO2+H→ OH+OH 7.08 1013 0.0 148
6f HO2+H→ H2+O2 1.66 1013 0.0 414
7f HO2+OH→ H2O+O2 2.89 × 1013 0.0 −250

4.50 1014 0.0 5500
8f H+OH+M→ H2O+Mb 4.00 × 1022 -2.0 0.0
9f H+H+M→ H2+Mc 1.30 1018 -1.0 0.0
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3.2 Formulation

We consider the mixing layer separating two counterflowing slot jets at temperature

To = 298 K. The oxidizer and fuel streams are assumed to be a mixture of O2 and N2 with oxygen

mass fraction YO2o and a mixture of H2 and N2 with fuel mass fraction YH2o. In nonpremixed

combustion the reactants reach the reaction layer in stoichiometric proportions, so there is

interest in relating the composition of the feed streams to the composition of the stoichiometric

gas mixture obtained by combining one unit mass of the fuel stream with 8YH2o/YO2o units of

mass of the oxidizer stream, resulting in a mixture with volumetric proportionality that can be

written as H2:O2:N2=2:1:N. Following [4], we thus choose to characterize the stoichiometry and

dilution of the system in terms of the stoichiometric mixture fraction Zs = 1/(1+8YH2o/YO2o)

and a parameter N, defined as the ratio of the number of moles of inert to the number of moles

of oxygen in a mixture formed by combining the fuel and oxidizer streams in stoichiometric

proportions. These two quantities determine the boundary values of the reactant mass fractions

according to

YH2o =
1

Zs(9+7N)
and YO2o =

8
(1−Zs)(9+7N)

. (3.1)

By modifying the relative dilution of the feed streams while keeping the value of N constant one

may vary the stoichiometric mixture fraction in the range

1
9+7N

≤ Zs ≤
1+7N
9+7N

, (3.2)

where the lower and upper limiting values correspond to pure fuel (YH2o = 1) and pure oxygen

(YO2o = 1), respectively. When N is large, as it is near critical conditions, this range extends from

nearly zero to nearly unity.

In the thermo-diffusive approximation of constant density ρ and constant transport proper-

ties, adopted here to simplify the numerical description, the velocity in the mixing layer is given
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by the familiar stagnation-point flow solution (vx,vy,vz) = (0,−Ay′,Az′) in terms of the strain

rate A, independent of time. As in [6–8] the composition and temperature of the resulting reactive

flow will be assumed to be independent of z′, thereby reducing the time-dependent conservation

equations for the reactive species i and energy to

∂Yi

∂ t
− y

∂Yi

∂y
− 1

Li

(
∂ 2Yi

∂x2 +
∂ 2Yi

∂y2

)
=

ṁi

ρA
(3.3)

∂T
∂ t
− y

∂T
∂y
−
(

∂ 2T
∂x2 +

∂ 2T
∂y2

)
=−∑i ho

i ṁi

ρAcp
(3.4)

involving the temperature T and the species mass fractions Yi as dependent variables and the

dimensionless time t =At ′ and the dimensionless coordinates x= x′/
√

DT/A and y= y′/
√

DT/A

as independent variables, with DT denoting the constant thermal diffusivity. In writing (3.4), the

specific heat at constant pressure cp is assumed to be constant, a reasonably good approximation

for highly diluted H2-O2 combustion systems. The expression cp = 32×10−3(3+N)/(36+28N)

J/(kg K), which approximates the specific heat of a stoichiometric mixture H2:O2:N2=2:1:N at

T = 1000 K, is used in the integrations.

A Fickian description with constant Lewis number Li is adopted in the transport descrip-

tion, with the values LH2 = 0.29, LO2 = 1.10, LH2O = 0.89, LH = 0.18, LOH = 0.71, LO = 0.69,

and LHO2 = 1.08 used in the computations shown below, as corresponds to flames diluted with

nitrogen, whose mass fraction is determined from those of the reactive species with use of

YN2 = 1−∑iYi. As anticipated in earlier work [4], differential-diffusion effects will be seen

below to be more pronounced in systems with larger stoichiometric mixture fraction Zs, when the

hydrogen diffusivity dominates reactant transport. Because of the relatively limited temperature

range at near-critical conditions with feed streams at 298 K, which also favors improved accuracy

of the thermo-diffusive approximations, in addition Soret diffusion is neglected for simplicity.

The source terms in (3.3) and (3.4) involve the mass production rates per unit volume ṁi

and the enthalpies of formation ho
i . The former is evaluated with use of the nine-step mechanism
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shown in Table 3.1. The rate constants shown, including falloff for the reaction H+O2+M
4 f→

HO2+M and a bi-Arrhenius expression for the reaction HO2+OH
7 f→ H2O+O2, are taken from

the San Diego mechanism [13]. The species concentrations are calculated without invoking the

assumption of constant density by using the expression

Ci =
p

RoT
Yi/Mi

∑iYi/Mi
, (3.5)

where Ro = 8.314 J/(mol K) is the universal gas constant, Mi is the molecular mass of species i,

and p = 1 atm is the pressure.

A rectangular computational domain with boundaries y = ±ymax and x = ±xmax will

be considered in the integrations. Associated boundary conditions for the temperature and

reactant mass fractions at the upper and lower boundaries are YH2 = YO2−YO2o = T −To = 0 at

y =+ymax and YH2−YH2o = YO2 = T −To = 0 at y =−ymax, as correspond to the conditions in

the feed streams, all other reactive species having a zero mass fraction there. On the other hand,

Neumann conditions ∂T/∂x = ∂Yi/∂x = 0 are used on the lateral boundaries x =±xmax. This

selection allows for the existence of both one-dimensional and two-dimensional flames, with the

investigation of the latter requiring consideration of sufficiently large values of xmax, as needed to

guarantee that the solution is independent of the lateral extent of the computational domain.

3.3 Preliminary considerations pertaining to near-limit H2-

O2 diffusion flames

In hydrogen-oxygen combustion, the main chain-branching path at high temperature is

established by the rate-controlling reaction H+O2
1 f→ OH+O followed by the faster O and OH

consumption reactions O+H2
2 f→ OH+H and (twice) OH+H2

3 f→ H2O+H, resulting in an overall

branching reaction 3H2+O2 → 2H2O+2H with a rate ωB = k1 fCO2CH. On the other hand, the
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main recombination path is initiated by H+O2+M
4 f→ HO2+M, with HO2 subsequently consumed

through reactions HO2+H
5 f→ OH+OH, HO2+H

6 f→ H2+O2, and HO2+OH
7 f→ H2O+O2. Since 5 f

is chain-carrying, while 6 f and 7 f are chain-terminating, only a fraction

α =
k6 fCH + k7 fCOH

(k5 f + k6 f )CH + k7 fCOH
(3.6)

of the HO2 generated by H+O2+M
4 f→ HO2+M ends up contributing to the overall recombination

reaction 2H → H2, whose rate correspondingly becomes ωR = αk4 fCM4CO2CH. Equating the

effective rates of H-atom production and consumption then leads to the equation

k1 f = αk4 fCM4 (3.7)

for computation of the crossover temperature Tc. The presence of α introduces a dependence

of Tc on composition, additional to that present through the effective third-body concentration

CM4 , which incorporates increased chaperon efficiencies for H2 (2.5) and H2O (16.0), as seen

in Table 3.1. In lean premixed flames and on the oxygen side of nonpremixed flames, where

OH radicals are abundant, HO2 predominantly reacts through HO2+OH
7 f→ H2O+O2, so that the

recombination efficiency approaches α = 1. By way of contrast, in rich premixed flames and on

the rich side of nonpremixed flames, where H radicals dominate the radical pool, HO2 removal is

controlled by HO2+H
5 f→ OH+OH and HO2+H

6 f→ H2+O2, resulting in an overall recombination

efficiency α = k6 f /(k5 f + k6 f ). For illustrative purposes, values of Tc evaluated with α = 1

(Tclean) and with α = k6 f /(k5 f + k6 f ) (Tcrich) are plotted in figure 3.1. As is appropriate in the

reaction layer of the diluted hydrogen-oxygen diffusion flames considered here, the effective

third-body concentration for step 4, CM4 = (32+N)/(2+N), is evaluated in constructing the

plot for a mixture of water vapor and nitrogen with mole fractions 2/(2+N) and N/(2+N),

corresponding to the equilibrium composition of a stoichiometric H2:O2:N2 mixture with molar
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Figure 3.1: The variation with the dilution parameter N of the crossover temperature as obtained
for p = 1 atm from (3.7) with α = 1 (Tclean) and with α = k6 f /(k5 f + k6 f ) (Tcrich) with CM4 =
(32+N)/(2+N), and the premixed adiabatic flame temperature Tf for an initial temperature of
To = 298 K.

proportionality H2:O2:N2=2:1:N.

As previously mentioned, near-critical flames appear under conditions such that the

reaction-layer temperature lies close to the crossover temperature Tc, with the overall fuel-

oxidation rate following closely a branching-recombination balance. For instance, in premixed

combustion the condition that the adiabatic flame temperature must lie above the crossover

temperature can be used to define the range of equivalence ratios in which a planar steady flame

may exist for a given dilution. The computation of the corresponding lean and rich flammability

limits must account for the existence of two distinct crossover temperatures in the two limits [11].

Similarly, in nonpremixed combustion a quick characterization of the reactant-feed conditions that

lead to near-critical flames can be achieved by comparing Tc to the peak temperature Tp reached

in the Burke-Schumann limit of infinitely fast reaction. In particular, a necessary condition for

the existence of the diffusion flame is that Tp > Tcrich , whereas for Tp much larger than Tclean

near-critical phenomena can be expected to be of lesser importance.
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3.4 The planar diffusion-flame structure for an infinitely fast

reaction

In the Burke-Schumann limit, the flame appears as an infinitesimally thin flat surface, y =

y f separating two equilibrium regions. Integrating the steady one-dimensional transport equations

with boundary conditions YO2−YO2o =YH2 = T−To = 0 as y→∞, YO2 =YH2−YH2o = T−To = 0

as y→−∞, and YO2 = YH2 = T −Tp = 0 at y = y f provides the reactant and temperature profiles

YH2 = 0,
YO2

YO2o

= 1− 1− erf(y
√

LO2/2)

1− erf(y f
√

LO2/2)
,

T −To

Tp−To
=

1− erf(y/
√

2)
1− erf(y f /

√
2)

(3.8)

for y > y f and

YH2

YH2o

= 1− 1+ erf(y
√

LH2/2)

1+ erf(y f
√

LH2/2)
, YO2 = 0,

T −To

Tp−To
=

1+ erf(y/
√

2)
1+ erf(y f /

√
2)

(3.9)

for y < y f . The gradients on the oxidizer (superscript +) and fuel (superscript -) sides of the flame

sheet are related by the jump conditions

(Y ′O2
)+

32LO2

=−
(Y ′H2

)−

4LH2

=
(T ′)+− (T ′)−

36(ho
H2O/cp)

(3.10)

obtained by integration of chemistry-free linear combinations of the steady one-dimensional

conservation equations, with ho
H2O =−13.44×106 J/kg denoting the enthalpy of formation of

water vapor. The first equation in (3.10), stating that the reactants reach the flame sheet by

diffusion with fluxes in stoichiometric proportions, can be evaluated with use made of (3.8)

and (3.9) to give

1− erf(y f
√

LO2/2)

1+ erf(y f
√

LH2/2)
=

√
LH2

LO2

Zs

1−Zs
exp[(LH2−LO2)y

2
f /2], (3.11)

48



as an implicit equation for the flame location y f . A similar evaluation of the second equation

in (3.10), with use made of (3.1), yields

Tp−To

Tf −To
=

exp[(1−LH2)y
2
f /2]

2
√

LH2Zs

1− erf2(y f /
√

2)

1+ erf(y f
√

LH2/2)
(3.12)

for the peak temperature Tp, where

Tf = To +
9

9+7N

ho
H2O

cp
, (3.13)

is the stoichiometric adiabatic temperature, whose variation with N is plotted in Fig. 3.1.

As can be seen from (3.11), in the equidiffusional case LH2 = LO2 = 1 the flame location

is given by erf(y f /
√

2) = 1− 2Zs, which can be used in (3.12) to yield the familiar result

Tp = Tf , independent of Zs. Numerical evaluation of (3.11) and (3.12) is in general needed to

compute y f and Tp for the realistic values LH2 = 0.29 and LO2 = 1.10, with results shown in

Fig. 3.2. From this plot it can be seen that the temperature increase associated with differential-

diffusion effects is more pronounced for intermediate values of Zs, skewed towards larger values,

enabling the existence of planar diffusion flames with levels of feed-stream dilution well above

the value N = 23 predicted from the simple adiabatic-flame criterion Tf = Tcrich . Additional

differential-diffusion effects induced by curvature are to be investigated below in the following

two-dimensional computations.

3.5 Extinction strain rates of planar diffusion flames

In general, in studies focusing on edge-flame propagation, one may, logically speaking,

use the laminar planar premixed flame speed as the characteristic velocity scale for the edge-flame

speed, provided that the effects of thermal expansion are ignored as hsa been done in chapter 2,

since the classical tri-brachial structure approaches the planar flame as the strain rate becomes
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Figure 3.2: The variation with Zs of the peak Burke-Schumann temperature (solid curve) and the
reaction-sheet loctaion (dashed curve) of a counterflow diffusion flame as obtained from (3.11)
and (3.12) with LH2 = 0.29 with LO2 = 1.10.

small compared with the extinction strain rate of the one-dimensional diffusion flame. Although

this is also true for the current problem, the strain rate that is needed to achieve the triple flame is

so small that it can never be realized in actual experiments; in the slot-jet apparatus, heat loss

to the jet walls and other body-force effects, not considered in our formulation, will prevent

the occurrence of these low-strain triple flames. Moreover, since interesting flame dynamics

occurs near the extinction point for the near-critical limits, it is natural to use the one-dimensional

extinction strain rate as the representative inverse time scale, as has been done previously [4]; that

is, instead of normalizing predictions in terms of a characteristic velocity, it becomes better to

normalize them in terms of a characteristic strain rate.

The extinction values of the strain rate are obtained from the maximum value of the

product ρA for which equations (3.3) and (3.4), after neglecting t and x derivatives, have a

solution. These values, denoted by (ρA)ext and calculated as functions of Zs for three different

values of N, are shown in figure 3.3. Measuring the species-production rate ṁi, and the heat-

generation rate −∑i ho
i ṁi, in units of (ρA)ext and cpTo(ρA)ext , the only parameter that appears

in equations (3.3) and (3.4) becomes ε = (ρA)/(ρA)ext = A/Aext , the non-dimensional strain

rate. In this manner, it is unnecessary to select any particular value for ρ in presenting results of
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Figure 3.3: The extinction value of the product ρA for the diffusion flame as a function of the
mixture fraction Zs for three different values of N.

computations.

3.6 Computational procedures

Equations (3.3) and (3.4) were integrated numerically, subject to the previously stated

boundary conditions, marching forward in time. The numerical method is based on a code

developed for transient combustion applications [14]. Integrations were performed for different

selections of initial conditions, including a single hot spot or multiple hot spots (actually hot

tubes because of the absence of a z dependence1), or a hot layer either extending to all x or only

from a chosen value of x to the boundary of the domain, at a selected value of y. The evolution of

the resulting structures with time was then computed with the strain-rate parameter ε held fixed,

or else with that parameter varied slowly with time, to see whether hysteresis may occur as the

system moves from one regime to another. In addition, to explore the range of possible steady

solutions, the differential equations with the time-derivative terms removed were integrated in

−1≤ x/xmax ≤ 1 with the independent variable x replaced by x/xmax, so that xmax appears as a

1Flame tubes (which are not hollow) might instead be termed strips, strings, or rods, etc., but the selected term
"tube" is most prevalent in the literature [6].
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parameter in the equations, and the range of values of xmax for which such solutions exist was

determined, the resulting flame configuration then becoming periodic in x the length of the period

being 2xmax.

All of these computations were performed for the representative near-limit dilution value

N = 18, for which experimental results are available, since that is sufficient for exhibiting the

full range of results, but the stoichiometric mixture fraction was varied over the complete range

possible for this value of N (0.007to0.941) because the different regimes that are encountered

depend strongly on the value of this mixture-fraction parameter.

3.7 Flame configurations and structures

The flames that develop from different initial conditions differ for low and high values

of Zs. Representative computational results for low Zs, when initially a flame extends over a

half-plane, are those found at Zs = 0.4. Figure 3.4 shows the advancing (a) and retreating (b) edge

flames encountered at lower strain rates (ε = 0.45) and higher strain rates (ε = 0.85), respectively,

at that value of the stoichiometric mixture fraction. The OH mass fraction is selected as a

representative measure of the flame structure. The region over which OH builds up is known to be

broader on the oxygen side of the diffusion flame than on the hydrogen side for chemical-kinetic

reasons, and that this is true can be inferred from the shading in the figure, especially at the flame

edge, where downward bending of the initial buildup is discernible. At this value of Zs, ignition

always fails when ε > 1, extinction occurring irrespective of initial conditions.

At higher values of Zs, however, the same half-plane initial condition results in continued

combustion for some values of ε > 1, as can be seen for Zs = 0.9 in Fig. 3.5. This figure shows

that, at ε = 1.25, most of the half-plane extinguishes, but its end remains burning and develops

into a flame tube, which subsequently splits in two, forming two flame tubes which, in turn, split

again, finally leading to the array of tubes seen in the last panel of Fig. 3.5(a). This splitting
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a)

b)

Figure 3.4: Snapshots showing the evolution of the solution for Zs = 0.4 with ε = 0.45 (a) and
ε = 0.85 (b) when the integration is started with the flame extending only over a half-plane;
flame shapes are visualized by color coding, red to blue with increasing computed OH mass
fractions.

occurs because the relatively high chemical activity at the ends depletes the fuel concentration in

the center, so that extinction occurs there. At the higher strain rate, ε = 2.25, however, the single

flame tube formed by flame-sheet extinguishment fails to bifurcate and instead remains isolated,

but nevertheless active, as seen in Fig. 3.5(b). At this value of Zs, combustion can be initiated

for strain rates all the way up to ε ' 3.5, the sequence with increasing ε being similar to that in

Fig. 3.5(b), but with the final flame tube shrinking and becoming more round as ε increases.

Flame-tube dynamics and final flame-tube configurations can be sensitive to the initial

conditions, especially at higher stoichiometric mixture fractions. Figure 3.6 shows the evolution

predicted for Zs = 0.9, with ignition produced by two or three hot spots, at four different values

of ε . At the lowest value shown, ε = 0.45, the complete planar diffusion flame is the only stable

configuration, and the flame strips generated from the two hot spots are seen in Fig. 3.6(a) to

merge and to form that planar flame. At the next higher value in the figure, ε = 0.70, the edges

of the strips are unable to merge as a result of the opposing edges attracting hydrogen through

preferential diffusion to a very large extent, thereby producing an insufficiently high hydrogen

concentration in the region between them for combustion to occur there. Flame-free gaps thus

persist between the burning regions, the widths of the gaps being determined by the strength of
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a)

b)

Figure 3.5: Snapshots showing the evolution of the solution for Zs = 0.9 with ε = 1.25 (a) and
ε = 2.25 (b) when the integration is started with the flame extending only over a half-plane;
flame shapes are visualized by color coding, red to blue with increasing computed OH mass
fractions.

the preferential diffusion. That it is the gap width that is determined by the diffusion processes

occurring may be inferred by comparing the sequences (b) and (c), the latter at the same condition

but with three rather than two hot spots; the configuration evolves until the gaps that are present

achieve the same width. This reactant-depletion effect of flame edges at low Lewis numbers does

not appear to have been recognized clearly in the previously cited publications.

The last two sequences in Fig. 3.6 may be compared with Fig. 3.5 to see the differences

between the evolutions that follow half-plane and multiple-hot-spot initial conditions. At ε = 1.25,

instead of half-plane extinguishment, the hot spots grow into flame tubes, which subsequently

continue to split, in the same manner as was observed for the tubes that resulted from half-plane

ignition. The final sequence shows that, while a single flame tube was generated by half-plane

ignition, two result from ignition by two hot spots. This is a requirement of the aforementioned

inability of edge flames to merge above a critical value of ε; it would be impossible for flame

strips generated by two different hot spots to merge into a single flame tube. In the sequence (e)

in the figure, the hot spots are far enough apart that they do not interact but instead independently
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Figure 3.6: Snapshots showing the evolution of the solution for Zs = 0.9 with ε = 0.45 (a),
ε = 0.70 (b and c), ε = 1.25 (d), and ε = 2.25 (e) when the integration is started with two
or three hot spots; flame shapes are visualized by color coding, red to blue with increasing
computed OH mass fractions.
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develop into stable flame tubes; the number of flame tubes, in general, would be the same as the

number of initial hot spots under these conditions.

These figures reveal various additional aspects of structures of the flame tubes. They

appear to exhibit a continuous variety of shapes and structures. As extinction conditions are

approached, they become almost entirely round strings, with the maximum reaction rate located

at the center. Away from extinction, as conditions begin to admit more robust burning, they begin

to flatten and develop reaction-rate peaks near their ends, those peaks having moved off from

the central rate maximum. These aspects are reflected in the figures by the higher OH mass

fractions near the ends. With increasing robustness, the tubes widen more, finally elongating into

broad flame strips, before reaching a boundary at which they are transformed into edge flames

that evolve to steady configurations controlled by the flame-free gaps between them. The peak

temperatures in the flame tubes, which tend to exceed those in the strips, will be indicated below

to decrease as conditions evolve towards boundaries at which flame extinction occurs. Flame-tube

structures thus can be quite varied, depending on the strain rate and the stoichiometric mixture

fraction. The broad range of flame-tube structures that are possible is remarkable.

3.8 Additional flame-structure aspects, and the hysteresis phe-

nomenon

Figure 3.7 summarized additional aspects of possible flame structures and configurations

by showing the computed variation of the peak flame temperature with the strain rate at Zs = 0.9,

along with representative flame structures found in different regimes, for stable, steady-state

combustion. This figure documents the existence of a much wider range of steady, stable flame

configurations than might initially be anticipated. They arise through the strong effects of

preferential diffusion of hydrogen as the stoichiometric mixture fraction approaches unity at high

dilution.

56



Beginning at low strain rates at the far left, the decrease in the peak temperature with

increasing strain rate up to ε = 1, seen in the square symbols, is associated with the infinite planar

diffusion-flame structure illustrated by the color-coded image in the lower left-hand part of the

figure. This is consistent with the well-known decrease of flame temperature with increasing

strain rate along the upper branch of the familiar S-shape curve of nonpremixed combustion [15].

When ε passes through unity, the planar flame might be expected to extinguish, resulting in

only cold-flow mixing, but instead the planar flame was found to bifurcate, as is indicated in the

figure by a vertical dashed line, into regularly spaced flame tubes, with structures similar to those

which are illustrated in the last panel of sequence (a) in Fig. 3.5. Clearly, therefore, for values

of ε somewhat above unity, a stable steady combustion solution continues to exist, namely, a

multiple-flame-tube solution. As ε increases further, the flame tubes become smaller and rounder,

but, if instead, ε is decreased after the bifurcation, stable steady multiple-tube solutions are found

to continue to exist almost until ε = 0.6, at which there is a discontinuous jump to the planar

solution, indicated by another vertical dashed line, the depletion of fuel in the gaps between the

end preventing merging of the flames from occurring until the strain rate is decreased to the value

at the left-most vertical dashed line There thus is a region of hysteresis, the planar flames being

accessible only by increasing ε and the multiple flame tubes accessible only by decreasing ε in

the region between the two vertical lines.

Some time-dependent solutions just before ε reached unity showed the planar flame to

be developing slight striations, as if it were going to break up into flame tubes, implying that

the planar flame actually may become unstable to two-dimensional disturbances slightly prior to

reaching planar extinction conditions. The corresponding difference in ε , however, is so small

that this effect, if it exists, is negligible. This finding, pertaining to hydrogen-oxygen chemistry,

seems to be in agreement with previous diffusion-flame stability results corresponding to model

chemistry [7, 8], for which the stability threshold is extremely close to the turning point of the

S-shape curve. The principal conclusion to be extracted from these considerations is that the
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Figure 3.7: Peak temperature as a function of ε for Zs = 0.9, with resulting sample flame shapes
visualized by color coding, red to blue with increasing computed OH mass fractions.

transition from the planar flame to the flame tubes for steady-state conditions is abrupt, resulting

in a discontinuous increase of the peak temperature, indicated by the vertical dashed line in the

figure.

To understand the rest of the extensive information in this figure it is best to begin at the

opposite (right-hand) side. The black curve, marked by asterisk points that ends near ε = 3.5,

pertains to a single flame tube in an infinite x domain. This single-tube solution is the only

one that exists in the limit as this maximum strain rate is approached, there being no steady

flame-structure solutions of any kind for values of ε greater than that marked by the right-hand

vertical dashed line; the true extinction strain rate at Zs = 0.9 thus is about 3.5 times that of the

planar flame. The single tube is almost perfectly round at the limit but elongates as ε is decreased,

as is indicated by the flame-structure inset in the upper right-hand corner. The single-tube peak

temperature increases as the residence time available for reaction increases with decreasing ε ,

but it reaches a maximum and thereafter decreases as the temperature reduction associated with

tube broadening to approach a flame strip begins to become dominant. Eventually, near ε = 1.9,

the single-tube solution ceases to exist; splitting into a multiple-tube solution, by the mechanism
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described in connection with part (a) of Fig. 3.5, occurs at the short vertical dashed line. Splitting

through gradual changes of ε is possible only between the two central-most dashed lines, with

the sheet splitting on the left and the single tube splitting on the right.

The computations treating xmax as a parameter show further that, near the maximum value

of ε , steady stable solutions exist for uniform arrays of equally spaced multiple flame tubes

with spacings ranging continuously from infinity to a minimum value. The inset in the lower

right-hand corner of the figure is shown to compare the flame-tube structure at the minimum

separation pacing with that at infinite spacing in the upper corner, for the same value of ε = 3.2.

That comparison shows that the neighbors have reduced the broadening of the tube by depriving

it from the fuel it would need to expand; its local atmosphere effectively is more dilute. A result

is that its peak temperature also is lower. Such multiple-tube solutions with a continuous range of

spacings exhibiting a minimum value continue to exist with decreasing ε , all the way down to the

farthest left vertical dashed line, where flame merging finally becomes possible, and the abrupt

transition to the planar flame sheet occurs. The peak flame-tube temperature at this minimum

separation decreases practically linearly with decreasing ε , the lower strain rate allowing the

round tube to survive to a lower peak temperature by reducing the rate of heat loss from the hot

tube. To provide additional information about gap widths, the edges of the lower-right inset are

selected to be lines of symmetry in the solution, so that its width is the distance 2xmax between

adjacent tubes; this same convention applies to all but one of the remaining insets.

With decreasing ε , beginning around ε = 2.7, multiple-tube solutions exhibit peak tem-

peratures above that of the single tube. This occurs when the shape-change effect begins to be

dominant. The broadening of the single tube has reduced its peak temperature, so, by decreasing

the broadening, adjacent tubes achieve higher peak temperatures than the single tube. But, as the

spacing decreases further, the influence of adjacent tubes depriving the tube from its fuel begins to

dominate, and the tube peak temperature then decreases, eventually below that of the single tube.

This non-monotonicity is a complicating factor. The associated flame-tube shapes are shown by
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three insets at a value of ε somewhat less than 2.5; the single tube is the broadest and the tube

with the minimum spacing is the smallest and roundest, but a tube with an intermediate spacing

and shape is the hottest. The upper curve in the figure, marked by the round points, shows how

this maximum value of the peak temperature decreases with decreasing ε all the way down to

the bifurcation at the left-most vertical dashed line. Computations with ε increasing gradually

typically show that, at the bifurcation that occurs as ε passes through unity, the solution jumps to

a regular multi-tube array with a spacing a little less than that having the maximum peak tempera-

ture and evolves thereafter with continuously decreasing spacing, exhibiting a peak temperature

that increases to a maximum and then decreases, crossing the single-tube peak-temperature curve

and eventually reaching the minimum-spacing limit, extinguishing there at a value of ε well

below 3.5.

Since the single-tube solution is the solution in the limit of infinite wave length of the

periodic multiple-tube solutions, its vanishing when ε is decreased below about 1.9 means that,

at that value of ε , a maximum flame-tube separation distance must begin to exist, in addition to

the minimum distance. The curve marked by x symbols, between the two central vertical dashed

lines, ending at the end of the single-tube curve, gives the peak temperatures of steady, stable

tubes with this maximum separation. The three flame-structure insets at ε = 1.5 show how the

steady-state shape changes with tube spacing in that region. At the minimum spacing the tubes

are practically round, as the spacing increases and reaches that needed to achieve the highest

possible peak temperature there, the tube becomes more elongated, and, as the spacing reaches its

maximum possible value, the tubes are extremely elongated and are about to split, as they can

and do in this region. The entire possible range of steady flame-tube shapes thus is accessible in

this region, the variations being achieved by varying the spacing in the regular array.

As ε is further decreased into the region of hysteresis, the maximum limit on the separation

distance suddenly disappears, splitting no longer being possible, so the elongation becomes

unbounded, with edges expanding until they encounter another edge. Since merging of edges,
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prevented by fuel depletion in the gap, is not possible until transition to the infinite planar flame

sets in at the left-most vertical dashed line, the flame-free gap reaches a limiting width, and it

is the gap width that controls the peak temperature (which occurs near the edge of the flame

strip). The extent of fuel depletion in the gap will reach a maximum at the minimum separation

distance because the depletion is enhanced by fuel diffusion to edges of adjacent gaps, so that,

the closer gaps are to each other, the greater will be the depletion. The left-most inset for the

minimum separation distance, shown in a domain of width equal to the separation distance, is

centered on the gap rather than on the flame because it is the gap that is controlling in this region.

As the separation distance increases, the associated decrease in the fuel-depletion influences of

adjacent gaps allows the gap width to increase. The maximum extent of increase of gap size,

which would correspond to the maximum value of the peak temperature, would occur in the limit

of infinite separation distance. The flame-structure inset in the figure for the maximum peak flame

temperature in this region shows this maximum gap width in the same scale as that employed

for the minimum separation distance, so that the flames at the sides of this inset would extend

outward for very large distances.

As the strain rate decreases past ε = 1 and the maximum separation distance disappears,

the maximum value of the peak temperature remains continuous, but, instead of occurring at a

definite finite value of the separation distance, it occurs (and remains from there on) at infinite

separation. Actually, as the separation distance increases, it soon becomes large enough that fur-

ther increases have negligible influences on the peak temperature, so it is practically independent

of separation beyond the limiting separation that exhibits the maximum peak temperature for

ε > 1. More dramatic is the discontinuous flame shape for the minimum separation distance

as the strain rate decreases past ε = 1; because of the onset of the absence of any possibility

for splitting, instead of the nearly round strings seen in the other insets, this limiting flame tube

becomes a fairly wide strip, much like that which can be inferred from the inset at the far left.

Discontinuities of flame shapes also occur at this value of ε for separation distances greater than
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the minimum, further emphasizing that the importance of ε = 1 extends beyond the fact that the

planar flame extinguishes there. A further relevant observation is that, in this hysteresis region,

there exist infinitely many more steady, stable“flame-tube" configurations than exist at higher

strain rates. In particular, arrays need not be regular; any initial arrangement of ignition spots or

flame-sheet gaps will experience edge propagation to an ultimate gap size dictated by locations

of adjacent gaps. In irregular arrays, the maximum peak flame temperature will be controlled

by the pair of adjacent gaps having the greatest separation distance between them. The range of

values over which the peak temperature varies as the gap size is changed decreases as ε decreases,

approaching a single value just before bifurcation, so that the jump in the peak temperature is the

same, irrespective of which of the infinite number of possible stable configurations the bifurcation

originates from. The bifurcation of the flame sheet at ε = 1, on the other hand, could occur only

to a regular array of structures, but with any one of a continuously infinite number of spacings,

between a maximum and minimum value, depending on the manner in which ε is increased;

near-maximum spacings would be favored because their higher peak temperatures make them

more robust.

3.9 The regime diagram

Computations were made for four different types of initial conditions, namely, combustion

extending over a full plane, combustion extending only over a half plane, multiple isolated hot

spots, as could be provided by multiple sparks, and a single isolated hot spot. Depending on

the values of Zs and ε , the combustion ultimately either quenched or evolved into one of four

different types of configurations, namely, a full burning diffusion-flame plane, a burning half-

plane, corresponding to either an advancing or retreating edge flame (in regions divided by a curve

along which the edge flame remains stationary), multiple flame tubes that were either moving or

stationary, or a single stationary flame tube. This variety of outcomes served to divide the Zs -
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Figure 3.8: The regime diagram

ε plane into seven different regions, one without combustion at the end of the computation and

six exhibiting continued combustion having different combinations of possible ultimate burning

behaviors, with the boundaries between them separating the different flame configurations. This

regime diagram is shown in Fig. 3.8, where the six combustion regimes are labeled by Roman

numerals.

The simplest boundary in the diagram is the horizontal line ε = 1, below which full planar

steady-state diffusion-flame sheets exist, and above which they do not. The next most significant

boundary is composed of three curves in the diagram, namely, the boundary between regions I

and VI, followed by the boundary between regions VI and IV, followed by the upper boundary

of region V; flame tubes cannot exist above this boundary, where the only burning solutions are

full stable planar diffusion flames or retreating edge flames, but they can exist below the part

of it that begins at the left-most end of region IV. It is noteworthy that, for large enough values

of Zs, this boundary extends combustion into regions where all planar flames would extinguish,
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thereby widening the range of combustion through effects of preferential diffusion. A third

notable boundary sequence is that between regions IV and II, followed by the boundary between

regions V and III; below that boundary edge flames are advancing (when they exist) and flame

tubes are splitting and advancing, while above it edge flames are retreating and flame tubes are

stationary, so that, for example, stationary edge flames exist only along this boundary (the lower

part of it). The last significant boundary sequence is that between regions I and VI, followed by

that between regions I and II; edges of flame sheets or tubes can merge below this boundary, but

merging cannot occur above it, the strain rate and preferential diffusion being too large to permit

two edges to combine, even though the planar flame that could develop after merging may be

stable.

It is of interest to enumerate the flame configurations than can exist in each of the six

different combustion regimes identified in the Zs- ε plane, labeled by the Roman numerals in

Fig. 3.8. Region I, which is approximately given by the condition ε < 1/2, is where a unique,

stable, reacting equilibrium solution covering a complete plane eventually develops from any

ignition event, irrespective of its type. A hot-spot ignition, or a semi-infinite hot-layer ignition

(not extending to all values of x) leads to edge-flame propagation, leaving the diffusion flame

behind as the steady-state solution. Multiple hot spots also result in edge propagation with the

edges of adjacent hot spots merging together, forming a steady diffusion flame.

In region II, both infinite, planar, diffusion-flame and broken-flame solution are allowable.

In this region, a semi-infinite hot-layer ignition results in an advancing edge flame that eventually

reaches the full, planar diffusion-flame solution, as does a single hot-spot ignition, but with more

than one hot-spot ignition, perhaps surprisingly, this does not occur because the edges of the hot

spots are unable to merge. With two hot spots, the result, instead, is two edge flames facing each

other and extending to the boundary of the numerical domain, and with more than two hot spots

the final configuration is an array of three or more complete elongated flame strips, the outermost

two extending to a domain boundary. These developments occur basically because, in this regime,
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flame edges are unable to merge as a result of the opposing edges attracting hydrogen through

preferential diffusion to a very large extent, thereby producing an insufficiently high hydrogen

concentration in the region between them for combustion to occur there. Flame-free gaps thus

persist between the flame tubes, the widths of the gaps being determined by the strength of the

preferential diffusion. With multiple hot-spot ignitions, at separation distances large enough that

adjacent hot spots do not interact, in this region flame tubes (or edge flames) are generated from

each ignition spot and remain stable, without extinguishing. The line between region I and II is

the smallest value of ε for which flame tubes can be realized as a final configuration.

By definition, in region III, steady, infinite, planar diffusion flames do not exist, since this

region is bounded from below by the condition ε = 1. In this region both single hot-spot and semi-

infinite hot-layer ignitions lead to oscillatory propagation of leading flame edges, behind which

flame sheets break and leave flame tubes behind; sheets must break, since edge flames also cannot

exist here. The oscillation develops because the edge advancement speeds up after breaking, then

slows as the next break prepares to occur. As Zs increases, the number of flame tubes for a given

length increases in region III. Flame tubes can elongate and split in this region as a consequence

of the advancing of their edges in opposite directions, eventually leaving insufficient fuel adjacent

to their mid-sections to maintain combustion there. Multiple-point ignitions in this region exhibit

the flame-free-gap phenomena described for region II, for the same reason. Flame-tube dynamics

in this region thus appears to be more complex than in any other region.

The lower limit of region IV is the boundary at which an edge flame stops propagating

and starts retreating as ε is increased. It also is the boundary curve at which the leading flame

tube, generated by splitting of a flame sheet having an advancing flame edge (initiated by a central

ignition spot) stops propagating, so that the flame tubes become stationary in region IV. Isolated

flame tubes, in addition to flame-tube arrays, also can be observed in this region, which thus

permits a number of different steady flame-tube configurations, in addition to the planar diffusion

flame.
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Region V has the same characteristics as region IV, except that in this region there are

no retreating edge flames and no planar diffusion flames, there being only flame tubes, which

ultimately remain stationary in this region. In addition, the continued existence of single isolated

flame tubes is possible only in regions IV and V. It is perhaps curious that, while flame tubes can

exist only in regions II, III, IV, and V, those in region II are stable only because flame-free gaps

are stable there, unlike those in the other three of these regions.

There are no flame tubes in region VI; the only steady solution there is the infinite planar

diffusion flame. The curve that separates region I and VI is associated purely with the distinction

between advancing and retreating edge flames. Thus, there exists no flame-tube dynamics for

small Zs. Flame-tube dynamical phenomena are confined to the range ε < 1 if Zs < 1/2; they are

then present only in a narrow band at these low stoichiometric mixture fractions. On the contrary,

for Zs > 1/2, flame-tube dynamics can be realized for both ε < 1 and ε > 1 with their region of

existence growing larger as the value of Zs is increased.

The range of conditions investigated numerically in Fig. 3.8 corresponds to the experi-

mental results of flame propagation reported in Fig. 5b of [4]. Partial correspondence of regimes

and parametric boundaries between both diagrams can be found for intermediate values of ε , for

which the experimental flow remains laminar with negligible heat losses. Thus, the solutions

found in regions I, III, V, and VI in Fig. 3.8 correspond, respectively, to modes I (advancing con-

tinuous flames), III (advancing broken flames), IV (stationary broken flames), and II (retreating

continuous flames) in Fig. 5b of [4]. More work is needed to delineate a complete correspondence

between the numerical and experimental diagrams. Specifically, experimental characterization of

regions IV and II in Fig. 3.8, not identified in the previous flame-propagation experiments, would

require consideration of spark-ignition events for intermediate values of Zs and moderate strain

rates in the range 0 < 1− ε � 1. On the other hand, modification of the energy equation (3.4)

by addition of a heat-loss term would be needed to model flame extinction by heat losses to the

combustor wall, found in [4] for sufficiently small values of ε � 1.
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It is also of interest to relate the present results to those of previous edge-flame modeling

efforts pertaining to reactants with equal diffusivity undergoing an irreversible reaction [6, 8].

In these previous works, the reactants Lewis number Le < 1 and the Damköhler number δ (the

ratio of the characteristic reaction rate to the strain rate) were varied to investigate the conditions

for existence of different edge-flame phenomena, including advancing and retreating fronts, as

well as diffusion-flame breakup into multiple tubes, or isolated flame tubes. The resulting map of

solutions, plotted in the Le-δ plane in Fig. 4 of [6] (or in Fig. 6 of [8]), is fundamentally equivalent

to the Zs-ε regime diagram shown in Fig. 3.8, the only exception being region II (non-merging

tubes) in Fig. 3.8, which was not identified in the previous work. To relate the parametric maps

it is necessary to take into account the fact that increasing values of ε in Fig. 3.8 correspond to

decreasing values of the Damköhler number δ in Fig. 4 of [6] as well as the fact that the effective

Lewis number of H2-O2-N2 mixtures decreases with increasing Zs (because the deficient reactant

switches from oxygen to hydrogen as Zs increases from Zs� 1 to 1−Zs� 1). With that in mind,

it is easy to see that the lines δ = δq, δ = δo, and δ = δe in [6] correspond to the black, red, and

blue boundaries in Fig. 3.8.

3.10 Conclusions

Near-limit H2-O2-N2 combustion in counterflow mixing layers, studied numerically here,

exhibits a noteworthy variety of different types of flame dynamics, which can be categorized in a

bifurcation diagram. In a number of regimes in the diagram, the resulting flame structures and

configurations are not unique; they depend very much on the initial conditions and therefore on

the way in which any particular corresponding experiment would be carried out. Even though

the thermo-diffusive approximation is invoked in the analysis, the flame shapes derived are in

qualitative agreement with those seen in experiments [4], although further testing against future

experiments certainly would be worthwhile.
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In a classification based on the extent and connectivity of reaction regions, planar two-

dimensional counterflows of hydrogen highly diluted by nitrogen, against oxygen highly diluted

by nitrogen, possess an infinite number of different steady-state, stable, concentration-field

configurations. One class involves simple non-reactive mixing. Another has a reaction plane

of infinite extent, located at the stoichiometric position, oriented perpendicular to the direction

of injection. A third is an edge flame occupying a half plane perpendicular to the direction of

injection, at that same stoichiometric position. A fourth is a single flame tube, with its axis

in the plane of the flow, oriented parallel to the outflow direction, located at a stoichiometric

position. Beyond that, there are configurations with equally spaced flame arrays for sufficiently

high stoichiometric mixture fractions, having a continuum of possible spacings in the array. This

continuum of spacings exhibits a minimum possible spacing over a wide range of strain rates,

from a minimum strain rate, below which the only stable steady flame is the planar in-tact flame

sheet, to the maximum possible strain rate above which combustion cannot occur, as well as a

maximum possible spacing, over a smaller strain-rate range, from the strain rate at which the

infinite planar flame sheet quenches to the strain rate below which a single, isolated flame tube

cannot exist. Also, for sufficiently high stoichiometric mixture fractions, there is a range at

smaller strain rates, exhibiting hysteresis, over which two types of stable steady-state solutions

exist, one involving a single infinite planar flame and the other multiple flame strips in arrays that

need not be regular with a range of possible inter-strip spacings, these gap sizes controlling the

peak flame temperature, the strip widths being irrelevant.

The flame tubes exhibit a continuum of shapes and structures. Above the strain rate at

which the infinite planar flame extinguishes, as extinction conditions are approached they become

practically entirely round strings, with the maximum reaction rate located at the center. Away

from extinction, as conditions begin to admit more robust burning, they flatten and develop

reaction-rate peaks near their ends, elongating into fairly broad flame strips with flame-free gaps

between them, before reaching a boundary at which they are transformed into edge flames, where
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it becomes more relevant to focus on the sizes of the gaps between the edges than on the flame

sizes. The peak temperatures in the flame tubes, which exceed those in planar flames, increase as

flame strips become shorter but then decrease as conditions evolve towards boundaries at which

flame extinction occurs. Flame-tube structures thus can be remarkably varied, depending on the

strain rate and the stoichiometric mixture fraction. The extremely broad range of steady, stable

flame structures that are possible likely would not have been anticipated in advance of this study.

Future computational, experimental, and theoretical research in this area would be of

interest. It could be helpful to explore the extent to which an available systematic further reduction

of the present chemistry to a one-step description can be successful. Experiments designed to

achieve more than one flame configuration under identical conditions with different ignition

procedures also could be revealing. For example, a planar flame could be established under

conditions where hysteresis is predicted, and holes could temporarily be blown into it, to see if

flame tubes develop. Also, single and multiple sparks could be employed in ignition to investigate

whether different numbers of stable flame tubes can be established.The wide variety of different

phenomena encountered in this study points to a fertile field for future investigations.

This chapter is in preparation for publication in Combustion and Flame, ““Near-limit H2-

O2-N2 combustion in nonpremixed counterflow mixing layers”, by J. Carpio, P. Rajamanickam,

A. L. Sánchez, P. D. Ronney, F. A. Williams. The dissertation author is the primary investigator

in this publication.
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Part II

Thermal explosion theory of hypergolic

reactants
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Brief overview

When a sphere of one reactant is placed in the medium of another reactant with which it

is hypergolic, a chemical reaction (modeled here as a zeroth-order one-step irreversible Arrhenius

reaction) occurs at the common interface of the two reactants, and the heat generated at the

interface then is transmitted away from it by thermal conduction. Depending on the nature of the

problem, the system may approach an explosive mode, or it may settle into a steady-state mode.

The critical condition defining the transition between these two states is determined analytically.

In particular, explicit formulas for the ignition delay time for the explosive mode are provided for

two limits, one in which an appropriately defined Damköhler number is large and other in which

it is closer to the critical conditions. This is accomplished in chapter 4 by deriving and solving an

integral equation for the time evolution of the interface temperature, employing activation-energy

asymptotics.
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Chapter 4

The Thermal-Explosion Characteristics of

Hypergolic Gelled Propellants

4.1 Introduction

The definitive property of hypergolic reactants is that they do not require a hot ignition

source to initiate the chemical reaction. Despite its hazardous nature, there is renewed interest in

hypergolic propellants, as may been from recent technical reports [1, 2] and the results of many

studies referenced therein, in part, due to the fact it is easier to handle these reactants once they

have undergone gelation with additives. In addition, the gellant additives can also be used to vary

the overall transport properties of the medium. In actual rocket propulsion, these reactants are

injected as jets into the combustion chamber, where reactants mainly interact with each other

through droplet-droplet collisions. From the viewpoint of theoretical modeling, however, in order

to clarify the hypergolicity, a situation in which one gelled reactant is syringed or, dropped into a

pool of another gelled reactant may be considered first, as in laboratory experiments.

In this connection, a relatively recent paper by Williams [3], a particular model for ignition

of hypergolic gelled propellants was presented in which two hypergolic reactants of infinite extent
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in contact with each other at a common planar interface was studied by Williams [3] in a relatively

recent paper. It was found there that explosion occurs always at a finite time. Further attempts to

improve this model [4, 5] are still found to be confined to the Cartesian geometry considered in [3].

If, however, one or both of the reactants are of finite extent, then it may be expected that the event

of ignition itself may not occur in the first place owing to the fact that under certain conditions

a steady state can be reached for the heat-transport process. The transition between thermal

runaway and steady state, in typical combustion processes, is usually discrete, a well-known

phenomenon associated with the large activation energy of the reaction. Hence, a parameter i.e.,

a Damköhler number, characterizing this discrete transition, has to be introduced to consider

reactants of finite extent. A further point to note is that an appreciable amount of study has been

developed on the subject lately, as may be seen from recent technical reports [1, 2] that contain

thorough reviews.

In this study the problem in which one of the reactant is of finite extent is considered, with

other simplifications and assumptions being essentially the same as in the earlier work [3]. For

simplicity, the finite-sized reactant is assumed to be spherically symmetric, although predictions

are expected to be valid for other similar geometries with characteristic sizes the same as that of

the radius of the sphere.

A volterra-type nonlinear integral equation can be derived for problems of these kind,

as can be seen from classical ignition theories of solid propellants [6–8] and from problems of

heat (mass) transfer with surface radiation (reaction) [9–11]. Here, a similar integral equation

governing the time evolution of the interface temperature will be derived for spherically symmetric

heterogeneous systems. Given the number of approximations introduced in this elementary study

directed towards the understanding of influences due to finite reactant-proportions, following [3],

a complete solution to this integral equation is not attempted here, but an approximate solution,

bringing out the essential features of this equation, for two extreme cases of Damköhler number,

is presented. The required critical values for the Damköhler number are also derived from this
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integral equation directly.

4.2 The governing equations and the boundary conditions of

the problem

The problem can be described as follows. At time t = 0, a drop of fuel of radius a and

temperature T ′Fo is placed in an infinitely large oxidizer environment, maintained at a temperature

T ′Oo. Then with the interface reaction assumed to obey a zeroth-order one-step irreversible

Arrhenius reaction, it is required to find the temperature at all locations for all further instants

t > 0; in particular, the time history of the interface temperature is of central interest.

In view of the simplifications assumed, which are the same as those of [3], the governing

equation for the temperature T ′i of species i is simply the heat equation,

∂T ′i
∂ t

=
αi

r2
∂

∂ r

(
r2 ∂T ′i

∂ r

)
, i = F,O (4.1)

where αi is the thermal diffusivity of species i and r is the distance measured from the center of

the fuel-drop. The initial and boundary conditions are given accordingly by

t = 0 : T ′F = T ′Fo, (0 < r < a), T ′O = T ′Oo, (a < r < ∞), (4.2)

t > 0 :
∂T ′F
∂ r

= 0, (r = 0), T ′O = T ′Oo, (r→ ∞). (4.3)

Since the heterogeneous reaction occurs at the interface r = a, the conditions that need to be

satisfied at the interface are

T ′F = T ′O = T ′I , and λF
∂T ′F
∂ r
−λO

∂T ′O
∂ r

= qse−E/R̄T ′I , (4.4)

where T ′I (t) is the interface temperature, λi is the thermal conductivity of species i, and qs is
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the rate of heat release per unit surface area. Here, E is the activation energy of the one-step

reaction and R̄ is the universal gas constant. The second interface condition is obtained by

integrating the time-dependent energy equation across the interface, taking the limit of vanishing

interface thickness with the assumption that qs is finite. In the above model, fuel and oxidizer are

distinguished purely by geometrical effects, whereas the one-step model chemistry is completely

symmetric with respect to fuel and oxidizer. If the geometrical role of fuel and oxidizer are

interchanged, all corresponding results and discussions should also be interchanged.

The linear problem free of interface heat-release, obtained by setting qs = 0 in equa-

tion (4.4), has been solved by Brown [12] for constant initial temperatures and by Konopliv and

Sparrow [13] for arbitrary initial temperature distributions.

As a matter of fact, the spatial temperature profile evolves on two different time scales,

namely, the diffusion time scale that is important in most of the region and the chemical time

scale that is assumed to exert an effect only at the interface. These two time scales are different

from each other unless their ratio (defining a Damköhler number) is of order unity. Numerical

methods that try to solve the above set of equations must be such that the fastest of the two time

scales be well resolved. But, for problems of this nature, the complexity associated with the two

time scales can be circumvented by separating the interface problem from the outer diffusional

problem in a sense that will be clear as we proceed further.

To facilitate the outer diffusion problem first, we introduce the dimensionless variables

and parameters

τ =
αFt
a2 , y =

r
a
, Ti =

T ′i
T ′Fo

, α =
T ′Oo
T ′Fo

, L =
λO

λF
, R =

rO

rF
, Q =

aqs

λFT ′Fo
, (4.5)

where ri = λi/
√

α i is the thermal responsivity (or thermal effusivity) of species i. The governing
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equations consequently become

∂TF

∂τ
=

1
y2

∂

∂y

(
y2 ∂TF

∂y

)
,

∂TO

∂τ
=

L2

R2y2
∂

∂y

(
y2 ∂TO

∂y

)
(4.6)

while the corresponding initial and boundary conditions change to

τ = 0 : TF = 1, (0 < y < 1), TO = α, (1 < y < ∞), (4.7)

τ > 0 :
∂TF

∂y
= 0, (y = 0), TO = α, (y→ ∞). (4.8)

Finally, the interface conditions for τ > 0 can be written as

y = 1 : TF = TO = TI,
∂TF

∂y
−L

∂TO

∂y
= Qe−E/R̄T ′FoTI . (4.9)

The above problem possess a non-trivial steady solution unique to the spherical geometry con-

sidered here, while no such steady solutions can be found for configurations with cylindrical or

planar symmetry. The discussion of such solutions will be postponed to section V, since it seems

helpful to deduce results in terms of activation-energy asymptotics first.

4.3 A general method of solution and the derivation of an in-

tegral equation governing the interface temperature

Since the nonlinear term enters only through a boundary condition, methods for linear

problems can be applied here to the extent that they do not involve the interface condition

exhibiting the nonlinear behaviour. For the same reason, there are several ways to arrive at the

same result, of which the technique of Laplace transforms is exploited in this work, as was done
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in references [3, 6–10, 12, 13]. The Laplace transforms of the dependent variables are defined as

T̃i = L (Ti) =
∫

∞

0
Ti e−sτ dτ, i = F,O. (4.10)

The governing equations then reduce to ordinary differential equations,

d2T̃F

dy2 +
2
y

dT̃F

dy
= sT̃F −1,

d2T̃O

dy2 +
2
y

dT̃O

dy
=

R2

L2 (sT̃O−α), (4.11)

whose solutions satisfying the conditions away from the interface are

T̃F = F̃F(s)
sinh
√

sy
y

+
1
s
, T̃O = F̃O(s)

e−y
√

sR/L

y
+

α

s
(4.12)

where F̃F(s) and F̃O(s) are constants of integration. Continuity of temperature at y = 1 implies

F̃F sinh
√

s+
1−α

s
= F̃Oe−

√
sR/L, (4.13)

whereas the flux-jump (4.9) at the interface leads to

F̃F sinh
√

s(
√

scoth
√

s−1)+ F̃Oe−
√

sR/L(
√

sR+L) = Q
∫

∞

0
e−E/R̄T ′FoTI e−sτ dτ. (4.14)

By eliminating F̃O between the foregoing two equations we obtain an equation for F̃F ,

√
sF̃F sinh

√
s
(

coth
√

s+R+
L−1√

s

)
+(1−α)

(
R
s
+

L√
s

)
= Q

∫
∞

0
e−E/R̄T ′FoTI e−sτ dτ.

(4.15)

This completes the solution for the outer diffusion problem since TF and TO in principle can be

expressed as quadratures by inverting (4.10), with F̃F determined from an integral equation that

governs the inner interface temperature.
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4.3.1 Determination of initial interface temperature

The interface temperature, although discontinuous at t = 0, will become continuous

instantaneously for t > 0 as a necessary consequence of the heat equation, such that we can speak

of a unique interface temperature as t→ 0+. Also, since the heat release by chemical reaction

has not begun at these initial instants, the initial interface temperature can be obtained from

equation (4.15) after removing its right-hand side, to result in

sF̃F sinh
√

s =− (1−α)(R+L/
√

s)
coth
√

s+R+(L−1)/
√

s
. (4.16)

By definition, F̃F sinh
√

s is the Laplace transform of TI − 1 and to find TIo− 1, where TIo is

the initial interface temperature in non-dimensional form, we take the limit s→ ∞ and apply

initial-value theorem, yielding

TIo =
1+αR
R+1

. (4.17)

The dimensional initial interface temperature T ′Io is simply a weighted average of initial temper-

atures with thermal responsivities being the weight factors. This result, the same as that of the

planar problem [3], is in fact valid for arbitrary interfaces that are smooth.

4.3.2 The integral equation

Following Williams [3], next we study the evolution of the departure of the interface

temperature from its initial value, i.e., we define F = TI−TIo, so its Laplace transform F̃ = (F)

becomes F̃ = F̃F sinh
√

s+R(1−α)/[s(R+1)]. Equation (4.15) can be re-written in terms of F̃

as

√
sF̃
(
coth
√

s+R
)
+

R(1−α)(1− coth
√

s)√
s(R+1)

+
(1−α)(L+R)

s(R+1)
+(L−1)F̃

= Q
∫

∞

0
e−E/R̄T ′Fo(F+TIo)e−sτ dτ. (4.18)
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Taking the inverse Laplace transform using Bateman’s tables [14] gives

∫
τ

0

dF(τ ′)
dτ ′

[
ϑ3
(
0|iπ(τ− τ

′)
)
+

R√
π(τ− τ ′)

]
dτ
′+

R(1−α)

R+1

[
1√
πτ
−ϑ3(0|iπτ)+

L
R
+1
]

+(L−1)F = Qe−E/R̄T ′Fo[F+TIo],

(4.19)

where ϑ3(0|iπτ) is one of the Jacobi theta functions, in which the argument iπτ often is called

the lattice parameter. The preceding equation is the required integral equation for F(τ) subjected

to the condition F(0) = 0.

4.4 The application of activation-energy asymptotics

As previously discussed, evolution of the interface temperature should be scaled with

the chemical time. In large-activation-energy asymptotics, the small parameter of expansion

can be defined as ε = R̄T ′Io/E � 1. From the dimensional equations (1)-(4), it is clear that the

characteristic heat-conduction time and the characteristic explosion time, respectively, are given

by

tc =
a2

αF
and te =

aεT ′IoλF

qse−1/εαF
. (4.20)

The non-dimensional parameters and variables required for activation-energy asymptotics become

δ =
tc
te
, ϖ =

πt
te

= δπτ, ψ =
F

εTIo
=

F(R+1)
ε(1+αR)

, γ =
1−α

ε(1+αR)
, (4.21)

where δ is the Damköhler number. The parameter γ , measuring the relative difference between

the initial temperatures of the two reactants, can range from negative values of the orders of tens

to positive values of the same orders, for the typical values α ∼ O(1) and ε = 0.01−0.1.
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With the scales introduced in this section, equation (4.19) becomes

∫
ϖ

0

dψ(ϖ ′)
dϖ ′

[
ϑ3

(
0
∣∣∣ i(ϖ −ϖ ′)

δ

)
+

R
√

δ√
ϖ −ϖ ′

]
dϖ
′+Rγ

[√
δ√
ϖ
−ϑ3

(
0
∣∣∣ iϖ

δ

)
+

L
R
+1

]

+(L−1)ψ = δeψ/(1+εψ) ≈ δeψ ,

(4.22)

where, on the premise of activation-energy asymptotics, the Arrhenius term at the end has

been linearized following Frank-Kamenetskii [15]. The explicit dependence on ε has thus been

removed, thereby leaving R, L, γ , and δ as the four independent parameters of the problem.

The particular theta function that appears in the integral equation can be represented by

two different forms2,

ϑ3

(
0
∣∣∣ iϖ

δ

)
= 1+2

∞

∑
n=1

e−πn2ϖ/δ =

√
δ√
ϖ

[
1+2

∞

∑
n=1

e−πn2δ/ϖ

]
. (4.23)

where the second representation is obtained by taking the Jacobi imaginary transformation

(cf. [16], p. 475) of the first representation. These two representations will be useful in deriving

the limiting forms of the theta function in various limits.

4.5 The steady solution and the Frank-Kamenetskii parame-

ter

For given values of R, L and γ , a steady solution is expected to occur only for δ ≤ δc,

where δc is the critical Damköhler number, also known as the Frank-Kamenetskii parameter [15].

Taking the limit ϖ → ∞ in equation (4.22), keeping other parameters fixed, the steady solution

2The two representations are related by the identity ϑ3(0|ix−1) =
√

xϑ3(0|ix).
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ψs is found to satisfy the following equation3

ψs + γ =
δ

L
eψs. (4.24)

Except for the appearance of γ , the above equation is similar to one obtained by Semenov [17] in

the thermal-explosion theory of well-mixed reactants. One may also notice that, in steady state,

the heat liberated by the interface reaction is lost only to the oxidizer as in Semenov’s case, where

heat loss occurs only at the enclosing wall, but for a different reason, i.e. due to the assumption

of large conductivity for the reactant mixture in the Semenov analysis.

An explicit solution can be written for ψs in terms of Lambert W function [18],

−ψs = γ +W
(
−δe−γ

L

)
. (4.25)

Since the Lambert W function is real only when its argument x≥−1/e, we immediately determine

the condition for existence of a real, steady interface temperature, written in terms of the critical

Damköhler number, to be

δ ≤ δc = Leγ−1. (4.26)

For cases in which both fuel and oxidizer have the same initial temperature, the Frank-Kamenetskii

parameter δc = L/e is an order-unity number. By way of contrast, if the fuel sphere has an initial

temperature which is much hotter than the oxidizer (α � 1), then δc ∼ e1/ε , i.e. in the limit of

vanishing ε , the system never goes to explosive mode, while, in the opposite case (α � 1), the

system never reaches a steady state, since in this limit δc ∼ e−1/ε .

For obvious reasons, the argument of the Lambert W function in (4.25) is nonpositive in

all possible situations, while the function W (x) itself has two branches in that range−1/e≤ x < 0,

the upper (principal) branch, W0(x) and the lower branch, W−1(x) (see left plot of Fig. 4.1), of

3The temperature distribution in steady state, outside the interface is given by TF = TI and TO = (TI−α)/y+α ,
where TI = TIo(1+ εψs).
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Figure 4.1: The left-hand side plot shows the real-valued figure of Lambert W-Function,
comprising of two branches, the principal branch (solid curve) and the lower branch (dashed
curve), whereas the right-hand side plot draws the curve for steady solution, evaluated using
both branches of the Lambert function.

which one has to be selected based on physical grounds. It seems that the principal branch obeys

the fact that a steady interface temperature, whenever it exists, should increase for increasing

values of δ when other parameters are kept fixed, a typical expectation which follows directly

from S-shaped ignition-extinction curve. This can be seen to be true from the right plot of

Fig. 4.1, where steady solutions are plotted as functions of δ/L for different possible values of

the Frank-Kamenetskii parameter via δc/L for both branches of W (x). By comparing this figure

with the typical curves of thermal-explosion theory, we can identify W0 to be the stable branch

and W−1 as unstable.

4.6 A simplified integral equation applicable in the range δ�

1 and its approximate solution

Now that we have a well-defined criterion for the existence of steady solutions, we can

turn our attention to unsteady problems and consider the limit of large Damköhler numbers
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first. As δ → ∞, a thermal runaway is expected to occur in a short interval of time from the

inception, with solutions approaching the planar problem considered by Williams [3]4. For the

planar geometry, ignition occurs at times of order ϖ ∼ δ−1. Thus, the ratio ϖ/δ can at most be

of the order δ−2 and hence the theta function can be approximated as ϑ3(0|iϖ/δ )≈
√

δ/ϖ with

exponentially small corrections.

By defining a new time coordinate η = δϖ/(R+ 1)2 and by introducing two new pa-

rameters Λ = γ(R+L)/δ and k = (L−1)/δ , the integral equation (4.22), in the limit of large

Damköhler number, can be shown to reduce to

∫
η

0

dψ

dη ′
dη ′√
η−η ′

+Λ+ kψ = eψ , (4.27)

where the function ψ inside the integral should be interpreted as ψ = ψ(η ′). Due to the expo-

nentially small corrections, the above equation will not differ markedly from (4.22) even for

moderately large δ ; for example, the error is already of order 10−4 when δ = 3. For this reason,

although strictly speaking, in the asymptotic sense, Λ and k should be treated as first-order

corrections, we may as well treat them as order unity quantities since this may be true for large

but finite values of δ .

By the above arguments, we can see that the distinguished double limit (Λ,k)→ (0,0)

is planar in character, and in this limit, the simplified integral equation reduces to the Williams

equation [3]. The conditions under which Λ and k vanishes can be inferred directly from their

definitions.

The simplified integral equation is not soluble in terms of elementary functions, whence

it will be solved locally both for small times and near the point where the solution diverges

indefinitely. An approximation to a uniform solution will be constructed out of these two

solutions by the method of patching. Only those values of Λ and k for which these local solutions

4A more precise statement would be to define δ −δc→ ∞ as the planar limit, rather than δ → ∞. For example,
eqn. (4.27) does not always produce an explosive solution; δ can be less than δc.
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are reasonably accurate and for which δ > δc, will be considered.

For η � 1, a power-series expansion leads to

ψ(η) =
2p
π

√
η +

ps
π

η +
4p(2p+πs2)

3π3 η
3/2 +

p[2p2 + ps(3π +4)+2πs3]

4π3 η
2 + · · · (4.28)

where p = 1−Λ and s = 1− k have been introduced for shortness.

As far as the terminal profile is concerned, obtaining a neat perturbation series like the

one for the initial profile is non-trivial; therefore an approximate solution will be derived in the

following. Let η = c be the point at which the solution diverges. Then in the neighborhood of

η = c, the upper limit η appearing in the integral in Eqn. (4.27) can be replaced by c and the lower

limit of integration itself can be shifted to η since the major contribution to the integral term comes

from this neighborhood. A simple consideration shows then that the integral equation (4.27) can

be approximated by the differential equation π
√

c−ηdψ/dη +Λ+ kψ = eψ .5 The equation has

to integrated with the condition that ψ becomes infinite at η = c. A straightforward integration

shows then that
2
π

√
c−η = G(ψ;Λ,k)≡

∫
∞

ψ

dψ ′

eψ ′−Λ− kψ ′
. (4.29)

The function G, in general, has to be calculated numerically except for the case k = 0, for which

the above equation simplifies to Λe−ψ = 1− e−2Λ
√

c−η/π , which as it must, reduces to eqn.(23)

of [3] for small values of Λ. Although G is well-behaved since it tends to e−ψ as ψ → ∞, it

may become singular in a logarithmic fashion depending on the values of Λ and k if ψ is not

sufficiently large. For the values considered for (Λ,k) in this study and for the domain where

both initial and terminal solution are accurate enough, G is non-singular.

The problem remains to determine the constant c by matching the initial and the terminal

solution. In order to do that, η will be treated as a function of ψ . An intermediate point ψ = ψp

5The factor π is easy to obtain if one recognises that one can always find a region near η = c where Λ and kψ are
negligible when compared to the other two terms. With Λ and k neglected then, only π is found to be consistent for
the solution of the differential equation and the leading-order solution of the integral equation (4.27) to be the same.
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is assumed to exist where both the initial profile (4.28) (after solving for η = H(ψ;Λ,k)) and

the terminal profile (4.29) have the same value, at which point, the slope of two curves is also

assumed to be continuous. This leads to two conditions for the two unknowns, c and ψp. The

patching point ψp can be found from an appropriate root of 4dH/dψ +π2dG2/dψ = 0 and the

value of c(Λ,k) can be found from c = H(ψp)+π2G2(ψp)/4.

0 2 4 6 8 10
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10
0
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Figure 4.2: Plots of explosion point c(Λ) for values of k =−10,−5,−1, 0, 1, 3, 5 correspond-
ing to bottom curve to top curve, respectively .

To plot results, we keep first the four terms of (4.28) in evaluating c since retaining more

terms seems to have little influence on the value of c. The curves of c(Λ) for fixed values of k

are plotted as solid curves in Fig. 4.2. The result is increasingly accurate for decreasing values

of c. Increasing either Λ or k evidently delays ignition so that the delay time can become larger

or smaller than that of the planar problem depending on values of these two parameters. For

Williams [3], who had kept only the first term in (4.28), the value of c is universal and equal to

c(0,0). This value which he found to be 1.5 seems to decrease and approach unity as we include

more terms to the initial solution.

86



4.7 The solution characteristics for sub-critical and near-critical

limits

For simplicity, only the case γ = 0 (equal initial temperatures) is considered in this section.

Then from (4.26), the Frank-Kamenetskii parameter simply becomes δc = L/e, while the steady-

state value of ψ at this critical condition is ψs = 1 according to (4.25). Also, the steady-state

value of ψ for δ < δc is ψs =−W0(−δ/L) from (4.25).

Prior to investigating the near-critical limit |δ −δc| � 1, it is helpful to first understand

the solution behaviour throughout the sub-critical range δ < δc. In the sub-critical regime, the

transient solution evolves on time scales of the order of tc, eventually reaching a steady value,

and therefore it is appropriate to work with τ in place of ϖ as the relevant non-dimensional time

variable. Here, we are interested only in the asymptotic behaviour of the transient solution for

large τ . In terms of τ , the integral equation (4.22), as τ→∞, after introducing ψ(τ) = ψs+θ(τ),

with θ � 1, reduces to

∫
τ

0

dθ

dτ ′
Rdτ ′√

π(τ− τ ′)
+µLθ = L(1−µ)

(
θ 2

2!
+

θ 3

3!
+ · · ·

)
, (4.30)

where µ = 1−ψs < 1 measures the difference between the steady-state temperature for the

critical condition δ = δc and that for the sub-critical condition δ < δc; µ vanishes when δ = δc.

The linear integral equation that is obtained by neglecting θ 2 and higher-order terms can be

solved by Laplace transforms [14], to give

θ = θoeL2µ2τ/R2
erfc

(
Lµ

R
√

τ

)
≈ Rθo

Lµ
√

πτ
, (4.31)

where θo is a constant that can be determined numerically. This indicates an algebraic decay to

the steady solution which is qualitatively different from the exponential decay (cf. [19], eqn.14

and [20], eqn.3.1) observed for Semenov’s problem.
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The above asymptotic solution is valid for order-unity values of µ , but in the near-critical

limit µ → 0, it develops a sequence of non-uniformities as τ runs to infinity; for instance,

the θ 2 term in (4.30) is no longer negligible when θ ∼ µ , that being the order of magnitude

when τ ∼ µ−4 according to (4.31). A familiar example that is analogous to this situation is the

difficulty in obtaining a uniform formula through activation-energy asymptotics for the laminar

burning velocity of planar premixed flames, that include both near-stoichiometric and far-from-

stoichiometric equivalence ratios. The origin of trouble lies in the expansion about ψs for ψ ,

while the correct expansion should have been about unity for near-critical limits.

The failure of the preceding solution for the near-critical limit forces us to reconsider

the inherent balance in (4.30) in order to identify the correct leading-order terms. In trying

to reformulate the problem for the near-critical case δc− δ � 1, we can also incorporate the

super-critical case δ −δc� 1 in the same formulation, but it is not meaningful to use µ for super-

critical conditions because ψs does not exist. Thus we introduce ν � 1 such that δ = δc(1±ν),

with plus and minus signs, respectively, corresponding to super- and sub-critical regimes. A

correspondence between ν � 1 and µ � 1 can be made from (4.24) for the sub-critical case,

2ν = µ2 +O(µ3).

The analysis of the near-critical limit, originally due to Frank-Kamenetskii [21], has been

employed recently for premixed reactants flowing inside a pipe [22]. The required rescalings for

the current problem are found to be ξ = πντL2/(2R2) and ψ = 1+
√

2νχ−ν (cf. [23], p. 406

and [24], p. 68). Substituting these new variables into (4.22) and neglecting terms of order ν2

leads to ∫
ξ

0

dχ

dξ ′
dξ ′√
ξ −ξ ′

= χ
2±1, χ(0)→−1−ψo√

2ν
(4.32)

where ψo < 1 is an order-unity constant that contains information from the initial periods. In the

sub-critical case, solution for χ exists at all times approaching χ +1∼ 1/
√

ξ as ξ → ∞. On the

contrary, for δ > δc, χ diverges at a finite value ξc of ξ according to χ ∼ 1/
√

ξc−ξ . The value

of ξc depends on ν , and preliminary numerical integrations suggested that ξc ∼ (2ν)−1.
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Had we considered the case γ 6= 0, an additional term γ(2νξ )−1/2 would appear on the

left-hand side of equation (4.32), suggesting two possible modifications for the super-critical case.

For γ > 0, a balance of this new term with the Arrhenius term leads to χ(ξ )→−[γ2/(2νξ )]1/4�

χ(0) (only the negative root is allowed since only then will the quadratic approximation in (4.32)

be a representative of the full Arrhenius expression) indicating that the solution has not yet

approached the steady solution at this time scale. On the other hand, for γ < 0, we cannot find

any real solution, meaning that the blowup of χ has already taken place at a time scale smaller

than ξ . Different scalings therefore would be needed for γ2 ' 2ν .

4.8 General discussions

From (4.26), in view of (4.5) and (4.21), explicit expressions are available for the critical

Damköhler numbers above which ignition occurs, written in dimensional variables as

aqsE
R̄T ′2Io

e−E/R̄T ′Io ≥ λO

e
exp
[

ErF(T ′Fo−T ′Oo)

R̄T ′2Io (rF + rO)

]
, (4.33)

where T ′Io = (rFT ′Fo + rOT ′Oo)/(rF + rO). For fixed initial temperatures, the phenomenon of

ignition is favoured by a larger fuel radius a or a larger reaction parameter qse−E/R̄T ′IoE/(R̄T ′Io).

Decreasing a delays ignition and makes it less likely to occur because it enhances (geometrically)

rates of heat conduction away from the interface where the heat is being liberated. This is in

qualitative agreement with the droplet-droplet collision experiments [1, 25], where it was observed

that the ignition delay time increases with increasing droplet size ratio, defined such that this ratio

is greater than unity. The augmented heat-conduction rates for small fuel-droplets undermine

the effects of thermal conductivity of the fuel λF (as if λF is infinite), leaving heat-loss to the

oxidizer as the principal way of taking heat away from the interface; this explains the presence

of λO, but not λF in the critical condition. Next keeping fuel radius and reaction parameter

fixed, ignition is favoured more for the case T ′Fo < T ′Oo since now there is an adverse temperature
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gradient (additional to the gradient-jump induced by the interface reaction) at the interface that

opposes heat-conduction to the oxidizer. The opposite case T ′Fo > T ′Oo increases heat-loss to the

oxidizer making it harder for the interface temperature to blow-up. The thermal responsivity is

closely associated with the fact that the initial temperatures of the two reactants are different from

each other and it disappears in the critical condition whenever T ′Fo = T ′Oo = T ′Io. Interestingly

enough, when T ′Fo 6= T ′Oo, only the ratio rO/rF appears explicitly in the critical condition as well

as affects the initial interface temperature. If the effect on T ′Io is ignored, then increasing this ratio

promotes the ignition whenever T ′Fo > T ′Oo.

The ignition delay time in dimensional form that is appropriate for large Damköhler

number defined in section VI is

tign =
c
π

[
(rF + rO)R̄T ′2Io

qsEe−E/R̄T ′Io

]2

, (4.34)

where the value of c(Λ,k) can be obtained from Figure 4.2 for given values of

Λ =
(T ′Fo−T ′Oo)(rFλO + rOλF)

aqs(rF + rO)e−E/R̄T ′Io
and k =

(λO−λF)R̄T ′2Io

aqsEe−E/R̄T ′Io
. (4.35)

This ignition formula is same as that for the planar problem. As expected, the dependence of the

ignition delay time on the fuel radius a entering implicitly via Λ and k, disappears in the planar

limit a→ ∞. In the planar limit, the ignition formula is independent of the thermal conductivities

because the heat-conduction is driven by huge temperature gradients induced by the fast chemical

reaction, on both sides of the interface and not by the values of the thermal conductivities; the

difference λO−λF emerges in the first-order correction to the planar problem. Similarly, the

temperature gradients associated with the initial-temperature differences also arise only in the

first-order correction. The ignition formula, however, does depend on the sum of the responsivities

since although the interface temperature is continuous at the interface, the temperature on either

sides suffer rapid variations (quite independent of all parameters except the reaction parameter)
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that necessitate the symmetric presence of the thermal responsivities in the formula.

In the near-critical limit, the ignition delay time can be written as

tign =
b
π

[
arOR̄T ′2Io

aeqsEe−E/R̄T ′Io−λOR̄T ′2Io

]2

, (4.36)

where b is an order-unity constant that is not determined here. Since the preceding formula

reduces to (4.34) as a→ ∞, the formula can be anticipated to be of general validity, although b

may no longer be a universal constant except for the two extreme cases considered in this work.

The ignition delay time is inversely proportional to the measure of the inequality in equation (4.33)

(after setting T ′Fo = T ′Oo) and consequently discussions pertaining to (4.33) are also valid here. For

example, while the leading-order large Damköhler-number ignition formula (4.34) is symmetric

with respect to both fuel and oxidizer, the above near-critical ignition formula depends only on

the thermal properties of the oxidizer and not on that of the fuel.

4.9 Conclusions

The principal result of the study is the determination of critical conditions that separate

steady solutions from thermal runaway. It is observed that ignition is promoted by increasing the

fuel radius, or the reaction parameter or the initial temperature of the oxidizer or by decreasing

the oxidizer thermal conductivity. Whenever the initial temperatures of the two reactants are not

the same, the thermal responsivity ratio, in part, determines whether the chance of igniting the

reactants is enhanced or worsened. In addition, the ignition delay times for large and near-critical

Daköhler numbers are also estimated, where in the former case, the delay time is symmetric

about the two reactants, while for the near-critical conditions, the delay time is dependent only

on the properties of the oxidizer. In general, the ignition delay time is inversely proportional to

the reaction parameter and directly proportional to the thermal responsivities, starting from the
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case where the dependence is only on the oxidizer thermal responsivity to the case where the

dependence is on both the fuel and the oxidizer thermal responsivities in a symmetric fashion.

Knowledge of these dependances on various parameters are critical in having a better control on

hypergolic ignition.

However the work mainly addresses the influences of finite proportions of the reactants

and clearly more work is required for further understanding of hypergolic ignition and to make

concrete predictions; in particular, to name a few of the factors that are neglected here, there

may be interest in the effects of reactant depletion, the effects of detailed chemical kinetics, the

effects of gel additives etc. An ignition study employing a reduced chemistry for the hypergolic

reactants, but more complex than the one-step chemistry considered here could be the next step

for future investigations.

This chapter, in part, has been published in Journal of Propulsion and Power, “Ther-

mal explosion characteristics of a gelled hypergolic propellants”, by P. Rajamanickam. The

dissertation author is the primary investigator in this publication.
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Part III

Stability of convection flows on inclined

surfaces
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Brief overview

The buoyancy-driven boundary-layer flow that develops over a semi-infinite inclined hot

plate is known to become unstable at a finite distance from the leading edge, characterized by a

critical value of the Grashof number Gr based on the local boundary-layer thickness. The nature

of the resulting instability depends on the inclination angle φ , measured from the vertical direction.

For values of φ below a critical value φc the instability is characterized by the appearance of

spanwise traveling waves, whereas for φ > φc the bifurcated flow displays Görtler-like streamwise

vortices. The Boussinesq approximation, employed in previous linear stability analyses, ceases to

be valid for gaseous flow when the wall-to-ambient temperature ratio Θw is not close to unity. The

corresponding non-Boussinesq analysis is presented in chapter 5, accounting also for the variation

with temperature of the different transport properties. A temporal stability analysis including

nonparallel effects of the base flow is used to determine curves of neutral stability, which are then

employed to delineate the dependences of the critical Grashof number and of its associated wave

length on the inclination angle φ and on the temperature ratio Θw for the two instability modes,

giving quantitative information of interest for configurations with Θw− 1 ∼ 1. The analysis

provides in particular the predicted dependence of the crossover inclination angle φc on Θw,

indicating that for gaseous flow with Θw−1∼ 1 spanwise traveling waves are predominant over

a range of inclination angles 0 ≤ φ ≤ φc that is significantly wider than that predicted in the

Boussinesq approximation.
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Chapter 5

Non-Boussinesq stability analysis of

natural-convection gaseous flow on

inclined hot plates

5.1 Introduction

A semi-infinite inclined hot plate placed in a quiescent air atmosphere is known to induce

near its surface a free-convection flow as a result of the action of buoyancy forces on the heated

gas. The structure of the resulting boundary layer away from the plate edge exhibits at leading

order a self-similar structure, as first noted in the experimental study of Schmidt and Beckmann

[1]. This boundary layer is known to become unstable to small disturbances at a certain distance

measured from the leading edge of the plate [2]. The character of the observed instability depends

on the inclination angle φ , measured from the vertical direction. Thus, for values of φ above a

critical value φc, including in particular horizontal and nearly horizontal plates, the instability

develops in the form of stationary counter-rotating vortex rolls that are oriented in the streamwise

direction. These are similar to those characterizing the Görtler instability of boundary-layer

97



flow along a concave wall, driven by centrifugal forces, with the wall-normal component of the

buoyancy force being the driving mechanism for free-convection flow. As the inclination angle

φ is decreased, this wall-normal buoyancy component loses importance and, below a certain

crossover angle φc, the character of the observed instabilities changes to Tollmien-Schlichting-like

traveling waves driven by shear. Following existing terminology [3, 4], in the following the

stability mode involving streamwise stationary vortices will be termed vortex instability, whereas

that involving traveling waves will be termed wave instability.

Sparrow & Husar [2] were the first to identify both modes experimentally, and to show

that their prevalence depends on the inclination of the heated surface. The crossover angle was

determined by Lloyd & Sparrow [5] to lie between 14◦ < φc < 17◦. Other experiments carried

out later agree generally with these findings [6–11].

Apart from the inclination angle φ , the buoyancy-induced flow over a semi-infinite flat

plate at constant temperature depends on the Prandtl number Pr of the fluid and on the ratio

Θw = T ∗w/T ∗∞ of the wall temperature to the ambient temperature. All previous theoretical efforts

aimed at quantifying the critical conditions at the onset of the vortex and wave instabilities were

performed in the Boussinesq approximation [3, 4, 12–20], which is only justified in gaseous flow

when the wall-to-ambient relative temperature difference (Θw−1) is small. Most of these studies

employ linear local stability theory—a normal mode analysis—to determine, for fixed values of

Pr and φ , the critical boundary-layer thickness δ ∗o , measured in dimensionless form through a

local Grashof number, above which small perturbations, either of vortex type with associated

spanwise wave number l∗, or of wave type with streamwise wave number k∗, are amplified. In this

manner, a unique neutral curve in the Grashof – wave number plane can be delineated for each

mode. The mode with the lowest corresponding critical Grashof number for all wave numbers

would be the one that prevails in an experiment, and the value of that Grashof number would give

the local boundary-layer thickness—and therefore the distance x∗ to the plate edge—at which the

instability first develops.
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Conventionally, in a local stability analysis the base flow is assumed to be strictly parallel.

That assumption must be reconsidered in the analysis of slowly varying slender flows, such as the

present boundary layer, for which the order of magnitude of some of the terms in the stability

equations, involving the transverse velocity component and the streamwise variation of the flow,

is comparable to that of the viscous terms, and must be correspondingly taken into account.

This so-called locally nonparallel approach was already adopted by Haaland & Sparrow in their

temporal stability analyses of the vortex [3] and wave [4] instability modes. The resulting critical

Grashof numbers were seen to differ by several orders of magnitude from those obtained with

a strictly parallel analysis, thereby underlining the importance of the nonparallel terms. The

problem was re-examined by a series of authors, adopting small variations of this approach, either

in a temporal [12, 13, 15–19] or a spatial [14] linear–stability framework. The analysis can be

extended to describe finite-amplitude vortex rolls and secondary bifurcations by retaining selected

nonlinear terms in the description, as done by Chen et al. [19]. Recently, instabilities in transient

cooling of inclined surfaces and cavities have been studied numerically [21, 22].

The accuracy of the computations mentioned above deteriorates in the presence of order–

unity deviations of the wall temperature from the ambient temperature, when the use of the

Boussinesq approximation is no longer justified. Although non-Boussinesq effects have been

taken into account in analyses of the boundary-layer structure for flow over a heated plate [23–25],

these effects have never been considered in connection with the associated stability problem.

The objective of the present work is to revisit the classical work of Haaland & Sparrow [3, 4],

including the influence of the wall-to-ambient temperature ratio Θw for cases with Θw−1∼ 1. In

particular, a linear temporal modal stability analysis will be performed to investigate both the

vortex and the wave modes, with account taken of nonparallel effects associated with the slow

downstream evolution of the base flow. The effect of Θw on the neutral stability curves will be

assessed, along with the dependence of the crossover angle defining the transition between the

two types of instability.
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Figure 5.1: Schematic diagram of the boundary-layer flow over a heated inclined surface.

The study is structured as follows. The governing equations and boundary conditions for

the base flow and for the linear stability analysis are given in § 2. The vortex mode is studied

in § 3, followed in § 4 by the analysis of the wave instability. The predictions of the critical

conditions for the two modes are compared in § 5 to delineate the boundary that defines the

regions of prevalence of each mode on the parametric plane φ −Θw. Finally, concluding remarks

are offered in § 6.

5.2 Problem formulation

The problem considered here, shown schematically in figure 5.1, involves the flow induced

by buoyancy near the surface of a semi-infinite inclined plate whose temperature is held at a

constant value, T ∗w , higher than the ambient temperature T ∗∞ found in the surrounding quiescent

air atmosphere. The associated velocities are negligibly small compared to the sound speed, so
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that the conservation equations can be written in the low-Mach number approximation

∂ρ∗

∂ t∗
+∇

∗ · (ρ∗∗) = 0, (5.1)

ρ
∗ ∂ ∗

∂ t∗
+ρ

∗∗ ·∇∗∗ =−∇
∗p∗+(ρ∗−ρ

∗
∞)g
∗+∇

∗ ·
[
µ
∗(∇∗∗+∇

∗∗T )
]
, (5.2)

ρ
∗∂T ∗

∂ t∗
+ρ

∗∗ ·∇∗T ∗ = 1
Pr

∇
∗ · (µ∗∇∗T ∗), (5.3)

where ρ∗, ∗, and T ∗ represent the density, velocity, and temperature of the gas; dimensional quan-

tities are indicated everywhere in the text with an asterisk (∗). In the momentum equation (5.2),

p∗ represents the sum of the pressure difference from the ambient hydrostatic distribution and the

isotropic component of the stress tensor. Cartesian coordinates are used in the description, includ-

ing the streamwise distance measured along the plate from the leading edge x∗, the transverse

distance from the surface of the plate y∗, and the spanwise coordinate z∗, with corresponding

velocity components ∗ = (u∗,v∗,w∗). The inclination angle φ is measured from the vertical, so

that the gravity vector is g∗ =−g∗ cosφ ex−g∗ sinφ ey.

The above equations must be supplemented with the equation of state

ρ∗

ρ∗∞
=

T ∗∞
T ∗

(5.4)

and with the presumed power law

µ∗

µ∗∞
=

κ∗

κ∗∞
=

(
T ∗

T ∗∞

)σ

(5.5)

for the temperature dependence of the viscosity and thermal conductivity, with the subscript ∞

denoting properties in the unperturbed ambient air. The constant values Pr = 0.7 and σ = 2/3,

corresponding to air, will be used below for the Prandtl number Pr = c∗pµ∗∞/κ∗∞ in (5.3) and for

101



the exponent σ in (5.5). Equations (5.1)–(5.3) must be integrated with the boundary conditions

 u∗ = v∗ = w∗ = T ∗−T ∗w = 0 at y∗ = 0 for x∗ > 0

u∗ = v∗ = w∗ = T ∗−T ∗∞ = p∗ = 0 as (x∗2 + y∗2)→ ∞ for y∗ 6= 0,x∗ > 0.
(5.6)

For plates that are not nearly horizontal, such that π/2− φ is not small, the flow is

driven by the direct acceleration associated with the gravity component parallel to the plate

g∗ cosφ . Near the leading edge of the plate there exists a nonslender Navier–Stokes region of

characteristic size [ν∗∞
2/(g∗ cosφ)]1/3 where the velocity components are of order (ν∗∞g∗ cosφ)1/3,

with ν∗∞ = µ∗∞/ρ∗∞ denoting the ambient kinematic viscosity, such that the local Reynolds number

there is of order unity. Outside this Navier–Stokes region the flow–field structure includes

a boundary-layer region of characteristic thickness [(ν∗∞
2x∗)/(g∗ cosφ)]1/4 and characteristic

streamwise velocity (g∗ cosφ x∗)1/2, surrounded by an outer region of slow irrotational motion

driven by the boundary-layer entrainment.

The stability of the boundary layer at a given location x∗ = x∗o depends on the value of the

associated Grashof number

Gr =
x∗o
δ ∗o

=
δ ∗o

3g∗ cosφ

ν∗∞
2 =

(
x∗o

3g∗ cosφ

ν∗∞
2

)1/4

, (5.7)

which is the Reynolds number based on the local values of the thickness and streamwise velocity

δ
∗
o =

(
ν∗∞

2x∗o
g∗ cosφ

)1/4

and u∗o = (g∗ cosφ x∗o)
1/2 . (5.8)

The following analysis assumes implicitly that the critical value of Gr associated with the onset of

the instability is moderately large, as corresponds to a location x∗o/δ ∗o � 1 far downstream from

the Navier–Stokes region, where the flow near the plate surface is slender, enabling the stability

analysis to be developed on the basis of the nearly parallel approximation, with the self-similar
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boundary-layer solution used to evaluate the base flow, as indicated below.

5.2.1 Base flow

The near-plate solution that develops outside the Navier–Stokes region can be described

with small relative errors of order Gr−2 by using the boundary-layer form of the conservation equa-

tions. We shall neglect the pressure differences across the boundary layer, of order ρ∗∞g∗ sinφ δ ∗o ,

associated with the transverse component of the gravitational acceleration g∗ sinφ , because they

are small compared with the streamwise hydrostatic pressure differences ρ∗∞g∗ cosφ x∗o at distances

x∗o� δ ∗o tanφ , corresponding to local values of the Grashof number

Gr� tanφ , (5.9)

a condition readily satisfied outside the Navier–Stokes region for the inclined plates with π/2−

φ ∼ 1 considered here. The resulting solution is self-similar when expressed in terms of the

dimensionless coordinate

η =
y∗

[(ν∗∞
2x∗)/(g∗ cosφ)]1/4 (5.10)

with use made of the nondimensional temperature and stream function

Θ(η) =
T ∗

T ∗∞
and F(η) =

ψ∗(
x∗3ν∗∞

2g∗ cosφ
)1/4 , (5.11)

with associated self-similar velocity components

U =
u∗

(g∗ cosφ x∗)1/2 = ΘF ′ and V =
v∗

(ν∗∞
2g∗ cosφ/x∗)1/4 =

Θ

4
(
ηF ′−3F

)
. (5.12)
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Figure 5.2: The self-similar base-flow solution obtained by integration of (5.13)–(5.14) with
Pr = 0.7 and σ = 2/3 for different values of Θw.

Here the prime is used to denote differentiation with respect to η . Introducing these variables

reduces the problem to that of integrating

(Θσ (ΘF ′)′)′+
3
4

F(ΘF ′)′− 1
2

ΘF ′2 +1− 1
Θ

= 0, (5.13)

(Θσ
Θ
′)′+

3
4

PrFΘ
′ = 0, (5.14)

with boundary conditions F(0) = F ′(0) = F ′(∞) = Θ(0)−Θw = Θ(∞)− 1 = 0, where Θw =

T ∗w/T ∗∞ is the wall-to-ambient temperature ratio.

The numerical integration was performed using a spectral collocation method with a

fractional transformation defined by y = a(1+ξ )/(b−ξ ) [26], where a = yc ymax/(ymax−2yc)

and b = 1+ 2a/ymax, that maps N Chebyshev collocation points ξ ∈ [−1,1] to the physical

domain y ∈ [0,ymax] allocating N/2 collocation points to the near-wall region 0 < y < yc. Values

ymax = 200, yc = 15 and N = 128 are found to be adequate, slightly higher than the values used

in [20] for spatial analysis. Resulting temperature and velocity profiles are shown in figure 5.2

for different values of Θw, giving results similar to those presented elsewhere [25].
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5.2.2 Linear stability analysis

Using standard practice, the linear stability of the flow at x∗ = x∗o is investigated by

introducing into (5.1)–(5.5) the perturbed nondimensional variables

∗

u∗o
= (x/Gr,y)+(x,y,z, t) = (ū, v̄,0)+(u,v,w)

T ∗

T ∗∞
= T (x/Gr,y)+θ(x,y,z, t)

ρ∗

ρ∗∞
= ρ̄(x/Gr,y)+ρ(x,y,z, t) (5.15)

µ∗

µ∗∞
= µ̄(x/Gr,y)+µ(x,y,z, t)

p∗

ρ∗∞u∗o2 = p(x,y,z, t)

where

x =
x∗− x∗o

δ ∗o
, y =

y∗

δ ∗o
, z =

z∗

δ ∗o
, and t =

t∗

δ ∗o /u∗o
, (5.16)

leading to the linearized equations

∂ρ

∂ t
=−ρ̄ ∇ ·−ρ ∇ ·− ·∇ρ̄−·∇ρ, (5.17)

ρ̄
∂

∂ t
=−ρ̄ ·∇− ρ̄ ·∇−ρ ·∇−∇p− 1

Gr
ρ(ex + tanφ ey)

+
1

Gr
∇ ·
[
µ̄(∇+∇

T )+µ(∇+∇
T )
]
, (5.18)

ρ̄
∂θ

∂ t
=−ρ̄ ·∇θ − ρ̄ ·∇T −ρ ·∇T

+
1

Gr Pr
∇ ·
[
µ̄∇θ +µ∇T

]
, (5.19)

and

ρ =−T−2
θ and µ = σT σ−1

θ . (5.20)
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The base profiles , T , ρ̄ , and µ̄ can be evaluated from the self-similar velocity and

temperature profiles U(η), V (η), and Θ(η) according to

ū = (1+ x/Gr)1/2U(y/[1+ x/Gr]1/4),

v̄ = Gr−1(1+ x/Gr)−1/4V (y/[1+ x/Gr]1/4),

T =
1
ρ̄
= µ̄

1/σ = Θ(y/[1+ x/Gr]1/4), (5.21)

written in terms of the local coordinates x = (x∗− x∗o)/δ ∗o and y = y∗/δ ∗o by using η = y/(1+

x/Gr)1/4 and Gr = x∗o/δ ∗o . As can be seen, the base flow displays a slow streamwise variation

through the rescaled coordinate x/Gr. The expressions given above can be used to evaluate the

factors that appear in the linearized equations (5.17)–(5.19). In the first approximation for Gr� 1

one obtains the order-unity factors

ū =U(y),
ū
y
=U ′(y),

2ū
y2 =U ′′(y),

T =
1
ρ̄
= µ̄

1/σ = Θ(y),
T
y
= Θ

′(y),
2T
y2 = Θ

′′(y), (5.22)

which pertain to the strictly parallel flow, along with the factors of order Gr−1

v̄ = Gr−1V (y),
v̄
y
= Gr−1V ′(y),

ū
x
= Gr−1

[
1
2

U(y)− y
4

U ′(y)
]
,

T
x
=−Gr−1 y

4
Θ
′(y), and

ρ̄

x
= Gr−1 y

4
Θ′(y)
Θ2(y)

, (5.23)

arising from nonparallel effects.

The nearly parallel stability analysis performed here assumes implicitly a moderately small

value of Gr−1, a condition needed to ensure the slenderness of the flow. The small parameter Gr−1

appears in (5.17)–(5.19) directly as a factor in the molecular transport terms in (5.18) and (5.19)

and also through the factors (5.23) associated with the slow streamwise variation of the base flow.
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If only terms of order unity are retained in (5.17)–(5.19), then the resulting equations describe the

inviscid instability of strictly parallel flow. By retaining also terms of order Gr−1 one accounts

simultaneously for viscous and nonparallel effects, that being the approach pursued herein. Thus,

following Haaland & Sparrow [3, 4], the equations (5.17)–(5.19) were systematically simplified

by retaining terms up to O(Gr−1), while neglecting terms of order Gr−2 and higher. The resulting

simplified equations are written in 5.6 for the normal-mode perturbations

[u,v,w, p,θ ,ρ,µ](x,y,z, t) = ei(kx+lz−ωt)[û, v̂, ŵ, p̂, θ̂ , ρ̂, µ̂](y), (5.24)

where k and l are the dimensionless streamwise and spanwise wave numbers, and ω = ωr + iωi

contains both the frequency ωr and the growth rate ωi of the perturbations. The vortex instability

is associated with modes with k = 0 and ωr = 0, whereas the wave instability corresponds to l = 0

and ωr > 0. The two types of instabilities will be studied separately in the following two sections.

5.3 Vortex instability

5.3.1 The simplified eigenvalue problem

We start by considering instabilities characterized by the appearance of Görtler-like vortex

rolls aligned with the streamwise direction, known to dominate the boundary-layer dynamics

for values of φ above a critical value φc. These can be investigated by setting k = 0 in the

normal-mode ansatz (5.24). Chen et al. [19] showed that the principle of exchange of instabilities

holds for this type of instabilities, in the sense that in the full eigenvalue spectrum the eigenvalue

with the largest growth rate ωi has zero frequency ωr = 0. Hence, the critical conditions for vortex

instability can be computed by setting both k and ω equal to zero in (5.34)–(5.38). Eliminating
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then p̂ and ŵ by combining equations (5.34), (5.36) and (5.37), and introducing the transformation

ũ = û tanφ , ṽ = v̂, θ̃ = θ̂ tanφ , = Gr tanφ (5.25)

to remove the explicit dependence on the inclination angle φ [3], leads to the three equations

[
D(Θσ D)− (V/Θ)D− (2U− yU ′)/(4Θ)

]
ũ

+
{[

1+VU ′+U(2U− yU ′)/4
]
/Θ

2 +σΘ
σ−1(U ′D+U ′′)

}
θ̃ =

U ′

Θ
ṽ, (5.26)

D
[

1
l2

(
DΘ

σ − V
Θ

)
D
(

D− Θ′

Θ

)
+DΘ

σ −2Θ
σ

(
2D− Θ′

Θ

)]
ṽ

+

[
Θ

σ D
(

D− Θ′

Θ

)
+

1
Θ
(DV )+Θ

σ l2
]

ṽ−Θ
−2

θ̃ = 0, (5.27)[
D(Θσ D)+σ(DΘ

σ−1
Θ
′)−Pr

V
Θ

D−Θ
σ l2−Pr

(y
4

U−V
)

Θ′

Θ2

]
θ̃

+Pr
yΘ′

4Θ
ũ = Pr

Θ′

Θ
ṽ, (5.28)

with boundary conditions

ũ = ṽ = Dṽ = θ̃ = 0 at y = 0 and as y→ ∞. (5.29)

In the operators acting on the eigenfunctions the symbol D denotes differentiation with respect

to y. A function of y placed immediately after D indicates that multiplication by that function

should be performed prior to differentiation, so that, for instance, (DΘσ )ṽ = d(Θσ ṽ)/dy, while

(Θσ D)ṽ = Θσ dṽ/dy instead. The eigenfunction ũ is coupled to ṽ and θ̃ through the last term on

the left-hand side in (5.28), associated with the slow streamwise variation of the base temperature

T . Also of interest is that for strictly parallel flow (i.e., when the factors listed in (5.23) are set

equal to zero), the problem becomes independent of the base velocity field, and the resulting

equations reduce to those corresponding to Rayleigh-Bénard convection.
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Figure 5.3: Results of the non-Boussinesq analysis of the vortex instability, including curves of
neutral stability (a) along with the variation with Θw of m and of the associated spanwise wave
number lm (b); the triangles in (a) corresponds to evaluations of (5.30) with the values of GrB
reported in [3].

5.3.2 Numerical results

For a given wall-to-ambient temperature ratio Θw, which defines the base flow, and a given

spanwise wave number l, the above eigenvalue problem (5.26)–(5.29) was solved numerically to

determine the critical value 0 of identifying the conditions of neutral stability. The variation of

0 = tanφ Gr0 with l is shown in figure 5.3(a) for different Θw. As can be seen, each neutral curve

0(l) reaches a minimum value 0 =m at l = lm. This minimum determines the wave length 2π/lm of

the most unstable mode along with the downstream location x∗m = (m/ tanφ)4/3[ν∗∞
2/(g∗ cosφ)]

at which the vortices begin to develop. To complete the description, the variation of m and lm for

the most unstable mode is plotted as a function of Θw in figure 5.3(b). It is evident from the plots

that increasing the wall-to-ambient temperature ratio Θw as well as increasing φ towards a more

horizontal position tends to destabilize the flow. Also noteworthy is the rapid variation of m and

lm with Θw for Θw−1� 1.
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5.3.3 Departures from the Boussinesq approximation

The results can be compared to the Boussinesq analysis of Haaland & Sparrow [3] by

taking a wall-to-ambient temperature ratio Θw close to unity. The Boussinesq Grashof number

employed in [3], GrB = [β ∗(T ∗w − T ∗∞)x
∗3g∗ cosφ/ν∗∞

2]1/4, is related to that defined in (5.7)

by GrB = Gr[β ∗(T ∗w − T ∗∞)]
1/4. The result depends on the temperature used to evaluate the

coefficient of thermal expansion β ∗, given for an ideal gas by β ∗ = 1/T ∗. Thus, using the

ambient temperature to evaluate β ∗∞ = 1/T ∗∞ yields

Grw = GrB(Θw−1)−1/4 (5.30)

whereas the expression

Gr∞ = GrB(1−Θ
−1
w )−1/4 (5.31)

is obtained by using the wall temperature to evaluate β ∗w = 1/T ∗w . Clearly, the temperature

selected to define β ∗ becomes irrelevant for Θw−1� 1, when the relative differences between

both expressions are of order (Θw− 1)/4. Equation (5.30) is selected in the comparison of

figure 5.3(a) to evaluate the neutral curve for Θw = 1.03 using the values of GrB reported in

Haaland & Sparrow [3], giving the results represented by the triangles.

As can be seen in figure 5.3(a), the differences between the predictions obtained with the

Boussinesq approximation and those accounting for non-Boussinesq effects are very small for

Θw = 1.03, with departures in resulting values of m and lm of the order of 1%. The departures

are expected to become larger for increasing values of Θw−1, with the two expressions (5.30)

and (5.31) leading to increasingly different values of Gr. This is tested in figure 5.4 by comparing

the curve m−Θw obtained from the numerical integrations of (5.26)–(5.29), given previously in

figure 5.3(b), with the predictions derived by extending the Boussinesq approximation with use

made of (5.30) and (5.31) evaluated with GrB = 10.5, the latter obtained by dividing the value

29.6 reported in [3] by 2
√

2, as is needed to account for the factor 4 used in their definition of
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Figure 5.4: The variation of Grm tanφ with Θw obtained from integrations of the non-Boussinesq
eigenvalue problem (5.26)–(5.29) (solid curve) and from the Boussinesq predictions (5.30)
and (5.30) evaluated with GrB = 10.5, obtained by scaling the value given in [3], as indicated in
the text.

the boundary-layer thickness δ ∗. As can be seen, our results lie between the two Boussinesq

predictions, with the thermal expansion based on the ambient temperature β ∗∞ = 1/T ∗∞ giving better

agreement. For the vortex mode, it is apparent from the curves in the figure that straightforward

extension of the stability results computed in the Boussinesq approximation by use of (5.31)

provides sufficiently accurate predictions for the critical Grashof number even for configurations

with Θw−1∼ 1. As seen below, the wave mode analyzed next is different in this connection, in

that the sharp decrease in m found for increasing Θw cannot be predicted by simply extending

the results of the Boussinesq approximation, regardless of the temperature used in evaluating the

thermal–expansion coefficient.

5.4 Wave instability

The wave instability on hot inclined plates has received significantly less attention [4,

14, 16, 20] than the related vortex instability problem, possibly because for Boussinesq flow

its occurrence its restricted to a moderately small angle range 0◦ < φ . 20◦ about the vertical

position. In this connection, it is worth anticipating that the present analysis will show that this
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range widens significantly for non-Boussinesq gaseous flow with Θw−1∼ 1.

5.4.1 The simplified eigenvalue problem

In accordance with Squire’s theorem, only two-dimensional disturbances need to be

considered below, so that l = 0 in (5.24). Although a spatial stability analysis is needed to

accurately determine the downstream growth rate of the disturbance [14, 20], the present work

focuses on the determination of the curves of neutral stability, associated with real values of both

the wave number k and the frequency ω , which can be obtained with a simpler temporal stability

analysis.

With l = 0 the problem simplifies, in that the solution for û, v̂, p̂, and θ̂ becomes

independent of ŵ, so that the eigenvalue problem reduces to the solution of (5.34)–(5.36)

and (5.38) with the homogeneous boundary conditions

û = v̂ = θ̂ = 0 at y = 0, and û, v̂, θ̂ , p̂→ 0 as y→ ∞. (5.32)

The eigenvalue nature of this problem becomes more apparent by casting the equations in the

standard form A f =ωB f , with A and B being linear differential operators acting on f =(û, v̂, p̂, θ̂).

As a result of the non-Boussinesq character of the continuity equation, elimination of p̂ and û by

linear combinations leads to a quadratic eigenvalue problem for the eigenvalue ω , which is not

further considered here because of the additional complications involved in its numerical solution.

5.4.2 Critical curves of neutral stability

Results obtained by integrating numerically the eigenvalue problem for the wave instability

are shown in figure 5.5. Unlike the vortex instability, for which the dependence on the inclination

angle can be scaled out of the equations by the transformation (5.25), thereby reducing the

parametric dependence of the results, the eigenvalue problem for the wave instability depends
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Figure 5.5: Curves of neutral stability for the wave mode with different wall-to-ambient
temperature ratios Θw and different inclination angles φ .

on both φ and Θw. Curves of neutral stability are plotted in figures 5.5(a) and 5.5(b) for a fixed

inclination angle φ and different values of the wall temperature ratio Θw, with corresponding

curves for fixed Θw and different values of φ given in figures 5.5(c) and 5.5(d). Just as for the

vortex instability, increasing the wall-to-ambient temperature ratio, as well as increasing the

inclination angle (a more horizontal plate) has a destabilizing effect on the flow. The rapid change

in the neutral curves shown in the upper plots of the figure as the wall temperature increases

from Θw = 1.03 to Θw = 1.2 is indicative of the importance of non-Boussinesq effects for wave

instability.

5.4.3 Stability predictions based on vorticity–stream function formulation

Before continuing the discussion of results, it is worth commenting on the differences

arising from the use of different starting conservation equations in the presence of a slowly varying

base flow. Unlike many previous analyses, which were derived on the basis of a vorticity–stream

function formulation, the present analysis employs as a starting point the conservation equations

written in primitive variables. Although the logical expectation is that both approaches yield the
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Figure 5.6: Curves of neutral stability for the wave instability with Θw = 1.03 and φ = 30◦

obtained from (5.34), (5.38) and (5.33) (solid curve) and by repeating the computations with the
underlined term removed in (5.33) (dashed curve); the dotted curve corresponds to evaluations
of (5.30) reported in [4].

same results, that being the case for strictly parallel base flow, small but noticeable discrepancies

were found between both computational approaches when the nonparallel terms are retained for

the base flow. This is so because when the pressure is eliminated from the equations written in

primitive variables after the normal mode decomposition is introduced, i.e. from equations (5.34)–

(5.38), to obtain a normal-mode vorticity form, the resulting set of equations is not identical to

that obtained by writing the momentum equation in terms of the vorticity before introducing the

normal mode decomposition. This discrepancy does not happen when analyzing the vortex mode,

because the direction of the vorticity differs between the base flow and the perturbations, i.e.

the base-flow vorticity is oriented along the spanwise direction while the perturbed vorticity is

oriented along the streamwise direction.

These differences can be illustrated by comparing the results of our formulation for

Θw� 1 with those obtained earlier by Haaland & Sparrow [4] using the linearized vorticity–

stream function Boussinesq formalism presented earlier in [27]. The comparison can be readily

established by writing our equations (5.35) and (5.36) for Θw−1� 1 followed by elimination of
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the pressure to yield

[D3−V D2−Gr i(Uk−ω)D− k2D+V ′′]û

[−ikD2 + ikV D−Gr k(Uk−ω)−GrU ′′+ ik3 + ikV ′]v̂+[D− ik tanφ ]θ̂ = 0 (5.33)

after the continuity equation is used to simplify the result. Comparing the above equation with

equation (15) in [27] reveals that both are identical, except for the underlined term in (5.33),

which is absent in [27], that being a consequence of the different derivation procedure. As

previously mentioned, the missing term, proportional to the transverse gradient of the transverse

base velocity, would be absent for strictly parallel flow. Its quantitative importance is assessed in

figure 5.6, where the neutral curve obtained using (5.34) and (5.38) together with (5.33) (solid

curve) is compared with that obtained after selectively removing the term ikV ′ in (5.33) (dashed

curve). The additional term is seen to destabilize the flow, resulting in critical Grashof numbers

that are about 10% smaller than those obtained on the basis of the vorticity–stream function

formulation. As expected, the dashed curve is seen to agree with that obtained by evaluating (5.30)

with the values of GrB reported in Haaland & Sparrow [4] for φ = 30o, represented by a dotted

line in figure 5.6.

5.4.4 Quantitative assessment of non-Boussinesq effects

To complete the description, the Boussinesq predictions (5.30) and (5.31) are compared

in figure 5.7 with the results of the non-Boussinesq eigenvalue problem for φ = 30o. The value

GrB = 21.11 used in the evaluations of (5.30) and (5.31) is extracted from our numerical results

for Θw−1� 1. Because of the discrepancies illustrated in figure 5.6, this value is somewhat

smaller than the value reported in [4], which gives GrB = 23.63 once corrected to account for

differences in their definition of δ ∗. As can be seen in figure 5.7, the extrapolations of the

Boussinesq results consistently overpredict the critical Grashof number. This is so because
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the Boussinesq approximation does not describe accurately the acceleration of the light gas for

increasing Θw, which is apparent in the velocity profiles in figure 5.2, resulting in augmented

shear stresses that trigger the wave–mode instability.

5.5 Variation of the crossover angle

It is apparent from the comparison of the curves in figures 5.4 and 5.7 that non-Boussinesq

effects have a larger influence on the wave mode than they have on the vortex mode. For both

modes, increasing the plate temperature promotes instability by decreasing the associated critical

Grashof number, but the decrease of Grm is much more pronounced for the wave mode, thereby

suggesting that the character of the instability that develops over a plate at a given inclination

angle may switch from a vortex mode to a wave mode as the plate temperature increases.

To investigate this aspect of the problem we compare in figure 5.8(a) the curves Grm =m

/ tanφ corresponding to the vortex mode, with m(Θw) given in figure 5.3(b), with the values

of Grm obtained from the turning points of the neutral curves computed for the wave mode for

a fixed value of Θw, given for instance in figure 5.5(c) for the particular case Θw = 1.5. The
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crossing point of each pair of curves determines the angle φc at which the character of the most

unstable mode changes from a traveling wave (for φ < φc) to stationary streamwise vortices (for

φ > φc). The resulting crossover angle increases for increasing Θw, as shown in figure 5.8(b),

which delineates the parametric regions where each one of the modes prevails.

Our linear stability analysis predicts a crossover angle φc = 23.8◦ for Θw−1� 1, in agree-

ment with the value φc = 22◦ reported in previous linear stability analyses [15, 16] using instead

the scalings of the horizontal boundary layer for the self-similar base flow. A somewhat smaller

value was estimated in the work of Kahawita and Meloney [13] by evaluating approximately the

critical Grashof number of the wave mode from the results of the vertical plate through simple

multiplication by cosφ . It is worth noting that the values observed in experiments are typically

somewhat smaller than the theoretical predictions (e.g., values in the range 14◦ < φc < 17◦ are

reported in the early work [5]). The deviations are attributable to the limitations of the linear

analysis performed here, although more work is needed to clarify this issue.

As the value of Θw increases the crossing points of the curves in figure 5.8(a) moves to the

right, corresponding a wider range 0≤ φ < φc where the wave mode prevails. Unexpectedly, the

117



two curves Grm−φ become tangent at Θw ' 1.8 and exhibit no crossing point for larger values

of Θw > 1.8, for which our analysis predicts the wave mode to be dominant for all angles. Clearly,

however, this prediction would need to be reconsidered for near-horizontal plates with values of

φ approaching π/2, for which the condition (5.9), used in deriving the governing equations for

the inclined plate, would no longer hold. A revised stability analysis, accounting for transverse

pressure differences across the boundary layer in deriving the governing equations for both the

base flow and its perturbations, would be needed to assess the transition between both instability

modes for very hot plates with Θw > 1.8.

5.6 Concluding remarks

Although the existing experimental evidence and the previous theoretical predictions

based on the Boussinesq approximation indicate that at higher wall temperatures the flow tends to

become unstable at lower values of the Grashof number, corresponding to smaller downstream

distances from the plate edge, quantitative results for relative wall-to-ambient temperature differ-

ences of order unity are not currently available. This study provides the needed quantification

on the basis of a non-Boussinesq temporal stability analysis accounting for the slow variation

of the base flow. The results provide predictions of critical Grashof numbers for both modes

of instability and their associated wave numbers. While non-Boussinesq effects are found to

have only a moderate quantitative effect on the instability mode involving streamwise vortices, it

is found that the augmented shear resulting from the flow acceleration in the presence of large

density differences promotes wave instabilities significantly. As a result, the range of angles

about the vertical position where the wave mode is dominant is predicted to increase substantially

with increasing wall temperatures, a finding of our linear stability analysis that warrants future

experimental investigation.

The characteristics of the analysis presented, both linear and local, limit the accuracy of
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some of the predictions. For instance, the nonlinear growth of the perturbations, not described

herein, may explain the discrepancies between the predicted value of φc = 23.8◦ for Θw−

1� 1 and previous experimental observations. Also, although the analysis accounts for the

slow streamwise variation of the base flow in (5.15), the shape functions of the accompanying

perturbations, as well as the wave numbers k and l are not allowed to depend on the rescaled

coordinate x/Gr, as would be needed to account for their downstream evolution. Incorporating

the latter, while still taking advantage of the slenderness of the boundary-layer flow associated

with moderately large values of the Grashof number—thus retaining only terms up to O(Gr−1)—

would turn the local stability problem into a nonlocal parabolic stability problem that has to be

integrated in the downstream direction. In this type of treatment a unique neutral curve cannot

be defined since the streamwise development depends strongly on the initial conditions that are

imposed at a certain location, as pointed out for the first time by Hall [28] for the related problem

of Görtler instability over a curved wall. Subsequent studies [29] have found that, although

different initial conditions result in different growth rates during the transient stage, at very large

downstream distances the local growth rate is found to be independent of the initially imposed

disturbance. Although an attempt to apply these concepts to the present problem was made

by Tumin [20], more work is clearly needed to further clarify the instability characteristics of

natural-convection flows.

A global stability analysis of the natural-convection flow under consideration, in which the

instabilities are considered as two-dimensional temporal Fourier modes, is also worth pursuing

in future work. Since this alternative approach does not invoke the slenderness condition of the

basic flow, it might prove useful to study cases with very large wall-to-ambient temperature ratios,

for which, as shown in the present work, the instability sets in at smaller Grashof numbers, and

thus at shorter distances from the leading edge. The highly nonparallel Navier-Stokes region

close the edge of the plate then may play an important role in these early transition events.

This chapter, in part, has been published in International Journal of Heat and Mass
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Transfer, “Non-Boussinesq stability analysis of natural-convection gaseous flow in inclined hot

plates”, by P. Rajamanickam, W. Coenen and A. L. Sánchez (2017) 109, 914-917. The dissertation

author is the primary investigator in this publication.

Appendix

Introducing the normal-mode decomposition (5.24) into (5.17)–(5.20) with ρ̂ =−Θ−2θ̂

and µ̂ = σΘσ−1θ̂ and discarding terms of order Gr−2 yields

[
Gr ikΘ

−1 +(y/4)Θ−2
Θ
′] û+Gr(DΘ

−1)v̂+Gr i lΘ−1ŵ

−
[
DV +Gr i(Uk−ω)+(2U− yU ′)/4

]
Θ
−2

θ̂ = 0, (5.34)

[D(Θσ D)−Θ
−1V D−Gr iΘ

−1(Uk−ω)−Θ
−1(2U− yU ′)/4

−Θ
σ (2k2 + l2)]û+

[
ik(DΘ

σ )−GrΘ
−1U ′

]
v̂− klΘσ ŵ−Gr ikp̂

+[σ(DU ′Θσ+1)+U(2U− yU ′)/4+VU ′+1]Θ−2
θ̂ = 0, (5.35)

(ikΘ
σ D)û+

[
2D(Θσ D)−Θ

−1(DV )−Gr iΘ
−1(Uk−ω)−Θ

σ (k2 + l2)
]

v̂

+(i l Θ
σ D)ŵ−Gr Dp̂+(tanφ Θ

−2 +σ ikU ′Θσ−1)θ̂ = 0, (5.36)

−Θ
σ k l û+ i l(DΘ

σ )v̂+[D(Θσ D)−Θ
−1V D

−Gr iΘ−1(Uk−ω)−Θ
σ (k2 +2l2)]ŵ−Gr il p̂ = 0, (5.37)

(PrΘ
−1

Θ
′y/4)û−GrPrΘ

−1
Θ
′v̂+[D(Θσ D+σΘ

′
Θ

σ−1)−PrΘ
−1V D

−GrPr iΘ−1(Uk−ω)−Θ
σ (k2 + l2)+Pr(V −Uy/4)Θ−2

Θ
′]θ̂ = 0, (5.38)

to be integrated with boundary conditions

û = v̂ = ŵ = θ̂ = 0 at y = 0, and û = v̂ = ŵ = θ̂ = p̂ = 0 as y→ ∞. (5.39)
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As in the main text, the symbol D denotes differentiation with respect to y. In the convention

adopted a function of y placed after D indicates that multiplication by that function should be

performed prior to differentiation.
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