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The capacity to adaptively manage irrigation and associated contaminant transport is 

desirable from the perspectives of water conservation, groundwater quality protection, 

and other concerns. This paper introduces the application of a feedback-control strategy 

known as Receding Horizon Control (RHC) to the problem of irrigation management. 

The RHC method incorporates sensor measurements, predictive models, and optimization 

algorithms to maintain soil moisture at certain levels or prevent contaminant propagation 

beyond desirable thresholds.  Theoretical test cases are first presented to examine the 

RHC scheme performance for the control of soil moisture and nitrate levels in a soil 

irrigation problem. Then, soil moisture control is successfully demonstrated for a center-

pivot system in Palmdale, CA where reclaimed water is used for agricultural irrigation.  

Real-time soil moisture, temperature, and meteorological data are streamed wirelessly to 

a field computer to enable autonomous execution of the RHC algorithm. The RHC 

scheme is demonstrated to be a viable strategy for achieving water reuse and agricultural 

objectives while minimizing negative impacts on environmental quality.  

 

1. Introduction 

Irrigation management typically strives to achieve a balance between water 

conservation and plant requirements.  Other contexts, such as fertilization or irrigation 

with reclaimed water, shift focus toward protecting human health and avoiding resource 

degradation. Population growth and climate change place increasing stress on clean water 

supplies and point to the need for robust technologies supporting safe water reuse that is 

at the same time protective of soil and groundwater resources. This work introduces a 
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well-known method from industrial control theory to the problem of adaptively managing 

soil irrigation with reclaimed water. 

The largest current demand for reclaimed water is agricultural irrigation (Metcalf 

and Eddy, 2003; Solley et al., 1998). The three main risks associated with reclaimed 

water reuse for irrigation are (1) human exposure to pathogens and endocrine disruptors 

(e.g., Oron, 1996), (2) soil salinization, and (3) groundwater quality degradation by the 

various reclaimed water contaminants. Human risk of oral ingestion has prompted some 

regulators to prohibit the use of reclaimed water for food crop irrigation, while others 

allow it only if the crop is to be processed prior to being available to consumers (EPA, 

2004).  Hence, the transport and fate of pathogens (e.g., Gerba et al., 1975; Schäfer et al., 

1998; Chu et al., 2003) and endocrine-disrupting chemicals (e.g., Ying and Kookana, 

2005; Burnison et al., 2006) in soils and groundwater remain active research areas.   

From an agronomic perspective, salinity is a problem associated with irrigation in 

arid and semi-arid environments; even more so when reclaimed water is applied. Salinity 

conveyed by the irrigation water tends to accumulate in the soil, and can necessitate 

transitioning to more salt-tolerant crops. Left unchecked, soil salinization will eventually 

render the soil non-arable. (e.g., El-Ashry et al. 1985; Brady and Weil, 1999; Schoups et 

al., 2005). The leaching of salts and other contaminants from the vadose zone to 

underlying groundwater is another potential problem with water reuse (Bond, 1998; 

Bouwer, 2000), or the over-application of natural or synthetic fertilizers (Hoyer et al., 

1987; NRC, 1993; Wylie et al., 1994; Farid et al., 1993; Harter et al., 2002). Using more 

precise irrigation and fertilization methods can lessen the potential for soil salinization 

and groundwater degradation. Regarding specific salts, large-scale efforts aimed at 
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assessing nitrate leaching in the Midwest U.S., for example, have documented spatially 

variable crop growth and yield due primarily to local microclimate and soil nutrient 

variations (Power et al., 2000; 2001), suggesting the potential for tailoring fertilizer 

applications to local conditions. 

 Feedback control for real-time irrigation scheduling has been investigated 

previously (Clemmens, 1992; Clemmens and Keats 1992a; 1992b, Phene et al., 1989; 

Shani et al., 2004), and several researchers have employed optimization schemes (Chao, 

1979; Yaron et al., 1980; Naadimuthu et al., 1999) or near real-time adaptive scheduling 

to maximize crop yield given weather observations (Rao et al., 1992). To date, however, 

none of these efforts have coupled process-based simulators with optimization algorithms, 

using real-time sensor feedback on soil column states to enable autonomous, variable rate 

irrigation scheduling and chemical (e.g., nitrogen) management. 

This paper examines the use of the receding horizon control (RHC) strategy for 

controlling time-variable irrigation application rates to manage soil moisture content and 

chemical concentrations within the soil profile. Here, the RHC method uses feedback 

from an embedded sensor system to parameterize an unsaturated zone flow and transport 

model and forecast soil moisture and nitrate levels several management time steps into 

the future. With the realization of the each management time step, simulation parameters 

are refined and the management horizon advances. The RHC is first formulated for a 

known irrigation site and tested for several typical soil moisture control problems and a 

hypothetical soil nitrate control case. This is followed by a field test of the algorithm for 

the case of moisture control only (due to the unavailability of reliable in situ nitrate 

sensors).  
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2. Irrigation Scheduling by Receding Horizon Control 

Model Predictive or Receding Horizon Control (RHC) is a class of control 

algorithms that utilizes explicit process models to predict the future response of a system 

and command a system to a desired output using optimization as an intermediate step 

(Clarke, 1994; Kouvaritakis and Cannon, 2001). The expression receding horizon is 

intended to convey the concept that the optimization horizon is moving away from the 

present (into the future) by multiple management time steps. The algorithm class is so 

named because its optimization is executed to estimate a vector of control actions over 

multiple management time steps spanning the optimization horizon. After the first 

optimal control is applied for the current management time step, the optimization process 

is repeated with the same optimization horizon advancing one management period 

forward as illustrated in Figure 1 (Kwon and Han, 2005).  

The RHC procedure is first described here for a general nonlinear model, which 

can be expressed by:  

)()( ugxfx +=
•

                                                                                                (1) 

where the function u is the control input, x is the state,  f(x) is a nonlinear function of x, 

and g(u) is a nonlinear function of u. The objective of a control system is to maintain the 

outputs (states) at desired values by manipulating control inputs. To explain RHC, we 

first assign an arbitrary objective function to minimize the cost of state and control 

vectors as follows:     

2 2

0

( )
fT

V x u= +∫                                                                                                (2) 
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where V is an objective function and Tf is final time of a prediction horizon for 

optimization. Then RHC proceeds by first identifying a finite set of parameters, (p0, …, 

pN), to generate the function for control vectors u(t) over the prediction horizon. This 

function can be any type, such as a discrete piecewise constant or  spline function, as long 

as it can be expressed as assigned values (uk) and derivatives ( ) where k is 

management time step or control step.  Knowing x(0), the second step is to use the initial 

system state (determined by measurement or estimation) to calculate the function for the 

state x(t) or the state vector, x(1), …,  x(N) by plugging the function u(t) with initial 

parameter estimates, (p0, …, pN), and initial condition x(0) into the nonlinear model, 

where N is total number of management time steps in one optimization horizon.  The 

third step is to determine the optimal parameter values for the function, u(t), by nonlinear 

optimization of the objective function:  
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This procedure demonstrates that if one knows the initial state and a specified function 

for u, then the unknowns (x(t) and u(t)) are obtainable by simulation models and 

optimization. The fourth step is to determine the function u using the optimal parameters 

(p*0, …, p*N) and update the nonlinear model using only the first control vector, u*(0) 

and x(0) or in general at time k as illustrated in Figure 2.  u*(k)… u*(N-1+k) are obtained 

with the initial state information x(k) using a nonlinear programming optimization 

algorithm and u*(k) is then used to calculate the state x(k+1) for the next management 

time step. This new state is used as the initial condition from which to obtain u*(k+1)… 

u*(N+k) as the optimization horizon recedes. Finally, the system is advanced by δ (a 22 
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management time step), and employs x(t+δ ) as the updated initial condition, and the 

RHC procedure is repeated with new state information obtained from simulated values or 

sensor-based observations.  
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When applied in real-time, u*(k) must be actuated at time k, but u*(k) is 

calculated based on the initial condition, x(k), which is not available until time k. 

Therefore, either a predicted x(k) or measured x(k-1) can be used for the initial condition, 

unless u(k) can be obtained instantaneously at time k. If large changes are likely to occur 

during a management time step, then the use of a predicted x(k) is recommended. If a 

system is poorly identified, then a measured x(k-1) is preferable. When the state 

estimation schemes and measurements (i.e., feedback) are robust, the RHC facilitates 

periodic assimilation of observations, improving the parameterization process for 

simulation models. From this perspective, the RHC is well-suited for adaptive 

management of processes subject to uncontrollable perturbations (e.g., sudden weather 

changes).  

In this work, the RHC algorithm is applied to the problem of irrigation with 

reclaimed water. The management problem is posed here in terms of two objectives and 

one constraint: (a) maintaining soil moisture levels or nitrate concentrations near or 

below a threshold value at a certain depth, (b) supporting crop water needs and/or 

maximizing the amount of water being recycled by the farmer (as in effluent disposal 

through reuse), and (c) maintaining application rates below the maximum infiltration rate 

(avoiding potential human exposure associated water runoff).  The state vectors are soil 

moisture content, θ, temperature, T, and nitrate concentration, C, and the control vector is 

reclaimed water input q. For a center-pivot irrigation system (described further below) 
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where Ks is the saturated hydraulic conductivity, q1, …, qN are the application rates at 

each management time step in one optimization horizon, Tf is the prediction 

(optimization) horizon, C(t) is the nitrate concentration at a depth of interest, and Cthreshold 

is a threshold for the nitrate concentration. This formulation permits nitrate 

concentrations up to the threshold value while allowing the reclaimed water input to be 

maximized. Then, by bounding possible irrigation rates from zero to the maximum soil 

infiltration rate, surface runoff can be prevented. Other constraints, such as those 

pertaining to water availability or restraints on irrigation rate changes could be added to 

this optimization algorithm by providing stopping criteria or lower and upper bounds for 

application rates. If the management objective is to maintain a certain soil moisture level, 

then the objective function is instead  
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where θ(t) is soil moisture at a depth of interest, and θthreshold is threshold for soil moisture. 

These least squares objective functions are straightforward and simple to use, but 

must be used with some caution as they equally penalize C(t) and θ(t) values less than 

and greater than the threshold. When the initial nitrate concentration or soil moisture is 
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sufficiently removed from the threshold value, then this approach is sufficient to avoid 

violations. However, when the system response is relatively insensitive to control vector 

changes, such that there exists a lag time between control actuation and system response, 

then incorporating a margin of error in the threshold selection or a penalty function may 

be necessary. The objectives, constraints, and thresholds employed in this work were 

intended to demonstrate those associated with an experimental irrigation site in Palmdale, 

California, and are not intended to be representative of all irrigation scenarios. 

Optimization schemes from the MATLABTM toolbox, a trust region-based 

interior-reflective Newton method (Coleman and Li, 1994; 1996) and a genetic algorithm 

developed (Joines et al. 1995) were coupled to the simulation models described below. 

Both the gradient method and genetic algorithm were used for soil moisture, but only the 

genetic algorithm was employed  for nitrate control because the gradient method often 

led to convergence on local optima in the chemical transport case. 

A one-dimensional (1D) coupled unsaturated flow, solute, and energy transport 

model was used to drive the RHC algorithm (details in Park, 2008). This level of model 

complexity was determined to adequately describe irrigation dynamics for the field site 

discussed below. While a 1D model cannot represent horizontal variability of soil and 

crops, it is useful for relatively homogeneous soils dominated by vertical flows, or can be 

invoked at multiple locations in more heterogeneous soils, where optimal application 

rates could be determined and applied locally using variable rate irrigation systems 

(Camp et al., 1998; King et al., 2005). However, where geospatial variation is great and 

horizontal flow is significant, more complex simulators are necessary for successful 

moisture and nutrient management. 

9 



 In the unsaturated flow model, the water retention function h(θ) and hydraulic 

conductivity function K(θ) were assumed to be nonhysteretic and  parameterized by the 

models of Mualem (1976) and van Genuchten (1980) (see Table 1 for parameter details). 

A plant water uptake term was included as a sink term (Feddes et al., 1976, 1988). The 

parameter values used to test the RHC algorithm are specific to an experimental pivot 

irrigation site in Palmdale, CA, which is described below in the context of the RHC field 

test.  Hence, management schemes arrived at in this work cannot be applied to other sites 

without re-parameterization of the simulation models.   
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The boundary condition at the ground surface for the center-pivot irrigation 

system was modeled using a periodically applied sinusoidal pattern (Figure 3):  

( )( ) 1 sinhK q
z
θθ ∂⎡ ⎤− − =⎢ ⎥∂⎣ ⎦

wt ET−11         0 ≤  t < 10 min                                  (6) 

          (0, )t ET
z

θ∂
= −

∂
                             10 min  ≤  t < 6 hr                             (7) 12 

where z is the vertical depth, w is the angular frequency (
1t
π ), t1 is 10 min which is the 

duration of irrigation, q is reclaimed water application rate (control vector) to be 

optimized [cm/hr] in one management time step, ET is evapotranspiration rate [cm/hr] 

which is based on site meteorology and crop types, and 6 h is the length of one 

management time step (typical pivot revolution time at the Palmdale site). At the lower 

boundary of the simulated soil column (z = L), free drainage is numerically stipulated 

using a zero pressure gradient. 
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The 1D energy transport equation was employed to estimate the soil surface 

temperature and evapotranspiration rate. In this study, the evaporative flux affected the 
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moisture and solute concentrations in the top section of the profile. Below this, the 

modeled effect of temperature on soil moisture contents and nitrate concentration were 

negligible. The soil surface temperature Ts(t) was calculated based on meteorological data 

according to an energy balance and used as the boundary condition at the ground surface 

(z = 0). Penman-Monteith potential evapotranspiration (Allen et al., 1998) was then 

estimated to provide the negative influx at the soil surface as a boundary condition based 

on energy balance equation and meteorological data. At the lower boundary of the 

domain, a zero temperature gradient was assumed. If a more explicit nitrogen cycling 

model were to be used (see below), where even modest temperature changes might 

impact biogeochemical rates, then the implications of the energy transport model to this 

work would probably be more significant.  

 An advection-dispersion-reaction equation was used to simulate nitrate transport 

in the unsaturated zone. A lumped first-order nitrate removal rate was used to represent 

the net results of plant uptake, denitrification, nitrification, and immobilization. This 

over-simplification is intended as a first-approximation of the nitrogen cycling processes 

for the purpose of illustrating the proposed optimization strategy. At the soil surface, a 

solute flux-type boundary condition was used. At the lower boundary (z = L), a zero 

concentration gradient was employed.   

Process simulation models were numerically solved using a Crank-Nicholson 

finite difference scheme (Gerald and Wheatley, 1970) in MATLABTM. Parameter values 

used for simulated results are summarized in Table 1. 

 

3. RHC Algorithm Testing for Soil Moisture and Nitrate Control 
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The RHC algorithm was tested for soil moisture and nitrate control with variable 

application rates at a fixed duration, and variable application frequency and duration at a 

fixed rate. The RHC was also tested for soil moisture and nitrate control at a fixed depth 

and maximum soil moisture and nitrate concentration throughout the vertical depth. The 

RHC scheme successfully controlled all the aforementioned cases by maintaining soil 

moisture and nitrate level below the threshold value over the total control steps (Park, 

2008). In this paper, two example cases, soil moisture control with variable application 

rate and nitrate control subject to varying initial condition are demonstrated.  

 

3.1 Soil Moisture Control:  Variable Application Rate of Fixed Frequency and Duration 

The RHC was first tested as a strategy for controlling the maximum soil moisture 

level throughout the soil profile using variable application rates at a fixed interval and 

duration (Figure 4). In this case, the gradient method was used to drive the optimization 

aspect of the RHC algorithm. The initial soil moisture content was uniformly set to 0.2 

[cm3/cm3] throughout a 300cm domain. As noted previously, selection of the 

management time step and the optimization horizon requires knowledge of the timescale 

of the physical processes involved. Fewer management time steps (e.g., four or less in the 

current problem) predict only near term systems behavior, yielding a relatively short-

sighted optimal solution. This can necessitate abrupt application rate changes as the 

algorithm may be unable to foresee future violations sufficiently early to avoid them 

more gradually. In this study, different numbers of management time steps were tested, 

and 10 steps was determined to provide optimal solutions without requiring sudden 

changes in the application rate. Each management time step has one control variable, thus 
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there were 10 control variables for this optimization scenario. The management time step 

for this problem was selected as 6 h and the duration of each irrigation event was fixed as 

10 minutes, conditions characteristic of the irrigation system at the Palmdale test site. 

Optimization was executed over the 60-hr period and the first optimal value (the 

irrigation rate of the first management time step) was applied. The state vector (soil 

moisture) was then updated and used as the initial condition for the next optimization 

horizon. The system was updated 50 times (totaling 300 h). 

Results summarized in Figure 4a-d demonstrate that the RHC algorithm 

successfully controlled the soil moisture throughout the profile.  At early times, the 

algorithm prescribed the maximum application rate (4a) until the maximum moisture 

content in the column began to approach the threshold value (4d).  At this point, the RHC 

prescribes decreasing application rates, rapid at first followed by incremental decreases as 

the soil column approaches a steady state.  The maximum soil moisture level throughout 

the depth (4c) was consistently maintained below 0.25 [cm3/cm3]. The value of the 

objective function appears to be monotonically approaching a minimum value at the end 

of 50 management time steps (4b). 

 

3.2. Nitrate control subject to varying initial conditions 

This case employed the same application dynamics as the first case while adding 

a constant nitrate concentration to the irrigation water. A threshold value for nitrate 

control was chosen as 44ppm which is just below the U.S. EPA’s maximum contaminant 

level (45ppm as nitrate). The coupled flow and transport model was used for simulating 

and controlling nitrate concentration in the soil moisture. The gradient method and the 
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genetic algorithm were employed as an optimization algorithm for soil moisture control, 

but only the genetic algorithm was performed for nitrate control to obtain optimal 

irrigation rates (qi) since the gradient method failed to find global minima in the objective 

space. When simulation models are highly nonlinear (e.g. solute transport in unsaturated 

zone) global optimization scheme should be implemented, or the genetic algorithm can 

be combined with the gradient method to improve the optimization solutions (Sciortino, 

et al., 2000).  

Previous nitrate control trials indicated that nitrate concentration in the soil 

column responded slowly to the changes in application rate, thus big changes in 

application rate occurred at the interval of several management time steps (Figure 5a-c). 

When the system response is relatively insensitive to optimal control vectors such that 

there is a lag between control actuation and system response and the initial nitrate 

concentration is too close to the threshold value (Figure 5c), violations can occur. Penalty 

or multi-objective functions can be used to prevent such violations.  For example, an 

application rate term can be added to the objective function to maximize the rate, thus 

rendering it directly sensitive to the control variable: 

{
1

2
1, ...,

0

min ( )
f

N

T

thresholdq q
C C t qα− − ⋅∫ } dt17 

18 

19 
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21 

22 

                                               (8) 

where α is a constant for weighting and unit matching. The other terms are the same as 

those in equation (4). The rationale behind this multi-objective function is balancing the 

decrement of the concentration difference and the application rate change. By setting the 

weighting factor to a small value, the objective of minimization remains tractable when 

the concentration difference is decreasing while the application rate is increasing. In this 
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threshold term). This value was based on several simulations comparing the effects of the 

relative magnitude of the concentration difference and q1 , the first application rate.  
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Three initial conditions of increasing severity, initial surface concentrations of 5, 30, and 

40 ppm nitrate, were used to test the multi-objective function. Initial conditions for lower 

boundary soil moisture, temperature, nitrate are assumed linearly distributed between 

surface (varying) and 0.11 (lower boundary), 20°C (surface) and 5°C (lower boundary), 5 

ppm nitrate (surface) and 0 ppm (lower boundary) respectively. Nitrate concentration in 

the applied water was set as a constant 40ppm. The management time step for this 

simulation was 6h and there were 8 management time steps in one optimization horizon. 

Figures 5(a-c) demonstrate that the prior objective function suffices for the lowest 

initial surface concentration, but fails to manage 40 ppm cases. In contrast, even the most 

severe case is well-managed by the multi-objective function (Figure 5(d)) through 40 

management time steps. In addition, more water was applied using the multi-objective 

function 35.5 cm compared to 29.9 cm using the prior objective function. The results of 

this example are encouraging, and merit further investigation in terms of linking the most 

useful objective function to the site-specific objectives, constraints, input/output/control 

vector relationships.  

 

4. Field Test of RHC for Soil Moisture Control  

To test the RHC under real conditions, a field site was identified in Palmdale, 

California (longitude 118° W, latitude 34° N) which is in the Mojave Desert area.  

Reclaimed water is being used for agricultural irrigation there with application by a 
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center-pivot irrigation system equipped with a 200 m ( ≈ 650 ft) pivot arm rotating over 

an area of 12.67 ha ( ≈ 31.3 acres). Given the current system, it was impossible to 

manage the pivot flow rate precisely, and instead applications were regulated by the 

application duration (based on the rotational speed of the pivot arm) with a fixed 

application rate (0.5mm/min). For simplicity, three speeds--low (8 min duration with 

4mm of water), medium (6 min; 3 mm), and high (4 min; 2mm)--were employed. The 

main soil types in this area are characterized as loamy fine sand to fine sandy loam in 

terms of hydraulic conductivity and moisture retention parameters of soil sample test. 

The field test was performed at a single location in the southeast quadrant of the 

Palmdale pivot circle, where fine sandy loam is the main soil type. The objective of the 

test was to prevent the moisture content at a depth of 5cm from surpassing a threshold 

value of 0.22 [cm3/cm3].  This depth was selected to enable the application rates to 

impact the sensors within the timeframe of the experiment (12 h).  However, additional 

sensors were deployed in order to capture data for future offline algorithm testing.  Soil 

moisture sensors (S-SMC-M005, Onset Computer Corporation, Bourne, MA) were 

installed at 5cm, 10cm, 20cm, 40cm, and 60cm. Temperature sensors (S-TMB-M002, 

Onset) were installed at 5cm, 10cm, 20cm, and 40cm.  Data loggers (H21-001 logger 

with C-002 radio modem, Onset) were used to collect and wirelessly transmit soil 

moisture, temperature, and meteorological data, including air temperature and relative 

humidity (S-THA-M002, Onset), and wind speed and direction (S-WCA-M003, Onset). 

Atmospheric pressure and solar radiation data were downloaded from CIMIS website 

(California Irrigation Management Information System, www.cimis.water.ca.gov).  
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 The 1D unsaturated flow and energy transport models for this case were coupled 

to a bare-soil evaporation model for the ground surface boundary condition (no crops 

were growing). To expedite the model parameterization process, a simplistic approach to 

modeling vertical heterogeneity was adopted in which a sandy soil profile was assumed 

to consist of two layers (0-30cm and 30-60cm) with respect to hydraulic properties, while 

energy transport properties were assume to be homogeneous throughout the entire soil 

profile. Model parameter-fitting in the RHC scheme was performed using the 5cm depth 

moisture content sensor data for the first 30min of each management time step. Using 

only the first 30min of sensor data afforded the balance of the management time step time 

for the optimization portion of the RHC scheme discussed below.  

The model was fitted to the moisture time series by adjusting eight parameters, 

four of these for each layer: saturated hydraulic conductivity, saturated moisture content, 

residual moisture content, and an empirical moisture retention parameter (α, see Mualem, 

1976; van Genuchten, 1980). Another empirical moisture retention parameter, n was 

fixed at 2.  The need to re-estimate simulation model parameters at each management 

time step merits further discussion. In theory, a constant set of these material properties 

should be obtained from the fitting procedure, but such was not the case (Table 1).  There 

are several reasons for this result.  First, the unsaturated flow model in this study failed to 

account for flow patterns associated with preferential pathways, hysteresis, and other real 

features of flow and transport in unsaturated soil. Complexities such these probably 

played a significant role in the test bed, and would result in different optimal parameters 

under different moisture regimes. This problem was exacerbated by necessarily limiting 

the parameter identification procedure to a single depth (5 cm) and allotting a maximum 
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of 30min for the fitting. These restrictions resulted in parameters that were not globally 

optimal, but which were nonetheless adequate for the purposes of driving the RHC 

algorithm. The tradeoff between model structure, model parameterization, and the sensor 

observations network is clearly a critical part of controlling environmental processes like 

irrigation and merits further research. 

The genetic algorithm-based RHC scheme was configured to control soil moisture 

as described in Figure 6. The RHC scheme updated pivot speeds at each management 

time step, which were immediately actuated.  The high speed (shortest irrigation 

duration) was arbitrarily selected as the initial setting. When the RHC started, the data 

from sensors were collected for 30 min to estimate parameters. Then the updated 

parameters were used to forecast future states to determine the next vector of pivot speeds. 

Because the next optimal duration should be achieved before the arrival of next 

management decision, initial conditions (sensor data) from the current step were used for 

initial conditions in calculating the next step optimal duration in the genetic algorithm. In 

general, however, it is recommended to use predicted initial conditions for the next 

management time step if the discrepancy between measured data and estimated data is 

determined to be minor. In this experiment, we decided to use initial data from the 

current step since we were uncertain that the parameter estimation, which was performed 

in real-time, would produce acceptable predictions. In hindsight, the predictions did 

appear to be sufficiently accurate (Figure 7). The management time step for this field 

study was 2 h (the pivot arm was driven over the sensors every 2 h) with pivot speed as 

the sole control vector. There were 6 management time steps in a single optimization 

horizon. At each management time step, model parameters were updated using the least 
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squares method by minimizing the difference between the current sensor data and model 

estimates.   

Comparison between the best-fitting simulations and sensor-based observations at 

the 5cm depth are plotted for each of the five management time steps (Figure 7).  The 

residual norm of the least squares oscillated, but tended to improve over time and the 

resulting parameter adjustments remained consistent with the soil type at Palmdale over 

the entire management period (results not shown). Based on results obtained off-line for 

other soil depths, it was clear that some bias was introduced by estimating parameters 

using time series from a single depth (5cm).  This was unavoidable due to the need to 

execute the parameter identification and RHC optimization steps within the 2h timeframe 

of the management time step.  The implications of such biasing merit further 

investigation and suggest the need for incorporating data assimilation approaches to 

integrate sensor and model error into the RHC algorithm. Of course such strategies would 

add to the computational challenges associated with advancing the RHC algorithm in 

near real-time. 

The results from the RHC field test are presented in Figures 8 through 10. Initially, 

the moisture content at 5cm was less than the threshold value, thus the RHC’s initial 

updates called for slowing the pivot speed (increasing the duration), enabling more water 

to be applied to the profile (management time steps 1, 2, and 3 in Figure 9).  As the 

estimated 5cm moisture content approaches the threshold value, the RHC called for 

increased pivot speeds in an attempt to stay near the threshold value (management time 

steps 4, 5, and 6 in Figure 9). During the field test, we accidentally executed the wrong 

speed at management time step 3, and a 4 min duration (high speed) was applied instead 
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of the prescribed 8 min duration (low speed). However, RHC scheme adapted to this 

unexpected change and again prescribed an 8 min duration for the subsequent 

management time step to compensate for the inadequate water application during the 

previous step. 

The threshold was briefly violated after the fourth management time step (Figure 

9). Because of limited number of control options offered by in this scenario (3 speeds), 

slight over-watering was possible. For example, at management time step 4, the optimal 

duration value was about 5 min, but 6 min was applied, resulting in over-watering. 

Another reason for the violations was the previously mentioned usage of current 

observations as the initial conditions for the subsequent management time step.  If these 

presumed values are sufficiently different from the actual values, this might cause a lag 

between optimal duration and the soil moisture response. Violations could be avoided in 

a number of ways, including (1) enabling better refinement of the water application speed 

(more precise addition of water), (2) using simulator predictions to update soil profile 

conditions (assuming valid parameterization), (3) using shorter management time steps to 

enable more frequent speed adaptation, or (4) simply allowing for some margin of error 

or safety factor when setting the threshold value. 

A more complete view of the 5cm moisture sensor data (Figure 10) reveals that 

the threshold for the Palmdale test was actually violated multiple times during the test 

(i.e., including times between management time steps), however, the RHC controls the 

soil moisture by maintaining it at the end of each management time step near the 

threshold. Figure 10 demonstrated that the estimated soil moisture data generally matched 
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well with the measured soil moisture data, which opens a possibility to use predicted 

initial conditions to calculate optimal vectors in RHC. 

 

5. Summary and Conclusions 

Irrigation scheduling has evolved toward automated systems that integrate 

meteorological and soil sensor measurements with simulation models. This technology 

development facilitates more precise management of soil and plant status in time and 

space, thereby enabling agriculturalists to minimize negative impacts on the environment 

(e.g., when reclaimed water is applied for irrigation). In this study, a receding horizon 

control (RHC) was proposed and tested for the control of water content and contaminants 

in soil with the dual objectives of maximizing reclaimed water reuse while protecting 

groundwater from degradation by nitrate. By integrating observations from embedded 

sensors, predictive models, and optimization algorithms in the RHC scheme, water and/or 

nitrate levels in soil were continuously maintained near threshold levels while 

maximizing the reclaimed water applied. Results from different cases demonstrated that 

various optimization schemes, control vectors, and soil profile depths to be monitored can 

be implemented in RHC as dictated by site-specific conditions.  

While these initial results are encouraging, several near-term modifications of the 

RHC irrigation algorithm should be undertaken to render more robust results. First, in 

many cases, it is desirable to control the moisture content throughout the root zone 

instead of at a specific depth.  Second, since we are concerned about chemical leaching 

into the underlying groundwater, it may be preferable to control the chemical flux or total 

percolated nitrate below a root zone (in anticipation of the development of reliable 
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chemical sensors are available, such as for salinity). Third, the previously noted lag-time 

between adjustment of the control variable (irrigation application rate) and feedback from 

the nitrate concentration levels suggests that multi-objective problem formulations 

addressing moisture and nitrate thresholds simultaneously may be more appropriate. 

Finally, because management decisions stemming from the RHC approach depend 

strongly on site-specific conditions (soil and crop type, meteorology, initial conditions, 

and limitations on control vectors), these factors need to be examined in a more 

comprehensive manner to identify the spectra of potential benefits and limitations of the 

approach.  For example, the resilience of the RHC algorithm to random storm events and 

its stability for long-term operation should be tested extensively for a variety of soil and 

crop conditions. 

In most instances there are multiple solutes and particulates (e.g. pathogens) other 

than nitrate that are of concern in the reclaimed water.  Multi-component control is 

possible using the RHC scheme if the sensors and models are available to measure and 

predict the state of these chemical or biological agents. Modified multi-objective 

functions similar to (8), for example, would need to be employed in such cases.  

Longer term development should focus on increasing the error resiliency of the 

RHC irrigation approach.  For example, network design strategies for identifying the 

optimal number and placement of sensors in the context of geospatial heterogeneity will 

be needed to scale-up the technique.  Furthermore, errors stemming from sensors, model 

structure, and model parameters need to be propagated throughout the RHC scheme to 

quantify uncertainty associated with management decisions. 
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Figure 1. The optimization procedure for Receding Horizon Control (RHC) where k, k+1, 
k+2 are management time steps for irrigation control. qk+1|k represents the optimal control 
vector, q (the irrigation application rate) at management time step, k+1 when 
optimization is executed at time k. The first optimal values (qk|k, qk+1|k+1, and qk+2|k+2) are 
applied to control the system (adapted from Kwon and Han, 2005). 
 
Figure 2. Illustration of the state and control vectors before and after optimization 
algorithm: u*(k) ~ u*(N-1+k) are obtained with the initial state information x(k) and the 
first control u*(k) is then used to calculate the state x(k+1) for next management time 
step. N is the total number of management time steps in one optimization horizon, k is 
current control (management) step number, thus, 1, 2, …, k, k+1, …, N are management 
time step numbers. 
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Figure 3.  An illustration of management and optimization time step. The magnitudes, qi, 
is control vector (reclaimed water application rate) for optimization, where i is 1,2, …, 6. 
In this case, there are 6 management time steps in one optimization horizon. 
 
Figure 4. Soil moisture control using RHC (gradient optimization method): (a) water 
application rate at each management time step (b) objective function value when the 
optimal application rate is applied at each management time step, (c) soil moisture profile 
at the end of 50 management time steps, (d) maximum soil moisture content in the soil 
profile at the end of each management time step (not necessarily at the same location). 
 
Figure 5. Soil nitrate level control results for different nitrate initial concentrations at the 
surface were tried. (a) 5ppm, (b) 30ppm, (c) 40ppm, and (d) 40ppm with multi-objective 
function. The labels for each result are the same as Figure 8. 
 
Figure 6. RHC scheme for soil moisture control in Palmdale, CA (arrow indicates input 
to the next step of the scheme) 
 
Figure 7. Simulated and measured soil moisture data from the Palmdale RHC field test 
(model parameters were updated each management time step using the 5cm sensor data 
for the first 30min of each step). 
 
Figure 8. Optimal water application duration (determined by pivot speed) results for the 
Palmdale RHC field test; the sequence for management time steps is high (4 min, initial 
value), medium (6 min), low (8 min), low, medium, medium, and high speed.  
 
Figure 9. Palmdale RHC field test estimated 5 cm depth soil moisture at the end of each 
management time step after optimal duration was actuated. The text above and below 
each graph denotes the optimal duration applied at that management time step; when the 
soil moisture approaches to the threshold value, it tries to maintain the level by reducing 
irrigation duration.  
 
Figure 10. Simulated (line) and observed (symbols) 5cm depth soil moisture from the 
Palmdale RHC field test (model parameters were updated each management time step 
using the 5cm sensor data for the first 30min of each step).  
 
Table 1. Parameter values in models for simulated results 
 
 
 




