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ABSTRACT

Aim The influence of soil properties on photosynthetic traits in higher plants is
poorly quantified in comparison with that of climate. We address this situation by
quantifying the unique and joint contributions to global leaf-trait variation from
soils and climate.

Location Terrestrial ecosystems world-wide.

Methods Using a trait dataset comprising 1509 species from 288 sites, with
climate and soil data derived from global datasets, we quantified the effects of 20
soil and 26 climate variables on light-saturated photosynthetic rate (Aarea), stomatal
conductance (gs), leaf nitrogen and phosphorus (Narea and Parea) and specific leaf
area (SLA) using mixed regression models and multivariate analyses.

Results Soil variables were stronger predictors of leaf traits than climatic vari-
ables, except for SLA. On average, Narea, Parea and Aarea increased and SLA decreased
with increasing soil pH and with increasing site aridity. gs declined and Parea

increased with soil available P (Pavail). Narea was unrelated to total soil N. Joint effects
of soil and climate dominated over their unique effects on Narea and Parea, while
unique effects of soils dominated for Aarea and gs. Path analysis indicated that
variation in Aarea reflected the combined independent influences of Narea and gs, the
former promoted by high pH and aridity and the latter by low Pavail.

Main conclusions Three environmental variables were key for explaining vari-
ation in leaf traits: soil pH and Pavail, and the climatic moisture index (the ratio of
precipitation to potential evapotranspiration). Although the reliability of global
soil datasets lags behind that of climate datasets, our results nonetheless provide
compelling evidence that both can be jointly used in broad-scale analyses, and that
effects uniquely attributable to soil properties are important determinants of leaf
photosynthetic traits and rates. A significant future challenge is to better disentan-
gle the covarying physiological, ecological and evolutionary mechanisms that
underpin trait–environment relationships.

Keywords
Least-cost theory of photosynthesis, nitrogen, phosphorus, photosynthesis,
plant functional traits, soil fertility, soil pH, stomatal conductance.

*Correspondence: Vincent Maire, Department
of Biological Sciences, Macquarie University,
North Ryde, NSW 2109, Australia.
E-mail: vmaire24@gmail.com
†Present address: Université du Québec à
Trois-Rivières, CP 500, Trois-Rivières, Québec,
Canada G9A 5H7.

bs_bs_banner

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2015) 24, 706–717

DOI: 10.1111/geb.12296
706 © 2015 John Wiley & Sons Ltd http://wileyonlinelibrary.com/journal/geb

mailto:vmaire24@gmail.com


INTRODUCTION

Natural selection promotes coordination in plants between the

acquisition of soil-derived resources (water and nutrients),

capture of solar radiation and the uptake and fixation of CO2

from the atmosphere. The relative availability of key resources to

plants varies by orders of magnitude over biogeographical gra-

dients (e.g. Vitousek, 2004; Huston, 2012). Identifying how this

variation shapes the ecological strategies and key strategy traits

of plants is one of the central questions for ecology and bioge-

ography (Westoby & Wright, 2006).

Photosynthesis can be construed as an economic process

(Givnish, 1986). A trade-off between the substitutable costs of

maintaining the capacities for carboxylation (Vcmax) and tran-

spiration was theoretically predicted and then confirmed by

experimental observation along an Australian aridity gradient

with annual precipitation ranging from c. 400 to 1100 mm

(Prentice et al., 2014). From dry to wet habitats, plants maintain

comparable photosynthetic rates by increasing their water use

with high stomatal conductance (gs) while reducing investment

in photosynthetic proteins resulting in low leaf N and Vcmax

(Wright et al., 2003). Analogously, along a gradient from

nutrient-poor to nutrient-rich habitats, plants were shown to

rely increasingly on high leaf N while reducing water use by

operating at lower gs (Wright et al., 2001). However, along the

gradient studied by Wright et al. (2001), covariation of soil

texture, cation exchange capacity, organic matter content and

total N and P concentrations precluded a more differentiated

analysis of soil effects.

Moreover, the impact of soil on photosynthetic traits has

rarely been studied at a global scale (Ordoñez et al., 2009;

Ordonez & Olff, 2013). Investigation of this relationship is chal-

lenging because climate is both a major control of photosyn-

thetic traits (e.g. Reich & Oleksyn, 2004) and an important

driver of soil development. According to Albrecht’s conceptual

model (Huston, 2012), soil total exchangeable bases, soil pH, soil

total P and N content and plant productivity should all decline

along a gradient from intermediate to high rainfall and from

young high-latitude soils to older, low-latitude well-weathered

soils (Walker & Syers, 1976). Soil fertility, sometimes defined by

exchangeable base cations or soil pH (Quesada et al., 2010),

might thus be expected to be inversely related to water availabil-

ity, and this trade-off might be reflected in both increasing

stomatal conductance and decreasing carboxylation capacity

towards warm and wet climates.

However, this one-dimensional view of covariation between

soils and climate is likely to be an oversimplification. Soil fertil-

ity can also be defined in several other ways. Conceptual models

of long-term ecosystem development have tended to focus on

the negative covariation between time trajectories of the avail-

ability of P and N in soils, with the highest productivity at

intermediate N : P ratios (Vitousek, 2004). In such schemes N is

assumed to be more limiting in young soils, often at higher

latitudes, since it accumulates mainly via atmospheric fixation

of N2 and becomes available to plants mainly via decomposition

of organic matter. However, in old and deep soils, mostly at

lower latitudes, P is provided mainly by the parent rock chem-

istry and its weathering rates becomes a limiting factor for plant

growth (Reich & Oleksyn, 2004; Peltzer et al., 2010). In this

scheme the relative cost associated with the maintenance of

carboxylation should increase at the extremities of time trajec-

tories for soil development, either limited by soil and leaf N or

by soil and leaf P (Niinemets et al., 1999; Reich et al., 2009;

Maire et al., 2012). Finally, biogeochemical models of ecosys-

tems have tended to adopt a narrow definition of fertility,

focused on the ability of soils to release plant-available forms of

nutrients from litter and soil organic matter (SOM), the decom-

position of which is supposed to be mainly a function of the

initial SOM and temperature (Hakkenberg et al., 2008), as well

as which microorganisms are present (Fontaine et al., 2011).

The implications of this scheme for photosynthetic costs are less

clear. Globally, these differing concepts of soil fertility continue

to exist side-by-side in the literature but, to date, none of the

broad concepts has been embedded in a global, predictive

framework for plant traits. Indeed, shifting and ambiguous defi-

nitions of ‘fertility’ may have hindered the development of such

a framework. With sufficient data, however, it should be possible

to tease apart the effects of the various edaphic drivers on pho-

tosynthetic traits and to separate influences of edaphic and cli-

matic determinants of photosynthesis.

Recently, a global soil dataset with consistency, reliability and

resolution approaching those available for climate has become

available with SoilGrids (ISRIC, 2013), which is complementary

to the ongoing update of the conventional Harmonised World

Soil Database (FAO et al., 2012). These soil data can be linked

with global datasets containing climate variables and plant

traits, making it possible for the first time to quantify the unique

contribution of soil variables to leaf traits across the range of

global ecosystem types. We performed such an analysis, with the

following questions.

1. How do leaf photosynthetic traits vary with different facets of

soil fertility?

2. What are the most individually important soil and climate

variables in terms of explaining variation in these leaf traits?

3. What proportions of leaf trait variation can be accounted for

by joint effects of soils and climate, as opposed to the unique

effects of soils and of climate? As climate and soil covary, the

soil–climate joint effect may dominate the unique effects of

climate and soil separately (Reich & Oleksyn, 2004). As different

soils are encountered in a given climatic envelope, a significant

unique effect of soils may be expected.

4. Variation among species in photosynthetic rates depends

both on variation in leaf N and in gs. Are these two independent

trait dimensions promoted by independent climate and soil

dimensions?

5. Finally, what is the minimum set of environmental and trait

variables needed to represent interrelationships between photo-

synthetic rates and associated traits?

To answer each question, a step-by-step statistical approach

was followed (described below), with the ultimate aim of disen-

tangling soil and climate effects on leaf traits and photosynthetic

rates.

Effects of soil and climate on photosynthetic traits
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MATERIAL AND METHODS

Trait data

The ‘Glopnet’ dataset (Wright et al., 2004) provided the starting

point for the present analyses. Data on field-measured photo-

synthetic capacity (Aarea, μmol m−2 s−1), stomatal conductance to

water vapour (gs, mmol m−2 s−1), N and P per unit leaf area (Narea

and Parea, g m−2, respectively) and specific leaf area (SLA, cm2 g−1)

were supplemented by other sets of georeferenced observations

of these traits (Appendix S1 in Supporting Information). The

final database (Appendices S2 & S3, doi:10.5061/dryad.j42m7)

consisted of 2400 species × site combinations including 288

sampled sites and 1509 species from 165 families. Three

hundred and twenty-five species occurred at more than one site.

The dataset contained a variety of growth forms (661 trees, 399

shrubs, 313 herbs, 88 grasses, 32 ferns and 16 vine species),

phenologies (316 deciduous, 14 semi-deciduous and 735 ever-

green species) and physiologies (i.e. C3 and C4 species, N2-fixing

and non-fixing species). Aarea varied 190-fold across the dataset

(from 0.34 to 65.05 μmol m−2 s−1; n = 2337), gs varied c. 110-fold

(from 21 to 2272 mmol m−2 s−1; n = 1035), Narea and Parea varied

by c. 40-fold (from 0.26 to 9.47 g N m−2; n = 1643) and 50-fold

(from 0.017 to 0.923 g P m−2; n = 512), respectively, and SLA

varied c. 50-fold (from 12.8 to 608 cm−2 g−1; n = 1965). By com-

parison, the 2004 Glopnet dataset had Aarea data for 825

species × site combinations and gs data for 500.

Environmental data

Climatic drivers

Photosynthetically active quantum flux density, temperature,

rainfall and aridity are key climatic determinants of plant pro-

cesses. Twenty-six climate variables representing these aspects of

climate were considered (Table S3-1 in Appendix S3). When

available, mean annual temperature and precipitation data were

taken from the source publications for the leaf data. Otherwise,

climate data were extracted from a global, three-dimensionally

interpolated 10′ × 10′ data set for 1961–90 (Climatic Research

Unit, CRU CL2.0; New et al., 2002). We obtained monthly and

annual means of temperature, rainfall, fractional sunshine dura-

tion and relative humidity. We also considered maximum and

minimum values, seasonal variability and growing-season mean

values (defined alternatively based on a 0 °C and a 5 °C basis) of

temperature, precipitation and sunshine duration. Next, several

bioclimatic variables were calculated following Wang et al.

(2014): annual global radiation, total annual incident radiation

during the growing season and annual equilibrium evapotran-

spiration (a function of net radiation and temperature). Aridity

was (inversely) described by the moisture index (MI; the ratio

between precipitation and potential evapotranspiration, PET),

with PET calculated in two ways: PETF (using the Penman–

Monteith formulation; FAO, 2004) and PETQ (using equilibrium

evapotranspiration to represent potential evapotranspiration;

Wang et al., 2014), yielding MIF and MIQ, respectively (see

Table S3-1 in Appendix S3 for a full list of descriptions).

Edaphic drivers

Soil variables that express long-term pedogenetic characteristics,

to which plants adapt over generations, can be contrasted with

those reflecting more rapid within-season changes (Peltzer et al.,

2010). We considered only the former type, choosing to avoid

fast-changing variables like N mineralization rate. Key edaphic

determinants of plant processes include the texture and structure

of soils, ion exchange capacity and macronutrient content of the

top soil layer (see Table S3-1 in Appendix S3 for a full list). Soil

data were extracted using the ‘raster’ package in R 3.0.1 (R Core

Team, 2013) from three spatially interpolated global datasets.

SoilGrids (0–22.5 cm layer, ISRIC, 2013) – an automated system

that produces soil datasets derived from digital soil mapping

(Hengl et al., 2014) – and the Harmonized World Soil Database

(0–30 cm layer, FAO et al., 2012) are interpolated at 30″ × 30″
resolution and provide the majority of soil variables (organic

matter content, pH, cation exchange capacity, texture and struc-

ture of soils). Soil N content and C : N ratio, aluminium satura-

tion and the available water holding capacity of the 0–20 cm layer

were extracted from the 5′ × 5′ ISRIC-WISE dataset (Batjes,

2012). If several soil types occurred within a grid cell, soil prop-

erty estimates correspond to the area-weighted profile mean.

We also constructed a dataset for soil available P concentra-

tion (Pavail) based on information from several sources (see

Appendix S4 for details). In brief, we first assembled geolocated

soil profiles from several soil phosphorus datasets (e.g. Batjes,

2011a; Shangguan et al., 2013; Tóth et al., 2013). When the dis-

tance from the nearest profile was less than 100 km we recorded

the nearest soil profiles for each site in the plant trait dataset.

Otherwise, we did a literature survey to search for data from

closer locations. The values for Pavail were harmonized to a single

chemical extraction method (Bray & Kurtz, 1945) based on

published conversion factors. The broad-scale reliability of the

harmonized Pavail data was confirmed using categorical informa-

tion: the global distribution of soil P retention potential (Batjes,

2011b) and the weathering stage associated with the soil orders

of plant trait sites (Appendix S4).

Climate conditions varied widely among the 288 study sites:

mean annual temperature ranged from −21.4 to 27.3 °C, annual

precipitation from 23 to 5406 mm and mean annual MI from

0.09 to 6.54, covering most of the temperature–rainfall space in

which higher plants are found. Soil conditions also varied

widely: total exchangeable bases (TBA) ranged from 75 to

1801 cmol kg−1, soil pH from 3.5 to 8.4, total soil N (Ntot) from

0.3 to 16.7 g kg−1, Pavail from 0.2 to 960 mg P2O5 kg−1 and clay

fraction from 2 to 42% (Fig. S3-2 in Appendix S3).

Data analysis

Data selection and transformation

Being right-skewed, all plant traits were log-transformed. Envi-

ronmental variables were subjected to the Yeo–Johnson trans-

V. Maire et al.
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formation (‘car’ package; R core team, 2013); this provides a

powerful way of reducing skewness and can be applied to vari-

ables that include negative values (see details in Table S6-1 in

Appendix S6).

Five methodological steps were defined, each one dedicated to

one of the five questions presented in the introduction. The

details, benefits and limitations of each step are described in

Table S6-2 in Appendix S6.

Step 1. Defining key dimensions of soil fertility and quantifying

their relationships with leaf traits

A general theoretical approach based on existing conceptual

models of soil and ecosystem development over geological time-

scales (Vitousek, 2004; Peltzer et al., 2010; Huston, 2012) was

used to predict relationships between soil pH and each of several

main facets of soil fertility, i.e. TBA, organic C content (Corg),

Ntot, Pavail and available water holding capacity (AWHC). We

compared the observed relationships with the predicted ones,

first fitting quadratic regressions (to accommodate nonlinear-

ity) and then linear models whenever the square term of the

quadratic model was non-significant (see Appendix S8 for more

details). A systematic analysis of the impact of each soil and

climate variable on each trait was realized (Figs 2 & S8 in Appen-

dix S8). In mixed models, the fixed-effect term was the soil or

climate variable allocated to each site; site and species were

considered as random intercepts (making standard assumptions

of normality, independence and homoscedasticity). The site and

species effects were included to reflect the hierarchical structure

(multiple species at multiple sites) and the unbalanced and

nested structure (different number of samples/species between

sites) in the sampling design. Models were fitted using the R

package ‘lme4’ and adjusted r2 values ra
2( ) were calculated fol-

lowing Moles et al. (2009).

Step 2. Selecting the most important climatic and soil variables

for explaining leaf trait variation

Next, for each trait we used a stepwise multiple mixed regression

model to select up to four explanatory variables from among the

various available climate and soil variables (Table S3-1 in

Appendix S3), by minimizing the Akaike information criterion

(Legendre & Legendre, 2012). Site and species effects were

treated as random factors. The R packages ‘lme4’ and ‘MuMIn’

were used.

Step 3. Quantifying unique and joint effects of soils and climate

for explaining variation in each leaf trait

In this step we used variation partitioning and Venn diagrams

(Legendre & Legendre, 2012) to partition the total variation

explained in each leaf trait into components explained uniquely

by the matrix of soil variables, uniquely by the matrix of climate

variables or (jointly) explained by the combined soil and climate

matrices. For these analyses we used the soil and climate vari-

ables identified as part of Step 2 (see Table 1 for the selected soil

and climate variables) and multiple mixed regression models.

The unique effect of soil (or climate) was calculated as the ra
2

difference between the full model and the climate (or soil)

model. The joint effect of soil and climate was calculated as the

difference between the summed ra
2 of soil and climate models

and the ra
2 of the full model.

Step 4. Quantifying the explanatory power of soils and climate

for the matrix of leaf traits

Photosynthetic rates can be understood as the outcome of coor-

dinated investments in water transport capacity, needed to

support a high rate of gs, versus Rubisco carboxylation capacity,

indexed by Rubisco activity (Vcmax) – potentially related to both

Narea (e.g. Wright et al., 2003) and Parea (e.g. Niinemets et al.,

1999). To test whether and how soil and climate variables can

distinctively promote these different drivers of leaf photosyn-

thesis it is important to consider the relationships among leaf

traits in the same analysis (Steps 4 and 5). First, we used redun-

dancy analysis (the ‘vegan’ package; R Core Team, 2013) to

quantify how much of the variation in the matrix of leaf traits

could be explained by the matrices of the most important soil

and climate variables selected at Steps 2 and 3. For leaf traits we

used Aarea, gs, Narea and SLA (giving a dataset of 647 species from

99 sites). Parea, with its considerably smaller sample size, was left

out of this analysis.

Step 5. Disentangling direct and indirect effects of leaf traits, soil

and climate on photosynthetic capacity

We used path analysis (the ‘lavaan’ package; R Core Team, 2013)

to explore how variation among species in Aarea can best be

understood as driven by both direct and indirect effects of gs,

Narea, SLA and the key environmental drivers identified in pre-

vious steps, selecting the model that was the least different from

the observations (P-value > 0). Note that Steps 4 and 5 are com-

plementary (Table S6-1 in Appendix 6), with Step 4 testing the

relationships between matrices without a priori constraints,

while Step 5 allowed us to evaluate possible causal effects of soil

independent of climate on leaf traits (Legendre & Legendre,

2012).

RESULTS

Step 1a. Two dimensions of soil ‘fertility’

Figure 1(a)–(e) summarizes expected relationships between soil

pH and each of several dimensions of soil fertility. From high to

low soil pH (right to left), i.e. conceivably from young soils

where the parent rock supplies cations and phosphorus to older

and more highly weathered soils, remote from the parent

material but enriched in SOM, Fig. 1 indicates the following.

1. A decrease of total exchangeable bases, but an increase in Al

and Fe content (Fig. 1a).

2. An increase in total C and N and AWHC, due to the accu-

mulation of SOM (Fig. 1b–d). In addition, soil available nitro-

Effects of soil and climate on photosynthetic traits
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gen (Navail) is expected to follow Ntot up to a maximal value at

intermediate pH, where optimal conditions for microbial

nitrogenase activity are reached. Thereafter, Navail decreases

steeply with increasing pH (Walker & Syers, 1976).

3. A decrease in Ptot (Lambers et al., 2008; Fig. 1e) with increas-

ing distance (and time) to the parent rock, where P is sourced.

However, Pavail may show a humped distribution as P can

co-precipitate with Ca at high pH and with Fe and Al at low pH.

Our data substantially matched these predictions (Fig. 1f–i).

As soil pH increased, so did TBA, soil base saturation and, to a

lesser extent, soil carbonate content, while Al saturation

decreased (correlations given in Table S7-3 in Appendix S7).

Quadratic relationships accounted for the relationships between

pH and Corg and between pH and Ntot (Fig. 1g,h). AWHC and the

climatic MI decreased linearly with pH (Fig. 1i). Contrary to

expectation, however, no relationship was found between pH

and Pavail (Fig. 1j). High Pavail was encountered at high-pH sites

that were characterized by a low carbonate content, but also at

low pH sites characterized by low Al saturation.

These relationships suggested the existence of two principal

dimensions of soil fertility. Soil pH indexes a first dimension

along which exchangeable bases, Navail, Corg, Norg and AWHC

covary, and the availability of micronutrients and N trade off

with the availability of water. A second, largely independent,

dimension is indexed by Pavail, which covaries negatively with Al

saturation, soil depth and clay content, and positively with

gravel content (Table S7-3 in Appendix S7).

Step 1b. Relationships between individual leaf traits
and soil variables

We quantified bivariate relationships between the five photosyn-

thetic traits and five soil variables (Pavail and four variables from

fertility dimension 1: soil pH, Corg, Ntot and AWHC). Aarea, Narea

and Parea all increased linearly with soil pH (r2 = 0.12–0.17;

Fig. 2), while SLA decreased (r2 = 0.06). Note that the corre-

sponding mass-basis traits also increased with soil pH, but with

notably lower r2 than on an area basis (all r2 < 0.03, P < 0.002;

not shown).

As expected from their negative covariation with soil pH

along fertility dimension 1 (Fig. 1), Corg, Ntot and AWHC affected

SLA, Narea, Parea and Aarea in the directions opposite to the

pH-related effects (Fig. 2). The pH–leaf trait relationships all

remained significant after accounting for covariation with mean

annual temperature and precipitation (dashed lines in Fig. 2).

However, this was not the case for relationships involving Corg,

Ntot and AWHC.

Stomatal conductance, gs, showed little patterning along fer-

tility dimension 1, the strongest relationship being a very weak

dependence on soil N (r2 = 0.02; Fig. 2l). By contrast, both gs

(negative) and Parea (positive) showed strong patterning along

fertility dimension 2 (i.e. varying with Pavail). These relationships

were little changed by concurrently accounting for climate

(dashed fitted lines, Fig. 2v,x). Unexpectedly, Pavail was the

strongest single environmental predictor of gs (the strongest

Table 1 Multiple mixed regression relationships between area-based leaf functional traits (Aarea, leaf photosynthetic rate; gs, stomatal
conductance; Narea, leaf nitrogen content; Parea, leaf phosphorus content; and SLA, specific leaf area) and soil and climate subsets of
environmental variables.

Trait Factors n r2 AIC F, factor 1 F, factor 2 F, factor 3 F, factor 4

Climate model

Aarea MIQ + TMPrange + SUNmax 2337 0.098*** −886 ↓20.8*** ↓5.6* ↑3.5(*) –

gs TMPmax + TMP0nb + PPTseason 1035 0.102*** −38 ↑8.7** ↓5.4* ↑7.9** –

Narea MIQ + TMPrange 1643 0.178*** −1726 ↓53.9*** ↓5.5* – –

Parea MIQ + RH 512 0.312*** −353 ↓27.9*** ↑16.3*** – –

SLA SUNmax + TMPmax + TMP0nb 1965 0.146*** −1474 ↓41.1*** ↑13.6*** ↓30.8*** –

Soil model

Aarea pH + Ntot + CECS 2337 0.195*** −928 ↑90.0*** ↑19.1*** ↓25.6*** –

gs pH + Ntot + CECS + Pavail 1035 0.241*** −128 ↑28.0*** ↑24.8*** ↓19.3*** ↓67.0***

Narea pH + Ntot + SALT 1643 0.193*** −1736 ↑38.0*** ↓5.5* ↑9.2** –

Parea pH + Pavail + SALT + SAND 512 0.440*** −361 ↑8.8** ↑19.5*** ↑6.7* ↓7.2**

SLA pH + Ntot + SILT + BULK 1965 0.159*** −1461 ↓15.4*** ↑3.2(*) ↑14.4*** ↓5.0*

(*)P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001.
Following a stepwise procedure criterion selecting the most important variables among 26 climate or 20 soil variables (see Materials and Methods and
Table S3-1 in Appendix S3 for details) based on an Aikaike information criterion (AIC), linear mixed regression models were used to measure the impact
of environmental variables on each trait. Site and species were treated as random factors (intercepts). The adjusted r2 and AIC are provided for each
regression model (see Materials and Methods for details of r2 calculation). F- and P-values for Type III error models are specified for each fixed soil factor.
Factors 1 to 4 correspond to the rank of each fixed factor that was selected in the regression model. Leaf trait variables were log-transformed and
environmental variables were power-transformed as described in Materials and Methods. Arrows indicate the sign of the coefficient estimate. See
Tables S8-4 & 8-5 in Appendix S8 for equation details.
MIQ, moisture index representing the ratio between annual precipitation and equilibrium evapotranspiration; TMPrange, mean diurnal temperature
range; SUNmax, maximum monthly fractional sunshine duration; TMPmax, maximal monthly temperature; TMP0nb, number of days with daily tem-
perature above 0 °C; PPTseason, seasonality of precipitation; RH, relative humidity; pH, soil pH; Ntot, soil total nitrogen content; CECS, cation exchange
capacity, Pavail, available soil phosphate content; SALT, soil salinity; SAND, soil sand content; SILT, soil silt content; BULK, soil bulk density.

V. Maire et al.
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climate predictor being precipitation seasonality, r2 = 0.06;

Fig. S8-1 in Appendix S8). Indeed, the single strongest predictor

for each leaf trait was a soil variable (pH for Aarea, Narea and SLA;

Pavail for gs and Parea; full details in Fig. S8-1 in Appendix S8).

Step 2. Selection of the most important soil and
climate variables

As in bivariate relationships (Figs S8-1 & S8-2 in Appendix S8)

but using stepwise multiple regressions, soils did a better job

than climate for explaining variation in each trait, and in the

case of Aarea and gs soils explained more than twice as much

variation as climate (r2 = 0.195 and 0.241 vs. 0.098 and 0.102,

respectively; Table 1). As judged by F-values, soil pH and Pavail

were the two soil variables that had the greatest effect on leaf

traits, while MIQ was the most important climate variable

(Table 1).

Step 3. Quantification of unique and joint effects of
soil and climate on leaf traits

Using variation partitioning, 21–31% of variation was explained

for each trait except Parea (54%) (Fig. 3). Overall, soils explained

more variation in leaf traits than did climate, with this effect

Figure 1 Theoretical (a–d) and
observed (e–h) relationships between soil
variables describing the availability of the
main resources (cations, nitrogen, phos-
phorus and water) that plants use in
photosynthesis. Soil pHwater is considered
here as a proxy of the stage of soil evolu-
tion, and thus as a key variable expressing
the dynamics of soil resources between
the different sites used in this study. The
various panels show dynamics of: (a, f)
total soil exchangeable bases; (b, g) soil
organic C content; (c, h) soil available
nitrogen and total N content; (d, i) soil
available water holding capacity, consid-
ering also precipitation (PPT) and mois-
ture index (MI); and (e, j) soil available
phosphorus and total P content (predic-
tion for Ptot based on Lambers et al.,
2008). Regression models (n = 288 sites):
(f) log(TBA) = −0.40 + 0.22·pH, r2 = 0.50;
(g) log(Corg) = 1.09 − 0.04·pH 2

+ 0.31·pH, r2 = 0.33; (h) log(Ntot) = −0.91
− 0.05·pH 2 + 0.47·pH, r2 = 0.12; (i)
log(AWHC) = 1.40 − 0.38·pH, r2 = 0.10;
pH = 5.9 − 2.1·log(MIQ), r2 = 0.54. All
relationships were significant at the P
= 0.001 level. OM, organic matter; TBA,
total exchangeable bases; AWHC, avail-
able water holding capacity.
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Figure 2 Relationships between area-based leaf photosynthetic traits and soil variables considered in the theoretical soil development
model (Fig. 1). Leaf photosynthetic rate (n = 2400; a, f, k, p, u), stomatal conductance (n = 1070; b, g, l, q, v), leaf nitrogen content
(n = 1704; c, h, m, r, w), leaf phosphorus content (n = 532; d, i, n, s, x) and specific leaf area (n = 1964; e, j, o, t, y) regressed on soil pH
(a–e), soil organic C content (f–j), soil total nitrogen content (k–o), soil available water holding capacity (p–t) and soil available phosphate
content (u–y) according to linear relationships using mixed regression models with site and species as random factors. Solid lines
correspond to the significant regressions for which statistical information from mixed regression models (rbi

2 and P-value) are reported on
each caption. Equations are reported below. Dashed lines correspond to the impact of the soil variable in multiple mixed regression models,
including two important climatic variables that can affect leaf traits (mean precipitation, PPTmean, and TMPmean, Wright et al., 2004). These
conditional slopes (‘visreg’ package; R Core Team, 2013) indicated the bivariate soil–trait relationship calculated while holding constant
(at their median) the two climate variables. Significance of the soil variable and its relative importance, ri (‘relaimpo’ package, R Core
Team, 2013), in the multiple mixed regression model is reported on each caption. Statistical significance is indicated using asterisks:
*P < 0.05; **P < 0.01; ***P < 0.001. Equations of bivariate relationships: (a) log(Aarea) = 0.49 + (8.09 × 10−2)·pH; (c)
log(Narea) = −0.18 + (7.47 × 10−2)·pH; (d) log(Parea) = −1.45 + (9.02 × 10−2)·pH; (e) log(SLA) = 2.26 − (4.26 × 10−2)·pH; (f)
log(Aarea) = 1.15 − 0.13·log(Corg); (h) log(Narea) = 0.48 − 0.16·log(Corg); (j) log(SLA) = 1.84 + 0.12·log(Corg); (l) log(gs) = 2.29 + 0.18·log(Ntot);
(m) log(Narea) = 0.28 − 0.15·log(Ntot); (o) log(SLA) = 1.99 + 0.11·log(Ntot); (q) log(gs) = 2.57 − 0.24·log(Pavail);
(s) log(Pa) = −1.16 + 0.19·log(Pavail); (w) log(Narea) = 0.66 − 0.34·log(AWHC); (x) log(Pa) = −0.37 − 0.47·log(AWHC). AWHC,
available water holding capacity; SLA, specific leaf area.
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being strongest for Aarea and gs. For the other traits (Narea, Parea

and SLA), about half the total variation explained was accounted

for by the common patterns of variation in climate and soils (the

‘joint’ effects).

Step 4. Multidimensional covariation between soils,
climate and leaf traits

We used redundancy analysis to better understand how the

structure in the matrix of leaf traits could be explained using the

structure in the matrix of the most important soil and climate

variables (selected at Step 2). Note, first, that Aarea covaried sig-

nificantly with gs, Narea, Parea and SLA (r2 = 0.76, 0.14, 0.07, 0.01,

respectively). Thirty per cent of the variation in the four-trait

matrix was explained by soils and climate (Fig. 4). Vectors rep-

resenting variation in Narea and gs were orthogonal and clearly

associated with a number of environmental variables, while the

vectors for Aarea and SLA were also orthogonal to each other, and

less clearly associated with environmental variables. In this

analysis Narea was mainly explained by soil pH and by MIQ, with

high values of Narea found in arid sites on soils with high pH. gs

was mainly explained by Pavail, bulk density, sand content and

growing season temperature, with high values of gs found in

warm sites on compact soils with low values of Pavail.

Step 5. Interdependences between key site variables
and photosynthetic traits

Three environmental variables were repeatedly shown to be key

for explaining variation in leaf traits: soil pH, soil available P,

and MI. We used path analyses to explore the interdependences

between these variables and the key photosynthetic traits Aarea,

Narea and gs. The most parsimonious path analysis model

explained 64% of the variation in Aarea (Fig. 5). Figure 5 shows

that high MI promotes acid soils. High MI and acid soils both

(independently) promote low Narea. High Pavail and arid climate

both (independently) promote low gs. Both gs and Narea (inde-

pendently) determine Aarea, in accord with theory (Wright et al.,

2003). There are also significant direct effects of MI and pH on

Aarea that are in the same direction as, but not accounted for by,

the effects of Narea and gs. Note that when SLA was added (con-

sidering its impact on Narea, gs and Aarea, and depending on MIQ

and pH), the models were consistently far weaker; hence they are

not presented.

DISCUSSION

Climate plays a key role in soil development (Jenny, 1941); this

leads to correlations among present-day soil and climate vari-

ables, and interactive effects of soils and climate on plant traits.

We identified two main dimensions of environmental variation,

key to understanding variation in leaf photosynthetic traits,

which we discuss in relation to concepts of soil and ecosystem

development.

A soil pH–aridity dimension

The first dimension was most strongly associated with soil pH

(and exchangeable cations) decreasing with increasing precipi-

tation and MIQ. Higher values of Narea, Parea and Aarea were found

in more arid sites and on soils with a higher pH, but gs was

unrelated to this dimension.

The tendency for species to have higher Narea (and, less so,

Parea) at drier sites is well known (Field et al., 1983; Schulze et al.,

1998), and accords with theory which predicts the predomi-

nance of high-Narea strategies as a means to economise on water

use during photosynthesis (Farquhar et al., 2002; Wright et al.,

2003, discussed further below). By contrast, broad-scale pattern-

ing of leaf traits with soil pH has rarely been reported (but see

Han et al., 2011) and is correspondingly less well understood.

These pH-related relationships were not simply secondary cor-

relations flowing from the well-documented regional negative

relationships between soil pH and precipitation, but probably

relate to non-climatic determinants of soil pH, like parent rock

and topography (Jenny, 1941). Soil pH is implicated in many soil

chemical, enzymatic and microbial processes that affect the

ClimateSoil
9.9**21.1**

Full model for Aarea: r2 = 24%

ClimateSoil
17.7**21.4**

Full model for Narea: r2 = 25%

ClimateSoil
37.4**43.6**

Full model for Parea: r2 = 54%

ClimateSoil
11.6**27.2**

19.4** 3.8**7.8

Full model for gs: r2 = 31%

14.1** 2.9**7.0 6.9** 3.2**14.5

16.4** 10.2**27.2

ClimateSoil
15.1**16.7**

6.0** 4.4**10.7

Full model for SLA: r2 = 21%

Figure 3 Partitioning of the respective variation in leaf
photosynthetic rate (Aarea), stomatal conductance (gs), leaf
nitrogen content (Narea), leaf phosphorus content (Parea) and
specific leaf area (SLA) between the unique effect of soil, the
unique effect of climate and the joint effect of soil and climate
variables. Multiple mixed regressions were used to compute the
adjusted r2 of the fixed effects (climate and soil variables). Site and
species were considered as random factors. The soil and climate
variables used in these analyses were the ones revealed to be most
relevant by a stepwise model selection procedure: MIQ, SUNmax,
TMPmax, TMP5nb, PPTseason, RH, TMPrange, pH, Ntot, Pavail, SILT,
SAND, BULK, CECS and SALT, are respectively moisture index,
maximum monthly fractional sunshine duration, maximal
monthly temperature, number of days with daily temperature
above 5 °C, seasonality of precipitation, relative humidity, mean
diurnal temperature range, soil pH, soil total nitrogen content,
available soil phosphate content, soil silt and sand contents, soil
bulk density, cation exchange capacity and soil salinity. Statistical
significance is indicated using asterisks: **P < 0.01.
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availability of micronutrients and nutrients (for a review see

Sinsabaugh & Follstad Shah, 2012), and therefore so are Narea

and Parea. Considered across a broad gradient of soil types, higher

pH should generally equate to faster and/or higher availability of

nutrients held in SOM and reduce the overall acquisition costs

of N and thus the costs of achieving a given biochemical capacity

for photosynthesis.

Conversely, higher SOM concentration (indexed by Corg or

Ntot) does not necessarily denote higher N availability. In acid

conditions SOM becomes recalcitrant, and N availability is cor-

respondingly low (Jenny, 1941). Hence, here and elsewhere

(Santiago et al., 2005; Ordoñez et al., 2009) we found the

counterintuitive result that leaf N decreased with increasing soil

total N.

Interestingly, the first dimension of soil fertility partially asso-

ciated with the variation of Aarea seems to be unrelated to gs.

Thus, the tendency of plants sampled locally to be strongly

co-varying in Aarea and gs and hydraulic properties (Reich, 2014)

does not hold in the same fashion across very broad climate and

soil gradients, supporting the hypothesis that trade-offs between

water and nutrient use predominate at larger scales.

The soil available P dimension

The second key environmental dimension was represented by

Pavail in the topsoil horizon, covarying with the sand content and

bulk density of soil and the site temperature (Fig. 4; Tables S7-3

& 7-4 in Appendix S7). Both leaf Parea and gs showed strong

patterning with this dimension, with higher Parea but lower gs

(but not Aarea) on soils with higher Pavail.

Our study sites represented a broad range of soil types and

Pavail, from highly weathered soils where P limitation is wide-

spread (representing 33% of our sites, e.g. Oxisols; Table S4-4 in

Appendix S4), to less (low) weathered soils with typically higher

Pavail (21% of our sites, e.g. Inceptisols). While the Pavail part of

our soil dataset was unavoidably underpinned by fewer soil

profile data than for variables such as pH and Corg, our confi-

dence in these data was boosted by observing positive relation-

ships of Pavail with Parea, altitude and latitude, and its negative

relationships with clay content, soil depth and Al saturation

(Table S7-4 in Appendix 7) – echoing relationships known from

regional field studies (Walker & Syers, 1976; Vitousek, 2004).

We have various prospective explanations for the observation

that species on soils with higher P tend to team their maximum

photosynthetic rates with lower stomatal conductance, but as yet

no clear way to identify the most likely explanation, nor to place
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Figure 4 Redundancy analysis
predicting the composition and structure
of leaf photosynthetic traits (Aarea, Narea, gs

and SLA) from the composition and
structure of the most important soil and
climate variables (selected by a stepwise
procedure, see caption to Fig. 3).
Abbreviations are defined in the caption
to Fig. 3.
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Figure 5 Path analysis depicting the direct and indirect effects of
the main environmental predictors of leaf photosynthetic rate Aarea

through its covariation with stomatal conductance (gs) and leaf
nitrogen content (Narea). Environmental variables were selected
based on the results of Fig. 4 and were soil pH (pH), moisture
index (MIQ) and soil available phosphorus content (Pavail). The
path coefficients are the simple standardized regression
coefficient. The goodness-of-fit and the unexplained variance of
Aarea, Narea and gs are given. A Pearson correlation between Narea

and gs was tested and was not significant.
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them into an optimality framework as has been done for

climate-related effects on gs (e.g. Medlyn et al., 2011).

Experimentally lowering soil nutrient availability is known to

stimulate higher root : shoot ratios (see Poorter et al., 2012, for

a comprehensive analysis), which may in turn improve plant

water balance and hence allow for a higher gs. Conversely, at a

given root : shoot ratio, an increase in gs in response to nutrient

deficiency has been proposed as an evolutionary mechanism to

improve plant nutrition, through an increase in the transpira-

tion rate and the mass-flow of water from the surrounding soil

(Edwards et al., 1998; Cramer et al., 2009). This ‘mass-flow’

hypothesis is generally thought to apply more to soil inorganic

N than to the less mobile P (Cramer et al., 2009), but higher gs

has also been observed under P deficiency for some species

(Raven et al., 2004).

Alternatively, in ‘least-cost’ photosynthetic optimality theory

(Wright et al., 2003), water and nitrogen supplies are considered

as substitutable resources to secure carbon, and the optimiza-

tion of Aarea involves minimizing the sum of costs for acquiring

and using N and water in photosynthesis. At higher soil N avail-

ability, where the costs of N acquisition are lower and therefore

costs of water acquisition are relatively higher, plants are

expected to operate at a given Aarea with a higher Narea and lower

gs. It is conceivable that soil P and leaf P also fit into this frame-

work, for example that higher leaf P enables a higher

carboxylation capacity for a given leaf N (Niinemets et al., 1999;

Reich et al., 2009). The same prediction (a higher Narea and/or a

lower gs for a given Aarea) would be made for a scenario where

costs of N acquisition were lower because of higher N availabil-

ity due to more alkaline soil. Perhaps all of these effects could

come into play in understanding the general trade-off between

Vcmax and water use (Farquhar et al., 2002; Wright et al., 2003;

Prentice et al., 2014).

Limitations of our analyses

Underpinning the use of gridded soils data, we made the

assumption of a high signal-to-noise ratio and an overall good

match between ‘actual’ and spatial dataset values. Our observa-

tions of geography–soil, climate–soil and trait–soil relation-

ships, which were in agreement with many of those observed in

the literature with in situ soil variables measured at various

scales (see details in Appendix S5 and Table S7-4 in Appendix

S7), supported this. Nonetheless, we stress that local-scale vari-

ation in soil properties can certainly be large (Yemefack et al.,

2005) and that for more detailed assessments, values measured

in situ at the respective plant trait sites would be ideal.

While one’s ability to reliably tease apart the independent

roles of soil and climate is limited in various ways in any statis-

tical analysis (and especially since climate and soils covary) we

chose path analysis as the most suitable for identifying causal

structures (Legendre & Legendre, 2012). In combination with

and complementary to the other approaches used (see

Table S6-2 in Appendix 6 for the benefits and limitations of each

statistical method), we provided evidence that soils modify Aarea,

gs and Narea independently of climate. That said, we must not

forget the possibility that these patterns may just be (or also be)

markers of longer-term and more important factors associated

with soil development, like parent rock, topography, soil age and

vegetation (Jenny, 1941).

Conclusion

A key result of our study is that, in a multivariate trait–

environment space (Fig. 4), there are two distinguishable

dimensions of soil–climate variables influencing the two leaf

traits (Narea and gs) that, together, largely constrain photosyn-

thetic activity. Soil pH and available P emerged as the best soil

predictors of variation along these gradients and, indeed, overall

we found stronger patterning of photosynthetic traits according

to unique effects of soils than to those of climate. Plant geogra-

phers have long recognized that plant traits vary in concert with

soil properties (e.g. Schimper, 1903), but only rarely have such

patterns been quantified at a broad spatial scale. This work

represents an important step towards a better understanding of

geographic variation in leaf photosynthetic strategies, and to

progress towards more reliable modelling of global vegetation

function.
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