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Abstract 

In addition to conferring an indefinite replicative life span, telomerase renders p16(-) human 

mammary epithelial cells (HMEC) resistant to growth arrest by TGFβ or by loss of EGF or 

insulin signaling. In contrast to earlier reports, we recently found that growth factor signaling 

was not directly affected by telomerase expression.  Rather, short dysfunctional or near-

dysfunctional telomeres in proliferating telomerase(-) HMEC sensitized the cells to p53-

dependent signals for growth arrest. We showed that during serial passage and before any signs 

of replicative senescence, HMEC lacking telomerase experience enhanced p53 stability and 

DNA damage signaling, as determined by increased phosphorylation on p53-Ser15 and Chk2-

Thr68, and formation of 53BP1/phosphorylated histone H2AX foci at chromosome ends.  This 

heightened activity of the p53 pathway enhanced the efficiency with which cells arrested growth 

in response to TGFβ or to EGF or insulin withdrawal, and was abolished by ectopic expression 

of hTERT, the catalytic subunit of telomerase. Telomerase elongated short telomeres, thereby 

reducing the basal level of activated p53 and raising cellular tolerance for other p53-dependent 

signals, including those emanating from non-genotoxic sources. These findings explain a number 

of observed effects of telomerase expression on cell growth and survival without postulating 

additional functions for telomerase. 
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Telomeres, telomerase and cellular lifespan 

Telomeres are nucleoprotein structures that protect chromosomal ends from being recognized 

and processed as double strand DNA breaks1, 2.  Due in part to the “end-replication problem,” 

most human somatic cells lose telomeric DNA by 70 to 200 base pairs after each round of 

replication3.  When the telomeric DNA becomes critically short, telomere function is 

compromised, and the chromosome ends are recognized as damaged DNA4.  Depending on the 

cell type and status of p53 and the DNA damage checkpoints, the result is either an irreversible 

arrest of cell proliferation (replicative senescence), cell death, or genomic instability5.  

Expression of telomerase, the cellular reverse transcriptase that replenishes telomeric DNA, can 

prevent telomere dysfunction and the subsequent cellular responses.  Most normal human cells 

express little or no telomerase, and hence have a finite replicative life span that is limited by 

telomere length and function.  By contrast, most malignant tumors and cancer cell lines express 

telomerase and have an indefinite capacity for proliferation (replicative immortality)6-8.  

 

The minimal components of mammalian telomerase are an RNA that provides the template for 

the telomeric repeat sequence (TTAGGG in vertebrates), a putative H/ACA pseudouridine 

synthase (dyskerin), and a catalytic component (hTERT in human cells) that adds the telomeric 

repeat to the chromosome ends9.  Telomerase expression is limited in most human cells by 

failure to express hTERT.  Ectopic expression of hTERT in several human somatic cell types 

appears to be sufficient to prevent replicative senescence without conferring other attributes of 

tumorigenic transformation10-12.  However, several studies have suggested that hTERT has other 

functions, other than telomere maintenance, that might contribute to tumor cell survival and 

proliferation13.   
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Unexplained cellular and organismal consequences of telomerase expression  

In previously published studies, we observed that cultured human mammary epithelial cells 

(HMEC) immortalized after carcinogen and/or oncogene exposure, acquired endogenous 

telomerase activity accompanied by gradual acquisition of resistance to TGFβ-induced growth 

arrest12, 14, 15.  Likewise, ectopic expression of hTERT in finite life span p16INK4A(-) HMEC 

rapidly conferred resistance to TGFβ-induced growth arrest12. Similar links between telomerase 

expression and cell phenotypes have since been observed in human lens epithelial cells, HMEC 

and human fibroblasts16-19.  In these cases, ectopic hTERT expression caused accelerated cell 

proliferation, reduced growth factor requirements for cell proliferation, altered gene expression 

profiles, enhanced DNA repair, and increased tumorigenesis.   

 

A variety of studies in mice have also suggested that telomerase may have functions distinct 

from telomere maintenance.  Telomerase is frequently expressed at high levels in mouse tumors, 

despite the fact that mice have very long mean telomere lengths, suggesting that telomerase may 

promote tumorigenesis by mechanisms unrelated to telomere length maintenance20, 21.  In 

addition, wound healing was accelerated in transgenic mice that over-express mTERT in 

epidermal keratinocytes22. These mice, and mice in which mTERT was expressed from the beta-

actin promoter, were more prone to develop spontaneous tumors at advanced ages, suggesting 

that high telomerase activity may cooperate with genetic alterations that occur with age to 

promote tumorigenesis23.  Conversely, the first generation of TERC-/- mice, which lack 

telomerase activity but still have long mean telomere lengths, developed fewer skin tumors after 

chemical carcinogen treatment, indicating that lack of telomerase might protect cells, even those 
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with long telomeres, from transformation24. Other studies conducted in neuronal tissues 

suggested that mTERT expression protects against apoptosis. In one case, down-regulation of 

mTERT by anti-sense RNA in mouse embryonic neurons triggered immediate apoptosis despite 

the presence of long mean telomere lengths25.  mTERT was also found to protect mouse 

embryonic neurons against apoptosis induced by amyloid β-peptide26. Collectively, these data 

have led to suggestions that telomerase may promote cell proliferation, survival and/or other 

aspects of tumorigenesis independently of its known role in telomere maintenance. Nevertheless, 

direct evidence that telomerase has functions other than telomere maintenance has been lacking. 

 

Telomere dysfunction and cellular stress 

In work recently published27, we reported that introduction of hTERT into finite life span HMEC 

positively affects the ability of these cells to continue DNA synthesis in the short-term absence 

of EGF or insulin signaling.  These findings were in agreement with a previous study showing 

that ectopically expressed hTERT provides a growth advantage to HMEC in medium lacking 

EGF and bovine pituitary extract19.  However, in contrast to this latter study, we found no 

evidence that hTERT alters the expression of EGF receptors or downstream signaling 

components. We found instead that: a) actively growing HMEC contain low but detectable levels 

of the phosphorylated forms of DNA damage responsive proteins Chk2 and p53, and accumulate 

53BP1/phosphorylated histone H2AX foci at chromosome ends, b) phosphorylated forms of 

Chk2 and p53, and 53BP1/phosphorylated histone H2AX foci are reduced in HMEC that 

ectopically express hTERT, c) interference with p53 function mimics the effect of ectopically 

expressed hTERT on growth, and d) transient hTERT expression causes long-term positive 

effects on DNA synthesis in cells deprived of growth factors.  On the basis of these data, we 
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proposed that many or all the observed effects of hTERT on cell growth and survival could be 

explained through its direct effects on short telomeres and indirect effects on p53 signaling.   

Most importantly, our data suggested that in the presence of functional p53, cells with near-

dysfunctional telomeres are primed to respond to externally generated growth arrest signals. 

 

The small amounts of activated DNA damage response proteins found in growing pre-senescent 

HMEC are likely due to undamaged telomeres in compromised or near-dysfunctional states28.  It 

is not clear how telomere erosion leads to a DNA damage response, however, there is mounting 

evidence that telomere structure, not length per se, determines functional status29-31.  Moreover, 

the presence of one critically short telomere is apparently insufficient to cause replicative 

senescence32.  As the number of telomere repeats on individual chromosome ends decrease, the 

ability of these ends to recruit and retain telomeric proteins may decrease, increasing the interval 

the ends spend in an “unprotected” state or alternative conformation that can be recognized by 

DNA damage pathways.  Indeed, Verdun and Karlseder33 have recently reported that an ATR-

dependent damage response is initiated during every S-phase when single stranded DNA 

accumulates at telomeres as a result of uncoupling replicative unwinding and polymerization, 

due to stalled replication forks.  After the DNA damage response is triggered at telomeres, DNA 

repair and replication proteins are recruited, and these proteins complete replication at the 

chromosome ends.  Such proteins, which are required for the generation of D loops with 

telomeric sequences, are recruited through interactions with specialized proteins such as TRF1 

and TRF2, which bind directly to telomere repeats in complex, highly dynamic manners34.  The 

presence of one or a few transiently exposed chromosome ends may not be sufficient to signal 

growth arrest or replicative senescence. However, when combined with other stress-related 
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signals, the cumulative response may cross a threshold beyond which growth arrest occurs. 

 

Integration of telomere and growth factor deprivation signals by p53 

Although the role of p53 in growth arrest due to genotoxic stress is well characterized, its role in 

growth arrest by other causes has been less well documented. For example, p53 has been 

implicated in establishing growth arrest in response to ribonucleotide depletion35, TGFβ 

administration36, 37, and serum withdrawal38.  In our studies, we directly demonstrated a role for 

p53 in growth arrest caused by blockage of EGF receptor signaling, insulin withdrawal, or 

TGFβ.  Thus, p53 plays a more general role in cell cycle regulation, coordinating growth arrest 

signals with genome surveillance.  Although the upstream factors that mediate p53 activation 

under non-genotoxic conditions remain to be elucidated, p53 is likely to be at the nexus of a 

variety of cell fate pathways. The p53 protein itself undergoes a variety of posttranslational 

modifications.  TGFβ-mediated induction of p21 has recently been shown to require 

phosphorylation of p53 on Ser-6 and Ser-9, but not Ser-15, Thr-18, or Ser-20 more commonly 

associated with DNA damage responses39. Small qualitative and quantitative changes in the 

type/level of p53 modifications alter its ability to complex with other transcription factors, such 

as Smad2/3, and thus influence the threshold for cytostasis. 

 

The levels of phospho-Ser-15 p53 ultimately decreased with time in both pre-senescent and 

hTERT-transduced HMEC after blockage of EGF receptor or insulin signaling.  While these data 

might appear contradictory to the data implicating p53 in growth arrest under these conditions, 

two possible non-exclusive explanations may reconcile these findings.  First, p53 and its 

downstream effector p21 may be important for the initiation, but not maintenance, of growth 



 8 

arrest. Second, the ratio of these proteins to their binding partners, rather than their overall 

abundance, may be the critical determinant of growth arrest under the conditions examined.  

Gene disruption studies in human fibroblasts show that p21 contributes to cell cycle arrest after 

serum withdrawal, but cells lacking p21 eventually become quiescent, albeit less efficiently40.  

Likewise, human fibroblasts lacking p53 function (owing to expression of viral oncoproteins or 

genetic suppressor elements), resisted growth arrest due to serum withdrawal, but eventually 

became quiescent38.  Similarly, we found that HMEC ectopically expressing hTERT or a 

dominant negative p53 genetic suppressor element eventually cease DNA synthesis in the 

absence of EGFR signaling, albeit less efficiently.  Other cell cycle regulators, such as pRb and 

its regulators (e.g., the p27Kip1 CDK inhibitor), very likely cooperate with p53 and p21 in 

establishing and maintaining quiescence, and may do so independently.  For example, antisense 

studies have implicated p27 in growth arrest due to serum deprivation41 or TGFβ42.  

 

Our experiments using mutated and modified hTERT proteins indicated that the effects of 

telomerase on growth arrest require the enzyme be catalytically active and capable of telomere 

maintenance in vivo, but do not require its continuous expression.  The effects also do not appear 

to require large increases in mean telomere length, since for unknown reasons the hTERT cDNA 

flanked by loxP sites that we used in our experiments conferred less telomerase activity than an 

unmodified hTERT cDNA, and consequently, the mean terminal restriction fragment size (an 

indication of telomere length) was relatively unchanged.  Under these conditions of limiting 

telomerase activity, the shortest telomeres are preferentially elongated43.  Therefore we 

hypothesize that the presence of the shortest telomeres, rather than mean telomere length, 

contributes to the heightened p53 signaling in growing HMEC.  Once the shortest telomeres are 
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sufficiently elongated during the transient expression of telomerase, the stimulus for increased 

p53 signaling is removed, and no further benefit is derived from the continued presence of 

telomerase. 

 

Our finding that phosphorylated forms of p53 and Chk2 are present in actively growing finite life 

span HMEC prior to replicative senescence suggests that p53 is partially activated by short, but 

not completely dysfunctional, telomeres, and that additional signals from other sources further 

activate p53 to promote growth arrest (Fig.1).  Thus, our results support the notion that p53 

integrates different signals contributing to growth arrest by non-genotoxic as well as genotoxic 

stimuli.  Telomerase down-regulates the levels of phosphorylated p53 and Chk2, most likely by 

extending critically short telomeres, thus reducing the DNA damage signal.  Since it is the sum 

of activated p53 that determines whether cells arrest growth or continue to proliferate, the 

decreased activated p53 in cells that have been exposed to telomerase increases the threshold for 

growth arrest signaling by other stimuli.  This model can explain a variety of observed effects of 

hTERT expression on cell growth and survival without postulating additional telomere-

independent functions for the telomerase enzyme. 

 

Indirect effects of telomere maintenance on p53-dependent functions may explain most, but 

not all consequences of TERT expression 

Do the results of our studies in cultured cells rule out the possibility that TERT has other 

functions in addition to telomere maintenance?  As in any scientific enterprise, the old dictum 

that “absence of proof does not constitute proof of absence” still applies.  Nevertheless, the 

indirect effects of telomere maintenance on p53-dependent functions may explain observations 
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in other systems as well, negating the necessity for alternative telomerase functions.  Although 

murine telomeres are, on average, much longer than human telomeres, there is considerable 

variability in the lengths of individual telomeres and the shortest telomeres in mouse cells are 

comparable to those in human cells44.  Reduced p53 stress responses due to telomerase 

maintenance of short telomeres in murine cells may exert subtle changes in p53 mediated growth 

arrest and/or apoptotic responses, indirectly allowing accelerated wound repair45 and continued 

proliferation of cells bearing pre-malignant defects. This would readily explain the additive 

effects on tumorigenicity of loss of one functional p53 allele and TERT over-expression46.  

Changes in the levels of p53 activation may also explain observed neuroprotective effects of 

TERT over-expression47.  Notably, although p53 null mice are viable and fertile, some 

developmental abnormalities have been noted, including overgrowth of neural tissues48.  

Findings such as those showing that over-expression of mTERT in TERC-/- mice causes 

proliferation of hair follicle stem cells49 and over-expression of catalytically inactive hTERT 

causes apoptosis resistance in Burkitt lymphoma cells50 are, however, harder to explain.  It is 

prudent to keep in mind in experiments such as these, that when expressed at physiological 

levels, TERT is an extremely low abundance protein.  When artificially over-expressed using 

strong promoters, TERT levels may increase to the point where they bind cellular components 

that they would not normally bind, or they titrate cellular components required for other 

processes.  A rigorous accounting of physiologically relevant telomere-independent functions of 

TERT should include demonstrations of phenotypic effects of its absence as well as of its 

presence. 
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Figure legend 

 

Figure 1. Model for how dysfunctional telomeres and growth arrest signals activate p53 pathway 

additively. Prior to the onset of replicative senescence, p53 is modestly activated by short 

telomeres. In the absence of other p53 activating stimuli (1), this low level of activation does not 

reach a threshold capable of triggering growth arrest until the number or length of short 

telomeres crosses a critical threshold.  Modest activation of p53 by growth factor depletion adds 

to the low level of p53 activation due to short telomeres (2), crossing the threshold for growth 

arrest sooner than would occur due to short telomeres alone. Telomerase lowers the level of 

activated p53 by extending short telomeres (3). Since it is the sum of activated p53 that 

determines cell fate, the decrease in activated p53 in telomerase-positive cells increases the 

magnitude of other stimuli required for growth arrest. 
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