
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
From the Real Vehicle to the Virtual Vehicle

Permalink
https://escholarship.org/uc/item/8gb263gz

Author
Huang, Jiangchuan

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8gb263gz
https://escholarship.org
http://www.cdlib.org/

From the Real Vehicle to the Virtual Vehicle

by

Jiangchuan Huang

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering – Civil and Environmental Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Raja Sengupta, Chair
Professor Carlos Daganzo

Professor Satish Rao

Fall 2013

From the Real Vehicle to the Virtual Vehicle

Copyright c© 2013

by

Jiangchuan Huang

Abstract

From the Real Vehicle to the Virtual Vehicle

by

Jiangchuan Huang

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Raja Sengupta, Chair

We focus on systems with task arrivals in time and space. A good model for the
single-customer case is the Dynamic Traveling Repairman Problem (DTRP) [1]. The
DTRP literature has focused on optimizing the expected value of system time, defined
as the elapsed time between the arrival and the completion of each task. We focus
on the stability and distribution of system time, including its variance. This disserta-
tion establishes a partially policy independent necessary and sufficient condition for
stability in the DTRP. The policy class includes some of the policies proven to be
optimal for system time expectation under light and heavy loads in the literature.
We propose a new policy named PART-n-TSP and compute a good approximation
for its system time distribution. PART-n-TSP has lower system time variance than
PART-TSP [2] and Nearest Neighbor [1] when the load is neither too small or too
large. We prove that PART-n-TSP is also optimal for system time expectation under
light and heavy loads.

In the multi-customer case, the scheduling policies of the DTRP and other vehicle
routing problems do not create performance isolation [3] between customers. We
explore performance isolation between customers by borrowing the virtual machine
abstraction from cloud computing. Since our servers are moving vehicles, we propose
a new equivalent of the virtual machine called the virtual vehicle enabling what we
call cloud computing in space. The customer operates virtual vehicles that are in
reality hosted by fewer, shared provider-operated real vehicles. We show that cloud
computing in space can do better than conventional cloud computing in the sense
of realizing high performance isolation (e.g. 98%) while requiring significantly fewer
real vehicles (e.g. approximately 1-for-5).

1

Contents

Contents i

List of Figures iii

List of Tables v

Acknowledgments vi

1 Introduction 1

1.1 Real Vehicle Routing . 1

1.2 Virtual Vehicle Performance Isolation 3

2 Stability of the Dynamic Traveling Repairman Problem 7

2.1 The Dynamic Traveling Repairman Problem 7

2.1.1 Literature and Results . 7

2.2 Polling-Sequencing Policies . 10

2.2.1 Spatial-Polling: Markov Chain 10

2.2.2 Sequencing: Economy of Scale 13

2.2.3 Stability Condition . 16

2.3 Summary . 20

3 System Time Distribution in the Dynamic Traveling Repairman
Problem 21

3.1 System Time Distribution . 21

3.1.1 Literature and Results . 21

3.2 PART-n-Traveling Salesman Policy 23

3.2.1 Calculation of System Time Distribution 25

i

3.2.2 Comparison of PART-n-TSP, PART-TSP and Nearest Neighbor 32

3.2.3 Optimality of PART-n-TSP under light and heavy loads . . . 36

3.3 Summary . 40

4 Virtual Vehicle and Cloud Computing in Space 41

4.1 Model . 41

4.1.1 Performance Isolation . 44

4.1.2 Gain . 45

4.2 Systems . 46

4.2.1 Virtual Vehicle Queues . 46

4.2.2 Real Vehicle Queues . 47

4.3 Scheduling Policies . 51

4.3.1 Earliest Virtual Deadline First 53

4.3.2 Earliest Dynamic Virtual Deadline First 60

4.3.3 Credit Scheduling Policy . 60

4.4 Experiments . 62

4.4.1 Simulation Setup . 63

4.4.2 Simulation Results . 63

4.5 Summary . 67

5 Conclusion 69

Bibliography 71

ii

List of Figures

2.1 Classification of policies, WC = Work Conserving, EoS = Economy of
Scale, ULP = Unlimited-Polling. 9

2.2 Daganzo’s Algorithm, cited from [4]. 14

2.3 Mean travel time under TSP, NN and DA. 16

3.1 Order for serving partitions under the polling policy, cited and revised
from [2]. 24

3.2 Vehicle moving to adjacent partition, cited from [1]. 24

3.3 Expectation and variance of the length of the TSP path for n tasks. . 28

3.4 The pdf of WInj and WI . 28

3.5 Approximated and simulated values of the cdf of the system time. . . 32

3.6 Part of simulated data for PART-TSP: ρ = 0.9, Bi ∼ [0, 0.5], and r = 25. 33

4.1 The spatial cloud with virtual vehicle queues and real vehicle queues. 43

4.2 The credit scheduling policy. 61

4.3 The token bucket algorithm. 62

4.4 Tardinesses, delivery probabilities, fairness indices, slacks, and migra-
tion costs with different numbers of RVs and gains when the task size
is zero under the η = 1 process under the EVDF scheduling policy. . . 64

4.5 Contours of tardiness and delivery probability with different numbers
of RVs and gains when the task size is zero and E

[
T S
]

= E[L]
4vV

under
the η = 1 process under the EVDF scheduling policy. 65

4.6 The number of virtual vehicles hosted by 100 real vehicles to guarantee
a certain level of tardiness under EVDF with different task sizes. . . . 66

4.7 Tardiness with different numbers of RVs M for the same number of
VVs under EVDF for different task sizes. 67

iii

4.8 Comparison of EVDF, EDVDF and Credit scheduling policies on tar-
diness and delivery probability when the mean task size E

[
T S
]

= E[L]
4vV

under the η = 1 process. 68

iv

List of Tables

2.1 Stability conditions for different policies for the 1-DTRP 8

3.1 Comparison of PART-n-TSP, PART-TSP and Nearest Neighbor on
E[T] and σ[T]: Bi ∼ Unif [0, 0.5] . 34

3.2 Comparison of PART-n-TSP, PART-TSP and Nearest Neighbor on
E[T] and σ[T]: Bi ∼ Unif [0, 1] . 35

4.1 Simulation setup . 63

v

Acknowledgments

First, I would like to express my deep gratitude to Professor Raja Sengupta for ad-
vising me and supporting me. He always encouraged me to work on fundamental
problems. His strong intuition, deep insight into good research problems, and dedi-
cation to enlighten students always motivated me to challenge myself and do better.
Through him, I learned to understand the meaning of science and the high standards
of rigor held by true researchers.

During my study in Civil Systems at UC Berkeley, I also worked with Professor
Christoph Kirsch in the Department of Computer Sciences at the University of
Salzburg. From him, I learned how to abstract and formulate good problems. Dur-
ing our weekly group meetings, he gave me numerous useful suggestions from the
perspective of computer science, which broadened the scope of my research.

I would like to offer special thanks to my committee members: Professor Carlos F. Da-
ganzo in the Transportation Engineering Department and Professor Satish Rao in the
Computer Science Department. They provided me with numerous useful suggestions
to improve my dissertation.

During my early stay at Berkeley, I worked with Professor Adib Kanafani in the
Transportation Engineering Department. He was my adviser when I was pursuing
my M.S. in Transportation Engineering. He taught me how to approach difficult
problems and gave me several useful suggestions during the course of my research.

I would like to thank all my colleagues at the Center for Collaborative Control of
Unmanned Vehicles (C3UV) and the Cyber-Physical Cloud Computing (CPCC) Lab
for creating an excellent research environment over the last four years. Eloi Pereira
was my peer as a Ph.D. student. Eloi’s diligence and his attention to detail constantly
inspired me. He taught me a lot of software skills and was always willing to answer
my questions. Dr. Ching-Ling Huang also spent a lot of time with me sharing his
research experience during my early Ph.D. years. Dr. Joshua Love provided me with
very valuable ideas and vast technical support on the UAV projects. I would also
like to thank the other members of the C3UV group and the CPCC lab, namely Dr.
Yaser Fallah, Dr. Brandon Basso, Dr. Jared Wood, Hao Chen, Jared Garvey, Mark
Godwin, Ben Kehoe, Shih-Yuan Liu, Clemens Krainer, and Michael Lippautz.

I would like to give special thanks to my dearest friend Yang Zhao, Dr. Yarong
Yang and Lily Hu, who supported and accompanied me most in those challenging
but rewarding days. I would also like to thank all my other friends who have made
my stay in Berkeley a fantastic experience. In no particular order they are: Bo, Zhen,
Weihua, Yiguang, Jing, Yi, Zhuolun, Joe, and Joseph, together with my dear dancing
partners Merlene, Tiffany, Caitlyn, Fei, and Cindy.

Finally and most importantly, I would like to thank my family, especially my parents,

vi

Jianguo and Qiuyu. They have always believed in me and supported me during the
most difficult of times. I would also like to thank my little brother Long’er and my
little sister Fei’er for their support and love.

vii

viii

Chapter 1

Introduction

Consider the following systems with tasks arriving in time and space: (i) Google Street
View, Google is running numerous data-collection vehicles with mounted cameras,
lasers, a GPS and several computers to collect street views while minimizing the
distance travelled [5]. (ii) Real-time traffic reporting, a radio station uses a helicopter
to overfly accident scenes and other areas of high traffic volume for real-time traffic
information. (iii) Unmanned aerial vehicle (UAV)-based sensing, a fleet of UAVs
equipped with greenhouse gas sensors collect airborne measurements of greenhouse
gases at several sites in California and Nevada, executing every task at its location
before its deadline [6]. (iv) Enabling mobility in wireless sensor networks (WSN),
mobile elements (vehicles) capable of short-range communications collect data from
nearby sensor nodes as they approach on a schedule [7].

In these applications, a task is a triple (T a, X, T S) where T a is the arrival time of
the task, X its location in space, and T S its execution time (task size). Servers,
henceforth referred to as real vehicles, are networked vehicles each having all or some
of the sensing, computation, communication, and locomotion capabilities. A real
vehicle is considered to serve a task by visiting the location X and staying there for
execution time T S after the task has arrived, i.e., after time T a. The performance
metrics include system time (latency), throughput, delivery probability, and total
distance traveled by the vehicles.

1.1 Real Vehicle Routing

Traditionally, these applications were modeled by (i) the vehicle routing problem
(VRP) [8], its variations such as (ii) the Dynamic Travelling Repairman Problem
(DTRP) [1], (iii) the stochastic and dynamic vehicle routing problem with time win-
dows (SDVRPTW) [9], and (iv) the mobile element scheduling (MES) problem [7].

1

Tasks are allocated and sequenced based on their arrival times T a, e.g., first come
first served (FCFS) [1], locations X, e.g., nearest neighbor (NN) [1], and sizes T S,
e.g., shortest job first [10], to minimize the distance traveled [8], the average time
each task spent in the system [1], or the deadline violation ratio [9]. A richer set
of scheduling policies include direct tree search, dynamic programming, and integer
linear programming for VRP [11]; FCFS, stochastic queue median (SQM), travelling
salesman policy (TSP), NN [1], divide and conquer [12] for DTRP and SDVRPTW [9];
earliest deadline first, earliest deadline first with k-lookahead, the minimum weight
sum first [7] and partition based scheduling [13] for MES.

The DTRP [1] is a good way to model the stochastic and dynamic vehicle routing
problem for a single-customer system by assuming a Poisson task arrival process
with rate λ, a general task location distribution, and a general size distribution with
mean b. An earlier formulation similar to the DTRP can be found in [14]. The
DTRP resembles an M/G/1 queue in the time dimension but looks like a vehicle
routing problem in the space dimension. As we know in queueing theory, ρ = λb < 1
is a necessary and sufficient condition for all work conserving M/G/1 queues [15,
sec. II.4.2]. However, there is no such policy-independent stability condition for
the DTRP, which seems to be a “spatial version” of the M/G/1 queue. The known
stability conditions for the DTRP are policy-dependent [1, 2, 12].

Chapter 2 of this dissertation makes progress towards finding stability conditions
for the DTRP that are less policy dependent than those in the literature. We es-
tablish ρ + λbd < 1 as a necessary and sufficient stability condition for the class of
Polling-Sequencing (P-S) policies satisfying unlimited-polling and economy of scale in
Theorem 2.5. This stability condition is identical to the necessary condition for sta-
bility given in [16]. We show that important policies for the DTRP in the literature
fall in the P-S class and satisfy the two properties. The extra term bd is the limit of
mean travel time as the number of tasks in a polling station goes to infinity. We prove
that the existence of bd is a consequence of economy of scale. bd is policy-dependent,
but it only depends on the sequencing phase of the P-S policy. Since the value of
bd can be derived in the static setting, we do not need to analyze or simulate the
dynamic queueing system of DTRP to get bd. We only need to analyze or simulate
to obtain the statistics of sequencing N tasks, where N is a random variable, and
the task locations are distributed in some fashion. These results are published in our
paper [17].

Our second contribution to the DTRP is the distribution of system time T , defined as
the elapsed time between the arrival and the completion of each task. Knowing the
distribution of the system time T , together with its expectation E[T] and variance
V ar[T] or standard deviation σ[T], enables the expectation-variance analysis of the
system under uncertainties [18, 19]. On entering a McDonalds, one may ask not just
“What is my expected service time?” but also “How certain is this value?” We
show in Tables 3.1 and 3.2 in Chapter 3 that two policies at the same load level can
be incomparable in the sense that one has low expectation of system time but high

2

variance while the other has high expectation of system time but low variance. In
practice, highly variable system time can be even more frustrating than large mean
system times [20, 21]. The literature discusses the distribution of system time T ,
together with its expectation and variance, for the FCFS policy and its variations
such as the SQM and partitioning-FCFS [1]. This is in sharp contrast to queueing
theory where the distribution of the system time or its moments are known for a wide
variety of policies. See for example [10, 22]. To illustrate our point, the expected
system time of the FCFS, SQM and partitioning-FCFS policy is not as good as NN
[1] and PART-TSP [2] or DC [12] at most load levels.

In Chapter 3, we propose a policy in the P-S class called the PART-n-TSP policy.
We give a good approximation for the distribution of the system time that is easy
to compute. We do this by utilizing approximation results for the distribution of
system time T , together with E[T] and V ar[T] known for polling systems [23, 24].
Figure 3.5 shows that the cumulative distribution function (cdf) of the system time
as computed by our method is very close to the cdf of the system time as obtained by
Monte-Carlo simulation. We show that FCFS, partitioning-FCFS and n-TSP [1] are
special cases of PART-n-TSP, meaning PART-n-TSP can be optimized to have better
performance than the three. We also compare PART-n-TSP with PART-TSP [2] and
Nearest Neighbor [1] on E[T] and σ[T] in Tables 3.1 and 3.2, since the latter two are
considered near optimal in the literature. The E[T] and σ[T] under PART-n-TSP
are obtained by our approximation. The E[T] and σ[T] under PART-TSP and NN
are obtained by simulation. The results show that NN achieves lower E[T] than both
PART-n-TSP and PART-TSP for all loads ρ ∈ {0.1 . . . 0.9} simulated by us. PART-
n-TSP achieves lower E[T] than PART-TSP when ρ is not too small or too large, e.g.
when ρ ∈ {0.3, . . . , 0.7}. Also, PART-n-TSP achieves lower σ[T] than PART-TSP
and NN when ρ is not too small or too large, e.g. when ρ ∈ {0.3, . . . , 0.7}. In real
systems it may be desirable for ρ to be neither too small nor too large, since small ρ
results in low server utilization, and large ρ in large system times. If so, PART-n-TSP
would be good in practice as it achieves lower σ[T] than PART-TSP and NN, and
lower E[T] than PART-TSP. We also prove that PART-n-TSP is E[T] optimal under
light load (ρ → 0+) and asymptotically optimal under heavy load (ρ → 1−). See
Theorem 3.1.

1.2 Virtual Vehicle Performance Isolation

In this part of the thesis we formulate the vehicle routing problem (VRP) and its
variations work for multi-customer systems. In the Dynamic Travelling Repairman
Problem (DTRP) tasks from different customers are indistinguishable to the schedul-
ing policies, meaning a customer submitting more tasks would use more resources,
possibly to the detriment of other customers.

3

To resolve this problem, we formulate the multi-customer VRP by borrowing the
concept of a virtual machine from cloud computing. In cloud computing, the virtual
machine abstraction creates performance isolation so that resources consumed by one
virtual machine do not necessarily harm the performance of other virtual machines [3].
To extend the idea of the virtual machine [3] used in cloud computing, we define an
idea called the virtual vehicle. The virtual vehicle is an analog of the virtual machine
for location specific tasks. Just as the cloud computing customer has a service-level
agreement (SLA) for a virtual machine, our customer would have an SLA for a virtual
vehicle. The virtual vehicle enables what we call cloud computing in space, or the
spatial cloud. To a customer, a virtual vehicle would be exactly like a real vehicle
that travels at the virtual speed specified in the SLA. Consider again real-time traffic
reporting. If the radio station (the customer) uses a helicopter to overfly accident
scenes and other areas of high traffic volume (the task) at 100 mile per hour (mph),
then the helicopter should arrive at an accident scene 10 miles away in 6 minutes.
We now virtualize this helicopter. Instead of buying or renting, and operating the
helicopter, the radio station would reserve a virtual helicopter in our spatial cloud
traveling at 100 mph, and expect the accident scene to be recorded in 6 minutes. The
radio station could also have more than one tasks for its virtual helicopter. In this
case, the radio station would queue the multiple tasks for the virtual helicopter, just as
it would do for a real helicopter. The radio station can estimate the completion time
of each task by dividing the consecutive distances between tasks by the virtual speed
just as they would do for their real helicopter. The task completion time expected by
the radio station (customer) is given by (4.4) in Chapter 4. The radio station would
enjoy the advantage of reserving the virtual helicopter only when the traffic reporting
program is on, and not paying for other times. If the real helicopters executing the
virtual helicopters could serve other customers at these other times, the enhanced
vehicle utilization would reduce costs for all customers much like cloud computing.
The analysis in Chapter 4 quantifies these gains.

The provider’s responsibility is to use the real vehicles to travel to and execute each
task such that the real completion time is no later than the expected completion time.
The system achieves high performance isolation if a statistically dominant subset [25],
e.g., 98%, of the virtual vehicle’s tasks are completed no later than their expected
completion times. The fraction must be small enough for the customer to consider
herself adequately compensated for this loss by the reduced costs delivered by the
spatial cloud. We design the spatial cloud to treat the expected completion time as
a “deadline” and call it the virtual deadline. The virtual deadlines make the spatial
cloud a soft real-time system [26, 27], meaning performance metrics such as tardiness
and delivery probability defined in (4.5) and (4.6) can be used to measure performance
isolation. These performance metrics are the performance isolation measures [28] and
Jain’s fairness indices [29] defined separately in (4.12) and (4.13), and in (4.14) and
(4.15) in Section 4.1. The slack defined in (4.7) measures the earliness of a task
completion. How the provider realizes the virtual deadlines of the tasks is of no
concern to the customer. For example, the provider can use a real vehicle to travel to
and execute a task as the virtual vehicle does, or migrate the information of the virtual

4

vehicle through a network to another real vehicle closer to the task. In the latter
case, the real distance traveled is smaller than the virtual distance resulting in the
phenomenon we have called migration gain. The idea works when the communication
costs of migrating a virtual vehicle over the network are small. The migration cost of
a virtual vehicle is defined in (4.11).

Craciunas et al. [30] proposed cyber-physical cloud computing as a concept that
makes sensing a service, and described their work on the software engineering required
to build a virtual vehicle. Kirsch et al. [31] described the protocols required for
migrating virtual vehicles. The results of Chapter 4 show that the provider can
support a given number of virtual vehicles with significantly fewer real vehicles that
travel at the virtual speed while guaranteeing high performance isolation. We quantify
the gain by the ratio of the number of virtual vehicles over the number of real vehicles.
The gain arises from two phenomena. (i) A customer may not fully utilize her virtual
vehicle, enabling the spatial cloud to multiplex several virtual vehicles onto one real
vehicle. This type of gain is called multiplexing gain, and has been observed in
communication networks [32] and cloud computing [33]. (ii) The real vehicles save
travel distance by migrating the virtual vehicle hosting a task to another real vehicle
closer to the task, creating a new type of gain we call migration gain. Chapter 4
focuses on migration gain since it is unique to this spatial cloud, virtual vehicle, and
virtual speed. We use a very simple model of the task size T S itself since we focus
on the migration gain arising from the spatial distribution of the tasks. Some of the
cost savings from the provider’s high gain can be passed back to the customer to
compensate for the small loss of missed virtual deadlines.

We analyze the system in Section 4.2 using results in queueing theory [15, 34], stochas-
tic and dynamic vehicle routing [1, 12, 17], and soft real-time systems [26, 27]. Figure
4.1 depicts the GI/GI/1 queue [15] of each virtual vehicle (Theorem 4.1), and the
ΣGI/GI/1 queue [34] of each real vehicle (Theorem 4.2) under the Voronoi tessella-
tion [35] in Definition 4.1. We propose scheduling policies adapted from conventional
cloud computing [36], named Earliest Virtual Deadline First (EVDF) when task size
is known a priori (Definition 4.5), its variation Earliest Dynamic Virtual Deadline
First (EDVDF) when task size is not known a priori (Definition 4.6), and the credit
scheduling policy (Definition 4.7) in Section 4.3. Theorem 4.3 asserts that EVDF
minimizes tardiness. This is based on the optimality of earliest deadline first schedul-
ing for real-time queues [37]. Theorem 4.4 identifies a worst-case arrival process
maximizing tardiness called the η = 1 arrival process in Definition 4.8. Theorem
4.5 asserts task size dependent economy of scale [38] in the sense that the largest
achievable gain without compromising performance isolation increases as the square
root of the number of real vehicles when the task size is zero, and increases but is
upper bounded by a constant when the task size is greater than zero. Theorem 4.6
bounds the migration cost, together with slack under the η = 1 arrival process.

We simulate the system with homogeneous real vehicles (Definition 4.3) and homoge-
neous virtual vehicles (Definition 4.4) under the EVDF, EDVDF and credit scheduling

5

policies in Section 4.4. Each virtual vehicle generates an η = 1 arrival process that
maximizes tardiness, and excludes multiplexing gain by having each virtual vehicle
fully utilized. Thus, this is a worst-case simulation and the gain is migration gain
only. Figure 4.4 shows the performance isolation and fairness index based on tardi-
ness and delivery probability, together with slack and migration costs under EVDF
for different numbers of real vehicles and gains and thus different number of virtual
vehicles. We conclude that (i) the provider can support a given number of virtual
vehicles with significantly fewer real vehicles that travel at the virtual speed while
guaranteeing high performance isolation, e.g., the gain equals 7.5 while guaranteeing
tardiness ≤ 1% when the number of real vehicles is 100 as shown in Figure 4.5. (ii)
The migration gain increases with the number of real vehicles while guaranteeing the
same performance isolation as asserted in Theorem 4.5, and shown in Figure 4.5.
(iii) The migration cost is bounded as asserted in Theorem 4.6, and shown in Figure
4.4. (iv) The virtual vehicle concept works best when the task sizes are small and
the vehicle spends more time traveling to tasks than it does loitering or standing
still. As the virtual vehicles spend more time standing still, cloud computing in space
converges to cloud computing in time as shown in Figure 4.6. (v) The provider can
easily determine the appropriate number of real vehicles for a given number of virtual
vehicles and a guaranteed performance isolation because the transition between low
and high performance isolation is sharp as shown in Figure 4.7. (vi) EVDF has bet-
ter performance than EDVDF, and EDVDF has better performance than the credit
scheduling policy as shown in Figure 4.8.

6

Chapter 2

Stability of the Dynamic Traveling
Repairman Problem

2.1 The Dynamic Traveling Repairman Problem

We establish a necessary and sufficient stability condition for the dynamic traveling
repairman problem (DTRP) introduced by Bertsimas et al. [1] under the class of
polling-sequencing (P-S) policies satisfying unlimited-polling and economy of scale.
For the convenience of the reader, we restate the definition of the DTRP [1]: A
convex region A of area A contains a vehicle (server) that travels at constant speed
v. Tasks arrive according to a Poisson process with rate λ. Each task i is located
at Xi ∈ A, and has size Bi. Xi is independent and identically distributed (i.i.d.)
with probability density function (pdf) fX(x), x ∈ A. Bi is i.i.d. with pdf fB(s),
s ∈ [0,∞). E [Bi] = b, which is assumed to be finite. Define load ρ = λb . The system
time of task i, denoted Ti, is defined as the elapsed time between the arrival of task
i and the time task i is completed. When the system is stable, Ti converges to some
T in distribution. T is called the steady state system time. This chapter is focused
on stability conditions for this problem and the existence of stationary distributions
for T and the queue length N .

2.1.1 Literature and Results

In queueing theory, ρ < 1 is a necessary and sufficient condition for all work conserving
M/G/1 queues [15] (sec. II.4.2), where work conserving means the server will not be
idle when there are tasks waiting in the queue. However, there is no such policy-
independent stability condition for the DTRP, which seems to be a “spatial version”
of the M/G/1 queue. Bertsimas et al. [1] showed that ρ < 1 is not a sufficient stability

7

condition for the work conserving policies of DTRP. For example, the DTRP can be
unstable when ρ < 1 under the first come first served (FCFS) policy.

The known stability conditions for the DTRP are policy-dependent. Bertsimas et
al. [16] argued ρ + λ d̄

v
≤ 1 as a necessary condition for stability of the DTRP under

a policy, where d̄ = limi→∞E [Di], and Di denotes the distance traveled from task
i to the next task served after i under the policy. The sufficiency of this condition
for stability is established for some policies for single vehicle-DTRP (1-DTRP), by
deriving an expression for the mean response time, E[T], or an upper bound E[T],
when ρ→ 1− [1, 2, 12]. The case of many capacitated vehicles with arbitrary demand
distribution was investigated in [16, 39]. Table 2.1 summarizes known results and
references. Since the sufficiency of this condition is policy dependent, stability is not
proven for some reasonable policies such as nearest neighbor (NN) [1] or shortest job
first (SJF, the task with the smallest task size is served first [10]) discussed in the
literature. Assumption (45) in [1] has not been established formally. This chapter
makes progress towards finding stability conditions for the DTRP that are less policy
dependent than those in this literature as described next.

Table 2.1. Stability conditions for different policies for the 1-DTRP

Policies E[T] E[T] Stability conditions Ref.

First Come First Served Known Known ρ+ 0.52λ
√
A < 1 [1]

Stochastic Queue Median Known Known ρ+ 0.766λ
√
A < 1 [1]

Partition-FCFS Known Known ρ+ 0.52
r
λ
√
A < 1 [1]

n-TSP Unknown Known ρ+ λβTSP
√
A
n
< 1 [1]

Space filling curve Unknown Known ρ < 1 [1]
Nearest neighbor Unknown Unknown Unknown [1]
Unbiased-TSP Unknown Known ρ < 1 [16]
Biased-TSP Unknown Known ρ < 1 [16]
PART-TSP Unknown Known ρ < 1 [2]
Divide & conquer Unknown Known ρ < 1 [12]
Receding horizon Unknown Known ρ < 1 [12]

We establish ρ + λbd < 1 as a necessary and sufficient condition for the class of
polling-sequencing (P-S) policies satisfying unlimited-polling (ULP, Definition 2.4)
and economy of scale (EoS, Definition 2.2) in Theorem 2.5 in Section 2.2.3. This
stability condition is identical to the necessary condition for stability given in [16].
The unlimited polling property is adapted from the one in the literature to this
spatial queueing problem. The economy of scale property is particular to the spatial
aspect of the DTRP. This is the main result. Theorem 2.1 shows the queue length
is Markovian. Theorem 2.2 shows it to be aperiodic and irreducible. These are
separated from Theorem 2.5 because the ULP assumption is sufficient for Theorems
2.1 and 2.2, while the ergodicity proof (Theorem 2.5) also requires policies to satisfy
economy of scale.

8

A P-S policy has two phases: the polling phase allocates the arriving tasks to each
polling station. The vehicle visits each polling station in cyclic order. The sequencing
phase is a vehicle routing problem inside each polling station. ULP means in each
polling station the number of tasks served goes to infinity as the number of waiting
tasks goes to infinity. EoS is a property of the sequencing phase policy. EoS means
the mean travel time to serve a task decreases as the number of tasks increases. The
extra term bd is defined as the limit of mean travel time as the number of tasks in a
polling station goes to infinity. We prove the existence of bd is a consequence of EoS
(Theorem 2.4). bd is policy-dependent, but it only depends on the sequencing phase
of the P-S policy. Since the value of bd can be derived in the static setting, we do not
need to analyze or simulate the dynamic queueing system of DTRP to get bd. One
only needs to analyze or simulate to obtain the statistics of sequencing N tasks, with
N a random variable, and the task locations distributed in some fashion.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
432! 18.8!
363! 17.2!
300! 15.7!
243! 14.1!
192! 12.6!
147! 11.0!

!!

!ULP$
PART-FJF

!
EOS$

FCFS
PART-FCFS

PART-TSP
PART-NN

PART-SJF
SQM

DC

WC$

ROS
FJF

SJF

All$Policies$

n-TSP

PART-ROS

NN SFC RH

B-TSP
U-TSP

Figure 2.1. Classification of policies, WC = Work Conserving, EoS = Economy of
Scale, ULP = Unlimited-Polling.

One can check that policies considered in [1, 2, 12, 40] such as FCFS, stochastic
queue median (SQM), partition-FCFS (PART-FCFS), partition-traveling salesman
policy (PART-TSP) and divide & conquer (DC) satisfy unlimited-polling and EoS.
Other policies considered in [1, 2, 12, 40] such as space filling curve (SFC), NN,
receding horizon (RH), and policies important in queueing theory but not considered
for the DTRP such as SJF, and random order of service (ROS, tasks are served in
a random order) satisfy EoS but not unlimited-polling. We define a polling version
for these policies in Section 2.2, and name them PART-NN and PART-SJF. These
satisfy both unlimited-polling and EoS. This paragraph is summarized by Figure 2.1.
Theorem 2.3 proves the inclusions in the figure.

9

2.2 Polling-Sequencing Policies

The class of Polling-Sequencing (P-S) policies include a polling phase and a sequenc-
ing phase. For the notation of P-S policies, we use “PART-” to denote the polling
(partitioning) phase, followed with the sequencing policies for the sequencing phase.
For example, PART-TSP means first partition the region A into polling stations, and
use TSP to sequence the tasks inside each polling station. Similarly, we can define
PART-NN, PART-SJF, etc.

2.2.1 Spatial-Polling: Markov Chain

Polling policies are well-established in the queueing theory literature. Overviews and
surveys of polling systems can be found in [41, 42, 43]. Stability and ergodicity criteria
for polling systems are well established and can be found in [44, 45, 46, 47].

The polling phase of the P-S class is a spatial-polling policy, we divide the region A
into an r-partition {Ak}rk=1, each of area Ak. We label the r partitions as 1, 2, . . . , r.
We regard each partition as a station in classic polling systems. In this way we
generalize the polling system [44, 45] in classic queueing theory to the spatial case.

The vehicle visits the partitions in cyclic order, 1, 2, . . . , r, 1, 2, . . ., and serves the
tasks in each partition. Without loss of generality, we assume that the vehicle is
initially at partition 1. Thus, the l-th visit of the vehicle is partition I(l) = (l − 1)
(mod r) + 1, where l (mod r) means the remainder of the division of l by r. The set
of tasks waiting in partition I(l) on the arrival of the l-th visit of the vehicle is called
the l-th queue (the queue observed at l-th visit).

We denote by:

Gk(N) the number of tasks that are served in partition k when the queue observed
is of length N .

T kS (n) the total service time of n tasks in partition k. The formal definition of function
T kS (.) will be given in section 2.2.2.

Sk(N) the duration of the service in partition k when the queue observed is of length
N .

Sk(N) = T kS
(
Gk(N)

)
(2.1)

Function Gk(.) characterizes the polling policy and T kS (.) characterizes the sequencing
policy.

The switch time the vehicle takes from a random point in partition k to a random

10

point in partition k+ 1 is denoted by ∆k, k = 1, . . . , r−1. The value from partition r
to partition 1 is denoted by ∆r. ∆k, k = 1, . . . , r, are bounded above by the diameter
of the region A divided by the speed of the vehicle v. The first moment of ∆k is
denoted by δk, k = 1, . . . , r. Let ∆ =

∑r
k=1 ∆k be the total switch time in a cycle

and denote by δ the first moment of ∆.

The tasks arrive at partition k with a Poisson process of parameter λk =∫
Ak
fX(x) dxλ. The task sizes are i.i.d. with common distribution B and mean b.

Define ρk = λkb, and ρ =
∑r

k=1 ρ
k, 1 ≤ k ≤ r. Let Nk (t1, t2] denote the number of

Poisson arrivals to partition k, 1 ≤ k ≤ r, during a (random) time interval (t1, t2].
Nk(t) ≡ Nk (0, t] is the number of Poisson arrivals in a time interval of length t.

The l-th value of the polling system is described by the random variables Nk
l , 1 ≤

k ≤ r, l ≥ 1, where Nk
l represents the number of tasks in partition k at the l-th visit

of the vehicle. Let Nl = (N1
l , . . . , N

r
l), taking values in {N}r, where N is the set of

nonnegative integers.

Denote by Sl, the station time, the time interval between the arrival times of the l-th
visit and the (l + 1)st visit of the vehicle.

Sl = SI(l)(N
I(l)
l) + ∆I(l) (2.2)

Denote by Cl, the cycle time, the time interval between two successive arrivals of the
vehicle to the same partition. Cl = Sl + . . .+ Sl+r−1.

The arrival times, the service times, the switch times are mutually independent,
and are independent of the past and present system states. We adopt the rigorous
independence definitions from Fricker [45] with some changes for the spatial case.

Consider a queue service starting at stopping time τ at partition k while N tasks
are waiting and N− tasks have already been served for the whole system. Let Fτ
be any σ-field containing the history of the service process up to random time τ .
Fτ is independent of the process N(τ, τ + .] of arrivals after τ and of the task sizes
{BN−+i}i>0 of the tasks that have not been served up to time τ . The following four
assumptions hold for all k = 1, . . . , r.

A1: (Gk, Sk) is conditionally independent of Fτ given N , and has the distribution
of
(
Gk(N), Sk(N)

)
where the expressions of the random functions (Gk(.), T kS (.)) are

taken independent of N . i.e. The A-S policies do not depend on the past history of
the service process such as the number of tasks being already served and the time
spent serving them.

A2: (Gk, Sk) is independent of(
(BN−+Gk+i)i>0 , N

(
τ + Sk, τ + Sk + .

])
, i.e. The selection of a task for service is

independent of the required execution time and of possible future arrivals.

11

A3: Gk(0) = 0, Sk(0) = 0 and there exists N > 0 such that Gk(N) > 0. i.e. The
vehicle leaves immediately a queue which is or becomes empty, but provides service
with a positive probability once there are “enough” task(s) in the queue.

A4:
(
Gk(N), Sk(N)

)
is monotonic and contractive inN . A function g(.) is contractive

if for every x ≥ y, g(x)− g(y) ≤ x− y.

Nl evolve according to the following evolution equations:

Nk
l+1 =

{
Nk
l +Nk (Sl) , if I(l) 6= k

Nk
l −Gk

(
Nk
l

)
+Nk (Sl) , if I(l) = k

(2.3)

where I(l) = (l − 1) (mod r) + 1.

The spatial polling system has a Markovian structure as specified by the following
two theorems, which is almost identical to the theorems given in [45].

Theorem 2.1. The sequence {Nl}∞l=0 is a Markov chain.

Proof. At the l-th polling instant τ , the server starts serving queue l (if not empty,
otherwise he starts switching to queue l+1) according to policy GI(l) while the state of
all queues is given by Nl. The arrival processes after l are Poisson and are independent
of Fτ ; the service times and the switch times involved after τ are also independent
of Fτ . Because these quantities are mutually independent, it follows that given Nl,
the evolution of the system after τ is independent of Fτ , which ensures the Markov
property of the sequence.

Remark 2.1.1. This Markov chain is in general not homogeneous because its tran-
sitions depend on l through GI(l) and ∆I(l), and I(l) is different for each l. One
can check that theorem 2.1 also holds when the task arrival process is renewal. This
guarantees the arrival processes after l are independent of Fτ .

Theorem 2.2. {Nlr+k}∞l=0 is a homogeneous, irreducible and aperiodic Markov chain
with state space {N}r, k = 1, . . . , r, where r is the number of polling stations.

Proof. {Nlr+k}∞l=0 is a subsequence of the Markov chain {Nl}∞l=0 and is thus also a
Markov chain which is homogeneous because I(lr + k) = k and GI(lr+k) = Gk for
l = 0, 1, 2,

It is irreducible because all states communicate. Indeed, (N1, . . . , N r) can be reached
in one step from the state (0, . . . , 0): this is realized when first no arrivals occur to
all queues during the whole cycle but the last switch time ∆r−1, and then the last
switch time is positive and (N1, . . . , N r) arrivals occur during it, all this having a
positive probability because the arrival processes are Poisson. On the other hand,
(0, . . . , 0) is reached in (possibly) many steps from any state (N1, . . . , N r) with pos-
itive probability too: this is realized when there are no arrivals until it happens.
By the same arguments, the state (0, . . . , 0) is aperiodic and so is the (irreducible)
Markov chain.

12

2.2.2 Sequencing: Economy of Scale

Under a spatial-polling policy, the number and locations of tasks are determined in
each polling station in each polling cycle, which is a static vehicle routing problem.
The sequencing policies sequence the set of tasks in each polling station.

Definition 2.1. A policy for the 1-DTRP is called a Polling-Sequencing (P-S) policy
if it runs a spatial-polling policy in region A, and sequences the set of tasks in each
polling station using some sequencing policy.

For a set of n tasks {Bi, Xi}ni=1, each with size Bi and location Xi, denote by
T PD ({Xi}ni=1) and T PS ({Bi, Xi}ni=1) the travel time and service time for the n tasks
{Bi, Xi}ni=1 under sequencing policy P .

T PD ({Xi}ni=1) ≡ EX

[
1

v
DP (X, {Xi}ni=1)

]
(2.4)

where v is the vehicle speed, and DP (X, {Xi}ni=1) is the distance travelled by the
vehicle to serve the tasks {Bi, Xi}ni=1 starting from a random point X in region A
under sequencing policy P .

T PS ({Bi, Xi}ni=1) = T PD ({Xi}ni=1) +
n∑
i=1

Bi (2.5)

Define T PD (n) ≡ E{Xi}
[
T PD ({Xi}ni=1)

]
,

and T PS (n) ≡ E{Xi}
[
E{Bi}

[
T PS ({Bi, Xi}ni=1)

]]
, then

T PS (n) = T PD (n) + nb (2.6)

T kS (n) ≡ T PS (n) and T kD(n) ≡ T PD (n) when sequencing policy P is used in partition k.

Definition 2.2. A sequencing policy P is said to have economy of scale (EoS) if
TPD (n)

n
is nonincreasing in n.

Definition 2.3. A scheduling policy is called non-location based if the distance be-
tween two consecutively executed tasks is i.i.d.. A scheduling policy is called location
based if the distance between two consecutively executed tasks is dependent.

Non-location based policies include FCFS, SJF, ROS and longest job first (LJF).
Theorem 2.3(i) shows that non-location based policies satisfy economy of scale.

Location based policies include NN, furthest job first (FJF), TSP and the approxi-
mation algorithms for TSP such as Daganzo’s algorithm (DA) [4]. For location based
policies, there are two categories. One category try to find a shorter path connecting

13

the locations of the tasks, which we call smart. Examples include TSP, NN and the
approximation algorithms of TSP such as Daganzo’s algorithm (DA) [4]. The other
category tries to find a longer path connecting the locations of the tasks, which we
call foolish. Examples include furthest job first (FJF). This category does not has
EoS, and is not practical. Theorem 2.3(ii) below proves that the common policies in
the smart category such as TSP, NN and DA have EoS. Other policies in this category
can be checked by the similar analysis or through simulation. Theorem 2.3(ii) also
proves that FJF does not satisfy EoS. NN and TSP are well known. In DA, one cuts
a swath of approximate width, w, covering the region A. One possible pattern is

shown in the left of Figure 2.2 with a swath of width
√
A

6
. The vehicle visits the task

locations by moving along the swath without backtracking.

Figure 2.2. Daganzo’s Algorithm, cited from [4].

Theorem 2.3. (i) Non-location based policies satisfy economy of scale. (ii) Nearest
neighbor, traveling salesman policy and Daganzo’s algorithm in the location based
policy class satisfy economy of scale, furthest job first in the location based policy
class does not satisfy economy of scale.

Proof. (i) This is because that Xi is independent of the arrival process, and Xi is
independent of Xi−1. Non-location based policies do not sequence based on the loca-

tions of tasks, so T PD (n) = E
[∑n

i=1Di
v

]
=

∑n
i=1 E[Di]

v
, where Di =‖ Xi −Xi−1 ‖ when

i > 1, D1 =‖ X1 − Xv ‖, where Xi is the location of the i-th task and Xv is the
initial position of the vehicle. Xi and Xv are i.i.d. with pdf fX(x). Thus E [Di] is a

constant, say d. Then
TPD (n)

n
= nd

n
= d, which is nonincreasing in n. So non-location

based policies satisfy EoS.

(ii) Under TSP, when there are n tasks, there are n! Hamiltonian paths starting
from the initial position of the vehicle. A Hamiltonian path is a path that visits
each Xi exactly once. The length of each Hamiltonian path is the sum of n i.i.d.
Di’s, HP =

∑n
i=1Di. The TSP tour is the Hamiltonian path with minimum lengths

among the n! Hamiltonian paths. Let Ln be the tour length, then
TPD (n)

n
= E[Ln]

nv
.

When there are n + 1 tasks, there are (n + 1)! Hamiltonian paths, and Ln+1 is the

14

shortest of them. P
(
Ln+1

n+1
> y
)
≤ P

(
Ln
n
> y
)

because Ln+1 is the minimum of

(n+1)! Hamiltonian paths and Ln is the minimum of n! Hamiltonian paths. E[Ln+1]
n+1

=∫∞
0
P
(
Ln+1

n+1
> y
)
dy ≤

∫∞
0
P
(
Ln
n
> y
)
dy = E[Ln]

n
. Then

TPD (n+1)

n+1
≤ TPD (n)

n
. TSP

satisfies EoS.

Under NN, when there are n tasks, Let LNNn be the length of the tour connecting

the initial vehicle position and the locations of the n tasks, then
TPD (n)

n
=

E[LNNn]
nv

.
LNNn is composed of n segments, LNNn =

∑n
i=1 D

NN
i , label i backwards such that

DNN
i is the distance from the (n − i)-th point to the (n − i + 1)-th point when

i = 1, . . . , n− 1, and Dn is the distance from the initial position of the vehicle to the
1st point. So DNN

i is the minimum of i Dj’s, where each Dj is the distance between
two random points in the region A. Thus P

(
DNN
i+1 > y

)
≤ P

(
DNN
i > y

)
, this implies

E
[
DNN
i+1

]
≤ E

[
DNN
i

]
, thus

E[LNNn+1]
n+1

=
∑n+1
i=1 E[DNNi]

n+1
≤

∑n
i=1 E[DNNi]+

∑n
i=1

1
n
E[DNNi]

n+1
=∑n

i=1
n+1
n
E[DNNi]

n+1
=

E[LNNn]
n

. So
TPD (n+1)

n+1
≤ TPD (n)

n
. NN satisfies EoS.

In [4], the swath was approximated to be a infinitely long strip of width w neglecting
corner effect as shown in the right two of Figure 2.2. The mean travel time per

task when serving n tasks,
TPD (n)

n
= ndw

n
= dw, where dw is the expected distance

between two consecutive locations. Let X denote the random distance between two
consecutive points along the width of the strip, and Y the distance along the side of
the strip, then E[X] = w

3
, E[Y] = A

nw
according to [4]. dw = EX,Y

(√
X2 + Y 2

)
for

the Euclidean metric. dw ≈ w
3

+ A
nw
ψ
(
nw2

A

)
, where ψ(x) = 2

x2
((1 + x)log(1 + x)− x).

w∗ =
√

2.95A
n

minimizes dw. Substituting w∗, we see dw is decreasing with n. Thus

TPD (n)

n
is nonincreasing in n.

We show that FJF does not satisfy EoS by a counterexample. Consider a square of

size 1 × 1 with uniformly distributed task locations.
TPD (1)

1
= E[D1] = 0.52, where

D1 =‖ X1 − Xv ‖, where Xi is the location of the i-th task and Xv is the initial
position of the vehicle. Xi and Xv are i.i.d. with pdf fX(x) = 1. When there are two

tasks, the vehicle will choose the task further away, thus
TPD (2)

2
> 0.52 =

TPD (1)

1
. Thus

FJF does not satisfy EoS.

Remark 2.3.1. Non-location based policies have trivial EoS in the sense that
TPD (n)

n

is a constant.

Theorem 2.3(ii) is supported by the simulation results in Figure 2.3. The simulations
are done in a square A of size 1×1. The task locations and the initial vehicle position
are generated independently from a uniform distribution with pdf fX(x) = 1. The
length of the path connecting the vehicle and the tasks is calculated under TSP, NN
and DA for different number of points n.

15

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

Number of points n

M
ea

n
tra

ve
l t

im
e,

 T
DP (n

)/n

Mean travel time under TSP, NN and DA

TSP
NN
DA

Figure 2.3. Mean travel time under TSP, NN and DA.

Theorem 2.4. Under a sequencing policy P with economy of scale, limn→∞
TPD (n)

n
=

bd ≥ 0, and ∃M > 0, s.t. M ≥ TPD (n)

n
≥ bd for all n.

Proof.
TPD (n)

n
≥ 0 and

TPD (n)

n
is nonincreasing in n imply that limn→∞

TPD (n)

n
exists, say

bd.

Thus we have limn→∞
TPD (n)

n
= bd and M =

TPD (1)

1
≥ TPD (n)

n
≥ bd ≥ 0.

Remark 2.4.1. bd is a measure of how well the sequencing policy can take advantage
of the task locations. Let Ln denote the length of the tour connecting n points in a
square of area A under TSP. From [48] we know that limn→∞

Ln√
n

= βTSP
√
A, where

βTSP ≈ 0.72, thus bd = limn→∞
TPD (n)

n
= limn→∞

E[Ln]
vn

= limn→∞ βTSP
√
A

v
√
n

= 0. This
implies that TSP does best in taking advantage of the task locations.

2.2.3 Stability Condition

Stability of DTRP is more complicated than in queueing theory because the stabil-
ity of DTRP is policy dependent, whereas in queueing theory we have the policy-
independent stability condition ρ < 1 for work conserving M/G/1 queues. Theorem
2.1 and 2.2 showed that {Nl}∞l=0 is a Markov chain, and {Nlr+k}∞l=0 is a homogeneous,
irreducible and aperiodic Markov chain. We check the ergodicity of {Nlr+k}∞l=0 and
the stability of the DTRP under the P-S policies in this section.

16

Definition 2.4. A polling policy characterized by Gk(.) is called an unlimited-polling
policy if Gk(N)→∞, when N →∞, k = 1, . . . , r.

One can check that the common polling policies such as the exhaustive and gated
policies in [41] are unlimited-polling policies.

Lemma 2.1. (LEMMA 3.1 in [44]) If for all 1 ≤ k ≤ r the Markov chains {Nlr+k}∞l=0

are ergodic, then for all 1 ≤ k ≤ r {Nlr+k}∞l=0 together with the sequence of station
times {Slr+k}∞l=0 and the cycle times {Clr+k}∞l=0 converge weakly to finite random
variables.

Definition 2.5. The DTRP under a P-S policy is said to be stable if all the r Markov
chains {Nlr+k}∞l=0 are ergodic.

Lemma 2.2. (Foster’s Criterion [49, p.19]): Suppose a Markov chain is irreducible
and let E0 be a finite subset of the state space E. Then the chain is positive recurrent
if for some h : E → R and some ε > 0 we have infx h(x) > −∞ and

i)
∑

k∈E pjkh(k) <∞, j ∈ E0,

ii)
∑

k∈E pjkh(k) ≤ h(j)− ε, j /∈ E0.

where pjk is the transition probability of the chain.

Theorem 2.5. (Stability theorem): For any P-S policy with polling policy satisfying

Definition 2.4 (unlimited-polling) and sequencing policy P satisfying limn→∞
TkD(n)

n
=

bkd in each partition Ak, assuming the partitions {Ak}rk=1 are divided such that bkd =

limn→∞
TPD (n)

n
= bd, ∀1 ≤ k ≤ r, then when ρ+ λbd < 1, the Markov chains {Nlr+k}∞l=0

are ergodic, ∀1 ≤ k ≤ r. Moreover, if the sequencing policy P satisfies Definition 2.2
(EoS), then ρ+ λbd < 1 is necessary for the ergodicity of {Nlr+k}∞l=0.

Proof. Sufficiency: taking a conditional expectation in (2.3), summing over k, and
substituting (2.2) and (4.3) we obtain:

E
[∑r

k=1 bN
k
l+1 |Nl

]
=
∑r

k=1 bN
k
l − bGI(l)

(
N
I(l)
l

)
+ E

[∑r
k=1 bN

k
(
∆I(l)

)
|Nl

]
+ E

[∑r
k=1 bN

k
(
T
I(l)
S

(
GI(l)

(
N
I(l)
l

)))
|Nl

]
=
∑r

k=1 bN
k
l − bGI(l)

(
N
I(l)
l

)
+ E

[∑r
k=1 bN

k
(
∆I(l)

)]
+
∑r

k=1 bE[Nk(
∑GI(l)(N

I(l)
l)

i=1 Bi + T
I(l)
D (GI(l)(N

I(l)
l))) |Nl]

=
∑r

k=1 bN
k
l − bGI(l)

(
N
I(l)
l

)
+
∑r

k=1 bλkE
[
∆I(l)

]
+
∑r

k=1 bλk

(
GI(l)

(
N
I(l)
l

)
b+ T

I(l)
D

(
GI(l)

(
N
I(l)
l

)))
17

=
∑r

k=1 bN
k
l −bGI(l)

(
N
I(l)
l

)
+
∑r

k=1 bλkδ
I(l)+ρ

(
GI(l)

(
N
I(l)
l

)
b+ T PD

(
GI(l)

(
N
I(l)
l

)))
=
∑r

k=1 bN
k
l + ρδI(l) +

(
ρ− 1 + λ

TPD

(
GI(l)

(
N
I(l)
l

))
GI(l)

(
N
I(l)
l

)
)
bGI(l)

(
N
I(l)
l

)
.

Define γk = ρ− 1 + λ
TPD

(
GI(l+k)

(
N
I(l+k)
l+k

))
GI(l+k)

(
N
I(l+k)
l+k

) , k = 0, . . . , r − 1,

then E
[∑r

k=1 bN
k
l+1 |Nl

]
=
∑r

k=1 bN
k
l + ρδI(l) + γ0bGI(l)

(
N
I(l)
l

)
.

Similarly, E
[∑r

k=1 bN
k
l+2 |Nl

]
= E

[
E
[∑r

k=1 bN
k
l+2 |Nl+1, Nl

]
|Nl

]
= E

[
E
[∑r

k=1 bN
k
l+2 |Nl+1

]
|Nl

]
= E

[∑r
k=1 bN

k
l+1 |Nl

]
+ ρδI(l+1) + E

[
γ1bGI(l+1)

(
N
I(l+1)
l+1

)
|Nl

]
.

Since N
I(l+1)
l+1 = N

I(l+1)
l +N I(l+1) (Sl) ≥ N

I(l+1)
l ,

and Gk(.) is nondecreasing, then

E
[
GI(l+1)

(
N
I(l+1)
l+1

)
|Nl

]
≥ E

[
GI(l+1)

(
N
I(l+1)
l

)
|Nl

]
= GI(l+1)

(
N
I(l+1)
l

)
.

ρ+ λbd < 1 implies ε1 = 1−ρ−λbd
λ

> 0.

Since limn→∞
TPD (n)

n
= bd ≥ 0,

then ∃M1 > 0, s.t. n > M1 implies
TPD (n)

n
− bd < ε1, i.e. ρ− 1 + λ

TPD (n)

n
< 0.

Thus when GI(l+1)
(
N
I(l+1)
l

)
> M1, GI(l+1)

(
N
I(l+1)
l+1

)
> M1, γ1 < 0.

This implies E
[
γ1bGI(l+1)

(
N
I(l+1)
l+1

)
|Nl

]
≤ γ1bGI(l+1)

(
N
I(l+1)
l

)
.

So when GI(l+1)
(
N
I(l+1)
l

)
> M1,

E
[∑r

k=1 bN
k
l+2 |Nl

]
≤ E

[∑r
k=1 bN

k
l+1 |Nl

]
+ ρδI(l+1) + γ1bGI(l+1)

(
N
I(l+1)
l

)
=
∑r

k=1 bN
k
l + ρ

(
δI(l) + δI(l+1)

)
+ γ0bGI(l+1)

(
N
I(l)
l

)
+ γ1bGI(l+1)

(
N
I(l+1)
l

)
.

Repeating the above calculation, we obtain

E
[∑r

k=1 bN
k
l+r |Nl

]
≤
∑r

k=1 bN
k
l + ρδ +

∑r−1
k=0 γ

kbGI(l+k)
(
N
I(l+k)
l

)
,

when GI(l+k)
(
N
I(l+k)
l

)
> M1, k = 1, . . . , r − 1.

Since γk < 0, when GI(l+k)
(
N
I(l+k)
l

)
> M1, k = 0, . . . , r − 1,

18

then ∃M > M1, s.t.

GI(l+k)
(
N
I(l+k)
l

)
> M implies −ε = ρδ +

∑r−1
k=0 γ

kbGI(l+k)
(
N
I(l+k)
l

)
< 0.

Define E0 = {Nl ∈ Nr
∣∣∣GI(l+k)

(
N
I(l+k)
l

)
≤M,k = 1, . . . , r},

then E0 is a finite subset of the state space Nr.

Define h(N) =
∑r

k=1 bN
k, since b ≥ 0 and N ∈ Nr, then infN h(N) > −∞.

It then follows that
E [h (Nl+r) |Nl] ≤ h (Nl)− ε, when Nl /∈ E0,

E [h (Nl+r) |Nl] ≤
∑r

k=1 bN
k
l + ρδ +

∑r−1
k=0 γ

kbGI(l+k)
(
N
I(l+k)
l

)
, when Nl ∈ E0.

Then {Nlr+k}∞l=0 is positive recurrent by Lemma 2.2 (Foster’s Criterion), thus it is
ergodic (irreducible, aperiodic and positive recurrent).

Necessity when economy of scale applies: Bertsimas et al. gave the necessary condi-
tion for stability in [16] ρ + λ d̄

v
≤ 1, where d̄ = limi→∞E [Di], where Di denotes the

distance traveled from task i to the next task served after i, i.e. d̄ is the steady state
expected value of Di. Let Nk be the number of tasks served in partition k in steady
state. P

(
Nk = n,Xi ∈ Ak

)
denotes the probability that there are n tasks served in

partition k in steady state and task i is one of them. Then
d̄
v

=
∑r

k=1

∑∞
n=1

TPD (n)+∆

n
P
(
Nk = n,Xi ∈ Ak

)
>
∑r

k=1

∑∞
n=1 limn→∞

TPD (n)

n
P
(
Nk = n,Xi ∈ Ak

)
= bd

∑r
k=1

∑∞
n=1 P

(
Nk = n,Xi ∈ Ak

)
= bd.

So ρ+ λbd ≤ ρ+ λ d̄
v
< 1.

Remark 2.5.1. The stability condition ρ + λbd < 1 has an additional term λbd
compared to ρ < 1 in queueing theory, where bd is the mean travel time per task when
n→∞.

Remark 2.5.2. By Lemma 2.1, ergodicity implies that the sequence of station times
{Slr+k}∞l=0 and the cycle times {Clr+k}∞l=0 converge weakly to finite random variables.
The i-th task arriving in partition k to be served in station time Slr+k first spends
time WOi to wait outside the previous cycle, C(l−1)r+k, and spends time WIi inside
the current station time Slr+k. WOi and WIi are well defined based on C(l−1)r+k and
Slr+k under the P-S policy, and WOi ≤ C(l−1)r+k and WIi ≤ Slr+k. So WOi and WIi

converge weakly to finite random variables. Thus the system time Ti = WOi + WIi

converges weakly to finite random variable.

19

2.3 Summary

We prove a necessary and sufficient condition for stability in Theorem 2.5 in the
Dynamic Traveling Repairman Problem (DTRP) [1] under the class of Polling-
Sequencing (P-S) policies (Definition 2.1) satisfying unlimited-polling (Definition 2.4)
and economy of scale (Definition 2.2). The number of tasks inside each polling parti-
tion is shown to be a Markov chain in Theorem 2.1. Non-location based policies and
some common location based policies such as TSP, NN and DA are shown to have
economy of scale in Theorem 2.3. The P-S class includes some of the policies proven
to be optimal for the expectation of system time under light and heavy loads in the
DTRP literature.

20

Chapter 3

System Time Distribution in the
Dynamic Traveling Repairman
Problem

3.1 System Time Distribution

In the last chapter, we give a necessary and sufficient condition for the stability of the
Dynamic Traveling Repairman Problem (DTRP) for the class of Polling-Sequencing
(P-S) policies satisfying unlimited-polling and economy of scale. When the DTRP is
stable, the distribution of the steady state system time T exists.

3.1.1 Literature and Results

To the best of our knowledge, the distribution of T for DTRP is only known under
the FCFS policy by substituting the task size Bi with Di

v
+Bi in the cdf of T for an

M/G/1 queue under FCFS [15], where Di =‖ Xi −Xi−1 ‖.

For the expectation of system time E[T], the lower bounds of E[T] under light load
(ρ → 0+) and heavy load (ρ → 1−) was given in [1]. The SQM policy was shown
to be E[T] optimal under light load in [1]. PART-TSP in [2] and DC in [12] were
shown to be E[T] optimal under light load and asymptotically optimal under heavy
load when the number of partitions approaches infinity. The SQM, PART-TSP and
DC policies fall in our P-S class. Other than these, there is no E[T] optimal result
for a general ρ ∈ (0, 1). The expressions for E[T] are only known for FCFS, SQM
and PART-FCFS for a general ρ ∈ (0, 1) [1] and not for other policies. Table 2.1
summarizes known results and references.

21

For the variance of system time V ar[T], Xu [2] analyzed the asymptotic behavior of
V ar[T] under the PART-TSP policy under heavy load. The expression for V ar[T] is
only known for FCFS for a general ρ ∈ (0, 1). This lack of knowledge in E[T] and
V ar[T] in DTRP is in sharp contrast to queueing theory where both E[T] and V ar[T]
are known for a wide variety of policies as given in [10, 22].

Recent years have witnessed progress in the knowledge of E[T] and V ar[T] in polling
systems: Boxma et al. [23] gave the Laplace-Stieltjes transform (LST) of T , together
with E[T] and E[T 2] for polling system with gated or globally gated policies when
the sequencing policies are FCFS, LCFS, ROS and SJF. Dorsman et al. [24] provided
closed form approximations for the distribution of the stead state waiting time of
a task for polling systems under renewal arrival process with gated or exhaustive
policies when the sequencing policy is FCFS. Since the polling phase of the P-S class
for DTRP is a polling system, we can utilize these results for DTRP under the P-S
policies.

Typical polling policies characterized by Gk(.) defined in Section 2.2.1 were classified
by Vishnevskii [43] into mainly two categories: deterministic, where Gk(.) is a deter-
ministic function, and random, where Gk(.) is a random function. We focus on the
deterministic policies. Polling policies can also be divided into unlimited-polling poli-
cies and limited-polling policies. We focus on the unlimited-polling policies because
limited-polling policies are not efficient in the sense that they are not stable for some
ρ < 1 even in classic queues [45]. Common deterministic unlimited-polling policies
include exhaustive and gated policies:

• Exhaustive, where the server treats customers until the queue is emptied.

• Gated, where the server treats only those customers sojourned in the queue at
the polling instant.

Most of the unlimited polling policies in the literature are either exhaustive or gated.
We focus on the exhaustive policies because the exhaustive policies have smaller E[T]
than the gated policies [50].

In this chapter, we propose a policy in the P-S class called the PART-n-TSP policy.
We give a good approximation for the distribution of the system time that is easy to
compute by utilizing the approximation results of the distribution of system time T ,
together with E[T] and V ar[T] in the polling systems [23, 24]. Figure 3.5 shows that
the cumulative distribution function (cdf) of the system time by our approximation
method and the cdf of the system time through simulation are very close. We show
that FCFS, partitioning-FCFS and n-TSP [1] are special cases of PART-n-TSP, thus
PART-n-TSP has better performance than the three by optimizing its parameters.
We also compare PART-n-TSP with PART-TSP [2] and Nearest Neighbor [1] on E[T]
and σ[T] in Tables 3.1 and 3.2, since the latter two are considered near optimal in

22

the literature. The results show that NN achieves lower E[T] than PART-n-TSP
and PART-TSP. PART-n-TSP achieves lower E[T] than PART-TSP when ρ is not
too small or too large, e.g. when ρ ∈ {0.3, . . . , 0.7}. Also, PART-n-TSP achieves
lower σ[T] than PART-TSP and NN when ρ is not too small or too large, e.g. when
ρ ∈ {0.3, . . . , 0.7}. Since small ρ results in low utilization of real vehicles, and large
ρ results in large system time of tasks, in practice ρ is neither too small or too
large. Thus, PART-n-TSP is good in practice to achieve lower σ[T] than PART-TSP
and NN, and lower E[T] than PART-TSP. We also prove that PART-n-TSP is E[T]
optimal under light load and asymptotically optimal under heavy load in Theorem
3.1.

3.2 PART-n-Traveling Salesman Policy

Bertsimas et al. [1] introduced the traveling salesman policy (TSP). It is based on
collecting tasks into sets of size n that are then served in a TSP path. To be precise,
we call this the n-TSP. This policy is a one-partition policy in the P-S class. We
generalize it to multiple partitions as follows and call it the PART-n-TSP.

Definition 3.1. A Polling-Sequencing policy in Definition 2.1 is call the PART-n-
TSP policy if the sequencing phase is an n-TSP policy that collects tasks into sets of
cardinality n, and then serve them using an optimal traveling salesman path.

The polling phase involving generating an r-partition
{
Ak
}r
k=1

of A that is simulta-
neously equitable with respect to f(x). In particular, when the region A is a square
region A with size a × a, and the tasks are uniformly distributed in A with pdf
f(x) = 1

A
, A is divided into r = m2 square partitions, each has size a

m
× a

m
, where

m > 1 is a given integer that parameterizes the policy. The vehicle visits the par-
titions in a cyclic order. Partitions are numbered so that for any k = 1, . . . , r − 1,
partition k + 1 is adjacent to partition k, and partition r is adjacent to partition 1
when m is even, or to the diagonal of partition 1 when m is odd, as illustrated in
Figure 3.1 for the case m = 4 and m = 5. The vehicle cycles through the partitions in
the order 1, . . . , r, 1, . . . , r, After the vehicle finishes the tasks polled in the current
partition under a sequencing policy, the vehicle moves to an adjacent partition and
serves it under the same sequencing policy.

To move from one partition (polling station) to the next, the vehicle uses the projec-
tion rule shown in Figure 3.2 as introduced in [1]. Its last location in a given partition
is simply “projected” onto the next partition to determine the server’s new starting
location. The vehicle then travels in a straight line between these two locations. This
makes the distance traveled between partitions a constant, each starting location uni-
formly distributed, and independent of the locations of tasks in the new partition.
In practice, one might use a more intelligent rule such as moving directly to the first

23

If you look at http://inst.eecs.berkeley.edu/~cs61c/fa12 you will find a link
to a nice short book (that is also free!) on warehouse scale computers.

Figure 3.1. Order for serving partitions under the polling policy, cited and revised
from [2].

If you look at http://inst.eecs.berkeley.edu/~cs61c/fa12 you will find a link
to a nice short book (that is also free!) on warehouse scale computers.

Figure 3.2. Vehicle moving to adjacent partition, cited from [1].

24

task in the next partition. When m is even, the vehicle always travels to an adjacent
partition. Thus the switch time between two consecutive partitions is always ∆k = a

m
,

k = 1, . . . , r. Thus ∆ =
∑r

k=1 ∆k = ma. When m is odd, the vehicle always travels
to an adjacent partition except the last one. Thus ∆k = a

m
when k = 1, . . . , r − 1,

and ∆r =
√

2a
m

as shown in Figure 3.1. Thus ∆ =
∑r

k=1 ∆k =
(m2−1+

√
2)a

m
. Then we

have

∆ =

{
ma, if m is even.
(m2−1+

√
2)a

m
, if m is odd.

(3.1)

In the sequencing phase, we use the exhaustive n-TSP policy to sequence the tasks in
each partition. This policy is adopted from the TSP policy in [1]. We repeat it for the
convenience of the reader. Let N k

l denote the l-th set of n tasks to arrive in partition
k. Each set N k

l has cardinality n. For example, N k
1 is the set of tasks 1, . . . , n in

partition k, and N k
2 is the set of tasks n+ 1, . . . 2n in partition k, and so on. To serve

a set, we form a TSP path of the n tasks in the set starting at the initial position of
the vehicle and ending at the location of the last task in the TSP path. A TSP path
is the Hamiltonian path with the minimum length among all the Hamiltonian paths.
A Hamiltonian path is a path that visits each task location exactly once starting at
the initial position of the vehicle.

The vehicle starts at some location in partition 1. If all tasks in set N 1
1 have arrived,

we form a TSP path over these tasks. Tasks are then served by following the TSP
path. If all N 1

2 tasks have arrived when the TSP path of N 1
1 is completed, they are

also served using a TSP path. Otherwise, the vehicle moves to partition 2, and so on.
The sets Nk

l are served in an FCFS order in each partition k.

We know ρ + λbd < 1 is the stability condition by Theorem 2.5, and the sequencing
phase TSP has bd = 0 by Remark 2.4.1. Thus PART-n-TSP is stable if and only if
ρ < 1.

3.2.1 Calculation of System Time Distribution

The system time T of a task has three components:

• WO, the time a task waits for its set to form (wait for the last task in the set
to arrive).

• WP , waiting time of the set in the polling system.

• WI , the time it takes to complete service of the task once the task’s set enters
service.

25

Thus,
T = WO +WP +WI (3.2)

where WO, WP and WI are independent. The distribution of T can be obtained from
the distributions of WO, WP and WI through convolution.

Distribution of WO

We first obtain the distribution of WO, together with its expectation and variance.
Pick a random task. Let WOl be the waiting time of a task outside a set if it is the
(n− l)-th task arrived in the set, l = 0, . . . , n− 1. Since we have equitable partitions,
then the task arrival process inside each partition is Poisson with arrival rate λ

r
. Thus

WO0 = 0 and WOl is Erlang distributed with parameters
(
l, λ
r

)
, l = 1, . . . , n−1. Thus

the cdf of WOl, FWOl

(
t; l, λ

r

)
= 1 −

∑l−1
j=0

1
j!
e−

λ
r
t
(
λ
r
t
)j

, E [WOl] = lr
λ

, and E [W 2
Ol] =

(l2+l)r2
λ2

.

Since it is equally probable that a task is the (n− l)-th arrived task in the set, then

P (WO ≤ t) =
∑n−1

l=0 P (WOl ≤ t) 1
n

= 1
n

(
1 +

∑n−1
l=1

(
1−

∑l−1
j=0

1
j!
e−

λ
r
t
(
λ
r
t
)j))

.

E [WO] =
∑n−1

l=0 E [WOl]
1
n

= 1
n

∑n−1
l=0

lr
λ

= (n−1)r
2λ

.

E [W 2
O] =

∑n−1
l=0 E [W 2

Ol]
1
n

= 1
n

∑n−1
l=0

(l2+l)r2
λ2

=
(n2−1)r2

3λ2
.

V ar [WO] = E [W 2
O]− E [WO]2 =

(n2+6n−7)r2
12λ2

.

To sum up,

P (WO ≤ t) =
1

n

(
1 +

n−1∑
l=1

(
1−

l−1∑
j=0

1

j!
e−

λ
r
t

(
λ

r
t

)j))
(3.3)

E [WO] =
(n− 1)r

2λ
(3.4)

V ar [WO] =
(n2 + 6n− 7) r2

12λ2
(3.5)

26

Distribution of WI

Before discussing WP , we compute the distribution of WI , together with E [WI] and
V ar [WI] as follows. Let WInj be the waiting time of a task inside a set if it is the
j-th task to be served in the set of n tasks, j = 1, . . . , n. Then

WInj =
Dnj

v
+

j∑
i=1

Bi (3.6)

where Dnj is the travel distance from the initial vehicle position to the location of the
j-th task through a TSP path in a partition. Bi is i.i.d.. Dnj is independent of Bi.

Thus
∑k

j=1 Bi is the convolution of j Bi’s, and WInj is the convolution of
Dnj
v

and∑k
i=1Bi.

Let Lnj be the Dnj value when there is only one partition, i.e., r = 1. When r > 1,
we assume that

Dnj =d
cLnj√
r

(3.7)

where =d means identically distributed with, and c is a positive constant. In partic-
ular, when region A and all the partitions Ak are squares, and r = m2 with m an
integer, c = 1.

We obtain the empirical distribution of Lnj, together with E [Lnj] and V ar [Lnj] for
different n and j = 1, . . . , n through simulation on the TSP path. The ant colony
optimization algorithm [51] is used to heuristically search for the TSP path. Both
the number of ants and the number of iterations are set to 1000. The distribution of
Dnj is calculated from Lnj by scaling in (3.7). We write Ln for Lnn and Dn for Dnn.
Figure 3.3 shows the values of E [Ln] and V ar [Ln] for different n when the region is
a square of size 1× 1.

Figure 3.4 shows the pdf of Lnj for a set of n = 5 tasks. The tasks are uniformly
distributed on a square of 1× 1.

Since it is equally probable that the task is the k-th served task in the TSP path,
k = 1, . . . , n, then

P (WI ≤ t) =
1

n

n∑
j=1

P (WInj ≤ t) (3.8)

Then the pdf of WI , fWI
(t) = 1

n

∑n
j=1 fWInj

(t).

E [WI] = 1
n

∑n
j=1E [WInj].

27

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

Number of tasks, n

E[
L n] a

nd
 V

ar
[L n]

Expectation and Variance of the TSP Path Length

E[Ln]

Var[Ln]

Figure 3.3. Expectation and variance of the length of the TSP path for n tasks.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

t

f L nj
(t)

pdf of TSP Path Length when n = 5

L51
L52
L53
L54
L5 = L55

Figure 3.4. The pdf of WInj and WI .

28

E [W 2
I] = 1

n

∑n
j=1E

[
W 2
Inj

]
.

V ar [WI] = E [W 2
I]− E [WI]

2.

The distribution of WI can be calculated from (3.6) and (3.8). WI does not have
a closed form, but can be arbitrarily accurate through simulation. Observe that in
order to obtain the distribution of Dnj and WI for partitions with different sizes
parameterized by r, we do not need to rerun the simulation for each partition with
different size. We only need to run it once for Lnj and store the data. Dnj and WI

are obtained by scaling and convolution.

Distribution of WP

The analysis of WP uses the results from [24] by establishing the PART-n-TSP to be
equivalent to a classic polling system over jobs that are the sets N k

l .

Since the task arrival process is Poisson with arrival rate λ, the distribution of
the interarrival time of sets, A, is Erlang of order n and arrival rate λ, i.e.,
A ∼ Erlang(n, λ). Let Ak be the interarrival time of sets that fall in partition
Ak. Then Ak ∼ Erlang(n, λ

r
). Thus

E [Ak] =
nr

λ
, V ar [Ak] =

nr2

λ2
(3.9)

The arrival rate of a set is

λs =
λ

n
(3.10)

The arrival rate of a set in partition Ak, k = 1, . . . , r, is

λsk =
λs

r
=

λ

nr
(3.11)

The size of a set, or the time needed to travel to and execute all the tasks in the
set, is WInn as given in (3.6). We write Wn for WInn. The size of each set Wn is
i.i.d.. Thus, if we treat each set as a job with size Wn, and each partition as a polling
station, then the system is a classic polling system on r polling stations with renewal
(Erlang) arrival of rate λs, job size Wn, and switch time ∆k. The load is

ρs = λsE [Wn] (3.12)

The load in partition Ak, k = 1, . . . , r, is

ρsk =
ρs

r
(3.13)

29

WP is the waiting time of each set (job) in this classic polling system. Exhaustive or
gated PART-n-TSP correspond to exhaustive or gated FCFS on sets, respectively.

Dorsman et al. [24] provide closed form approximations for the distribution of the
steady state waiting time of a job, WP , for polling systems under a renewal arrival
process with gated or exhaustive policies when the sequencing policy is FCFS. They
claim that for exhaustive-FCFS policies,

P (WP ≤ t) ≈ P (UI ≤ (1− ρs)t) (3.14)

where U is uniformly distributed on [0, 1], and I is Gamma distributed with param-
eters

α =
2E[∆]δ

σ2
+ 1, β =

2E[∆]δ + σ2

2σ2(1− ρs)E [WBoon]
. (3.15)

where ∆ =
∑r

k=1 ∆k is the total switch time in a cycle. When the region A and
partitions Ak are squares as shown in Figure 3.1, ∆ is given in (3.1). ρs is given in
(3.12).

To explain δ, σ2 and E [WBoon], we denote by ŷ the value of each variable y that is
a function of ρs evaluated at ρs = 1. δ =

∑r
j=1

∑r
k=j+1 ρ̂

s
j ρ̂
s
k, where ρ̂sk is given in

(3.13) evaluated at ρs = 1. Since we have equitable partitions, then

ρ̂sk =
1

r
(3.16)

for all k = 1, . . . , r. Thus

δ =
r(r − 1)

2r2
=
r − 1

2r
. (3.17)

Again by [24]

σ2 =
∑r

k=1 λ̂
s
k

(
V ar [Wn] + ρ̂s

2
kV ar

[
Âk

])
.

Since λ̂ = nλ̂s by (3.11), then V ar
[
Âk

]
= nr2

λ̂2
= r2

nλ̂s
2 by (3.9). Also, λ̂sk = λ̂s

r
by

(3.11), then substituting (3.16) we have σ2 = λ̂s
(
V ar [Wn] + 1

r2
r2

nλ̂s
2

)
. Thus,

σ2 = λ̂s
(
V ar [Wn] +

1

nλ̂s
2

)
, (3.18)

where by (3.12)

λ̂s =
1

E [Wn]
. (3.19)

From (3.6) we know

E [Wn] =
E [Dn]

v
+ nb (3.20)

30

V ar [Wn] =
V ar [Dn]

v2
+ nσ2

B (3.21)

where E [Dn] and V ar [Dn] are obtained from E [Ln] and V ar [Ln] by (3.7), and E [Ln]
and V ar [Ln] are obtained from simulation as shown in Figure 3.3. Thus σ2 is known
substituting (3.19), (3.20) and (3.21).

Finally by Boon et al. [50], for equitable partitions

E [WBoon] =
K0 +K1ρ

s +K2 (ρs)2

1− ρs
(3.22)

where K0 = E [∆+]. ∆+ is called the residual of the random variable ∆ with E [∆+] =
E[∆2]
2E[∆]

. In our case, ∆ is deterministic. Thus,

K0 = E
[
∆+
]

=
∆

2
(3.23)

with ∆ given in (3.1). K1 = ρ̂sk

((
c2
Âk

)4

1{c2
Âk
≤ 1}+ 2

c2
Âk

c2
Âk

+1
1{c2

Âk
> 1} − 1

)
E [W+

n]

+ E [W+
n] + ρ̂sk (E [∆+]− E[∆]), where

c2
Âk

=
V ar

[
Âk

]
E
[
Âk

]2 , (3.24)

and 1{Ω} is the indicator function defined as 1{Ω} = 1 if Ω is true, and = 0 otherwise.
By (3.9) we have

c2
Âk

=
1

n
. (3.25)

Substituting (3.1), (3.16), (3.23) and (3.25) we have

K1 = E
[
W+
n

](1

rn4
− 1

r
+ 1

)
− ∆

2r
, (3.26)

where, by definition of a residual,

E
[
W+
n

]
=

E [W 2
n]

2E [Wn]
=
V ar [Wn] + E [Wn]2

2E [Wn]
(3.27)

with E [Wn] and V ar [Wn] given in (3.20) and (3.21). Finally, by [50]

K2 =
1− ρ̂sk

2

(
σ2

2δ
+ E[∆]

)
−K0 −K1 (3.28)

is known by substituting (3.1), (3.16), (3.17), (3.18), (3.23) and (3.26). Thus, we can
calculate the closed form approximation for the cdf of WP by (3.14).

31

After obtaining the distributions of WO, WP and WI , we are able to calculate the
distribution of T = WO + WP + WI through convolution. In the three components
of T , WO is accurate and known in closed form in (3.3). WP has a closed form
approximation in (3.14). WI does not have a closed form, but can be arbitrarily
accurate through simulation of TSP paths. It is also easy to obtain WI because
we only need to run the simulation once for the empirical distribution of Lnj and
store the data, then calculate the distribution of Dnj and WI by scaling in (3.7) and
convolution in (3.8) for partitions with different sizes parameterized by r.

Figure 3.5 shows the pdf of T obtained from the convolution of its three components,
and the empirical pdf of T obtained through simulation under the exhaustive PART-
n-TSP when the region A is a square of size 1× 1 with m = 2 and n = 5, and m = 2
and n = 10, separately. The tasks are uniformly distributed in the square with size
Bi ∼ Unif [0, 1]. The tasks arrive according to a Poisson process with rate λ = 1.
Thus load ρ = λb = 0.5. The simulated empirical pdf of T is regarded as the “true”
value. We can see that the approximated values are very close to the true (simulated)
values.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

P
(T

 ≤
 t)

cdf of System Time, T

Approximation: n = 5
Simulation: n = 5
Approximation: n = 10
Simulation: n = 10

Figure 3.5. Approximated and simulated values of the cdf of the system time.

3.2.2 Comparison of PART-n-TSP, PART-TSP and Nearest
Neighbor

Bertsimas et al. [1] compared the E[T] of SQM, FCFS, PART-FCFS, SFC, NN and
n-TSP through simulation, and concluded that NN achieves lower E[T] than other

32

policies simulated. PART-TSP [2] or DC [12] were proven to be E[T] optimal under
the light and heavy loads. Here the focus is on V ar[T] or σ[T].

Since the approximation for the cdf of T for PART-n-TSP is both good and easy
to compute, we can optimize the two parameters n and r to minimize E[T] or other
performance metrics when the region A and partitions Ak are squares. Table 3.1 gives
the r∗ and n∗ in the range r ∈ {12, 22, . . . , 102} and n = {1, . . . , 60} that minimize
E[T] under exhaustive PART-n-TSP and the corresponding E[T] and σ[T] values for
different ρ values. The region is a square of size 1× 1 and Bi ∼ Unif [0, 0.5]. Noting
that FCFS is PART-n-TSP when r = 1 and n = 1, PART-FCFS is PART-n-TSP
when n = 1, and n-TSP is PART-n-TSP when r = 1. Thus by optimizing on r and
n, PART-n-TSP has better performance than FCFS, PART-FCFS and n-TSP.

We compare PART-n-TSP with PART-TSP [2] and Nearest Neighbor [1] since they
are considered near optimal in the literature. We simulate PART-TSP and Nearest
Neighbor under the same setting. The number of partitions for PART-TSP is set to
be the optimal number of partitions for PART-n-TSP. The average number of tasks
served inside each gate, denoted by E[n], is also shown in the table. We generate
N = 100, 000 tasks are for each load ρ value. Only the 25,000th to the 75,000th tasks
are used to calculate E[T] and σ[T] to make sure that the steady state data are used.
We have checked this by randomly sampling time segments in this range. Figure 3.6
shows the truncation of 1000 data points for PART-TSP when ρ = 0.9, Bi ∼ [0, 0.5],
and r = 25. Each time segments of about 50 data is the number of tasks inside each
gate, indeed this is true as shown in Table 3.1 E[n] = 49.7 for this case. The system
time is decreasing in general in each segment because tasks arrive earlier in a gate
wait more than those arrive later. Table 3.2 gives the case when Bi ∼ Unif [0, 1].

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

Task label

Si
m

ul
at

ed
 s

ys
te

m
 ti

m
e,

 T

Part of Simulated Data for PART−TSP: ρ = 0.9, Bi ~ [0,0.5], r = 25

Figure 3.6. Part of simulated data for PART-TSP: ρ = 0.9, Bi ∼ [0, 0.5], and r = 25.

33

T
ab

le
3.

1.
C

om
p
ar

is
on

of
P

A
R

T
-n

-T
S
P

,
P

A
R

T
-T

S
P

an
d

N
ea

re
st

N
ei

gh
b

or
on

E
[T

]
an

d
σ

[T
]:
B
i
∼
U
n
if

[0
,0
.5

]
ρ

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

r
∗

fo
r

P
A

R
T

-n
-T

S
P

1
1

1
1

1
1

1
4

2
5

n
∗

fo
r

P
A

R
T

-n
-T

S
P

1
2

2
4

1
2

2
4

5
7

5
9

5
7

E
[n

]
fo

r
P

A
R

T
-T

S
P

1
.0

5
1
.2

5
1
.7

5
3
.4

6
9
.0

8
2
3
.3

6
1
.2

6
3
.9

4
9
.7

P
A

R
T

-n
-T

S
P

1
.0

4
1
.7

1
1
.7

0
2
.8

0
5
.9

0
9
.9

9
2
0
.3

8
1
.4

3
2
1

E
[T

]
P

A
R

T
-T

S
P

0
.9

5
(9

1
%

)
1
.2

6
(7

4
%

)
1
.8

7
(1

1
0
%

)
3
.3

0
(1

1
8
%

)
5
.9

7
(1

0
1
%

)
1
0
.9

(1
0
9
%

)
2
4
.4

(1
2
0
%

)
5
1
.7

(6
4
%

)
1
8
1

(5
6
%

)

N
N

0
.9
4

(9
0
%

)
1
.2
1

(7
1
%

)
1
.6
6

(9
8
%

)
2
.4
6

(8
8
%

)
3
.8
1

(6
5
%

)
6
.3
7

(6
4
%

)
1
2
.7

(6
3
%

)
3
2
.6

(4
0
%

)
1
5
4

(4
8
%

)

P
A

R
T

-n
-T

S
P

0
.6

9
1
.1

9
0
.9
4

1
.3
9

2
.7
4

4
.3
6

8
.5
6

3
1
.7

1
4
0

σ
[T

]
P

A
R

T
-T

S
P

0
.4

8
(7

0
%

)
0
.7

7
(6

5
%

)
1
.2

2
(1

3
0
%

)
2
.1

1
(1

5
2
%

)
3
.2

7
(1

1
9
%

)
5
.3

5
(1

2
3
%

)
1
3
.3

(1
5
5
%

)
2
7
.1

(8
5
%

)
1
0
1

(7
2
%

)

N
N

0
.4
7

(6
8
%

)
0
.7
6

(6
4
%

)
1
.2

6
(1

3
4
%

)
2
.1

4
(1

5
4
%

)
3
.5

7
(1

3
0
%

)
6
.1

8
(1

4
2
%

)
1
2
.5

(1
4
6
%

)
3
1
.1

(9
8
%

)
1
4
7

(1
0
5
%

)

34

T
ab

le
3.

2.
C

om
p
ar

is
on

of
P

A
R

T
-n

-T
S
P

,
P

A
R

T
-T

S
P

an
d

N
ea

re
st

N
ei

gh
b

or
on

E
[T

]
an

d
σ

[T
]:
B
i
∼
U
n
if

[0
,1

]
ρ

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

r
∗

fo
r

P
A

R
T

-n
-T

S
P

1
1

1
1

1
1

1
1

9

n
∗

fo
r

P
A

R
T

-n
-T

S
P

1
1

1
2

3
6

1
5

4
2

4
1

E
[n

]
fo

r
P

A
R

T
-T

S
P

1
.0

2
1
.1

1
.2

5
1
.5

9
2
.3

7
4
.5

7
1
3
.4

4
0

3
1
.1

P
A

R
T

-n
-T

S
P

1
.2

0
1
.5

1
2
.1

5
2
.2

3
2
.9

4
4
.9

6
1
0
.8

2
6
.3

1
9
2

E
[T

]
P

A
R

T
-T

S
P

1
.1
6

(9
7
%

)
1
.3

7
(9

1
%

)
1
.7

1
(8

0
%

)
2
.3

5
(1

0
5
%

)
3
.6

3
(1

2
3
%

)
6
.2

4
(1

2
6
%

)
1
2
.9

(1
1
9
%

)
2
7
.9

(1
0
6
%

)
9
3
.8

(4
9
%

)

N
N

1
.1
6

(9
7
%

)
1
.3
6

(9
0
%

)
1
.6
6

(7
7
%

)
2
.1
6

(9
7
%

)
2
.9
3

(1
0
0
%

)
4
.5
0

(9
1
%

)
8
.1
0

(7
5
%

)
1
8
.0

(6
8
%

)
7
8
.7

(4
1
%

)

P
A

R
T

-n
-T

S
P

0
.6

9
0
.9

1
1
.5

9
1
.3
0

1
.5
9

2
.4
7

4
.8
5

1
1
.2

8
0
.7

σ
[T

]
P

A
R

T
-T

S
P

0
.5
4

(7
8
%

)
0
.7
5

(8
2
%

)
1
.0
7

(6
7
%

)
1
.6

4
(1

2
6
%

)
2
.5

8
(1

6
2
%

)
4
.2

2
(1

7
1
%

)
7
.6

3
(1

5
7
%

)
1
4
.6

(1
3
0
%

)
5
6
.2

(7
0
%

)

N
N

0
.5
4

(7
8
%

)
0
.7

6
(8

4
%

)
1
.1

0
(6

9
%

)
1
.7

1
(1

3
2
%

)
2
.6

4
(1

6
6
%

)
4
.4

2
(1

7
9
%

)
8
.2

4
(1

7
0
%

)
1
8
.3

(1
6
3
%

)
7
5
.9

(9
4
%

)

35

The E[T] and σ[T] of PART-TSP and NN are compared to those of PART-n-TSP,
The percentage following the E[T] and σ[T] of PART-TSP and NN are the ratio
of these values over those of PART-n-TSP. The minimum E[T] and σ[T] at each
load level of the three policies are bolded. From Tables 3.1 and 3.2, we can see that
NN achieves lower E[T] than PART-n-TSP and PART-TSP for all ρ ∈ {0.1 . . . 0.9} in
both Bi ∼ [0, 0.5] and Bi ∼ [0, 1]. PART-n-TSP achieves lower E[T] than PART-TSP
when ρ is not too small or too large, e.g. when ρ ∈ {0.3, . . . , 0.7} for Bi ∼ [0, 0.5],
and when ρ ∈ {0.4, . . . , 0.8} for Bi ∼ [0, 1]. PART-n-TSP has higher E[T] than
PART-TSP when ρ is low because it is better to have the average number of tasks in
a set to be between 1 and 2 as done by PART-TSP, but PART-n-TSP can only set
it to be either 1 ro 2, resulting in higher E[T]. PART-n-TSP has higher E[T] than
PART-TSP when ρ is high because r∗ > 1 when ρ is high. Then there is a switching
time between partitions. By setting n to be a fixed number under PART-n-TSP,
the vehicle might arrive at a partition, and find the number of tasks to be less than
n. Then the vehicle would switch to the next partition without serving any task,
resulting in a switching cost but no tasks served.

PART-n-TSP behaves like a “standardized” version of PART-TSP. While the fixed n
reduces flexibility, it increases certainty. Thus V ar[T] or σ[T] should be lower. Indeed,
as shown in Tables 3.1 and 3.2, PART-n-TSP achieves lower σ[T] than PART-TSP and
NN when ρ is not too small or too large, e.g. when ρ ∈ {0.3, . . . , 0.7} for Bi ∼ [0, 0.5],
and when ρ ∈ {0.4, . . . , 0.8} for Bi ∼ [0, 1]. The performance of PART-n-TSP on
σ[T] when ρ is too small or too large is not as good for the same reasons affecting
E[T] as explained in the previous paragraph.

3.2.3 Optimality of PART-n-TSP under light and heavy
loads

The PART-n-TSP can be modified to yield asymptotically optimal E[T] under light
load (ρ→ 0+). First the PART-n-TSP becomes FCFS policy when setting r = 1 and
n = 1. Then under FCFS policy, let the vehicle return to the median of region A
when it becomes idle. Under light load this is the stochastic queue median (SQM)
policy [1], where the vehicle travels directly to the task location from the median,
executes the task, and then returns to the median after completion. SQM is proven
to be E[T] optimal under light load [1], proving the optimality of PART-n-TSP under
light load.

Under heavy load (ρ→ 1−), the following lower bound holds [16].

E[T] ≥
β2
TSP,2λ

(∫
A
f

1
2
X(x) dx

)2

2v2(1− ρ)2
(3.29)

36

The following theorem shows that PART-n-TSP achieves the heavy-load lower bound
(3.29) when r → ∞. Thus PART-n-TSP is asymptotically optimal in E[T] under
heavy load.

Theorem 3.1. Under PART-n-TSP as per Definition 3.1, when ρ→ 1− and n→∞,
the system time for the 1-DTRP satisfies

E[T] ≤
(

1 +
1

r

) β2
TSP,2λ

(∫
A
f

1
2
X(x) dx

)2

2v2(1− ρ)2
(3.30)

where r is the number of partitions.

Proof. E[T] = E [WO] + E [WP] + E [WI] by (3.2).

And by (3.4)

E [WO] =
(n− 1)r

2λ
<
nr

2λ
(3.31)

By (3.6) and (3.8), and conditioning on the position that a given task takes within its
set, and noting that the travel time around the TSP path is no more than the length
of the path itself, the expected wait for completion once a task’s set enters service

E [WI] ≤
1

v
E [Dn] +

1

n

n∑
j=1

jb =
1

v
E [Dn] +

n+ 1

2
b (3.32)

Given that a demand falls in partition Ak, the conditional density for its lo-
cation (whose support is Ak) is fX(x)∫

Ak
fX(x) dx

. From [48] we know that, almost

surely, limn→∞
Dn√
n

= βTSP,2
∫
Ak

√
fX(x)∫

Ak
fX(x) dx

dx, where βTSP,2 is a constant. Let

C = 1
v
βTSP,2

∫
Ak

√
fX(x)∫

Ak
fX(x) dx

dx, thus C is a constant. So limn→∞
1
v
E [Dn] = C

√
n.

The load of a set ρs = λsE [Wn] = λ
n

(
E[Dn]
v

+ nb
)

= λb + λ
v
E[Dn]
n

= ρ + λE[Dn]
nv

by

(3.11), (3.12) and (3.20). Thus limn→∞ ρ
s = ρ+λ limn→∞

E[Dn]
nv

= ρ+λ limn→∞
C
√
n

n
=

ρ. So ρ→ 1− implies ρs → 1− when n→∞.

As for E [WP], from [52] we know that the mean waiting time in a polling system
with renewal arrivals as ρs → 1− is

E [WP] =
ω

1− ρs
+ o

(
(1− ρs)−1

)
, (3.33)

where ω = 1−ρ̂sk
2

(
σ2∑r

k=1 ρ̂
s
k(1−ρ̂sk)

+ E[∆]

)
under the exhaustive policy, and ω =

1+ρ̂sk
2

(
σ2∑r

k=1 ρ̂
s
k(1+ρ̂sk)

+ E[∆]

)
under the gated policy. Substituting (3.16) we have

37

ω = σ2

2
+ r−1

2r
E[∆] under the exhaustive policy, and ω = σ2

2
+ r+1

2r
E[∆] under the gated

policy. ∆ =
∑r

k=1 ∆k is the total switch time of a polling cycle. ∆ does not depend
on ρ, ρs or n, and is given in (3.1) when the region A and partitions Ak are squares.

Thus E [WP] = 1
2(1−ρs)

(
σ2 + r∓1

r
E[∆]

)
+ o ((1− ρs)−1) when ρs → 1−. Let C ′ =

r∓1
r
E[∆]. So E [WP] = 1

2(1−ρs) (σ2 + C ′) when ρs → 1−. Since r is a finite natural

number, and ∆k is upper bounded by the diameter of region A, then E[∆] is a positive
finite number. Thus, C ′ is a positive finite number.

By (3.18) σ2 = λ̂s
(
V ar [Wn] + 1

nλ̂s
2

)
, where λ̂s = λ̂

n
by (3.11). Also, ρs = λ̂sE [Wn]

as ρs → 1− by (3.12).

So E [WP] =
λ̂s
(
V ar[Wn]+ 1

nλ̂s
2

)
+C′

2(1−λ̂sE[Wn])

=
λ̂
n(1

v2
V ar[Dn]+nσ2

B+ n

λ̂2
)+C′

2
(

1− λ̂
n(1

v
E[Dn]+nb)

)
=

λ̂(1

λ̂2
+
V ar[Dn]

nv2
+σ2

B)+C′

2(1−λ̂b−λ̂ 1
v
E[Dn]
n)

, as ρs → 1−, where we substituted λ̂s = λ̂
n

and (3.20) and

(3.21) in the first equality.

Since λ̂ is the value of λ when ρs = 1, and ρ → 1− implies ρs → 1−, then we can
write

E [WP] =
λ
(

1
λ2

+ V ar[Dn]
nv2

+ σ2
B

)
+ C ′

2
(

1− ρ− λ 1
v
E[Dn]
n

) (3.34)

when ρ→ 1−, where we substituted ρ = λb.

From [53, p.189] we know limn→∞ V ar [Dn] = O(1), and therefore, limn→∞
V ar[Dn]

n
=

0.

Thus when ρ→ 1− and n→∞,
E[T] = E [WO] + E [WP] + E [WI]

≤ (n−1)r
2λ

+ 1
v
E [Dn] + n+1

2
b+

λ(1
λ2

+
V ar[Dn]

nv2
+σ2

B)+C′

2(1−ρ−λ 1
v
E[Dn]
n)

≤ nr
2λ

+ C
√
n+ n

2
b+

λ(1
λ2

+σ2
B)+C′

2
(

1−ρ−λ C√
n

) .

Substituting b = ρ
λ

we have

E[T] ≤
λ
(

1
λ2

+ σ2
B

)
+ C ′

2
(

1− ρ− λ C√
n

) +
n(r + ρ)

2λ
+ C
√
n (3.35)

We want to minimize (3.35) with respect to n to get the least upper bound. Noting
that (3.35) is convex with respect to n, so there is indeed a minimum. First, however,

38

consider a change of variable y = λC
(1−ρ)

√
n
. With this change,

E[T] ≤
λ
(

1
λ2

+ σ2
B

)
+ C ′

2(1− ρ)(1− y)
+
λC2(r + ρ)

2(1− ρ)2y2
+

λC2

(1− ρ)y
(3.36)

For ρ→ 1−, one can verify that the optimum y approaches 1. Linearizing the last two

terms above about y = 1 we have λC2(r+ρ)
2(1−ρ)2y2

= λC2(r+ρ)
2(1−ρ)2

(3−2y), and λC2

(1−ρ)y
= λC2

1−ρ (2−y).

Thus, g(y) ≡ λ(1
λ2

+σ2
B)+C′

2(1−ρ)(1−y)
+ λC2(r+ρ)

2(1−ρ)2y2
+ λC2

(1−ρ)y

≈ C1

1−y + C2(3− 2y) + C3(2− y)

= C1

1−y + (2C2 + C3) (1 − y) + C2 + C3, where C1 =
λ(1

λ2
+σ2

B)+C′

2(1−ρ)
, C2 = λC2(r+ρ)

2(1−ρ)2
, and

C3 = λC2

1−ρ .

The approximation for g(y) is minimized when C1

1−y = (2C2 + C3) (1−y). Substituting
C1, C2 and C3 we have an approximate optimum value

y∗ = 1− 1

C

√(
1
λ2

+ σ2
B + C′

λ

)
(1− ρ)

2(1 + r)
(3.37)

Substituting (3.37) into (3.36) and noting that for ρ → 1− the approximate y∗ ap-
proaches 1 we have

E[T] ≤ λC2(r + 1)

2(1− ρ)2
+
λC
√

2(r + 1)
(

1
λ2

+ σ2
B + C′

λ

)
2(1− ρ)

3
2

+
λC2

1− ρ
(3.38)

when ρ→ 1−.

Thus E[T] ≤ λC2(r+1)
2(1−ρ)2

+ o ((1− ρ)−2) when ρ→ 1−. We have

E[T] ≤ λC2(r + 1)

2(1− ρ)2
(3.39)

when ρ→ 1−.

C = 1
v
βTSP,2

∫
Ak

√
fX(x)∫

Ak
fX(x) dx

dx

= 1
v
βTSP,2

√
r
∫
Ak

√
fX(x) dx

= βTSP,2
1

v
√
r

∫
A

√
fX(x) dx.

Substituting C in (3.39) we have

E[T] ≤
(

1 +
1

r

) β2
TSP,2λ

(∫
A
f

1
2
X(x) dx

)2

2v2(1− ρ)2
.

39

The PART-n-TSP is optimal under light load. Moreover, when r →∞, the PART-n-
TSP policy achieves the heavy-load lower bound (3.29). Therefore the PART-n-TSP
is both optimal under light load and arbitrarily close to optimality under heavy load,
and stabilizes the system for every load ρ ∈ [0, 1). Notice that with r = 10 the
PART-n-TSP is already guaranteed to be within 10% of the optimal performance
under heavy load.

3.3 Summary

We give a good approximation for the distribution of the system time that is easy to
compute under the PART-n-TSP policy by utilizing the approximation results of the
distribution of system time T , together with E[T] and V ar[T] in the polling systems
[23, 24]. We compare PART-n-TSP with PART-TSP [2] and Nearest Neighbor [1] on
E[T] and σ[T] in Tables 3.1 and 3.2, since the latter two are considered near optimal
in the literature. The results show that in practice PART-n-TSP achieves lower σ[T]
than PART-TSP and NN and lower E[T] than PART-TSP when the load ρ is not too
small or too large. We also prove that PART-n-TSP is E[T] optimal under light load
(ρ→ 0+) and asymptotically optimal under heavy load (ρ→ 1−) in Theorem 3.1.

40

Chapter 4

Virtual Vehicle and Cloud
Computing in Space

While the current scheduling policies for the Vehicle Routing Problem (VRP) and its
variations such as the Dynamic Traveling Repairman Problem (DTRP) work for single
customer systems, they do not create performance isolation [3] in multi-customer
systems. In this chapter we extend the idea of the virtual machine [3] used in cloud
computing to an idea called the virtual vehicle to create performance isolation in
multi-customer systems with location specific tasks. This enables what we call cloud
computing in space, or the spatial cloud.

4.1 Model

The spatial cloud is defined as follows: A service provider controls M ∈ N real
vehicles (RVs), {RVm}Mm=1 in a convex region A of area A to host K ∈ N virtual

vehicles (VVs), {V Vk}Kk=1. Each RV travels at constant speed vR. Each VV has
virtual speed vV in the reservation contract.

To a customer, a virtual vehicle with speed vV is a replica of a real vehicle with speed
vV . It can be reserved to host a sequence of tasks 〈Taskki〉∞i=1, where k denotes the
k-th VV and i the i-th task hosted by it. Each Taskki has arrival times T aki, location
Xki, and size T Ski. 〈Taskki〉 is ordered by the arrival time T aki. The sequences of tasks
hosted by different VVs are independent of each other, i.e., Taskki are independent
in k.

Each task arrival process {T aki}
∞
i=1 is assumed to be a renewal process. Thus the

interarrival time, Iaki ≡ T aki− T ak(i−1) is independent and identically distributed (i.i.d.)
in i, where T ak0 ≡ 0. The generic interarrival time Iak is assumed to be integrable.

41

Thus the task arrival rate of each VV is

λVk =
1

E [Iak]
(4.1)

Xki is i.i.d. in k and i, and uniformly distributed in A with probability density
function (pdf) fX(x) = 1

A
, x ∈ A. The task size T Ski is i.i.d. in k and i with pdf

fTS(t), t ∈ [0,∞). We denote by T S the generic term of T Ski. Then E
[
T Ski
]

= E
[
T S
]
,

which is assumed to be finite.

Let Lki denote the distance between Taskk(i−1) and Taskki hosted by V Vk. Then

Lki =‖ Xki −Xk(i−1) ‖ (4.2)

where ‖ . ‖ is the Euclidean norm defined on region A, i = 1, 2, Xk0 is the initial
position of the first RV hosting V Vk given by the provider, which is assumed to be
uniformly distributed in A, and independent of Xki. We denote by L the generic
term of Lki.

V Vk is assumed to serve the sequence of tasks 〈Taskki〉∞i=1 under the first come first
served (FCFS) policy. It travels to the location Xki of each task and executes it
taking time T Ski. Then the virtual service time of Taskki, denoted by T V servki , includes
the flying time and execution time as follows

T V servki =
Lki
vV

+ T Ski (4.3)

Thus T V servki is i.i.d. in k and i. We denote by T V serv the generic term of T V servki .

Each V Vk is a queue. The virtual departure time of Taskki from this queue is

T deadki = max
{
T aki, T

dead
k(i−1)

}
+ T V servki (4.4)

where T deadk0 ≡ 0. We use the superscript dead for deadline because this virtual
departure time is used by our scheduling policies as a task deadline.

Each task, upon arrival, is passed to one of the M real vehicles. Thus we have M real
vehicle queues. Each Taskki is served by some real vehicle RVm as per an allocation
policy given in Definition 4.1 in Section 4.2.2. The order of service is determined by
a scheduling policy. The scheduling policies, discussed in Section 4.3, are the main
subject of this chapter.

Each Taskki will be completed by an RV at some time T compki . We assume customer
k will be satisfied if T compki ≤ T deadki . Then the aim of the provider is to achieve
T compki ≤ T deadki for as many tasks as possible. Thus T deadki is like a “deadline” for
Taskki. We call the T deadki the virtual deadline for Taskki. This makes the spatial
cloud a soft real-time system [26, 27].

42

Tcomp(11) Tcomp(12) Tcomp(13)!

Tcomp(m1) Tcomp(m2) Tcomp(m3)!

Ta11! Ta12! Ta13!

Tdead11 Tdead12 Tdead13!

VV1#
GI/GI/1#

Ta(11)! Ta(12)! Ta(13)!

RV1#
ΣGI/GI/1#

t!

t!

Tak1! Tak2! Tak3!

VVk"
GI/GI/1# t!

TaK1!TaK2! TaK3!

VVK"
GI/GI/1# t!

Ta(m1)! Ta(m2)! Ta(m3)!

RVm"
ΣGI/GI/1# t!

Ta(M1)! Ta(M1)! Ta(M1)!

RVM"
ΣGI/GI/1# t!

Voronoi##
Alloca1on#

Tdeadk1 Tdeadk2 Tdeadk3!

TdeadK1 TdeadK2 TdeadK3!

Tdead(11) Tdead(12) Tdead(13)!

Tdead(m1) Tdead(m2) Tdead(m3)!

Tdead(M1) Tdead(M2) Tdead(M3)! Tcomp(M1) Tcomp(M2) Tcomp(M3)!

Figure 4.1. The spatial cloud with virtual vehicle queues and real vehicle queues.

We define the relative expected tardiness of V Vk as

TDk =
1

E [T V serv]
lim
n→∞

∑n
i=1 max

{
T compki − T deadki , 0

}
n

(4.5)

The delivery probability of V Vk is

DPk = lim
n→∞

∑n
i=1 1

{
T compki ≤ T deadki

}
n

(4.6)

where 1{Ω} is the indicator function defined as 1{Ω} = 1 if Ω is true, and = 0
otherwise.

The relative expected slack of V Vk is

SLk =
1

E [T V serv]
lim
n→∞

∑n
i=1 max

{
T deadki − T compki , 0

}
n

(4.7)

We define the virtual system time of Taskki as T V syski = T deadki − T aki, and the real
system time of Taskki as TRsyski = T compki − T aki. Thus T compki − T deadki = TRsyski − T V syski ,
and T compki ≤ T deadki ⇔ TRsyski ≤ T V syski . When the queue at V Vk is stable, T V syski →
T V sysk in distribution. When the M real vehicle queues are stable, T V syski → T V sysk in
distribution.

Thus (4.5) is equivalent to

TDk =
E
[
max

{
TRsysk − T V sysk , 0

}]
E [T V serv]

(4.8)

(4.6) is equivalent to

DPk = P
(
TRsysk ≤ T V sysk

)
(4.9)

43

(4.7) is equivalent to

SLk =
E
[
max

{
T V sysk − TRsysk , 0

}]
E [T V serv]

(4.10)

These three measures are determined by the virtual vehicle queues and the real vehicle
queues as shown in Section 4.2.

Two consecutive tasks of an VV might be executed by two different RVs, which
involves migrating the VV from one virtual vehicle to another. Let Zki be an indicator
set to 1 if there is a migration between Taskk(i−1) and Taskki, and 0 otherwise. When
the M real vehicle queues are stable, Zki → Zk in distribution. BV k is the number
of bits to migrate V Vk at the migration time. We assume BV k = 1 or equivalently
a constant. L is the generic distance between two consecutive tasks. We define the
inter-virtual deadline time as Ideadki = T deadki − T deadk(i−1). Since T V servki is i.i.d. in k and i,

then Ideadki → Ideadk in distribution. The migration cost of V Vk is

MCk = BV k
E [ZkL]

E
[
Ideadk

] (4.11)

The migration cost has the same unit (bit-meters/second) as in [54].

4.1.1 Performance Isolation

We measure performance isolation by the average of the tardiness and delivery prob-
ability.

TD =
1

K

K∑
k=1

TDk (4.12)

TD = 0 implies TDk = 0 for all virtual vehicle k, meaning the system achieves perfect
performance isolation. Conversely TD → ∞ means the relative expected tardiness
of some VVs is unbounded, the system has very poor performance isolation.

DP =
1

K

K∑
k=1

DPk (4.13)

DP = 1 implies DPk = 1 for all virtual vehicle k, meaning the system achieves
perfect performance isolation. Conversely DP = 0 means the delivery probability of
each virtual vehicle is zero, meaning the system has no performance isolation.

Fairness is the equality of work divided among different concurrent environments [55].
We use Jain’s fairness index [29] to quantify the fairness between virtual vehicles. The

44

fairness index based on tardiness TDk is

FI (TDk) =

(∑K
k=1 e

−TDk
)2

K
∑K

k=1 (e−TDk)2
(4.14)

where we use e−TDk to map TDk from [0,∞) to (0, 1], the lower TDk, the higher
e−TDk , indicating higher performance.

The fairness index based on delivery probability DPk is

FI (DPk) =

(∑K
k=1DPk

)2

K
∑K

k=1DP
2
k

(4.15)

Jain’s fairness index is the ratio of the square of the first moment over the second
moment of the set of performance metrics of all the VVs. If TDk = TDl > 0 (resp.
DPk = DPl > 0), ∀k, l, then FI (TDk) = 1 (resp. FI (DPk) = 1), indicating
completely fair. If TDk > 0 and TDl = 0 (resp. DPk > 0 and DPl = 0), ∀l 6= k, then
FI (TDk) = 1

K
(resp. FI (DPk) = 1

K
), indicating completely unfair. Thus FI (TDk)

(resp. FI (DPk)) ranges between 1
K

and 1. The greater the fairness index, the more
fair the system. Jain’s fairness index has been used to evaluate virtualization systems
[56], [57], [58]. Other performance metrics in this literature include throughput,
latency and response time.

4.1.2 Gain

When a provider supports K virtual vehicles with M real vehicles we define the gain
κ to be

κ =
K

M
(4.16)

The provider gains if κ > 1. There are two ways a provider can gain:

• Multiplexing gain: a customer may not utilize her virtual vehicle fully, enabling
the provider to multiplex several virtual vehicles onto one real vehicle.

• Migration gain: the provider gains by migrating the VV hosting the task to
another RV closer to the task location.

The multiplexing gain is observed in communication networks [32] and cloud comput-
ing [33]. Migration gain is unique to cloud computing in space. When every virtual
vehicles are fully utilized, there is no multiplexing gain, but there is still migration
gain.

45

4.2 Systems

The system has queues at the virtual vehicles and queues at the real vehicles as
depicted in Figure 4.1.

4.2.1 Virtual Vehicle Queues

The task arrival rate for V Vk is λVk = 1

E[Iak]
by (4.1), where Iak is the generic interarrival

time of V Vk. The service time T V servki is i.i.d. in k and i with generic term T V servk .
We define the generic virtual vehicle service rate as

µV =
1

E [T V serv]
=

1
E[L]
vV

+ E [T S]
(4.17)

as usual, with T V servki defined in (4.3).

The random process at the output of V Vk is the virtual deadline process
{
T deadki

}∞
i=1

.
The virtual deadline rate is defined as

λV deadk = lim
i→∞

1

E
[
T deadki − T deadk(i−1)

] (4.18)

Since V Vk is a work-conserving server, it is busy if it has a queue and idle if not.
Thus V Vk repeats cycles of busy and idle periods. We define ΘV

kl as the l-th busy
period and IVkl as the l-th idle period. We define virtual vehicle utilization as

uVk = lim
l→∞

E
[
ΘV
kl

]
E [ΘV

kl] + E [IVkl]
(4.19)

A single server queuing system is GI/GI/1 if the interarrival times at the input and
the service times are positive i.i.d. random variables, separately [15].

The tasks created by a customer are passed to the cloud at the rate chosen by the
customer. The following theorem asserts that when the arrival rate is less than
the service rate, the virtual deadline rate is equal to the arrival rate. However, if
the customer exceeds the service rate determined by the contracted virtual speed,
the virtual deadline rate is equal to the service rate, i.e., the contract throttles the
customer’s virtual deadline rate. A higher virtual deadline rate requires more tasks
to be completed in a unit time. A customer cannot require more than her share of
resources by simply generating tasks faster and faster because the virtual deadline
rate is throttled by the VV service rate.

46

Theorem 4.1. Each virtual vehicle V Vk is a GI/GI/1 queue. Moreover,
If λVk < µV , then uVk < 1 and λV deadk = λVk .
If λVk ≥ µV , then uVk = 1 and λV deadk = µV .

Proof. By assumption the task arrival process of V Vk is renewal. Thus the interarrival
times are positive and i.i.d.. Also the service times T V servki are positive and i.i.d.. Thus
each virtual vehicle V Vk is a GI/GI/1 queue.

When λVk < µV , the GI/GI/1 queue is stable by Theorem 1.1 in [15, p. 168]. The
number of tasks waiting in the queue is finite almost surely, the mean interdeparture

time E
[
T deadki − T deadk(i−1)

]
of the VV is 1

λVk
because no tasks are lost and no extra task

is created. Thus λV deadk = λVk . Stability also ensures that liml→∞E
[
ΘV
kl

]
= E

[
ΘV
k

]
and liml→∞E

[
IVkl
]

= E
[
IVk
]
, where ΘV

k and IVk are the generic busy period and idle

period. Thus uVk =
E[ΘVk]

E[ΘVk]+E[IVk]
. According to [22, p. 21], uVk =

λVk
µV

since no tasks are

lost or created in the system. Thus uVk =
λVk
µV

< 1.

When λVk > µV , the GI/GI/1 queue is unstable by Theorem 1.1 in [15, p. 168],
the number of tasks waiting in the queue goes to infinity as time goes to in-
finity. The busy period tends to infinity and the idle period tends to 0, Thus

uVk = liml→∞
E[ΘVkl]

E[ΘVkl]+E[IVkl]
= 1, and the interdeparture time equals the VV service

time. Then λV deadk = µV .

When λVk = µV , the number of tasks waiting in the queue can either be finite, or goes
to infinity as time goes to infinity depending on the arrival process {T aki}. So this case
either goes to case (i) or (ii). In either case, we have uVk = 1 and λV deadk = µV .

When λVk > µV , the GI/GI/1 queue at V Vk is unstable, thus the virtual system time
T V syski = T deadki − T aki → ∞ almost surely [15, p. 168]. Since the customer regards
a VV a replica of an RV, we assume the customer will never run the VV under the
unstable condition. Thus we assume λVk ≤ µV from now on. Also, when λVk = µV ,
we assume the customer only provide task arrival process that results in finite virtual
system time, i.e., T V syski → T V sysk in distribution.

4.2.2 Real Vehicle Queues

Each task, upon arrival, is passed to one of the M real vehicles. Inside each RV
subregion, the RV runs a scheduling policy to decide which task of which VV to
execute when the RV becomes available. The scheduling policies are discussed in
Section 4.3. We allocate the tasks hosted by each VV as follows.

47

Definition 4.1. The VV allocation has the following steps:

(i) Divide the region A into M subregions by computing an M-median of A that
induces a Voronoi tessellation that is equitable with respect to fX(x) following [35].
An M-partition {Am}Mm=1 is equitable with respect to fX(x) if

∫
Am

fX(x) dx = 1
M

for
all m ∈ {1, . . . ,M}.

(ii) The real vehicles assign themselves to the subregions in a one-to-one manner.

(iii) Each RV serves the tasks that fall within its own subregion. The VV hosting the
task is migrated to the RV prior to task execution if the previous task was served by
another RV. This migration incurs the cost quantified in (4.11).

We sequence the tasks contributed by all the virtual vehicles to subregion Am by
their arrival times. The sequence is denoted 〈Task(mj)〉∞j=1. Thus Task(mj) is the
j-th task arrived at real vehicle m. Note each Task(mj) corresponds to some Taskki
hosted by a virtual vehicle k at time T aki. Task(mj) has arrival time T a(mj) = T aki,

location X(mj) = Xki and size T S(mj) = T Ski. Note T a(m(j−1)) ≤ T a(mj) and X(mj) ∈ Am

by construction. We write Task(mj) if the task is labeled according to the RV, and
write Taskki if the task is labeled according to the VV. For the different labels of the
same task, Taskki and Task(mj), since T ak(i−1) ≤ T aki and T a(m(j−1)) ≤ T a(mj), then

i→∞⇔ T aki →∞⇔ T a(mj) →∞⇔ j →∞ (4.20)

Since the task locations Xki are i.i.d. in k and i, and uniformly distributed in region
A, then X(mj) are i.i.d. in j and uniformly distributed in each subregion Am. We
denote by D(m) the distances between two random task locations in subregion Am.
Thus,

D(m) =‖ X(mj) −X(ml) ‖ (4.21)

where X(mj) and X(ml) are two random task locations in subregion Am.

Let D(mj) denote the distance between Task(mj) and the task executed before it under
a scheduling policy φ in subregion Am. In general, D(mj) is policy dependent. We
define a class of policies that produce i.i.d. D(mj) as follows.

Definition 4.2. A scheduling policy φ in a real vehicle subregion Am is called non-
location based if the distance between two consecutively executed tasks is i.i.d..

The common policies in queueing theory such as FCFS, last come first served (LCFS),
random order of service (ROS), and shortest job first (SJF) [10] are non-location
based policies in the sense of Definition 4.2. The scheduling policies we propose in
Section 4.3 such as Earliest Virtual Deadline First (EVDF), Earliest Dynamic Virtual
Deadline First (EDVDF) and credit scheduling policy are shown to satisfy Definition
4.2 in Theorem 4.3.

48

The scheduling policies that utilize the location of the tasks such as nearest neighbor
(NN) and traveling salesman policy (TSP) on a given set of tasks are not non-location
based because the distances between two consecutively executed tasks are not inde-
pendent.

Definition 4.3. The set of M real vehicle subregions {Am}Mm=1 are said to be ho-
mogeneous if they all have the same scheduling policy, and D(m) is i.i.d. for all
m = 1, . . . ,M .

In this section and next, we only consider the homogeneous RV subregions under
non-location based scheduling policies. We denote by D the generic term of D(m).
Then D(mj) is i.i.d. in m and j, and has the same distribution as D.

The service time of Task(mj) by RVm, denoted by TRserv(mj) , is

TRserv(mj) =
D(mj)

vR
+ T S(mj) (4.22)

Since D(mj) and T S(mj) are i.i.d. in m and j, separately, then TRserv(mj) is i.i.d. in m and

j. We denote by TRserv the generic term of TRserv(mj) , and define the generic real vehicle

service rate µR as

µR =
1

E [TRserv]
=

1
E[D]
vR

+ E [T S]
(4.23)

We define

κc =
µR

µV
=

E[L]
vV

+ E
[
T S
]

E[D]
vR

+ E [T S]
(4.24)

Before analyzing the queues at the real vehicles, we list some of the basic results of
the thinning and superposition of stochastic processes for convenience below.

(i) Example 4.3(a) in [59, pp. 75-76], thinning of renewal processes: Given a renewal
process {Sn} with rate λ, let each point Sn for n = 1, 2, . . . be omitted from the
sequence with probability 1 − p and retained with probability p for some constant
p in 0 < p < 1, each such point Sn being treated independently. The sequence
of retained points, denoted by {Spn}, is called the thinned process with retaining
probability p. Then {Spn} is also renewal with rate pλ.

(ii) From [60, Section 14], we know the following proposition for the superposition of
independent, stationary processes. Let Nk(t) be a stationary process with rate λk,
then the superposition of K such independent processes N(t) =

∑K
k=1Nk(t) is also

stationary with rate λ =
∑K

k=1 λk.

(iii) Two stationary stochastic processes are said to be probabilistic replicas of each
other if their generic interarrival times are identically distributed [22, p. 21].

49

The following theorem asserts the queueing systems at each real vehicle is ΣGI/GI/1
[34] under non-location based policies. This means the arrival process at each real
vehicle is the superposition of independent renewal processes and the service time
process has positive i.i.d. interarrival times. It also establishes the critical role of κc

in stability of these queues under the assumption that every customer keeps their VV
stable, i.e., λVk ≤ µV .

Theorem 4.2. Under non-location based scheduling policies, each real vehicle RVm

is a ΣGI/GI/1 queue with task arrival rate λR =
∑K
k=1 λ

V
k

M
. Moreover, assume homo-

geneous real vehicle subregions as in Definition 4.3. Then

(i) all the real vehicle ΣGI/GI/1 queues are probabilistic replicas of each other, i.e.,
the interarrival time and service time of each queue are identically distributed, sepa-
rately.

(ii) Let λVk ≤ µV . When κ < κc, the ΣGI/GI/1 queue at each real vehicle is stable
and TDk exists. When κ > κc, the ΣGI/GI/1 queue at each real vehicle is unstable
when λVk = µV , with κ and κc defined in (4.16) and (4.24).

Proof. (i) By Definition 4.1, our M -Voronoi tessellation creates equitable subregions
and Am is a Voronoi subregion. Then each task in the sequence 〈Taskki〉∞i=1 falls in
subregion Am with probability 1

M
. Hence the arrival time of tasks in the sequence

〈Taskki〉∞i=1 that fall in Am is a thinned process of {T aki}
∞
i=1 with retaining probability

p = 1
M

. We denote the thinned arrival process as {T apki }
∞
i=1. Since {T aki}

∞
i=1 is renewal

with rate λVk , then {T apki }
∞
i=1 is renewal with rate

λVk
M

by Example 4.3(a) in [59, pp.

75-76]. Thus the arrival process in subregion Am,
{
T a(mj)

}∞
j=1

, is the superposition of

{T apki }
∞
i=1, k = 1, . . . , K, or K independent renewal processes. This proves the ΣGI.

A renewal process is also stationary, so
{
T a(mj)

}∞
j=1

is stationary, and the arrival rate

at RVm is λR =
∑K
k=1 λ

V
k

M
by [60, Section 14].

Moreover, the M thinned processes {T apki }
∞
i=1 generated from the same V Vk arrival

process are probabilistic replicas of each other because the retaining probabilities are

all 1
M

. Since the arrival process of each RV subregion,
{
T a(mj)

}∞
j=1

, is the superposition

of thinned replicas from each VV, then
{
T a(mj)

}∞
j=1

are probabilistic replicas in m.

We know that the service times at RVm, TRserv(mj) , are i.i.d. in m and j. This proves

the second GI, and all the real vehicle ΣGI/GI/1 queues are probabilistic replicas
of each other. (i) follows.

(ii) When λVk ≤ µV , when κ < κc, λR =
∑K
k=1 λ

V
k

M
≤

∑K
k=1 µ

V

M
= κµV < κcµV = µR, thus

each ΣGI/GI/1 queue at RVm is stable by Loynes’ stability condition [61]. Taskki
corresponds to Task(mj), we denote by Taskki(mj) for the same task. By (4.20) we

50

know
TRsyski(mj) →p T

Rsys
k(m) (4.25)

Since the all the RV ΣGI/GI/1 queues are probabilistic replicas of each other, then
TRsysk(m) is i.i.d. in m, we denote by TRsysk the generic term of TRsysk(m) . Since a task from

V Vk can fall in any of the RV subregions with probability 1
M

, thus (4.25) becomes

TRsyski(mj) →p T
Rsys
k (4.26)

Also, when λVk < µV , the GI/GI/1 queue at each VV is stable, T V syski → T V sysk in dis-
tribution. When λVk = µV , by our assumption that follows Theorem 4.1, the customer
will provide arrival process that guarantees T V syski → T V sysk in distribution. Thus both
TRsyski and T V syski converges to TRsysk and T V sysk in distribution. The tardiness TDk

defined in (4.8) exists.

When κ > κc and λVk = µV , λR =
∑K
k=1 λ

V
k

M
=

∑K
k=1 µ

V

M
= κµV > κcµV = µR. Thus

each ΣGI/GI/1 queue at RVm is unstable by Loynes’ stability condition [61].

4.3 Scheduling Policies

In this section, we design the scheduling policies inside each RV subregion. We
assumed that the task arrival process {T aki} of V Vk is renewal with generic interarrival
time Iak in Section 4.1. In this section we further assume that Iak is i.i.d. in k, i.e.,
the interarrival times Iaki = T aki − T ak(i−1) are i.i.d. in k and i. We thus denote by
Ia the generic term of Iak . Then the task arrival rate are the same for each V V ,
λVk = λV = 1

E[Ia]
.

Definition 4.4. The set of K virtual vehicles are said to host homogeneous tasks if
the task interarrival times Iaki, locations Xki and sizes T Ski are all i.i.d. in k and i,
separately, k = 1, . . . , K and i = 1, 2,

In this section we assume that all the VVs host homogeneous tasks. Then the steady
state real system time for V Vk, T

Rsys
k , is identically distributed in k. We denote by

TRsys the generic term of TRsysk . Then (4.25) and (4.26) become

TRsyski(mj) →p T
Rsys (4.27)

Also the steady state virtual system time of V Vk, T
V sys
k , is i.i.d. in k. We denote by

T V sys the generic value of T V sysk . Thus

T V syski(mj) →p T
V sys (4.28)

51

Then the tardiness TDk are the same for all the VVs, thus TD is not only the average
value but also the generic term of TDk. We have

TDk = TD =
E
[
max

{
TRsys − T V sys, 0

}]
E [T V serv]

(4.29)

From (4.27), (4.28) and (4.29) we know that when the virtual vehicles are homoge-
neous and the real vehicle subregions are homogeneous, it suffices to analyze only one
RV subregion, and the results represent the generic results of the system.

Let Φ denote a class of non-location based scheduling policies that are non-preemptive
and deadline smooth. A scheduling policy is said to be non-preemptive if under this
policy the real vehicle always complete an initiated task even when a priority task
enters the system in the meanwhile. A scheduling policy is said to be deadline smooth
if under this policy the RV serves all the tasks including those whose deadline has
passed [37]. The common policies in queueing theory such as FCFS, LCFS, ROS
and SJF [10] are non-location based, non-preemptive and deadline smooth policies.
Our scheduling policies introduced in this section such as EVDF, EDVDF and credit
scheduling policy are shown to be non-location based, non-preemptive and deadline
smooth policies in Theorem 4.3.

Let TDφ denote the tardiness as defined by (4.29) under scheduling policy φ ∈ Φ.
We consider the following optimization problem:

Find ψ ∈ Φ s.t.
TDψ = min

φ∈Φ
TDφ (4.30)

for every k = 1, . . . , K.

We propose the scheduling policies Earliest Virtual Deadline First (EVDF) when the
task size is known a priori in Definition 4.5, its variation Earliest Dynamic Virtual
Deadline First (EDVDF) when the task size is not known a priori in Definition 4.6, and
the credit scheduling policy in Definition 4.7. These scheduling policies are motivated
by the simple earliest deadline first and credit scheduler in the cloud computing
literature [36]. The scheduling quantum for us is the task size. The size cannot
be preempted. The Xen schedulers [36] have a constant scheduling quantum and
can preempt tasks. In our kind of cloud computing preemption would waste the
time spent traveling to the location. In this chapter we analyze the value of cloud
computing with moving servers without preemption.

Definition 4.5. Under the Earliest Virtual Deadline First (EVDF) scheduling policy,
when a real vehicle becomes available, the real vehicle always hosts the virtual vehicle
whose current task has the earliest virtual deadline as defined in (4.4) from the pool
of virtual vehicles whose current task falls in the real vehicle subregion.

Definition 4.6. Under the Earliest Dynamic Virtual Deadline First (EDVDF)
scheduling policy, when a real vehicle becomes available, the real vehicle always hosts

52

the virtual vehicle whose current task has the earliest dynamic virtual deadline as
defined in (4.36) from the pool of virtual vehicles whose current task falls in the real
vehicle subregion.

Definition 4.7. Under the credit scheduling policy, when a real vehicle becomes avail-
able, the real vehicle always hosts the virtual vehicle with the maximum current credit
as described in Section 4.3.3 from the pool of virtual vehicles whose current task falls
in the real vehicle subregion.

4.3.1 Earliest Virtual Deadline First

The optimality of our EVDF scheduling policy among all the non-location based non-
preemtive and deadline smooth scheduling policies follows from Theorem 1 of [37].
We restate this result for convenience below.

Theorem 1 of [37]: For any convex function g : R → R, E
[
g
(
Rφ
)]
≤ E

[
g
(
Rψ
)]

whenever φ� ψ.

Theorem 1 of [37] assumes a G/GI/1 queue served by non-preemtive and deadline
smooth scheduling policies. The G in a G/GI/1 queue means the task arrival process
is stationary and ergodic. φ and ψ denote two admissible non-preemptive and deadline
smooth scheduling policies. φ � ψ when φ always chooses a customer having a
deadline earlier than that of the customer chosen by ψ. In particular the earliest
deadline first (EDF) scheduling policy always gives priority to the customer having
the earliest deadline, and the latest deadline first (LDF) one gives priority to the
customer having the latest deadline. Then, by definition EDF � φ� LDF for any
admissible scheduling policy φ. Rφ is the steady-state value of Rn = Dn − Tn −Wn

under policy φ, where Dn, Tn and Wn are the deadline, arrival time and waiting time
of the n-th task.

The following theorem shows that our EVDF, EDVDF and credit scheduling policy
are in the class of non-location based, non-preemptive, and deadline smooth schedul-
ing policies Φ. Moreover, EVDF optimizes tardiness within this class.

Theorem 4.3. (i) Let φ ∈ {EVDF,EDV DF,Credit}, as in Definitions 4.5, 4.6 and
4.7, then φ ∈ Φ, i.e., φ is non-location based, non-preemptive, and deadline smooth.

(ii) Assume homogeneous virtual vehicles and homogeneous real vehicle subregions,
let λR < µR, with λR and µR defined in Theorem 4.2 and (4.23). Then TDEV DF =
minφ∈Φ TD

φ.

Proof. (i) The EVDF, EDVDF and credit scheduling policies schedule only based
on virtual deadlines, dynamic virtual deadlines of each task and credit of each VV,
separately. They are independent of the distance between two consecutively executed

53

tasks, D(mj). Thus D(mj) is the distance between two random task locations in sub-
region Am. Thus D(mj) is i.i.d. in j and has the same distribution as D(m). Thus
the three policies are non-location based. The three policies always serve all tasks,
even if deadlines have passed. Thus they are smooth with respect to the virtual dead-
lines as defined in (4.4). The three policies always completes an initiated task even
when a priority task enters the system in the meanwhile. Thus the three policies are
non-preemptive. This proves part (i).

(ii) Since φ ∈ Φ is non-location based, the queue in an RV subregion is ΣGI/GI/1 by
Theorem 4.2. Since ΣGI is a subset of G, then a ΣGI/GI/1 queue is also a G/GI/1
queue. Also, φ is non-preemptive and deadline smooth, Thus Theorem 1 of [37] holds
in each RV subregion under φ ∈ Φ.

We define R(mj) = T dead(mj)−T a(mj)−WR
(mj), where WR

(mj) is the waiting time of Task(mj),
and is defined as the time difference between the arrival time T a(mj) and when RVm

begins to travel to Task(mj). Thus TRsys(mj) = WR
(mj) + TRserv(mj) .

Thus
max

{
TRsys(mj) − T

V sys
(mj) , 0

}
= −min

{
T V sys(mj) − T

Rsys
(mj) , 0

}
= −min

{
T dead(mj) − T a(mj) −WR

(mj) − TRserv(mj) , 0
}

= −min
{
R(mj) − TRserv(mj) , 0

}
.

When λR < µR, the ΣGI/GI/1 queue at RVm is stable, we have R(mj) → R(m) =
T dead(m) − T a(m) −WR

(m) in distribution. Since all the RV subregions are homogeneous,

we can write the generic term R = T dead − T a −WR.

Thus E
[
max

{
TRsys − T V sys, 0

}]
= E

[
−min

{
R− TRserv, 0

}]
=
∫∞
t=0

E [−min {R− t, 0}] dFTRserv(t),
where FTRserv(t) is the cumulative distribution function (cdf) of TRserv. Since func-
tion g(x) = −min {x− t, 0} is a convex function when t is a constant, and R
has the same definition as R in Theorem 1 of [37], then E

[
−min

{
Rφ − t, 0

}]
≤

E
[
−min

{
Rψ − t, 0

}]
when φ � ψ for any constant t by Theorem 1 of [37]. Thus

E
[
max

{
TRsys − T V sys, 0

}]φ ≤ E
[
max

{
TRsys − T V sys, 0

}]ψ
when φ� ψ, where the

superscript φ means the value is obtained when the scheduling policy is φ.

We know TD =
E[max{TRsys−TV sys,0}]

E[TV serv]
by (4.29). Notice that E

[
T V serv

]
is a constant,

then TDφ ≤ TDψ when φ � ψ. In particular, TDEV DF ≤ TDφ since EVDF � φ
for any φ ∈ Φ. Thus TDEV DF = minφ∈Φ TD

φ.

Different task arrival processes will generate different tardiness values. We identify a

54

worst-case arrival process maximizing tardiness. We prove the special case η = 1 of
Definition 4.8 generates the worst case. This is Theorem 4.4.

Definition 4.8. An arrival process {T aki} is called an η-arrival process if

T aki =

{
0, i ≤ η
T deadk(i−η), i > η

(4.31)

where η ∈ N.

For η = 1 the definition implies the arrival of the current task is the virtual deadline
of the previous task. Thus the service times are also the interarrival times and the
process at the output of the VV is identical to the arrival process, i.e., it is also an
η = 1 process. The following theorem establishes the special role of the η = 1 process.

Theorem 4.4. Assume homogeneous virtual vehicles and homogeneous real vehicle
subregions under the EVDF scheduling policy, let κ ≤ κc, then the η-arrival process
with η = 1 for all the virtual vehicles achieves the maximum TD among all the renewal
processes.

Proof. To prove the η-arrival process with η = 1 maximizes TD, we show for any
given task locations {Xki} and task sizes

{
T Ski
}

, an arbitrary renewal arrival process
{T aki} will have a TD less than that of the η = 1 arrival process. We denote by{
T
a(η=1)
ki

}
the η = 1 arrival process. Thus T

a(η=1)
ki = T

dead(η=1)
k(i−1) by Definition 4.8. For

an arbitrary renewal arrival process {T aki}, we construct an arrival process {T a1
ki } such

that T a1
ki = max

{
T aki, T

a(η=1)
ki

}
for all k and i. Thus T a1

ki = max
{
T aki, T

dead(η=1)
k(i−1)

}
. We

construct another arrival process {T a2
ki } such that T a2

ki = max
{
T a1
ki , T

dead1
k(i−1)

}
. Note

the three processes are constructed to have the same {Xki} and
{
T Ski
}

. With the
same {Xki} and

{
T Ski
}

, we denote by TDφ ({T aki}) the tardiness under policy φ when
the arrival processes of the V Vk are {T aki}. We want to show TDEV DF ({T aki}) ≤
TDEV DF ({T a2

ki }) and TDEV DF ({T a2
ki }) ≤ TDEV DF

({
T
a(η=1)
ki

})
, separately.

Since {Xki} and
{
T Ski
}

are the same for all three processes, then the service times
T V servki are the same for the processes. For an arbitrary arrival process {T aki}, we have

T deadki ≥ T
dead(η=1)
ki by (4.4) and Definition 4.8.

Comparing {T aki} and {T a1
ki }, we have T aki ≤ T a1

ki , and T deadki = T dead1
ki for all k and

i. The latter can be seen by induction on (4.4). First, T deadk1 = T dead1
k1 . Sec-

ond, if T deadk(i−1) = T dead1
k(i−1), then T deadki = max

{
T aki, T

dead
k(i−1)

}
+ T V servki , and T dead1

ki =

max
{

max
{
T aki, T

dead(η=1)
k(i−1)

}
, T dead1

k(i−1)

}
+ T V servki = max

{
T aki, T

dead1
k(i−1)

}
+ T V servki since

T dead1
k(i−1) ≥ T

dead(η=1)
k(i−1) . Thus T deadk(i−1) = T dead1

k(i−1) implies T deadki = T dead1
ki . This is true

55

for every i by induction. Similarly, comparing {T a1
ki } and {T a2

ki }, we have T a1
ki ≤ T a2

ki ,
and T dead1

ki = T dead2
ki by induction. Thus T aki ≤ T a1

ki ≤ T a2
ki and T deadki = T dead1

ki = T dead2
ki

for all k and i.

In each RVm subregion, we construct a scheduling policy φ ∈ Φ, possibly non-work-
conserving, such that under φ and {T aki}, k = 1, . . . , K, RVm will copy the behavior
of RVm under EVDF and {T a2

ki }, i.e., RVm flies to, executes, and completes each
task at the same time, separately, comparing the two cases. Such φ exists because
the set of tasks available to RVm under {T a2

ki } is always a subset of the set of tasks
available to RVm under {T aki} at any time since T aki ≤ T a2

ki for all k and i. Thus
TDφ ({T aki}) = TDEV DF ({T a2

ki }). Also TDEV DF ({T aki}) ≤ TDφ ({T aki}) by Theorem
4.3. So TDEV DF ({T aki}) ≤ TDEV DF ({T a2

ki }) for any given {Xki} and
{
T Ski
}

.

Under the arrival process {T a2
ki }, we have T a2

ki = max
{
T a1
ki , T

dead1
k(i−1)

}
and

T dead1
k(i−1) = T dead2

k(i−1). By (4.4) T dead2
ki = max

{
max

{
T a1
ki , T

dead1
k(i−1)

}
, T dead2

k(i−1)

}
+ T V servki =

max
{
T a1
ki , T

dead1
k(i−1)

}
+ T V servki = T a2

ki + T V servki . Thus T V sys2ki = T dead2
ki − T a2

ki = T V servki .

Thus the virtual system time is the same under both {T a2
ki } and

{
T
a(η=1)
ki

}
, and equals

T V servki . Also, T a2
ki − T dead2

k(i−1) = max
{
T a1
ki , T

dead1
k(i−1)

}
− T dead2

k(i−1) = max
{
T a1
ki , T

dead2
k(i−1)

}
−

T dead2
k(i−1) ≥ 0. Thus under {T a2

ki }, V Vk idles for T a2
ki − T dead2

k(i−1) ≥ 0 before generating

Taskki. But under
{
T
a(η=1)
ki

}
, V Vk never idles, i.e., T

a(η=1)
ki − T dead(η=1)

k(i−1) = 0.

When every VV is under
{
T
a(η=1)
ki

}
, the interarrival time is T V servki . The arrival process

of the subregion of RVm,
{
T
a(η=1)
(mj)

}
, is the superposition of K thinned renewal pro-

cesses of
{
T
a(η=1)
ki

}
by Theorem 4.2. When every VV is under {T a2

ki }, the interarrival

time is T V servki + Idki, where Idki ≥ 0 is the idle time between two consecutive tasks.

Thus the arrival process of the subregion of RVm,
{
T a2

(mj)

}
, is the superposition of K

thinned renewal processes of {T a2
ki }. Thus the generic interarrival time of

{
T a2

(mj)

}
,

Ia2
(m), is stochastically greater than that of

{
T
a(η=1)
(mj)

}
, I

a(η=1)
(m) , i.e., Ia2

(m) ≥st I
a(η=1)
(m) . A

random variable A is stochastically greater than B, denoted A ≥s tB, if P (A > t) ≥
P (B > t) for all −∞ < t <∞. Thus, we can construct a scheduling policy φ ∈ Φ in

the subregion of RVm under
{
T a2

(mj)

}
such that under φ, RVm executes tasks in the

same order as EVDF but always idles for Ia2
(m) − I

a(η=1)
(m) right after the completion of

each task. Since the virtual system time of each task are the same for both cases.

Thus TDφ ({T a2
ki }) = TDEV DF

({
T
a(η=1)
ki

})
. Also TDEV DF ({T a2

ki }) ≤ TDφ ({T a2
ki })

by Theorem 4.3. Thus TDEV DF ({T a2
ki }) ≤ TDEV DF

({
T
a(η=1)
ki

})
for any given {Xki}

and
{
T Ski
}

.

56

So we have TDEV DF ({T aki}) ≤ TDEV DF
({
T
a(η=1)
ki

})
for an arbitrary renewal arrival

process {T aki} for any given {Xki} and
{
T Ski
}

. Thus this is also true when we take
expectation on {Xki} and

{
T Ski
}

. So the η-arrival process with η = 1 achieves the
maximum TD among all the renewal processes.

The provider wants to know the right gain κ for a given number of real vehicles M
and a given task arrival process {T aki} for each virtual vehicle for a guaranteed level
of tardiness. We assume homogeneous virtual vehicles and homogeneous real vehicle
subregions, and consider the case when every customer is fully utilizing their VVs,
i.e., λV = µV . Under a scheduling policy φ, if one fixes the number of real vehicles M
and increases the number of virtual vehicles, one increases the gain κ, but increases
the tardiness TD, thus reducing the performance isolation. Conversely at any level,
say TD = α for the tardiness there is a largest value of κ in the sense that any increase
in the number of virtual vehicles without increase in M will increase the tardiness
TD above the level α. We denote this largest value of κ by κφα(M) at each α. We
denote by TDφ(M,κ) the tardiness when the number of RVs is M and the gain is κ
under scheduling policy φ. Thus κφα(M) is defined as

κφα(M) = max
TDφ(M,κ)≤α,λV =µV

κ (4.32)

Recall that L is the generic term of Lki as defined in (4.2), and D is the generic term
of D(m) as defined in (4.21). We assume each RV subregion satisfies

E[D] =
c1E[L]√

M
,E
[
D2
]

=
c2E [L2]

M
(4.33)

where c1 and c2 are positive constants. In particular, when region A and subregions
Am are squares, c1 = c2 = 1.

The following theorem asserts the largest achievable gain without compromising per-
formance isolation actually increases with the number of real vehicles M . In other
words, larger systems are able to support more customers per real vehicle without
compromising performance isolation. We call this economy of scale [38].

Theorem 4.5. Assume homogeneous virtual vehicles and homogeneous real vehicle
subregions satisfying (4.33) under the EVDF scheduling policy. κEV DFα (M) increases

with M . Moreover, when T Ski = 0, κEV DFα (M) is Θ
(√

M
)

. When E
[
T S
]
> 0,

κEV DFα (M) < 1 + E[L]
vV E[TS]

.

Proof. Since this theorem is only about the EVDF scheduling policy, we omit the
superscript EV DF in the notations.

From (4.29) we know it suffices to analyze only one RV subregion to obtain the average

tardiness of the system TD =
E[max{TRsys−TV sys,0}]

E[TV serv]
.

57

From Theorem 4.2 we know that each RVm is a ΣGI/GI/1 queue with arrival rate

λR =
∑K
k=1 λ

V
k

M
= KλV

M
= κλV = κµV . Let TRsys(M,κ) denote the real system time

when the number of RVs is M and the gain is κ. Let E[D](M) and µR(M) denote the
E[D] and µR values when the number of RVs is M . If M1 < M2, then E[D] (M1) >
E[D] (M2) by (4.33). Thus µR (M1) < µR (M2) by (4.23). Notice that the arrival
rate of both the ΣGI/GI/1 queues under M1 and M2 are the same λR = κµV . Then
TRsys(M1, κ) >st T

Rsys(M2, κ) because the arrival rate does not change but service
rate increases. Utilizing the fact that A ≥st B if and only if for all non-decreasing
functions g, E [g(A)] ≥ E [g(B)], and noticing that the virtual system time T V sys

does not change with M or κ, and g(x) = max(x, 0) is non-decreasing, we have
TD (M1, κ) > TD (M2, κ). Thus ∃κ′ > κ, s.t. TD (M1, κ) = TD (M2, κ

′). Thus
κα (M1) < κα (M2) by (4.32). Thus κα(M) increases with M .

κα(M) is defined based on λV = µV . By Theorem 4.2 we know that the ΣGI/GI/1
queue at each real vehicle is unstable when κ > κc, then we should keep κ ≤ κc.

Thus κα(M) ≤ κc =
E[L]

vV
+E[TS]

E[D]

vR
+E[TS]

by (4.24). When T Ski = 0, substituting (4.33) we have

κα(M) ≤ κc = vR
√
M

c1vV
. Then κα(M) is O

(√
M
)

.

To establish the lower bound of κα(M), we first analyze the tardiness under FCFS.
Since K = κα(M)M , and κα(M) increases with M , then as M →∞, K →∞. The
superposition of independent renewal processes converges to a Poisson process as the
number of component processes tend to infinity [62]. Then the ΣGI/GI/1 queue of
each subregion becomes an M/GI/1 queue with arrival rate λR = κα(M)µV as both
M and K goes to infinity. Since the task size T Ski = 0, the service rate of the queue is
vR

E[D]
by (4.23). By Pollaczek-Khinchine formula [63, 64] we have the expected waiting

time of a task in the M/GI/1 queue under FCFS, E
[
WR(FCFS)

]
=

λR
E[D2]
(vR)2

2(1−λR E[D]

vR
)
.

TRsys(FCFS) = WR(FCFS)+ D
vR

, T V sys = W V + L
vV

, whereW V is the steady state waiting
time of a task in the GI/GI/1 queue at each virtual vehicle. T V sys and T V serv is only
determined by the GI/GI/1 queue at each virtual vehicle, and do not depend on
the scheduling policy of each RV subregion. When M → ∞, D

vR
≤ L

vV
almost surely

(a.s.). Thus TRsys(FCFS) − T V sys = WR(FCFS) + D
vR
−W V − L

vV
≤ WR(FCFS) a.s..

Thus TDFCFS =
E[max{TRsys(FCFS)−TV sys,0}]

E[TV serv]

≤ E[max{WR(FCFS),0}]
E[TV serv]

= E[WR(FCFS)]
E[TV serv]

=
λR

E[D2]
(vR)2

2E[TV serv](1−λR E[D]

vR
)

a.s. when M →∞.

58

Since EVDF achieves minimum TD by Theorem 4.3, TDEV DF = α implies α ≤
λR

E[D2]
(vR)2

2E[TV serv](1−λR E[D]

vR
)
.

Substituting (4.33) and λR = κα(M)µV we have

κα(M) ≥ 2αE[TV serv]

2αE[TV serv]µV c1
E[L]

vR
√
M

+µV c2
E[L2]

(vR)2M

≥ 2αE[TV serv]
2αE[TV serv]µV c′1

E[L]

vR
√
M

= vR
√
M

µV c′1E[L]
for some c′1 > c1 when M → ∞. Thus κα(M) is

Ω
(√

M
)

.

Thus we have κ(α) is Θ
(√

M
)

when T Ski = 0.

When E
[
T S
]
> 0, κα(M) ≤ κc =

E[L]

vV
+E[TS]

E[D]

vR
+E[TS]

<
E[L]

vV
+E[TS]
E[TS]

= 1 + E[L]
vV E[TS]

.

We define the travel ratio of V Vk as the expected travel time over the expected service
time of a task.

rtr =
E[L]
vV

E [T V serv]
=

E[L]
vV

E[L]
vV

+ E [T S]
(4.34)

Theorem 4.6. (i) Under the allocation policy in Definition 4.1, MCk ≤ rtrBV kv
V .

Moreover, when V Vk is fully utilized MCk ≥
(
1− 1

M

)
rtrBV kv

V .

(ii) Under the η-arrival process with η = 1, SLk ≤ rtr ≤ 1.

Proof. (i) By definition, MCk = BV k
E[ZkL]

E[Ideadk]
. Zk indicates migration between two

consecutive tasks. Thus E [ZkL] ≤ E[L]. By Theorem 4.1 λV deadk ≤ µV . Since
λV deadk = 1

E[Ideadk]
and µV = 1

E[TV serv]
, then E

[
Ideadk

]
≥ E

[
T V serv

]
. Thus MCk ≤

BV k
E[L]

E[TV serv]
= BV k

E[L]

vV

E[TV serv]
vV = BV krtrv

V when substituting (4.34).

When V Vk is fully utilized, λV deadk = µV by Theorem 4.1, thus E
[
Ideadk

]
= E

[
T V serv

]
.

Greater L implies the distance between two consecutive tasks are larger, then it is
more probable that the two tasks will fall in different RV subregions and cause a mi-
gration, i.e., P (Zk = 1 |L) increases with L. Thus L and Zk are positively correlated.
Then Cov (Zk, L) ≥ 0. Thus E [ZkL] = E [Zk]E[L] + Cov (Zk, L) ≥ E [Zk]E[L].
Also, P (Zk = 0) = 1

M
and P (Zk = 1) = 1 − 1

M
since Zk indicates whether two

consecutive tasks fall in the same RV subregion. Thus E [Zk] = 1 − 1
M

. Then

MCk ≥ BV k
E[Zk]E[L]
E[TV serv]

=
(
1− 1

M

)
BV k

E[L]
E[TV serv]

=
(
1− 1

M

)
BV krtrv

V .

(ii) By Definition 4.8, T V sysk = L
vV

+T S. Also TRsysk ≥ D
v

+T S. Thus T V sysk −TRsysk ≤

59

L
vV

+ T S − D
v
− T S ≤ L

vV
. Thus SLk =

E[max{TV sysk −TRsysk ,0}]
E[TV serv]

≤ E[max{ L

vV
,0}]

E[TV serv]
=

E[L

vV
]

E[TV serv]
= rtr =

E[L]

vV

E[L]

vV
+E[TS]

≤ 1.

4.3.2 Earliest Dynamic Virtual Deadline First

When the task sizes are not known a priori, the provider only knows the task size
after execution, the RV hosts the VV whose current task has the earliest dynamic
virtual deadline.

The task size may not be known a priori in practice as assumed by our EVDF schedul-
ing policy. Therefore we define and evaluate another scheduling policy named Earliest
Dynamic Virtual Deadline First (EDVDF) which assigns task virtual deadlines based
on an estimated task size prior to task completion and updates size to the true value
after completion. (4.35) and (4.36) specify the deadline computation. T S

′

ki denotes
the task size estimate. We define the estimated service time of V Vk on Taskki as

T V serv
′

ki =
Lki
vV

+ T S
′

ki (4.35)

The dynamic virtual deadline T deadki (t) is calculated as follows.

T deadki (t) =

 max
{
T aki, T

dead
k(i−1)(t)

}
+ T V serv

′

ki , t < T compki

max
{
T aki, T

dead
k(i−1)(t)

}
+ T V servki , t ≥ T compki

(4.36)

where T deadk0 ≡ 0 and T V servki is given in (4.3).

When Taskki is completed at t = T compki by an RV, T Ski is known, T deadki (t) is updated,
the scheduling policy updates all the tasks hosted by V Vk following Taskki, i.e.,
updates T deadk(i+1)(t), T

dead
k(i+2)(t), . . . according to equation (4.36). The real vehicle then

serves the next task with the earliest T deadki (t). In this way the scheduling policy
utilizes the actual task sizes as they become known.

In our implementation of EDVDF in Section 4.4, the task size estimate is set to be
T S
′

ki = E
[
T Sexek

]
, where

{
T Sexek

}
denotes the sizes of the set of previously executed

tasks hosted by V Vk. E
[
T Sexek

]
= 0 if

{
T Sexek

}
is empty. Time-series methods can

also be used to estimate T S
′

ki .

4.3.3 Credit Scheduling Policy

We adopt the credit scheduler described in [65] with some changes for the our spatial
case. Under the credit scheduling policy, each VV keeps a balance of credits which

60

can be negative. Each credit has a value of 1 second of RV time while it emulates the
VV perfectly. A token bucket algorithm [66] is implemented to manage the credits of
each VV. Each VV has a bucket. Credits are added to the bucket at constant rate 1
per second, and are expended during service. The bucket can hold at most c credits.
The inflow credits are discarded when the bucket is full.

As shown in Figure 4.2, VVs are divided into three states: UNDER, with a non-
negative credit balance, OVER, with a negative credit balance, and INACTIVE or
halted. The VVs are listed in decreasing order of credit balance. Thus, those in
UNDER state are ahead of those in OVER state. The VV at the head of the queue
has the most credits and is selected for execution when an RV becomes available.
In work-conserving (WC) mode, when no VVs are in the UNDER state, one in the
OVER state will be chosen, allowing it to receive more than its share of RV time. In
non-work-conserving (NWC) mode, the RV will go idle instead.

Current'
VV'

Become&ac(ve&with&0&
or&remaining&credits&

Un" U2' U1'On" O2' O1'
When&

credits&>&0&

INACTIVE&
VVs&

Head&of&the&
run&queue&

Ac(ve?&

No&

Yes&

Enqueue&in&the&order&
of&decreasing&credits&

OVER& UNDER&

Sorted&in&decreasing&
order&of&credits&

credits'credits' credits'credits'credits' credits' credits'

RVs&

Figure 4.2. The credit scheduling policy.

The VV with the most credits is called the current VV, say V Vk. The token bucket
algorithm is illustrated in Figure 4.3. When an RV becomes available, the RV will
travel to and execute the current task hosted by V Vk, say Taskki. The scheduler debits
T V serv

′

ki credits from the bucket of V Vk. T
V serv′

ki is calculated according to (4.35). The
scheduler finds the VV with the maximum credit balance, and the VV with the most
credits will become the new current VV. When Taskki is completed, the scheduler will
know the size T Ski and compute the true service time T V servki . The consumed credits
of Taskki, T

V serv
ki , is calculated according to (4.3). This is the appropriate credits,

or RV time, the scheduler should debit for executing Taskki. The scheduler returns
T V serv

′

ki −T V servki credits to V Vk to adjust the debited credits to be exactly T V servki . This
method of debiting T V serv

′

ki before execution and adjusting to T V servki after execution
is because the scheduler does not know the size of Taskki, and thus does not know
T V servki , before execution. If the task size T Ski is known a priori, then T V serv

′

ki = T V servki .
The right amount of credits will be debited at beginning and the adjusted amount
equals 0.

61

Credit inflow at rate 1!

Debit TV’k
i credits when an

RV begins to serve task Ck
i!

Maximum credits:!c!γ(t)!

Return TV’k
i - TV

k
i credits

when task Ck
i is completed!

Figure 4.3. The token bucket algorithm.

When Taskki is completed, there are two ways V Vk goes:

(i) Enqueue according to the credit balance such that the list of VVs is in decreasing
order of credits.

(ii) Go INACTIVE if the next Taskk(i+1) has not arrived yet, or if the customer’s
reservation of V Vk ends.

VVs in an INACTIVE state are divided into two categories:

(i) The VV is still under the reservation of a customer, all the arrived tasks hosted
by the VV have been executed and the next task has not arrived yet. In this case,
the credits continue flowing into the bucket up to a maximum of c. The VV becomes
active again with the remaining credit balance and enqueues in decreasing order of
credits upon arrival of the next task.

(ii) The VV is not under reservation. In this case, the credits stop flowing to the
bucket. The VV becomes active again with 0 credit balance and enqueues the active
VVs in decreasing order of credits when a customer begins to reserve it.

4.4 Experiments

We simulate the system under homogeneous real vehicles and homogeneous virtual
vehicles under Earliest Virtual Deadline First (EVDF), Earliest Dynamic Virtual
Deadline First (EDVDF) and credit scheduling policies in this section.

62

4.4.1 Simulation Setup

All the simulations are done in a square region A of size a × a, where a = 10 m.
The number of RVs is M ,

√
M ∈ N. The speed of the RVs equals the virtual speed

vR = vV = 1 m/s. Each virtual vehicle hosts tasks with η = 1 arrival process. Since
the η = 1 process maximizes tardiness, and excludes multiplexing gain by having
each virtual vehicle fully utilized. So this is a worst-case simulation, and the gain
observed is migration gain only. The performance measures include the performance
isolation and fairness index based on tardiness and delivery probability, together with
slack and migration cost. We simulate 1300 tasks per VV but calculate the metrics
using only the 100-th to 600-th tasks to ensure the metrics are computed at steady-
state. When the 600-th task of each VV is under execution, all the other VVs still
have tasks. Each task is uniformly distributed in region A. The square region A is
divided into M square subregions, each with edge length a√

M
. Table 4.1 summarizes

the simulation setup.

Table 4.1. Simulation setup

Size of region A 10 m × 10 m
Virtual speed, vV 1 m/s

RV speed, vR 1 m/s
Task size, T Ski Uniformly distributed

Task location, Xki Uniformly distributed in region A
Task arrival process, {T aki} η = 1 arrival process

Tasks per VV 1300
Tasks used in metric calculation 100th - 600th task of each VV

Policies EVDF, EDVDF and Credit scheduling policy

4.4.2 Simulation Results

Figure 4.4 shows the performance isolations and fairness indices based on tardiness
and delivery probability, together with slacks and migration costs under EVDF for
different numbers of real vehicles and gains, or different numbers of virtual vehicles,
when the task size is zero.

Figure 4.5 verifies Theorem 4.5. Subfigures 4.5(a) and 4.5(b) are the contours of
performance isolations based on tardiness and delivery probability shown in subfigures
4.4(a) and 4.4(b) when the task size is zero. We can see that the provider supports a
given number of virtual vehicles with significantly fewer real vehicles that travel at the
virtual speed while guaranteeing high performance isolation, for example, 750 VVs
Vs. 100 RVs while guaranteeing the relative expected tardiness to be less than 1% in
4.5(a), and 560 VVs Vs. 100 RVs while guaranteeing the average delivery probability
is greater than 98%. The migration gain increases in the order of the square root

63

0
20

40
60

80
100

0
2

4
6

8
10

 0%

100%

200%

300%

400%

500%

600%

700%

RVs, M

EVDF: Tardiness − M − κ Relation when η = 1 and TS
ki = 0

VVs / # RVs, κ

Ta
rd

in
es

s,
 T

D

0
20

40
60

80
100

0
2

4
6

8
10

0

0.2

0.4

0.6

0.8

1

RVs, M

EVDF: Delivery Probability − M − κ Relation when η = 1 and TS
ki = 0

VVs / # RVs, κ

D
el

iv
er

y
pr

ob
ab

ilit
y,

 D
P

(a) (b)

0
20

40
60

80
100

0
2

4
6

8
10

0.4

0.5

0.6

0.7

0.8

0.9

1

RVs, M

EVDF: Fairness on Tardiness when η = 1 and TS
ki = 0

VVs / # RVs, κ

Fa
irn

es
s

in
de

x,
 F

I(T
D k)

0
20

40
60

80
100

0
2

4
6

8
10

0.975

0.98

0.985

0.99

0.995

1

1.005

RVs, M

EVDF: Fairness on Delivery Probability when η = 1 and TS
ki = 0

VVs / # RVs, κ

Fa
irn

es
s

in
de

x,
 F

I(D
P k)

(c) (d)

0
20

40
60

80
100

0
2

4
6

8
10

0

1

2

3

4

5

RVs, M

EVDF: Slack − M − κ Relation when η = 1 and TS
ki = 0

VVs / # RVs, κ

Sl
ac

k,
 S

L

0
20

40
60

80
100

0
2

4
6

8
10

0.98

0.985

0.99

0.995

1

1.005

RVs, M

EVDF: Migration Cost − M − κ Relation when η = 1 and TS
ki = 0

VVs / # RVs, κ

M
ig

ra
tio

n
co

st
, M

C

(e) (f)

Figure 4.4. Tardinesses, delivery probabilities, fairness indices, slacks, and migration
costs with different numbers of RVs and gains when the task size is zero under the
η = 1 process under the EVDF scheduling policy.

64

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

0.05

0.05

0.05

0.
05

0.02

0.02

0.02

0.
02

0.01

0.01

0.0
1

EVDF: Contour of Tardiness when η = 1 and TS
ki = 0

RVs, M

VV

s
/ #

 R
Vs

, κ κc

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

0.9

0.9

0.9

0.9

0.95

0.95

0.9
5

0.98

0.98

EVDF: Contour of Delivery Probability when η = 1 and TS
ki = 0

RVs, M

VV

s
/ #

 R
Vs

, κ κc

(a) (b)

10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

0.0
5

0.05
0.05

0.05

0.02

0.02

0.02
0.01

0.0
1

EVDF: Contour of Tardiness when η = 1 and E[TS] = E[L] / 4vV

RVs, M

VV

s
/ #

 R
Vs

, κ

κc < 5

0.05
10 20 30 40 50 60 70 80 90 100

1

1.5

2

2.5

3

3.5

0.9
0.9

0.9

0.9
0.95

0.95

EVDF: Contour of Delivery Probability when η = 1 and E[TS] = E[L] / 4vV

RVs, M

VV

s
/ #

 R
Vs

, κ

κc < 5

(c) (d)

Figure 4.5. Contours of tardiness and delivery probability with different numbers of
RVs and gains when the task size is zero and E

[
T S
]

= E[L]
4vV

under the η = 1 process
under the EVDF scheduling policy.

65

of the number of real vehicles while guaranteeing the same performance isolation
based on tardiness and delivery probability, showing economy of scale. Subfigures
4.5(c) and 4.5(d) are the contours of performance isolations based on tardiness and
delivery probability when the mean task size is 25% of the mean flying time, i.e.,
E
[
T S
]

= E[L]
4vV

. We can see that the gain is upper bounded by a constant as asserted
in Theorem 4.5. Also, for a given performance isolation level and number of real
vehicles, the gain or the number of virtual vehicles hosted decreases as the task size
increases comparing Subfigures 4.5(a) and 4.5(c), 4.5(b) and 4.5(d), separately, for
example, 150 VVs Vs. 100 RVs while guaranteeing the relative expected tardiness
to be less than 1% in 4.5(a), and 130 VVs Vs. 100 RVs while guaranteeing the
average delivery probability is greater than 98%. The gain diminishes as the task
size increases. The virtual vehicle generates gain when traveling, not when unmoving
executing.

Figure 4.6 also shows the diminishing gain as the relative task size
E[TS]vV
E[L]

increases.

For example, to guarantee the average relative tardiness to be less than 1% using 100
RVs, the number of VVs hosted decreases from 750 to 150 as the relative task size
increases from 0 to 25%.

0 0.05 0.1 0.15 0.2 0.25
100

200

300

400

500

600

700

800

900
Number of VVs vs. Relative task size: M = 100

E[TS] vV / E[L]

N
um

be
r o

f V
Vs

, K

TD = 0.01
TD = 0.02
TD = 0.05

Figure 4.6. The number of virtual vehicles hosted by 100 real vehicles to guarantee a
certain level of tardiness under EVDF with different task sizes.

Figure 4.7 shows the performance isolations based on tardiness with different numbers
of RVs M to host the same number of VVs K under EVDF with different task sizes.
We can see in Subfigure 4.7(a) that when T Ski = 0 and the number of VVs K is fixed,
average relative expected tardiness decreases as the number of RVs M increases. This
change becomes very sharp when M ≈ 23 for the case K = 100. The average tardiness

66

is very small once M is greater than 28. This sharp change is also revealed in the case
when K = 300 and K = 500, where the average tardiness becomes very small once
M ≥ 52 and M ≥ 74, respectively. The transition between low and high performance
isolations is sharp. This implies that the system is very easy to operate because the
provider can easily determine the appropriate number of real vehicles to host a give
number of virtual vehicle and a guaranteed performance isolation. For the case when
the mean task size E

[
T S
]

= E[L]
4vV

as shown in Subfigure 4.7(b), similar phenomenon
follows, but the number of RVs needed to guarantee the same performance isolation
increases to host the same number of VVs. This also implies that the gain diminishes
as the task size increases.

100100100

100
100

300300

300
300

500
500

500

Tardiness with Different M for the Same K, TSki = 0

RVs, M

Ta
rd

in
es

s,
 T

D

10 20 30 40 50 60 70 80 90 100

100%

200%

300%

400%

500%

600%

700%

100100

100 300

Tardiness with Different M for the Same K, E[TS] = E[L] / 4vV

RVs, M

Ta
rd

in
es

s,
 T

D

10 20 30 40 50 60 70 80 90 100

 200%

 400%

 600%

 800%

1000%

1200%

1400%

1600%

1800%

(a) (b)

Figure 4.7. Tardiness with different numbers of RVs M for the same number of VVs
under EVDF for different task sizes.

Figure 4.8 compares EVDF, EDVDF and credit scheduling policies on the same set-
tings as Subfigures 4.5(c) and 4.5(d). We can see that EVDF achieves higher gain
than EDVDF, and EDVDF achieves higher gain than the credit scheduling policy
for a given number of RVs and a guaranteed performance isolation based on both
tardiness and delivery probability.

4.5 Summary

We proposed the concept of a virtual vehicle in multi-customer systems with location
specific tasks to create performance isolation [3], which enables cloud computing in
space. In Section 4.1, we illustrated the role of the virtual vehicle in cloud computing
in space. In the service-level agreement (SLA), each virtual vehicle has a virtual
speed vV , and the performance of each virtual vehicle is measured by tardiness and
delivery probability. To quantify performance isolation and fairness across virtual
vehicles, we used the measure PI [28] and Jain’s fairness indices FI [29]. In Section
4.2, we designed virtual vehicle allocation and scheduling policies. The allocation

67

10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

2.2

RVs, M

VV

s
/ #

 R
Vs

, κ

EVDF, EDVDF and Credit: Contour of Tardiness

0.05

0.05

0.05

0.02

0.02

0.02

0.05

0.05

0.05

0.02

0.02

0.02

0.05

0.05

0.05

0.02

0.02

0.0
5

EVDF
EDVDF
Credit

10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

RVs, M

VV

s
/ #

 R
Vs

, κ

EVDF, EDVDF and Credit: Contour of Delivery Probability

0.9

0.9

0.9 0.95

0.9

0.9

0.9 0.95

0.9

0.9

0.9
0.95

EVDF
EDVDF
Credit

(a) (b)

Figure 4.8. Comparison of EVDF, EDVDF and Credit scheduling policies on tardiness
and delivery probability when the mean task size E

[
T S
]

= E[L]
4vV

under the η = 1
process.

involves dividing the service region into equitable subregions. The real vehicles travel
less after this division. The scheduling policies include earliest virtual deadline first,
earliest dynamic virtual deadline first and credit scheduling policies, adapted from
the CPU schedulers in conventional cloud computing [36].

We analyzed the system in Section 4.2 following standard results in queueing theory
[15, 34], stochastic and dynamic vehicle routing [1, 12, 17], and soft real-time systems
[26, 27]. Each virtual vehicle is a GI/GI/1 queue [15] by Theorem 4.1, and each real
vehicle is a ΣGI/GI/1 queue [34] by Theorem 4.2. We showed that EVDF minimizes
tardiness in Theorem 4.3 by utilizing the optimality of earliest deadline first in real-
time queues [37]. We also identified the η = 1 arrival process (Definition 4.8) as the
worst-case arrival process that maximizes tardiness among all the renewal processes
in Theorem 4.4. We showed task size dependent economy of scale [38] in Theorem
4.5.

Afterwards, we simulated the system under the three scheduling policies under the
worst-case arrival process - the η = 1 arrival process. Simulation results show that (i)
a virtual vehicle performs as well as a real vehicle with high performance isolation. (ii)
The provider can support a given number of virtual vehicles with significantly fewer
real vehicles that travel at the virtual speed while guaranteeing high performance
isolation.

68

Chapter 5

Conclusion

The contribution of this dissertation to systems with task arrivals in time and space is
twofold: (i) In the single-customer case, we provided a stability condition in Chapter
2, and an approximation for the system time distribution in Chapter 3 for a (real)
vehicle routing problem, the Dynamic Traveling Repairman Problem (DTRP) [1].
(ii) In the multi-customer case, we proposed the concept of a virtual vehicle to create
performance isolation [3] in Chapter 4, enabling cloud computing in space.

First in Chapter 2, we proved a necessary and sufficient condition for stability in
Theorem 2.5 in the Dynamic Traveling Repairman Problem (DTRP) [1] under the
class of Polling-Sequencing (P-S) policies (Definition 2.1) satisfying unlimited-polling
(Definition 2.4) and economy of scale (Definition 2.2). The number of tasks inside
each polling partition was shown to be a Markov chain in Theorem 2.1. Non-location
based policies and some common location based policies such as TSP, NN and DA
were shown to have economy of scale in Theorem 2.3. The P-S class includes some of
the policies proven to be optimal for the expectation of system time under light and
heavy loads in the DTRP literature.

Then in Chapter 3, we gave a good approximation of the distribution of the sys-
tem time that is easy to compute under the PART-n-TSP policy by utilizing the
approximation results of the distribution of system time T , together with E[T] and
V ar[T] known for polling systems [23, 24]. We compared PART-n-TSP with PART-
TSP [2] and Nearest Neighbor [1] on E[T] and σ[T] in Tables 3.1 and 3.2, since the
latter two are considered near optimal in the literature. The results show that in
practice PART-n-TSP achieves lower σ[T] than PART-TSP and NN and lower E[T]
than PART-TSP when the load ρ is not too small or too large. We also proved that
PART-n-TSP is E[T] optimal under light load (ρ→ 0+) and asymptotically optimal
under heavy load (ρ→ 1−) in Theorem 3.1.

Next in Chapter 4, we proposed the concept of a virtual vehicle in the multi-customer

69

case to create performance isolation [3], which enables cloud computing in space. In
Section 4.1, we illustrated the role of the virtual vehicle in cloud computing in space.
In the service-level agreement (SLA), each virtual vehicle has a virtual speed vV ,
and the performance of each virtual vehicle is measured by tardiness and delivery
probability. To quantify performance isolation and fairness across virtual vehicles,
we used the measure PI [28] and Jain’s fairness indices FI [29]. In Section 4.2, we
designed virtual vehicle allocation and scheduling policies. The allocation involves
dividing the service region into equitable subregions. The real vehicles travel less after
this division. The scheduling policies include earliest virtual deadline first, earliest
dynamic virtual deadline first and credit scheduling policies, adapted from the CPU
schedulers in conventional cloud computing [36].

We analyzed the system in Section 4.2 using results in queueing theory [15, 34],
stochastic and dynamic vehicle routing [1, 12, 17], and soft real-time systems [26, 27].
Each virtual vehicle is a GI/GI/1 queue [15] by Theorem 4.1, and each real vehicle is
a ΣGI/GI/1 queue [34] by Theorem 4.2. We showed that EVDF minimizes tardiness
in Theorem 4.3 by utilizing the optimality of earliest deadline first in real-time queues
[37]. We also identified the η = 1 arrival process (Definition 4.8) as the worst-case
arrival process that maximizes tardiness among all the renewal processes in Theorem
4.4. We showed task size dependent economy of scale [38] in Theorem 4.5.

Afterwards, we simulated the system under our three scheduling policies for the worst-
case arrival process - the η = 1 arrival process. Simulation results show that (i) a
virtual vehicle performs as well as a real vehicle with high performance isolation. (ii)
The provider can support a given number of virtual vehicles with significantly fewer
real vehicles that travel at the virtual speed while guaranteeing high performance
isolation.

70

Bibliography

[1] D. J. Bertsimas and G. Van Ryzin, “A stochastic and dynamic vehicle routing
problem in the euclidean plane,” Operations Research, vol. 39, no. 4, pp. 601–615,
1991.

[2] H. Xu, Optimal policies for stochastic and dynamic vehicle routing problems.
Cambridge, 1994. [Online]. Available: http://books.google.com/books?id=
brJzNwAACAAJ

[3] M. Rosenblum, “The reincarnation of virtual machines,” Queue, vol. 2, no. 5,
pp. 34–40, Jul. 2004. [Online]. Available: http://doi.acm.org/10.1145/1016998.
1017000

[4] C. F. Daganzo, “The length of tours in zones of different shapes,” Transportation
Research Part B: Methodological, vol. 18, no. 2, pp. 135 – 145, 1984. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0191261584900274

[5] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon,
A. Ogale, L. Vincent, and J. Weaver, “Google street view: Capturing
the world at street level,” Computer, vol. 43, 2010. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5481932&tag=1

[6] K. Jenvey, “NASA Unmanned Aircraft Measures Low Altitude Greenhouse
Gases,” December 2011. [Online]. Available: http://www.nasa.gov/centers/
ames/news/releases/2011/11-101AR prt.htm

[7] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava, “Mobile element
scheduling for efficient data collection in wireless sensor networks with dynamic
deadlines,” in Proceedings of the 25th IEEE International Real-Time Systems
Symposium, ser. RTSS ’04, Washington, DC, USA, 2004, pp. 296–305. [Online].
Available: http://dx.doi.org/10.1109/REAL.2004.31

[8] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Management Science, vol. 6, no. 1, pp. pp. 80–91, 1959. [Online]. Available:
http://www.jstor.org/stable/2627477

[9] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler, “A stochastic and dynamic
vehicle routing problem with time windows and customer impatience,” Mob.

71

http://books.google.com/books?id=brJzNwAACAAJ
http://books.google.com/books?id=brJzNwAACAAJ
http://doi.acm.org/10.1145/1016998.1017000
http://doi.acm.org/10.1145/1016998.1017000
http://www.sciencedirect.com/science/article/pii/0191261584900274
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5481932&tag=1
http://www.nasa.gov/centers/ames/news/releases/2011/11-101AR_prt.htm
http://www.nasa.gov/centers/ames/news/releases/2011/11-101AR_prt.htm
http://dx.doi.org/10.1109/REAL.2004.31
http://www.jstor.org/stable/2627477

Netw. Appl., vol. 14, no. 3, pp. 350–364, Jun. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11036-008-0101-1

[10] A. Wierman, “Scheduling for today’s computer systems: bridging theory and
practice,” Ph.D. dissertation, Pittsburgh, PA, USA, 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1329734

[11] G. Laporte and Y. Nobert, “Exact algorithms for the vehicle routing
problem,” in Surveys in Combinatorial Optimization, ser. North-Holland
Mathematics Studies, M. M. Silvano Martello, Gilbert Laporte and C. Ribeiro,
Eds. North-Holland, 1987, vol. 132, pp. 147 – 184. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304020808732353

[12] M. Pavone, E. Frazzoli, and F. Bullo, “Adaptive and distributed algorithms for
vehicle routing in a stochastic and dynamic environment,” Automatic Control,
IEEE Transactions on, vol. 56, no. 6, pp. 1259–1274, June 2011.

[13] Y. Gu, D. Bozdag, E. Ekici, F. zgner, and C.-G. Lee, “Partitioning based mo-
bile element scheduling in wireless sensor networks,” in In. Proc. Second An-
nual IEEE Conference on Sensor and Ad Hoc Communications and Networks
(SECON), 2005, pp. 386–395.

[14] C. F. Daganzo, “An approximate analytic model of many-to-many demand
responsive transportation systems,” Transportation Research, vol. 12, no. 5, pp.
325 – 333, 1978. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0041164778900072

[15] J. Cohen, The single server queue, ser. North-Holland series in applied mathe-
matics and mechanics. North-Holland Pub. Co., 1982.

[16] D. J. Bertsimas and G. Van Ryzin, “Stochastic and dynamic vehicle routing
with general demand and interarrival time distributions,” Advances in Applied
Probability, pp. 947–978, 1993.

[17] J. Huang and R. Sengupta, “Stability of dynamic traveling repairman problem
under polling-sequencing policies,” in European Control Conference, July 2013.

[18] P. De, J. B. Ghosh, and C. E. Wells, “Expectation-variance analyss of
job sequences under processing time uncertainty,” International Journal of
Production Economics, vol. 28, no. 3, pp. 289 – 297, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0925527392900172

[19] S. Sarin, B. Nagarajan, S. Jain, and L. Liao, “Analytic evaluation
of the expectation and variance of different performance measures of a
schedule on a single machine under processing time variability,” Journal of
Combinatorial Optimization, vol. 17, pp. 400–416, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s10878-007-9122-0

72

http://dx.doi.org/10.1007/s11036-008-0101-1
http://portal.acm.org/citation.cfm?id=1329734
http://www.sciencedirect.com/science/article/pii/S0304020808732353
http://www.sciencedirect.com/science/article/pii/0041164778900072
http://www.sciencedirect.com/science/article/pii/0041164778900072
http://www.sciencedirect.com/science/article/pii/0925527392900172
http://dx.doi.org/10.1007/s10878-007-9122-0

[20] B. G. C. Dellaert and B. E. Kahn, “How tolerable is delay? consumers’ eval-
uations of internet web sites after waiting,” Journal of Interactive Marketing,
vol. 13, pp. 41–54, 1999.

[21] M. K. Hui and L. Zhou, “How does waiting duration information influence
customers’ reactions to waiting for services?1,” Journal of Applied Social
Psychology, vol. 26, no. 19, pp. 1702–1717, 1996. [Online]. Available:
http://dx.doi.org/10.1111/j.1559-1816.1996.tb00093.x

[22] H. Takagi, Queueing analysis: a foundation of performance evaluation, vol. 1
: vacation and priority systems, ser. Queueing Analysis. North-Holland, 1991.
[Online]. Available: http://books.google.com/books?id=DXZRAAAAMAAJ

[23] O. Boxma, J. Bruin, and B. Fralix, “Sojourn times in polling systems with
various service disciplines,” Performance Evaluation, vol. 66, no. 11, pp. 621
– 639, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0166531609000765

[24] J. L. Dorsman, R. D. van der Mei, and E. M. M. Winands, “A new method for
deriving Waiting-Time approximations in polling systems with renewal arrivals,”
Stochastic Models, vol. 27, pp. 318 – 332, 2011.

[25] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable third
generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–421, Jul.
1974. [Online]. Available: http://doi.acm.org/10.1145/361011.361073

[26] G. Buttazzo, Soft real-time systems: predictability vs. efficiency, ser.
Series in computer science. Springer, 2005. [Online]. Available: http:
//books.google.com/books?id=egYUXKLUG8YC

[27] L. Abeni and G. Buttazzo, “Qos guarantee using probabilistic deadlines,” in
Real-Time Systems, 1999. Proceedings of the 11th Euromicro Conference on,
1999, pp. 242–249.

[28] K. Ye, X. Jiang, D. Ye, and D. Huang, “Two optimization mechanisms to
improve the isolation property of server consolidation in virtualized multi-core
server,” in Proceedings of the 2010 IEEE 12th International Conference
on HPCC, Washington, DC, USA, 2010, pp. 281–288. [Online]. Available:
http://dx.doi.org/10.1109/HPCC.2010.95

[29] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness and
discrimination for resource allocation in shared computer system. Eastern Re-
search Laboratory, Digital Equipment Corporation, 1984.

[30] S. Craciunas, A. Haas, C. Kirsch, H. Payer, H. Röck, A. Rottmann, A. Sokolova,
R. Trummer, J. Love, and R. Sengupta, “Information-Acquisition-as-a-Service
for Cyber-Physical Cloud Computing,” in Proc. Workshop on Hot Topics in
Cloud Computing (HotCloud), 2010.

73

http://dx.doi.org/10.1111/j.1559-1816.1996.tb00093.x
http://books.google.com/books?id=DXZRAAAAMAAJ
http://www.sciencedirect.com/science/article/pii/S0166531609000765
http://www.sciencedirect.com/science/article/pii/S0166531609000765
http://doi.acm.org/10.1145/361011.361073
http://books.google.com/books?id=egYUXKLUG8YC
http://books.google.com/books?id=egYUXKLUG8YC
http://dx.doi.org/10.1109/HPCC.2010.95

[31] C. Kirsch, E. Pereira, R. Sengupta, H. Chen, R. Hansen, J. Huang, F. Landolt,
M. Lippautz, A. Rottmann, R. Swick, R. Trummer, and D. Vizzini, “Cyber-
Physical Cloud Computing: The Binding and Migration Problem,” in Design,
Automation and Test in Europe, 2012.

[32] A. Host-Madsen and A. Nosratinia, “The multiplexing gain of wireless networks,”
in Information Theory, 2005. ISIT 2005. Proceedings. International Symposium
on, 2005, pp. 2065–2069.

[33] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin, J. Tords-
son, C. Ragusa, M. Villari, S. Clayman et al., “Reservoir-when one cloud is not
enough,” Computer, vol. 44, no. 3, pp. 44–51, 2011.

[34] S. L. Albin, “On poisson approximations for superposition arrival processes
in queues,” Management Science, vol. 28, no. 2, pp. 126–137, 1982. [Online].
Available: http://EconPapers.repec.org/RePEc:inm:ormnsc:v:28:y:1982:i:2:p:
126-137

[35] M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo, “Equitable partitioning poli-
cies for robotic networks,” in Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, 2009, pp. 2356 –2361.

[36] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three CPU
schedulers in Xen,” SIGMETRICS Performormance Evaluation Review, vol. 35,
no. 2, pp. 42–51, Sep. 2007. [Online]. Available: http://dx.doi.org/10.1145/
1330555.1330556

[37] P. Moyal, “Convex comparison of service disciplines in real time queues,” Oper-
ations Research Letters, vol. 36, no. 4, pp. 496 – 499, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167637708000060

[38] A. Mas-Colell, M. Whinston, and J. Green, Microeconomic theory. Oxford
University Press, 1995. [Online]. Available: http://books.google.com/books?
id=KGtegVXqD8wC

[39] D. J. Bertsimas and G. Van Ryzin, “Stochastic and dynamic vehicle routing in
the euclidean plane with multiple capacitated vehicles,” Operations Research,
vol. 41, no. 1, pp. 60–76, 1993.

[40] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. Smith, “Dynamic vehicle
routing for robotic systems,” Proceedings of the IEEE, vol. 99, no. 9, pp. 1482–
1504, Sept. 2011.

[41] H. Takagi, Analysis of polling systems, ser. MIT Press series in computer
systems. MIT Press, 1986. [Online]. Available: http://books.google.com/
books?id=fWpRAAAAMAAJ

[42] ——, “Queueing analysis of polling models: progress in 1990-1994,” Frontiers in
Queueing, pp. 119–146, 1997.

74

http://EconPapers.repec.org/RePEc:inm:ormnsc:v:28:y:1982:i:2:p:126-137
http://EconPapers.repec.org/RePEc:inm:ormnsc:v:28:y:1982:i:2:p:126-137
http://dx.doi.org/10.1145/1330555.1330556
http://dx.doi.org/10.1145/1330555.1330556
http://www.sciencedirect.com/science/article/pii/S0167637708000060
http://books.google.com/books?id=KGtegVXqD8wC
http://books.google.com/books?id=KGtegVXqD8wC
http://books.google.com/books?id=fWpRAAAAMAAJ
http://books.google.com/books?id=fWpRAAAAMAAJ

[43] V. Vishnevskii and O. Semenova, “Mathematical methods to study the polling
systems,” Automation and Remote Control, vol. 67, pp. 173–220, 2006. [Online].
Available: http://dx.doi.org/10.1134/S0005117906020019

[44] E. Altman, P. Konstantopoulos, and Z. Liu, “Stability, monotonicity and
invariant quantities in general polling systems,” Queueing Systems, vol. 11, pp.
35–57, 1992. [Online]. Available: http://dx.doi.org/10.1007/BF01159286

[45] C. Fricker and M. Jaibi, “Monotonicity and stability of periodic polling
models,” Queueing Systems, vol. 15, pp. 211–238, 1994. [Online]. Available:
http://dx.doi.org/10.1007/BF01189238

[46] Z. Rosberg, “A positive recurrence criterion associated with multidimensional
queueing processes,” Journal of Applied Probability, pp. 790–801, 1980.

[47] A. Borovkov and R. Schassberger, “Ergodicity of a polling network,” Stochastic
Processes and their Applications, vol. 50, no. 2, pp. 253 – 262, 1994. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0304414994901228

[48] J. M. Steele, “Probabilistic and worst case analyses of classical problems of
combinatorial optimization in euclidean space,” Math. Oper. Res., vol. 15, pp.
749–770, October 1990. [Online]. Available: http://dl.acm.org/citation.cfm?id=
89215.89225

[49] S. Asmussen, Applied Probability and Queues, ser. Applications of Mathematics.
Springer, 2003. [Online]. Available: http://books.google.co.uk/books?id=
BeYaTxesKy0C

[50] M. A. A. Boon, E. M. M. Winands, I. J. B. F. Adan, and A. C. C. van Wijk,
“Closed-form waiting time approximations for polling systems,” Perform. Eval.,
vol. 68, no. 3, pp. 290–306, Mar. 2011.

[51] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling salesman
problem,” Biosystems, vol. 43, no. 2, pp. 73 – 81, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0303264797017085

[52] R. D. Van Der Mei and E. M. M. Winands, “A note on polling
models with renewal arrivals and nonzero switch-over times,” Oper.
Res. Lett., vol. 36, no. 4, pp. 500–505, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.orl.2008.01.008

[53] E. Lawler, The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. New York: Wiley, 1985.

[54] P. Gupta and P. Kumar, “The capacity of wireless networks,” Information The-
ory, IEEE Transactions on, vol. 46, no. 2, pp. 388–404, 2000.

[55] D. Boutcher and A. Chandra, “Does virtualization make disk scheduling passé?”
ACM SIGOPS Operating Systems Review, vol. 44, no. 1, pp. 20–24, 2010.

75

http://dx.doi.org/10.1134/S0005117906020019
http://dx.doi.org/10.1007/BF01159286
http://dx.doi.org/10.1007/BF01189238
http://www.sciencedirect.com/science/article/pii/0304414994901228
http://dl.acm.org/citation.cfm?id=89215.89225
http://dl.acm.org/citation.cfm?id=89215.89225
http://books.google.co.uk/books?id=BeYaTxesKy0C
http://books.google.co.uk/books?id=BeYaTxesKy0C
http://www.sciencedirect.com/science/article/pii/S0303264797017085
http://dx.doi.org/10.1016/j.orl.2008.01.008

[56] A. Zhong, H. Jin, S. Wu, X. Shi, and W. Gao, “Performance implications of non-
uniform vcpu-pcpu mapping in virtualization environment,” Cluster Computing,
pp. 1–12, 2012.

[57] M. Kesavan, A. Gavrilovska, and K. Schwan, “On disk i/o scheduling in virtual
machines,” in Proceedings of the 2nd conference on I/O virtualization. USENIX
Association, 2010, pp. 6–6.

[58] F. Anhalt and P. V.-B. Primet, “Analysis and experimental evaluation of data
plane virtualization with xen,” International conference on Networking and Ser-
vices (ICNS’06), vol. 0, pp. 198–203, 2009.

[59] D. Daley and D. Vere-Jones, An introduction to the theory of point processes,
ser. Springer series in statistics. Springer-Verlag, 1988. [Online]. Available:
http://books.google.com/books?id=bU4 AQAAIAAJ

[60] A. Khinchin, Mathematical methods in the theory of queueing, ser.
Griffin’s statistical monographs & courses. Griffin, 1969. [Online]. Available:
http://books.google.com/books?id=neVQAAAAMAAJ

[61] R. Loynes, “The stability of a queue with non-independent inter-arrival and
service times,” in Proc. Cambridge Philos. Soc, vol. 58, no. 3. Cambridge Univ
Press, 1962, pp. 497–520.

[62] E. Cinlar, “Superposition of point processes,” in In Stochastic Point Processes:
Statistical Analysis, Theory and Applications (P. A. W. Lewis, ed.). New York:
Wiley, 1972, pp. 549–606.

[63] F. Pollaczek, “Über eine aufgabe der wahrscheinlichkeitstheorie. i,” Mathematis-
che Zeitschrift, vol. 32, no. 1, pp. 64–100, 1930.

[64] A. Khinchin and R. C. S. M. CALIF., The Mathematical Theory of a Stationary
Queue. Defense Technical Information Center, 1967. [Online]. Available:
http://books.google.com/books?id=OJhNOAAACAAJ

[65] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram, “Scheduler vulnerabilities
and attacks in cloud computing,” CoRR, vol. abs/1103.0759, 2011.

[66] S. Shenker and J. Wroclawski, “General characterization parameters for inte-
grated service network elements,” RFC 2215, sept. 1997.

76

http://books.google.com/books?id=bU4_AQAAIAAJ
http://books.google.com/books?id=neVQAAAAMAAJ
http://books.google.com/books?id=OJhNOAAACAAJ

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Real Vehicle Routing
	Virtual Vehicle Performance Isolation

	Stability of the Dynamic Traveling Repairman Problem
	The Dynamic Traveling Repairman Problem
	Literature and Results

	Polling-Sequencing Policies
	Spatial-Polling: Markov Chain
	Sequencing: Economy of Scale
	Stability Condition

	Summary

	System Time Distribution in the Dynamic Traveling Repairman Problem
	System Time Distribution
	Literature and Results

	PART-n-Traveling Salesman Policy
	Calculation of System Time Distribution
	Comparison of PART-n-TSP, PART-TSP and Nearest Neighbor
	Optimality of PART-n-TSP under light and heavy loads

	Summary

	Virtual Vehicle and Cloud Computing in Space
	Model
	Performance Isolation
	Gain

	Systems
	Virtual Vehicle Queues
	Real Vehicle Queues

	Scheduling Policies
	Earliest Virtual Deadline First
	Earliest Dynamic Virtual Deadline First
	Credit Scheduling Policy

	Experiments
	Simulation Setup
	Simulation Results

	Summary

	Conclusion
	Bibliography

