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Abstract
Key message   We compare genomic selection methods that use correlated traits to help predict biomass yield in 
sorghum, and find that trait-assisted genomic selection performs best.
Abstract  Genomic selection (GS) is usually performed on a single trait, but correlated traits can also help predict a focal 
trait through indirect or multi-trait GS. In this study, we use a pre-breeding population of biomass sorghum to compare 
strategies that use correlated traits to improve prediction of biomass yield, the focal trait. Correlated traits include moisture, 
plant height measured at monthly intervals between planting and harvest, and the area under the growth progress curve. In 
addition to single- and multi-trait direct and indirect GS, we test a new strategy called trait-assisted GS, in which correlated 
traits are used along with marker data in the validation population to predict a focal trait. Single-trait GS for biomass yield 
had a prediction accuracy of 0.40. Indirect GS performed best using area under the growth progress curve to predict biomass 
yield, with a prediction accuracy of 0.37, and did not differ from indirect multi-trait GS that also used moisture informa-
tion. Multi-trait GS and single-trait GS yielded similar results, indicating that correlated traits did not improve prediction of 
biomass yield in a standard GS scenario. However, trait-assisted GS increased prediction accuracy by up to 50% when using 
plant height in both the training and validation populations to help predict yield in the validation population. Coincidence 
between selected genotypes in phenotypic and genomic selection was also highest in trait-assisted GS. Overall, these results 
suggest that trait-assisted GS can be an efficient strategy when correlated traits are obtained earlier or more inexpensively 
than a focal trait.

Abbreviations
NPGS	� National plant germplasm system
GS	� Genomic selection
Y	� Biomass yield
M	� Moisture
DAP	� Days after planting

H1	� Height at 30 DAP
H2	� Height at 60 DAP
H3	� Height at 90 DAP
H4	� Height at 120 DAP
AIC	� Akaike information criterion
GBLUP	� Genomic best linear unbiased prediction
BLUP	� Best linear unbiased prediction
A	� Area under the growth progress curve
VCOV	� Variance–covariance matrices
GEBV	� Genomic estimated breeding value
IPS	� Indirect phenotypic selection
MAF	� Minor allele frequency
CI	� Coincidence index

Introduction

Releasing new varieties usually requires evaluation of 
progenies in a large number of environments. Because the 
costs of field experiments are becoming the limiting factor 
(Gawenda et al. 2015; Heslot et al. 2015), strategies that 
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allow rapid, accurate, and resource-efficient predictions 
are of increasing interest. The application of best linear 
unbiased prediction (BLUP) using pedigree information 
Henderson (1975) and more recently using molecular 
markers (GBLUP) (VanRaden 2008; Hayes et al. 2009b) 
are examples of efforts to meet those goals.

When GBLUP or other GS models are applied, selection 
is made on genomic estimated breeding values (GEBVs) 
calculated from molecular markers and using phenotypic 
information of a training population. GS has been success-
fully applied in many animal (Vallée et al. 2014; de los 
Campos et al. 2013) and plant (Heffner et al. 2011; Heslot 
et al. 2012) breeding programs, and prediction accuracy 
(r) generally shows a positive correlation with heritability 
(h2) (Hayes et al. 2009a). When a focal trait has low h2 , 
indirect or multi-trait GS can be applied to take advantage 
of correlated traits with higher h2 to increase r for the 
focal trait (Mrode 2014, page 70). Benefits of multi-trait 
GS over single-trait GS have been reported in simulated 
(Calus and Veerkamp 2011) and real data (Jia and Jannink 
2012; Schulthess et al. 2016).

Sorghum [(Sorghum bicolor (L.) Moench] is a mul-
tipurpose crop that is grown to produce grain, forage, 
and most recently biomass for second-generation biofuel 
production. Some advantages of sorghum as a biomass 
crop include low implementation cost, short cycle, wide 
adaptability, mechanized management, and high calorific 
value in boilers (Vermerris and Saballos 2013; Castro 
et al. 2015). Biomass yield in sorghum has low heritability 
(Shiringani and Friedt 2011) and is costly and laborious 
to phenotype. Correlated traits, including plant height, are 
much easier and more cost-effective to phenotype and have 
higher heritability (Monk et al. 1984; Castro et al. 2015; 
Burks et al. 2015). One previous study applied single-trait 
GS to predict biomass yield in a diverse photoperiod-
sensitive sorghum panel (Yu et al. 2016). Much of the 
phenotypic variation in biomass yield could be explained 
in a model including plant height, stalk number, and lodg-
ing (R2 = 0.63) , and indirect GS using these three traits 
yielded a prediction accuracy only slightly lower than 
direct GS on biomass yield (r = 0.71 versus 0.76). How-
ever, the authors did not test multi-trait GS approaches.

In this study, we compare the efficiency of various GS 
strategies for increasing prediction accuracy of a focal 
trait, sorghum biomass yield, using information from cor-
related traits.

Materials and methods

Plant material and field experiments

A panel of 453 diverse photoperiod-sensitive sorghum 
lines was obtained from the United States National Plant 
Germplasm System (NPGS) and evaluated in Urbana, IL 
from 2012 to 2014. Along with the diverse panel, the com-
mercial hybrid “Pacesetter” (Richardson Seeds, Vega, TX, 
USA) was included as check in all years. The experimental 
design in 2012 was a randomized complete block design 
with two replications of single row plots with a row length 
of 7.6 m, 1.5 m alleys and 0.76 m row spacing and a total 
of 24 rows and 16 columns. Thus, 179 sorghum lines were 
planted in 2012 and the remaining plots were filled with the 
commercial hybrid. The experimental design in 2013 and 
2014 was an augmented block design with the commercial 
hybrid included as a check in each block and 24 additional 
genotypes repeated twice in each year. Each incomplete 
block consisted of 24 four-row plots with a row length of 
3 m, 1.5 m alleys and 0.76 m row spacing and a total of 12 
rows and 40 columns. The 480 plots used in 2013 and 2014 
were filled with 415 lines, among which 141 lines were also 
included in 2012. The remaining plots were filled with the 
check hybrid. The target density in all years was approxi-
mately 207, 570 plants/ha, though the final density in 2013 
was lower due to climatic conditions and planting error. In 
each year, field experiments were planted in late May and 
harvested in early October.

Phenotyping

Plant height was measured as plot average from the ground 
to the whorl, at 30 (H1), 60 (H2), 90 (H3) and 120 (H4) 
days after planting. Total plot wet weight (kg) was meas-
ured with a forage harvester consisting of a John Deere 5830 
tractor with a four-row Kemper head and a weigh wagon 
modified with load cells accurate to within 1 kg. A 0.5 kg 
chopped subsample was captured from each plot at harvest, 
then weighed before and after oven drying at 60 ◦ C for 72′ to 
determine moisture content: Moisture (M) = (subsample wet 
weight − subsample dry weight)/subsample wet weight. Bio-
mass yield in dry metric tons per hectare (Y) was calculated 
as: dry metric tons/ha = total plot wet weight (kg) ∗ (1 − plot 
moisture) / (plot area (m2)∕10,000).

Genotyping

DNA was extracted from dark-grown etiolated seedling 
tissue in 96-well plates using a CTAB protocol. Illumina 
libraries were created using two pairs of restriction enzymes: 
PstI-HF/HinP1I and PstI-HF/BfaI (New England Biolabs, 
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Ipswich, MA). Restriction–ligation was performed in 
96-well plates, and unique barcoded adapters were ligated 
to each DNA sample. 96 DNA samples per library were 
pooled into a single tube for all subsequent steps includ-
ing size selection using AMPure beads (Beckman-Coulter, 
Pasadena, CA, USA), PCR amplification using Phusion 
polymerase (New England Biolabs), and a second round of 
a bead-based size selection. Single-end, 100-bp sequenc-
ing reads were obtained for all libraries on an Illumina 
HiSeq2000 instrument following submission protocol to 
the Keck Center at the University of Illinois. The TASSEL3 
GBS pipeline (Glaubitz et al. 2014) was used to identify 
SNPs, using Bowtie2 (Langmead and Salzberg 2012) for tag 
alignment. Only reads that perfectly matched a barcode and 
restriction site overhang were retained. After barcode trim-
ming, a set of “master tags” was generated from the unique 
64 bp sequences present at least ten times in the dataset that 
mapped uniquely to the sorghum genome. SNPs were called 
by comparing the tags in each individual to the set of master 
tags at each genomic address. SNPs and individuals with 
more than 95% missing data as well as SNPs with MAF less 
than 5% were discarded. Missing data were imputed using 
BEAGLE4 (Browning and Browning 2011) using a window 
size and overlap of 500 and 100 SNPs, respectively. The 
final genotypic dataset consisted of 59264 SNPs with an 
average MAF of 0.21 and 6.06% heterozygous genotypes.

Data analysis

Due to the differences in field experimental designs and field 
heterogeneity across years, as well as for reasons of compu-
tational efficiency, a two-stage analysis was performed. In 
the first stage, a mixed model approach was used to account 
for spatial variation, generating adjusted means for each 
genotype in each trial. The most appropriate model for each 
combination of trait and year was chosen based on the vari-
ogram (Gilmour et al. 1997) and the Akaike information 
criterion (AIC) (Table S1), where the full model is:

Each phenotypic data point ( yij ) was observed in genotype i, 
block j; � is a constant; Gi is the fixed effect of the ith geno-
type; Bj is the independent and identically distributed ran-
dom effect of the jth block with Bj ∼ N(0, �2

b
I) and eij is the 

random effect of residuals, with e ∼ N(0, �2
AR1×AR1

) , where 
AR(1) × AR(1) is a first-order auto-regressive structure 
applied to row and column for spatial correction. Adjusted 
means ( ̄x ) were then calculated as the mean of the scaled 
values from each year.

In the second stage, a GBLUP model was used to obtain 
genomic predictions for different traits. In addition to pre-
dicting each height measurement individually, the area under 
the growth progress curve (A) was also calculated from the 

(1)yij = � + Gi + Bj + eij,

adjusted values of all height measurements and analyzed 
as a different trait. Since all height measurements were 30 
days apart, this was obtained from the following simplified 
equation:

where m is the number of height measurements, and hi is 
height measure at the ith observation.

The model used for single-trait GS was:

where yi is the adjusted means from the first stage, � is a 
constant; gi is the vector of random effect of genotypes with 
g = [g1, g2,⋯ , gn]

⊤ and g ∼ N(0,A�2
g
) , where �2

g
 is the 

additive genetic variance and A is the realized additive rela-
tionship matrix calculated from the genotypic dataset using 
the A.mat function from rrBLUP package (Endelman and 
Jannink 2012); ei is the identical and independently distrib-
uted residual with ei ∼ N(0, �2

e
I) , where �2

e
 is the residual 

variance. Genomic heritability ( h2
g
 ) was calculated by the 

ratio of additive and phenotypic variance (de los Campos 
et al. 2015).

The model used for multi-trait GS with p variables, fol-
lowing a notation similar to that used by Ferreira (2011, page 
331) was:

where Yi is the vector of multivariate responses asso-
ciated with genotype i  (i = 1, 2,… , n) ,  in which 
Yi = [Yi1, Yi2,… , Yip]

⊤ , � is the vector of the constants asso-
ciated with each trait, with � = [𝜇1,𝜇2,… ,𝜇p]

⊤ , gi is the vec-
tor of random effects of genotype i associated with each trait, 
in which g = [g1, g2,… , gi,… , gn]

⊤ , g ∼ Nnp(0,G ⊗ A) , 
ei is the vector of random effects of residuals from the 
multivariate model, e =

[

e1, e2,… , ei,… , en
]⊤ , with 

e ∼ Nnp(0, I ⊗ R) . The matrices G and R are the vari-
ance–covariance matrices (VCOV) for genetic and residual 
effects, respectively. In both cases, these are assumed to be 
unstructured, considering correlation for all pairs of traits 
and specific variances for each trait. The multi-trait model 
was used in this study for p = 2 . Genetic and residual cor-
relation were obtained from the multi-trait analysis and 
its respective standard errors were estimated by the Delta 
method, all of which are given as an output of ASReml-R 
(Fikret Isik 2017, page 116).

Cross‑validation and prediction accuracy

The prediction accuracy of each model was accessed through 
k − fold cross-validation with k = 5 , randomly splitting the 
dataset in five sets and using four of them to predict the 

(2)A =

m
∑

i=1

(hi−1 + hi)

2
,

(3)yi = � + gi + ei,

(4)Yi = � + gi + ei,
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remaining set. This process was repeated for each one of the 
five sets, storing all GEBVs before calculating a single Pear-
son’s correlation between five folds of GEBVs and adjusted 
means. This process was repeated 30 times and the same 
folds were used to perform cross-validation for the differ-
ent models. Mean and standard deviation of the correlations 
were calculated and reported as prediction accuracy and its 
standard deviation, respectively. Training set and validation 
set varied according to the model used (Table 1).

In single-trait, multi-trait, and trait-assisted GS, genomic 
predictions of biomass yield itself were used to obtain r. In 
indirect GS, genomic predictions for a correlated trait (eg: 
height) were correlated with x̄ of biomass yield to obtain r. 
In multi-trait indirect GS, genomic predictions for multiple 
correlated traits were scaled to have equal mean and variance 
before the following index was calculated:

where corg(Y ,i) is the additive genetic correlation between trait 

i and biomass yield, and bi is the vector of GEBVs for trait 
i. Prediction accuracy of indirect multi-trait GS was calcu-
lated as correlation between this index and biomass x̄ . Multi-
trait and trait-assisted GS differ only in that the latter uses 
100% , rather than 80% , of correlated trait data for prediction 
of the focal trait. Thus, trait-assisted GS uses more total data 
points than multi-trait GS, including correlated trait pheno-
types in the validation population. These strategies are simi-
lar to those used in Burgueño et al. (2012) for a multi-envi-
ronment GS study. Analogously, predictions in multi-trait 
GS were entirely based on record of other lines, as in CV1. 
On the other hand, trait-assisted GS took advantage of cor-
related traits, similar to what was done in CV2 for correlated 
environments.

(5)
2
∑

i=1

corg(Y ,i)bi,

Coincidence between models

Coincidence between x̄ and GEBVs was calculated for the 
top and bottom 20% individuals in each cross-validation run 
using the following coincidence index (CI) (Hamblin and 
Zimmermann 1986):

where B is the number of selected genotypes that is com-
mon in both models; T is the total number of selected geno-
types; and R is the expected number of genotypes selected 
by chance. For example, repeated random selection of 20% 
of genotypes (91 of 453) would yield an expected overlap of 
18 genotypes ( 20% of 91) between random drawings.

All statistical analyses were conducted using R 3.0.3 R 
Core Team (2014) and the GBLUP model was fitted using 
the ASReml-R library (Butler et al. 2009). Phenotypic and 
genotypic information used, as well as scripts for all analysis 
performed in this paper can be found in https://github.com/
samuelbfernandes/Trait-assisted-GS.

Results

Prediction accuracy of the standard GS model was, in gen-
eral, proportional to the square root of the genomic heritabil-
ity for each trait (Fig. 1). The lowest accuracy in this study 
was obtained for H1 (0.33), followed by the one obtained for 
Y (0.40). On the other hand, the square root of the genomic 
heritability (h) for biomass (0.51) was slightly smaller than 
hH1 (0.54). The highest h (0.94) and r (0.68) were obtained 
for A, with H3 close behind (Fig. 1). The other traits (M, H2 
and H4) had similar r and h.

All traits were genetically correlated with biomass yield 
(Fig. 2). The genetic correlation between biomass yield and 
moisture was negative, whereas genetic correlations with 
plant height traits were all positive and increased with each 
successive plant height measurement. For H2, H3, H4 and 
A, genetic correlations with Y were greater than residual 

(6)CI =
B − R

T − R
,

Table 1   Training and validation 
sets used in cross-validation for 
each genomic selection model

a Prediction accuracies obtained as r(x̄Yield,GEBVHeight)
b GEBVHeight and GEBVMoisture were scaled and weighted by their genetic correlations with x̄Yield

Model Training Validation

1 Standard GS Yield (80%) Yield (20%)
2 Indirect GS Height (80%) Height (20%)a

3 Multi-trait indirect GS Height (80%)+  moisture (80%) Height (20%)+  
moisture 
(20%)b

4 Multi-trait GS Yield (80%)+   height (80%) Yield (20%)
5 Trait-assisted GS Yield (80%)+  height (100%) Yield (20%)

https://github.com/samuelbfernandes/Trait-assisted-GS
https://github.com/samuelbfernandes/Trait-assisted-GS
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correlations with Y, suggesting that they could be useful for 
multi-trait prediction of Y (Schaeffer 1984).

Prediction accuracies of indirect GS models (Fig. 3) were 
generally proportional to the genetic correlation of a corre-
lated trait with biomass yield (Fig. 2). Prediction accuracy 
for Y using H3 data ( rY∕H3 ) was slightly higher than rY∕H4 
despite having a lower genetic correlation. The best predic-
tion accuracy from indirect GS, rY∕A , was nearly ( 92.46% ) as 
high as for standard GS. Multi-trait indirect GS did not show 
any advantage over single-trait indirect GS.

Using information from correlated traits in the training 
population (multi-trait GS) did not provide any increase 
in prediction accuracy over the standard, single-trait GS 
model (Fig. 4). On the other hand, using information from 
correlated traits in both the training and validation popula-
tions (trait-assisted GS) increased prediction accuracy for 
biomass regardless of the secondary trait analyzed with Y, 
with the highest accuracy obtained for YA (0.60) (Fig. 4). 
Prediction accuracy increases with trait-assisted GS ranged 
from 11.8% using YM to 50% with YA, relative to standard 
single-trait GS. For highly correlated traits (H3, H4, and A), 

trait-assisted GS models maintained their advantage over 
standard GS even when the training population was reduced 
to 20% of the dataset ( n = 90 ), though this was not true for 
moderately correlated traits (M, H1, and H2; Fig. S1). Inter-
estingly, the reduction in variance of GEBVs relative to x̄ 
was also less dramatic for trait-assisted GS compared to the 
other GS models. Whereas, biomass yield x̄ had a standard 
deviation of 2.13 tons/ha, single trait, multi-trait, and trait-
assisted GEBVs had standard deviations of 0.85, 0.86, and 
1.21 tons/ha respectively, using A as the correlated trait.

Coincidence indices (CIs) between the top and bot-
tom 20% of x̄ and GEBVs were compared between single-
trait, multi-trait, and trait-assisted GS models. In all cases 
CIs were below 0.5. However, CIs between trait-assisted 
GEBVs and x̄ were higher than between single- and multi-
trait GEBVs and x̄ when the correlated trait was H2, H3, 

h 
= 
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= 
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Fig. 1   Prediction accuracy of standard GS for biomass (Y), moisture 
(M), height at 30 (H1), 60 (H2), 90 (H3), 120 (H4) DAP and the area 
under growth progress curve (A). Standard deviations across 30 cross-
validation runs are shown. The square root of the heritability (h) is 
shown inside each bar
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Fig. 3   Prediction accuracy for biomass yield (Y) using indirect and 
multi-trait indirect GS with moisture (M), height at 30 (H1), 60 (H2), 
90 (H3), 120 (H4) DAP and the area under growth progress curve (A) 
and combinations of these variables as correlated traits. Standard, 
direct GS is shown for comparison. Standard deviations across 30 
cross-validation runs are shown
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Fig. 4   Prediction accuracy for biomass yield (Y) using multi-trait and 
trait-assisted GS with moisture (M), height at 30 (H1), 60 (H2), 90 
(H3) and 120 (H4) DAP and the area under growth progress curve (A) 
as correlated traits. Standard, single-trait GS is shown for compari-
son. Standard deviations across 30 cross-validation runs are shown
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H4, or A. Higher CIs were observed for the bottom 20% 
than for the top 20% , likely reflecting the asymmetric 
distribution of the underlying x̄ (Table 2).

We next compared the expected selection accuracy of 
multi-trait and trait-assisted GS to phenotypic selection 
and indirect phenotypic selection, given the heritabilities 
and genetic correlations observed for the focal trait (Y) 
and the correlated traits (M, H1, H2, H3, H4, A) in this 
study. Compared to phenotypic selection, multi-trait GS 
was always less accurate whereas trait-assisted GS was 
more accurate when using H3, H4 or A as correlated traits 
(Table 3). Compared to indirect phenotypic selection, 
both multi-trait and trait-assisted GS were less accurate 
when the correlated trait had a low genetic correlation 
with the focal trait (M, H1), and both were less accurate 
when this genetic correlation was high (H2, H3, H4, A).

Discussion

In this study, we consider strategies for genomic selection 
of an expensive, low-heritability focal trait when corre-
lated traits with higher heritability can be measured more 
easily, cost-effectively, or earlier in the life cycle. These 
strategies include single- and multi-trait direct and indirect 
GS, as well as a new approach we call trait-assisted GS.

Single‑trait GS

Marker-based prediction relies on good phenotyping, and 
prediction accuracy generally increases with heritability 
(Combs and Bernardo 2013). In this study, sorghum bio-
mass yield showed low h2

g
 (0.26) and moderate r (0.40). 

Similar results have been obtained in other crops such as 
wheat, where h2 and r of biomass were 0.38 and 0.37, 
respectively (Combs and Bernardo 2013). In a study con-
duced by Lehermeier et al. (2014), r for biomass in corn 
varied from 0.17 in multi-parental to 0.41 in full-sib lines 
from a dent pool and from 0.30 in multi-parental to 0.48 
in full-sib lines of a flint pool. GS offers the potential 
advantages of increasing selection intensity (Sonesson and 
Meuwissen 2009; Riedelsheimer et al. 2013) and allowing 
more selection cycles per unit time, both of which could 
result in higher genetic gain in comparison with pheno-
typic selection (Heffner et al. 2010). One previous study 
performed GS for biomass yield in sorghum (Yu et al. 
2016), and found that r ranged from 0.69 using five-fold 
CV in a training set of 299 lines, to 0.76 in a validation set 
enriched for predicted-high and predicted-low lines, to 
0.56 in an independent panel. The lower value of r in our 
study perhaps reflects the fact that our panel, while cer-
tainly not elite, had been pre-screened to exclude extremes 
of maturity variation, dwarfism, and lodging.

Height is usually a high-heritability trait (Heffner et al. 
2011; Lipka et al. 2014; Burks et al. 2015), and the predic-
tion accuracies of all height measurements except for the 
first one (H1, at 30 DAP) were higher then rY . Each height 
measurement was analyzed individually in addition to the 
area under growth progress curve (A). The H1 measurement 
by itself is clearly too early for accurate selection. Interest-
ingly, H3 showed higher h2

g
 and r than H4, possibly due to 

residual variation in maturity and lodging among genotypes 
that affected height measurements at the end of the season. 
The highest h2

g
 and r were obtained for A. Given increasing 

adoption of high-throughput phenotyping techniques (Araus 
and Cairns 2014), more work could be done comparing the 
use of integrated measures such as A with multivariate mod-
els that include all individual time points.

Table 2   Coincidence index between biomass x̄ and GEBVs in multi-
trait and trait-assisted GS models

Results are shown for a selection intensity of 20% (top and bottom) 
with standard deviations
a Standard GS model is shown for comparison

Trait Top 20% Bottom 20%

Multi-trait Trait-assisted Multi-trait Trait-assisted

Ya 0.33 ± 0.02 0.34 ± 0.02
YM 0.32 ± 0.02 0.35 ± 0.02 0.33 ± 0.02 0.37 ± 0.02
YH1 0.33 ± 0.02 0.36 ± 0.02 0.34 ± 0.02 0.35 ± 0.02
YH2 0.35 ± 0.02 0.40 ± 0.02 0.34 ± 0.02 0.40 ± 0.02
YH3 0.33 ± 0.02 0.40 ± 0.02 0.34 ± 0.02 0.44 ± 0.02
YH4 0.33 ± 0.02 0.39 ± 0.02 0.35 ± 0.02 0.44 ± 0.02
YA 0.30 ± 0.02 0.41 ± 0.02 0.35 ± 0.02 0.46 ± 0.02

Table 3   Expected selection accuracy of multi-trait and trait-assisted 
GS relative to phenotypic selection ( PS; r = hY ) and indirect pheno-
typic selection ( IPS; r = hx ∗ corg(x,Y) ), where x and Y are the corre-
lated and focal traits

Traits MTA/PS MTA/IPS

Multi-trait Trait-assisted Multi-trait Trait-assisted

YM 0.76 0.87 1.22 1.38
YH1 0.78 0.88 1.85 2.05
YH2 0.82 0.92 0.63 0.73
YH3 0.80 1.14 0.56 0.80
YH4 0.80 1.16 0.55 0.82
YA 0.73 1.18 0.47 0.76
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Indirect GS

Indirect GS using predictions of H2, H3, H4, or A to pre-
dict biomass appears promising, with the A model achieving 
92.5% of the prediction accuracy of the standard, direct GS 
model ( rY∕A = 0.37 ; rY = 0.40 ). Assuming that equivalent 
height heritabilities would be obtained from smaller plots, 
selection intensity and genetic gain could be increased by 
selecting on height instead of biomass in much larger popu-
lation at equivalent field cost. An additional consideration 
in biomass sorghum is that measurement of vegetative bio-
mass yield is incompatible with seed production. Indirect 
GS using an early-season trait such as H2 could potentially 
allow time for flowering induction and within-season seed 
production in selected lines, greatly reducing cycle length.

The failure of multi-trait indirect GS to increase predic-
tion accuracy over single-trait indirect GS is very likely 
a consequence of the limited number of correlated traits 
measured in this study. Adding moisture information did 
not improve the ability of height models to predict biomass 
yield, but it seems likely that lodging, stand count, and a 
variety of architectural and spectral traits could be tested for 
improving multi-trait indirect GS models of biomass yield 
in sorghum.

Multi‑trait and trait‑assisted GS

An alternative to indirect GS is to include one or more cor-
related traits along with the focal trait in a multi-trait model. 
In this strategy, marker effects for biomass yield are influ-
enced by information from higher heritability traits [Mrode 
2014, page 70] such as plant height. Multi-trait GS provided 
no advantage over standard, single-trait GS in this study, in 
contrast to several previous results using simulated (Guo 
et al. 2014; Calus and Veerkamp 2011) and real data (Jia and 
Jannink 2012; Schulthess et al. 2016), and in agreement with 
one previous study (dos Santos et al. 2016). Similar to what 
was obtained by Burgueño et al. (2012) in CV1, this result 
was somehow expected, since no information is recovered 
within lines across traits.

Trait-assisted GS is a new strategy in which correlated 
traits are used along with marker data in the validation 
panel. In the five-fold cross-validation scheme used in this 
study, this meant that 80% of the yield data and 100% of 
the height data were used, along with molecular markers, to 
predict the remaining 20% of the yield data. Trait-assisted 
GS yielded dramatic improvements in prediction accuracy 
over all other GS models, with rYA showing an improvement 
of 50% over prediction accuracy of Y in single-trait GS. Even 
rMY and rH1Y showed a 12% improvement over the standard 
GS model, which was somewhat surprising given the rela-
tively low genetic correlations of these traits with biomass 
(Schaeffer 1984; Galesloot et al. 2014). However, models 

including these traits did not maintain their advantage when 
the training population was reduced to a size as small as 
20% of the dataset (Fig. S1). These results suggest that even 
traits weakly correlated with a focal trait could be exploited 
in trait-assisted GS, given a training population of sufficient 
size.

Two other noteworthy results were obtained using the 
trait-assisted GS model. First, the standard deviations of the 
GEBVs were much higher in the trait-assisted models than 
in other GS models, though still greatly reduced relative to 
the standard deviations of x̄ . Second, the coincidence indices 
between biomass x̄ and GEBVs were also highest for the 
trait-assisted GS models. These results suggest that differen-
tiation of favorable and unfavorable genotypes is enhanced 
using trait-assisted GS, facilitating selection in a breeding 
program (Kadarmideen et al. 2003).

Trait-assisted GS has similarities with both multi-trait 
and indirect GS, as well as indirect phenotypic selection 
(IPS). Like IPS, selections are made using direct observation 
of correlated traits in individuals. Like standard GS, how-
ever, trait-assisted GS makes use of focal trait phenotypes 
in a training population, and genotypes in both training and 
selection populations, to perform selection. Like multi-trait 
GS, trait-assisted GS borrows information from correlated 
traits to inform focal trait marker effects. Trait-assisted GS 
shares all previously mentioned advantages of indirect (sin-
gle- and multi-trait) GS for biomass sorghum improvement. 
However, it seems pointless to exclude focal trait data from a 
prediction model, as in canonical indirect GS and IPS, even 
if this data is limited in scope compared to the correlated 
trait data.

Several limitations of this study also deserve mention. 
First, Table 3 compares the expected selection accuracy of 
various strategies, but does not take into account possible 
differences in cycle length and selection intensity between 
them. Trait-assisted GS is probably intermediate to stand-
ard GS and traditional phenotypic selection in both cycle 
length and selection intensity. Second, this study used a 
highly structured pre-breeding population and no attempt 
was made to account for population structure. Therefore, 
we can expect that prediction accuracies of all GS models 
might be inflated relative to what might be observed in an 
elite population. Third, this study used x̄ calculated across 
multiple years as input for the trait-assisted GS models. In 
an actual trait-assisted GS scenario in biomass sorghum, a 
single year of height data might be collected from a selection 
population, and used along with molecular markers and mul-
tiple years of height and yield data in a training population 
to perform selection.

Trait-assisted GS is probably intermediate to standard 
GS and traditional phenotypic selection in both cycle length 
and selection intensity. In biomass sorghum, for example, 
trait-assisted GS could reduce cycle length by selecting on 
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correlated traits available prior to flowering (eg: H1, H2), 
and could increase selection intensity by reducing plot size 
for measurement of correlated traits with higher heritabili-
ties (eg: one-row plots for plant height versus four-row plots 
for biomass yield).

Conclusion

In this study, we show that phenotypic data on correlated 
traits in the validation set can be exploited to achieve sub-
stantial increases in prediction accuracy in a focal trait. This 
strategy should be useful whenever correlated traits can be 
measured earlier or more cheaply than a focal trait. Many 
plant and animal domesticates take years or decades to 
mature and allow full evaluation of yield and quality traits, 
and in these situations trait-assisted GS may allow dramatic 
increases in prediction accuracy and genetic gain.
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