
UC Berkeley
Research Reports

Title
SmartBRT: A Tool for Simulating, Visualizing, and Evaluating Bus Rapid Transit Systems

Permalink
https://escholarship.org/uc/item/863303bw

Author
VanderWerf, Joel

Publication Date
2005-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/863303bw
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

August 2005

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation, and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Final Report for Task Order 4400

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

SmartBRT: A Tool for Simulating,
Visualizing, and Evaluating Bus Rapid
Transit Systems

UCB-ITS-PRR-2005-26
California PATH Research Report

Joel VanderWerf

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

SmartBRT:
A Tool for Simulating, Visualizing, and
Evaluating Bus Rapid Transit Systems

SmartBRT Team
California PATH

UC Berkeley

August, 2004

This document is an overview of the goals and achievements of the project, and it
contains links to the detailed documents and software produced by the SmartBRT project.

These documents were intended primarily for reading in a web browser. Hypertext
versions are available at the project release site:

http://PATH.Berkeley.EDU/SMARTBRT/Release. The entire documentation set can be
downloaded for local browsing by downloading the tool package: sbrt-tool.zip.

1 Executive Summary
Evaluation of BRT systems
SmartBRT is for designed for modeling and simulating hypothetical transit systems,
especially those making use of Bus Rapid Transit (BRT) technologies and policies.
SmartBRT can be used to evaluate new technologies and policies that haven't been fully
explored in deployed systems.

SmartBRT does not output emissions or cost data. SmartBRT does not calculate the long-
term effects of BRT deployment, such as changes in mode choice.

To aid in evaluation, SmartBRT provides features for data gathering and statistics. The
model report has a complete list of variables that can be measured and aggregated.

Evaluation of Transit systems
SmartBRT can also be used to evaluate traditional transit system designs. Paramics and
other traffic simulation tools have some ability to do this kind of work. However,
SmartBRT has an advantage even in cases without any BRT elements: in situations where
input data is sparse, there is a corresponding reduction in the effort to specify the system.
For instance, if all signal phase structures are hypothetically the same, the same
description does not need to be repeated for each signal.

Visualization
Simulation outputs can be used to produce 3D animations. The animated world can be
edited to show recognizable landmarks based on digital photographs. However, Paramics
was not designed to model vehicle movement with high precision, and so vehicle
movement in the animation may not always be realistic.

Applicability of Paramics
We determined that Paramics has some serious limitations for use in simulating BRT.
These limitations are discussed in Paramics limitations and problems, section 3.4 of the
model report.

2

Table of Contents
1 Executive Summary... 2
2 Overview of Project... 6

2.1 Overview of modeling capabilities... 6
2.2 Overview of software... 7
2.3 Continuing and future work... 7
2.4 The SmartBRT team and website...11

3 Model Report... 12
3.1 Model Overview.. 12

3.1.1 Interaction with Paramics... 12
3.1.2 Passenger population.. 12
3.1.3 Passenger demand...13
3.1.4 Terminals, Stops, and Routes... 13
3.1.5 Transfers, feeder routes, and shared right-of-way, passenger route choice......14
3.1.6 Bus generation and dispatch... 15
3.1.7 Alighting, boarding, and dwell time...15
3.1.8 Signal priority... 17
3.1.9 Bus movement.. 18
3.1.10 Random number generation..19

3.2 Inputs..20
3.2.1 Overview.. 20
3.2.2 Conventions..20

3.2.2.1 Input file format.. 20
3.2.2.2 Comments in input files..21
3.2.2.3 Format of documentation..21

3.2.3 BRT Input files... 22
3.2.3.1 brt_bus_fare_types..22
3.2.3.2 brt_bus_type..22
3.2.3.3 brt_config..23
3.2.3.4 brt_dispatcher..23
3.2.3.5 brt_link..24
3.2.3.6 brt_link_follow .. 24
3.2.3.7 brt_log...25
3.2.3.8 brt_passenger_OD.. 27
3.2.3.9 brt_passenger_mobility_type.. 27
3.2.3.10 brt_passenger_payment_type..27
3.2.3.11 brt_route..27
3.2.3.12 brt_signal.. 28
3.2.3.13 brt_stop... 28
3.2.3.14 brt_stop_arrival...28
3.2.3.15 brt_terminal...29
3.2.3.16 brt_trace.. 29
3.2.3.17 brt_transfer..30

3

3.2.3.18 brt_veh_to_log.. 31
3.3 Outputs... 32

3.3.1 Statistical outputs... 32
3.3.2 Passenger traces..32
3.3.3 Debugging outputs..32
3.3.4 Visualization outputs..34

3.4 Implementation of the SmartBRT plug-in..36
3.4.1 Paramics limitations and problems...36

3.4.1.1 Lateral movement of vehicles...36
3.4.1.2 Longitudinal movement of vehicles..36

3.4.2 Efficiency and scalability..37
3.4.3 Software engineering methodology.. 37
3.4.4 Topics for future work..37

4 BRTML Reference...39
4.1 Introduction.. 39

4.1.1 The need for BRTML... 39
4.1.1.1 Key features of BRTML .. 39
4.1.1.2 A quick look at BRMTL...41
4.1.1.3 Principles of BRTML... 43

4.1.2 Using BRTML..44
4.1.3 BRTML and Paramics: Two levels of detail.. 45
4.1.4 Numeric Data Types and Units...45
4.1.5 FAQ: Frequently Asked Questions about BRTML.. 45

4.2 Global Configuration..47
4.2.1 simulation... 47
4.2.2 veh_to_log.. 49
4.2.3 trace.. 49
4.2.4 log... 50
4.2.5 variable... 51
4.2.6 statistic..52

4.3 Geometric model used in BRTML...52
4.3.1 Relative coordinates... 53
4.3.2 Junction topology... 53
4.3.3 Orientation: outbound and inbound..53
4.3.4 Subdivision...53
4.3.5 Corridors and networks.. 54
4.3.6 Lane numbering..54

4.4 Roadway types..54
4.4.1 street... 54
4.4.2 block... 54
4.4.3 junction... 56
4.4.4 phase... 57
4.4.5 major...57
4.4.6 medium... 57
4.4.7 minor...58

4

4.4.8 demand... 58
4.5 Transit system types... 58

4.5.1 bus_stop..58
4.5.2 terminal...60
4.5.3 bus_line...61
4.5.4 bus_type..62
4.5.5 fare_type... 63
4.5.6 mobility_type..64

4.6 Demand types... 64
4.6.1 Traffic demand... 64
4.6.2 Passenger demand...65

4.6.2.1 Time-varying passenger arrival rates.. 65
4.6.2.2 passenger_arrivals...65
4.6.2.3 arrival.. 65

4.6.3 Passenger OD tables... 66
4.6.3.1 passenger_demand.. 66

4.6.4 Passenger characteristics.. 66
4.7 Using other data sources.. 66
4.8 Reference Syntax..67
4.9 Glossary..68

5 Tutorial...75
6 User's Manual...75

6.1 System requirements.. 75
6.2 Installing Paramics plug-ins... 75
6.3 Installing platform-independent SmartBRT software tools..................................... 77
6.4 Troubleshooting... 77

6.4.1 Using Modeller in Windows.. 77
6.4.2 Using plug-ins on Linux... 78
6.4.3 Using plug-ins on Windows... 78
6.4.4 Modeller License Issues... 78

6.5 Running SmartBRT..79
6.5.1 BRTML Tools.. 79
6.5.2 Running SmartBRT in Modeller.. 80

6.5.2.1 Batch runs and other command-line runs... 80
6.6 SWEditor Manual...83
6.7 SmartBRT Software Downloads..83

7 The Wilshire Model... 84
7.1 Network Coding... 85
7.2 Passenger Demand Model..88

7.2.1 Data Collection...88
7.2.2 OD Estimation.. 89
7.2.3 Photographic Images.. 89

8 Copyright and License... 90

5

SmartBRT:
A Tool for Simulating, Visualizing, and
Evaluating Bus Rapid Transit Systems

2 Overview of Project

2.1 Overview of modeling capabilities
SmartBRT is capable of modeling some BRT technologies and policies. Some of the
missing modeling features are listed under continuing and future work. Paramics by itself
provides very few BRT features at all. Some of the BRT design elements and
characteristics that can be modeled in SmartBRT are listed below. Please see the model
report for details.

• Bus capacity

• Bus headway and speed limit

• Bus doors: number, width, and load/unload policy

• Low-floor or kneeling buses (as an effect on dwell time)

• Bus docking (as an effect on dwell time)

• Lane restrictions

• Transfers and feeder routes; trunk routes; several bus routes on same street

• Signal priority

• Stops with fare pre-payment

• Fare collection mechanisms (on bus)

• Dead heading—the policy of dispatching buses along an alternate high-speed
route

SmartBRT also has some flexibility in modeling non-transit aspects of the corridor:

• Passenger demand at each bus stop (which may vary by time of day) and OD
tables

• Characteristics of the passenger population:

• Fare payment type

• Mobility level (specifically, as it affects boarding and alighting
from buses)

• Traffic demand

6

• OD Tables

• Turning ratios in junctions

2.2 Overview of software
The SmartBRT software comes in three separate but related components:

• A language for describing transit corridors and simulation experiments
involving them. This language (BRTML) allows specification at a more
conceptual level than the usual inputs for Paramics Modeller. The SmartBRT
software package also include processing tools for this language, as described
in the user's manual.

• A set of extensions to Paramics (the extension software is called a Paramics
plug-in) to add the ability to simulate a wide variety of BRT technologies and
policies. Typically, a Paramics plug-in is used to adapt the behavior of
Paramics. The SmartBRT plug-in goes further and adds a new layer of
simulation involving buses, stops, passengers, and terminals; these entities
may have BRT characteristics and behaviors that are not available in standard
Paramics. Paramics models are still used for traffic effects.

• A tool for viewing 3D animations of simulation outputs, and for enhancing
these animations with photo-quality 3D graphics of buildings, infrastructure,
vehicles, and so on. This tool is called SWEditor, the Simulated World
Editor.

For performing transit evaluations, only the first component, BRTML, needs to be
understood in detail. The BRTML language provides a seamless, unified interface to the
simulation capabilities of Paramics extended with the SmartBRT plug-in. Although
Paramics and the SmartBRT plug-in each have their own configuration systems—
Paramics through the Modeller program or the input files, and the SmartBRT plug-in
through its own input files—the BRTML user may generally ignore these configuration
systems.

For a detailed look at the relation between the plug-in and Paramics, see the model report.
In particular, there is a section (Paramics limitations and problems) discussing some
problems using Paramics for bus simulation and the work-arounds we developed.

2.3 Continuing and future work
• Rigorous testing and calibration for a wide variety of configurations

• SmartBRT has been used in a number of special cases.
However, most of these cases are not associated with a real
corridor that can be used for validation. Also, SmartBRT has
not been tested in cases representing the full breadth of transit
systems.

• Data from the SamTrans and VTA projects can be used to

7

further calibrate the models.

• Wilshire corridor case study
• The SmartBRT project sought to develop a general tool, but at

the same time carry out a highly detailed case study of a large,
complex urban transit corridor—Wilshire Blvd. in Los
Angeles. This work is still in progress, but has yielded a set of
processing tools for converting other data formats into
BRTML. These tools are site-specific and are not part of this
general purpose deliverable.

• Extended tutorials and case studies
• Modeling work

• Passenger route choice
• This model would be necessary to support

complex networks of bus routes in which
passengers must choose between two or more
itineraries to reach their destinations.

• Signal priority only for designated buses
• Alternate signal priority algorithms

• Early green, coordination, etc.

• Alternate sensor and communication models as basis for
signal priority

• Loops, GPS, AVL, DSRC, etc.

• Off-line stops
• Queue jump lanes
• Time-varying passenger OD tables

• Arrival rates may be time varying in the current
version of the software, but OD tables are fixed.

• Software tools
• Corridor design tool with graphical user interface (GUI)

• A “wizard” type of tool that leads the user
through a series of questions and outputs a
BRTML corridor description. This would be
easy to implement, but would not give access to
the full expressiveness of BRTML.

• A general corridor design tool. This would be
hard to implement, because of the diversity of

8

corridors and transit systems.

• An experimental design and management tool, analogous to
Paramics Processor

• An experiment may consist of variations in a set
of variables: you may be interested in a range of
values for both demand variables and for service
variables. Each choice of values for these
variables requires a separate run. The user
specifies what data is gathered from each run,
how that data is aggregated across runs, and
what plots are generated produced from this
data. Currently, this work must all be done
manually.

• Run-time simulation monitor with graphical user interface
(GUI)

• Currently, there is no useful visualization of a
SmartBRT simulation at run-time. Paramics
Modeller is not capable of displaying the state of
the SmartBRT entities (buses, terminals).
SmartBRT works around this problem by
providing tracing outputs (see the tracing section
of the model report) that display events as they
happen. However, this is primarily useful with
Paramics Processor, the text-only command-line
version of Modeller. To extend Modeller to
show SmartBRT information would probably be
very difficult, and might be possible only if the
developers of Paramics are willing to make
changes to their software.

• An alternative is a two-fold approach:

• Extend Modeller as possible to
show some BRT-related
information, possibly using the
OpenGL features that have
recently been made available in
V4 of Paramics. For instance, we
could draw text in the display
window that shows passenger
counts on buses and at stops.

• Develop a separate program that
runs concurrently with Modeller,
communicating BRT event

9

information from Modeller to the
new program, and allowing the
user to interact with the event
data more easily than using the
text trace output. Interaction
would include “wait for the next
event matching specified
criteria”, “show most recent event
data for specified object”, etc. It
might even be possible to allow
the user to control the running
simulation from the external
program, if the Paramics API
supports (or can be extended by
Quadstone to support) pausing
and restarting the simulation.

• This program should also let the user manage
outputs and set up complex experiments
involving sequences of runs.

• Address the effect of Paramics vehicle movement problems on
visualization

• Vehicle trajectories output by Paramics are not
well suited to high-fidelity visualization:
vehicles often move in physically unrealistic
ways. Paramics was originally intended for large
scale traffic simulations, and so it traded realism
for efficiency. In particular:

• Vehicles sometimes collide,
especially in intersections.

• Vehicles sometimes move
sideways.

• Buses do not completely stop at
bus stops. They creep forward
and must be periodically
translated backwards.

• Movement is jerky.

• It may be possible to solve the problems by
post-processing the output. One possible
approach is to use vehicle trajectories as inputs
to another simulation, using each trajectory
point as a target for a controller, and using a

10

double integrator for the vehicle dynamics. This
would have some degree of physical realism,
while smoothing out jerkiness of the Paramics
trajectories. Additional preprocessing would be
necessary to solve the other problems.

• More realistic urban visualization
• Automatic generation of buildings and road

fixtures from corridor design document.

• Include a library of common buildings and
fixtures that could be used as is or extended
with digital images.

2.4 The SmartBRT team and website
Team members, contributors, and friends:

• Tunde Balvanyos

• Wes Bethel

• Yonnel Gardes

• Natalia Kourjanskaia

• Hongchao Liu

• Mark Miller

• Jim Misener

• Joao Sousa

• Swekuang Tan

• Wenbin Wei

• Joel VanderWerf

• Yafeng Yin

• Wei-Bin Zhang

The current point of contact for SmartBRT is Joel VanderWerf, vjoel@path.berkeley.edu.

The SmartBRT web site is http://PATH.Berkeley.EDU/SMARTBRT.

11

3 Model Report
This report documents the transit system models used in the SmartBRT Bus Rapid
Transit simulation, including parameters and performance measures, It also documents
input and output files of the software and some aspects of the implementation of the
models as a Paramics plug-in.

3.1 Model Overview

3.1.1 Interaction with Paramics
Paramics itself has limited support for advanced bus systems. However, Paramics
provides a fairly flexible API (Application Program Interface) through which additional
capabilities can be defined. The code, typically written in a programming language like C,
that defines these additional capabilities is called a plug-in. The plug-in extends the
behavior of Paramics by defining overload functions. These are functions defined in the
plug-in that Paramics calls at specific points in time, such as at start up, after each time
step, or when a bus or other vehicle is created.

To a large extent, the SmartBRT entities do not interact directly with Paramics entities.
The passengers and stops defined in SmartBRT are completely unknown to Paramics.
Terminals, buses, links, and signals in SmartBRT are correlated with Paramics entities,
but maintain separate state that pertains to the BRT application. Buses are based not on
the Paramics bus type, but on a type of heavy vehicle.

Much of the behavior of the model is apparent from the parameter descriptions, which are
in the section on inputs. The less trivial aspects of the model are discussed in the
following sections.

See the section on Implementation for more discussion about implementing the model as
a Paramics plug-in.

3.1.2 Passenger population
The passengers that move through the bus system are all drawn from the same population,
in the sense that passenger characteristics are sampled from a single set of distributions,
regardless of the time or location at which the passenger enters the simulation. Each
passenger has a mobility type and a payment type, which play a role in the computation of
dwell time. These characteristics are independent of the passenger's origin and
destination.

Mobility types are not limited to a predefined list in SmartBRT, but are an input to the
simulation defined in the brt_passenger_mobility_type input file. Each
mobility type specifies the times required to board and alight in both high-floor and low-
floor buses. Details are in Section 2.

Payment types are similarly definable in the brt_passenger_payment_type input
file. Each payment type specifies the time that the form of payment takes, assuming the

12

bus is equipped for that kind of payment. Each bus type (also definable) specifies a list of
payment types that are accepted on buses of that type. If the passenger's payment method
is unavailable on a bus, then a default method with its own time setting is used (this can
be thought of as paying by cash).

Mobility types are defined for the population as a whole, as are payment types. The two
distributions are assumed to be probabilistically independent.

Passengers are logged individually in some detail. See the section under brt_config
on the log_passengers setting.

3.1.3 Passenger demand
Passenger demand is described in terms of arrival rates and OD (Origin-Destination)
ratios. These two sets of variables can be adjusted independently.

Each stop has its own arrival rate. Arrival rate can be constant or time-varying in a
general way. The initial arrival rate for a stop is the specified in the frequency column
in the brt_stop input file. The frequency for a stop may change any number of times
during the simulation, according to the optional brt_stop_arrival input file. Each
entry in this file determines a time at which the frequency changes and the new frequency.
This can be used to model many different demand profiles:

• Spikes in the arrival rate due to scheduled train arrivals, or the end of the school day.

• Changes that persist for long periods, due to rush hour.

• Gradual increase of demand, such as the hours approaching the morning peak.

The OD ratios define what proportion of passengers entering the system at particular
origin stop wish to travel to a particular destination stop. Currently, OD ratios cannot vary
over time. The syntax used to specify these proportions is described in the section on the
brt_passenger_OD input file.

3.1.4 Terminals, Stops, and Routes
In our model, a bus route requires at least two terminals and a route that follows stops
between them. Terminals are not passenger stops, although they may be placed very close
to passenger stops. Terminals control the following aspects of the bus route:

• The number of buses available to be started from this terminal.

• The type of buses that run along the route. A terminal can generate buses of only one
bus type.

• Headway used by buses along the route.

• Whether or not buses along this route should wait at each stop to maintain uniform
time headways.

The generation of buses by terminals is described in a subsequent section, along with the
special case of bus dispatch.

13

As already noted in 1.3, stop characteristics determine the passenger demand levels. A
stop also can be designated to have off-board fare collection: the passengers may pay
upon entering the stop, so that there is no delay on boarding.

The route followed by buses on a bus route is determined by a sequence of stops in each
direction. The sequence of stops serves to determine both the stops which the buses
service and the geographical route followed by buses. A stop may be served by any
number of routes.

SmartBRT terminals are associated with Paramics zones, which provide the mechanism
used to generate vehicles. The input files which define these entities are
brt_terminal and brt_route.

3.1.5 Transfers, feeder routes, and shared right-of-way,
passenger route choice

SmartBRT bus routes can cross and even run along the same roadway. A stop can be
served by several routes, or service at the stop can be restricted to just some of the routes.
A pair of stops can be designated as transfer stops between two routes even if they are not
in the same physical location. These features allow a variety of system designs, such as:

• A BRT route along a corridor with transfers to and from feeder routes along streets
crossing the corridor.

• BRT and local service running along the same right-of-way, with the BRT route
serving a subset of the local stops.

• Several crossing BRT routes.

• Several BRT routes that funnel into a single busy corridor (a trunk route).

• Transfer areas that are larger than a normal stop and may require a short walk to make
the connection (around a corner or through a building).

• Dead-heading—bus dispatch along an alternate high-speed route (using the dispatcher
features described in the next section).

SmartBRT associates each bus route with a sequence of links that the bus will follow and
a sequence of stops that the bus will service. These are defined in the
brt_link_follow and brt_route files. Transfer stops between routes are defined
in the brt_transfer file.

The topology of routes can be very complex. However, passengers modeled by
SmartBRT may not respond to this complexity in a realistic way. This is because the
model of passenger route choice is very simple. Passengers just take the first suitable bus,
which means the first bus that will take them either to their destination or to a stop where
they can wait for another bus that will take them there. This model would impede a study
of local service and BRT service sharing right of way, since passengers might not take the
fastest route to their destination. A more intelligent model of passenger route choice
would be required, taking into account passengers' estimates of how long a trip will take
depending on which bus is available and how long future bus arrivals will take. (For

14

example, a passenger would need to choose between a local bus that is at the stop and a
BRT bus that has not yet arrived.)

3.1.6 Bus generation and dispatch
Normally, a bus route will consist of two terminals at the end of the route, with buses
running back and forth between them along a corridor with many stops. As noted above,
the number of available buses is specified in advance and a headway time may be
specified to prevent two buses from being released too close together. These parameters
are listed in the section on the brt_terminal file.

However, a bus route operator may wish to run additional buses on a highly traveled
segment of the corridor, by inserting and removing buses at locations other than the
normal terminals. Or the operator may wish to have some buses travel in only one
direction on the corridor and take a faster route (a parallel freeway, for instance) for the
return trip.

The former strategy requires defining an additional route that services some subset of the
original route's stops, but has terminals located near the ends of the shortened segment.
(Since terminals are associated with Paramics zones, and zones must be on dead-end
streets, these terminals should be located on cross streets that join the corridor near where
the additional service begins or ends.) Having two routes along the same corridor does
not interfere with passenger route choice. A passenger will take a bus, regardless of the
route it is associated with, as long as taking the bus will get the passenger closer to the
passenger's destination.

The accelerated return trip strategy is achieved by specifying the two terminals and the
bus travel delay between them in the brt_dispatcher file.

3.1.7 Alighting, boarding, and dwell time
Each bus type defines a distinct number of doors of each usage type, alight only, board
only, and mixed board and alight. Each door represents the ability to load or unload one
passenger at a time, with the duration depending on the passenger characteristics.

At the stop, passengers wait in an orderly queue and are given the option of boarding the
bus in the same sequence that they arrived at the stop (they might not want to board the
bus if its destination is not useful to them).

On the bus, passengers are seated in first-come-first-served order. The remaining
passengers are considered to be standing. Thus, at any point in time, a passenger is in one
of three states: seated in a bus, standing in a bus, or waiting at a stop. The total time spent
in each of the three states is recorded for each passenger (see the log_passengers
option in the brt_config input file). The seated and standee capacity is determined by
the bus type.

The total dwell time of a bus at a stop depends in a complex way on the door arrangement
of the bus, the bus's other characteristics, the numbers of boarding and alighting
passengers, and their board and alight times. The board and alight times are simple

15

enough to express in closed form as simple algorithms, discussed below. However, dwell
time is too complex to express as a closed form function of inputs. Because of the
complexity of the calculation, dwell time is evaluated in the simulation by actually
simulating sequences of alight and board events over time. This has the advantage of
being more realistic for passenger tracking, since the exact time of boarding and alighting
is known.

Algorithms for calculating individual passenger board and alight times can be expressed
as the following closed form pseudocode. Note the dependence on whether or not the bus
type specifies a low floor. Each passenger mobility type can react to this setting in
different ways, as defined in the brt_passenger_mobility_type file. A stop with
off-board fare collection is recognized as eliminating payment from the board time
calculation. The default payment time mentioned in the following is a parameter of the
bus type, and typically will be chosen to represent cash payment time.
define calculate_passenger_board_time(passenger, stop, bus) as:

 set board_time = 0

 if the bus's type is low_floor
 increment board_time by the passenger's mobility_type's lo_floor_board_time
 else
 increment board_time by the passenger's mobility_type's hi_floor_board_time
 end

 if the stop does not have the fare_at_stop option

 look up the passenger's payment_type
 in the bus's type's fare_collection_table

 if found
 increment board_time by the passenger's payment_type's time
 else
 increment board_time by the bus's type's default_payment_time
 end

 end

 return board_time

end

define calculate_passenger_alight_time(passenger, stop, bus) as:

 if the bus's type is low_floor
 set alight_time = the passenger's mobility_type's lo_floor_alight_time
 else
 set alight_time = the passenger's mobility_type's hi_floor_alight_time
 end

 return alight_time

end

Our model of a bus dwelling at a stop and passengers alighting and boarding is subject to
the following assumption and limitations:

16

• With mixed-use doors, boarding passengers politely wait for alighting passengers to
use the doors. Alighters use the doors selfishly regardless of effect on boarders.

• Board times are not “pipelined”, which would mean that the time one passenger uses
to pay could (at least partly) overlap with the time the following passenger needs to
board.

• Standees remaining on the bus after alighters have alighted will take seats if they can,
before boarders can get to them.

• For an approximate model of circulation time of passengers on the bus, the user can
increase the alight time inputs or the base dwell time of the bus. There is no separate
model of circulation.

• Buses may have more than one door for boarding, for alighting, or for both. In reality,
boarders may tend to cluster around a subset of the available boarding doors, and
alighters may go to the nearest door even if they have to wait longer. In SmartBRT,
however, these phenomena are not modeled, and boarding and alighting passengers
choose from the usable doors in the most efficient way possible: as soon as a door is
clear for use, some passenger will begin to use it.

• If two or more doors are assigned the same use (boarding, for example), the total door-
use time is simply divided equally by the number of doors. In other words, the total
board time is calculated as if there were only one door and then divided by the number
of doors. This is slightly unrealistic (on the order of one passenger's board time), but
greatly simplifies the algorithm. Similar remarks apply to the alight door case.

• Passengers who arrive at the stop while the bus is boarding do not board. If the bus
route has been selected to hold buses at stops to maintain headway, however, late
arriving passengers may board while the bus is holding.

• Passengers board the first bus that will get them closer to their destination. However,
this bus may not be the best choice in terms of their travel time or in terms of their
ability to find a seat. Additional modeling work is necessary to support passenger
decision (e.g., for local service vs. BRT service).

3.1.8 Signal priority
Signals apply to SmartBRT buses as they do to any other vehicle in the Paramics
simulation. However, signals along the BRT route can be designated to adjust their
phases to give buses priority. Specifically, signals can extend their green phase for up to a
specified maximum number of seconds, if it will allow an approaching bus to pass.
Currently, whether the approaching bus is granted an extension does not depend on
whether it is BRT service or not. The algorithm is as follows.

If the next signal ahead of the bus supports signal priority on the direction the bus is
approaching from, and if the bus is within 200m of the signal, we estimate the bus arrival
time at the signal based on the current speed of the bus and the distance of the bus to the
signal. The bus requests the signal to extend its green phase to allow the bus to pass
through the intersection before the end of the phase. If the current phase is red, the

17

request is denied. If the requested extension is greater than the specified maximum (the
“green hold” parameter of the signal), the request is denied. Otherwise, the request is
granted.

Note that the bus makes a new request on every time-step. If the bus slows, and there is
room for a longer extension within the maximum, then the originally granted extension
will be further extended to provide enough time to cross the intersection.

This is not a model of any particular mechanism of bus sensing, telemetry,
communication, or signal control. Rather, it assumes perfect information about the state
of the bus and signal and perfect control of and communication with the signal. This
model can be thought of as a best case model.

3.1.9 Bus movement
The model of bus movement used in SmartBRT is a hybrid of the vehicle movement
models built into Paramics and our own specialized model of bus behavior. The built-in
model we chose as the basis for our work is the heavy vehicle model, rather than the bus
model, because the latter is designed to work with the simplistic bus route and passenger
system built into Paramics.

The behavior of a SmartBRT bus (which we are modeling as a heavy vehicle) depends on
whether it is approaching a stop. The bus is considered to be approaching a bus stop when

(*) d
v0

2

amax

where
d is the distance to the stop,
v0 is the current velocity, and

amax is the maximum deceleration.

This formula is chosen to ensure that the bus could make the stop using only about half of
its maximum deceleration.

When the bus is not approaching a stop, the control mode depends on whether the bus is
in free flowing traffic with no speed limitation imposed by traffic. In this case, the bus
uses a simple proportional controller to maintain its desired speed, subject to limits
imposed by the bus type, the link, and other limits defined by Paramics. In the case when
surrounding traffic prevents the bus from traveling at its desired speed, the Paramics car
following model takes control. This ensures reasonable traffic flow effects, to the extent
that the inherent model in Paramics is reasonable.

When the bus is approaching a stop, the bus must be forced to stop at it, because our
SmartBRT bus stops are not known to Paramics. The bus must begin deceleration soon
enough, remain stationary while passengers alight and board, and accelerate at a
comfortable and realistic level after leaving the stop.

18

The maximum deceleration is the lesser of the bus type's braking limit, set in the
brt_bus_type file, and the limit computed by Paramics as the hardest acceptable
braking in the current situation. After detecting the that the bus is approaching the stop (in
other words, that condition (*) is satisfied), the bus decelerates, with an acceleration value
determined by the following formula:

a=
v0

2

2 d

This formula should yield precisely the deceleration needed to stop after distance d, the
distance from the bus to the stop. Because of the choice approach threshold discussed
above, this value will typically be well below the maximum.

3.1.10Random number generation
Paramics has its own pseudo-random number generator (PRNG), and the user may set the
seed in the Paramics configuration file. However, this number sequence is not used
by the SmartBRT plug-in. The primary reason for this is that it is often desirable in Monte
Carlo simulation to use a different and independently adjustable source of randomness for
each random variable. The significant random variables contributed by the SmartBRT
plug-in are those that are are associated with each stop and control passenger demand:
passenger interarrival times, destination choices, and mobility and payment
characteristics. Hence we allow the user to supply a seed for each stop, which is used to
generate the random variables at that stop.

To generate the sequences, we use a version of the Mersenne Twister algorithm invented
by M. Matsumoto and T. Nishimura. ("Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3—30. See also

http://www.math.keio.ac.jp/~matumoto/emt.html.)
It is fast, has a long period, has good distribution characteristics, and is ideally suited for
Monte Carlo simulation.

19

3.2 Inputs

3.2.1 Overview
This section describes the parameters that determine the behavior of a single simulation
run. These parameters fall into two sets:

• The standard Paramics parameters as contained in the nodes, links, etc. files.
We do not describe these files here, since they are described in the Paramics
manuals.

• The SmartBRT-specific parameters, which the SmartBRT plug-in software reads
and uses to generate its model of the transit network. These parameters are
located in files named with the prefix brt_ to distinguish them from other input
files and from output files. We discuss these files in this chapter.

Note that the plug-in input files are not the intended user interface for SmartBRT.
They require a fine-grained and literal description of the transit aspects of the model. For
instance, the brt_link and brt_link_follow files require a large quantity of
essential but uninteresting detail. For every link, and for every bus route that runs along it,
there must be an entry in brt_link_follow defining the next link that a bus
belonging to that route must take and the destination terminal of the bus. The user
typically would prefer simply to specify a list of streets that the bus route runs along, or a
list of stops that the bus makes.

The BRTML language and compiler, documented in the User Manual, is a more user-
oriented high-level interface that generates the low-level plug-in input files from a high-
level BRTML specification file. The BRTML compiler can, for instance, translate the
simple block-oriented route description into the appropriate plug-in input files.

This chapter describes the lower level input files for two reasons. First, they represent in a
simple way the entire range of configuration possibilities for the plug-in, regardless of use
of BRTML. Second, it is sometimes necessary to examine these files to debug a network
or to understand a message produced by Paramics or by the plug-in. (The situation is
analogous to beginning a course on biology with a discussion of the chemical compounds
found in living organisms, even though the bulk of the subject deals with larger-scale
systems.)

3.2.2 Conventions
The files that are particular to the SmartBRT plug-in are always given a name beginning
with “brt_”, to distinguish them from Paramics input files, output files, etc. All files,
input and output, associated with a given network are kept in the same directory.

3.2.2.1 Input file format
For simplicity, all SmartBRT input files are formatted as tabular data. Each row (i.e., line
in the file) represents an individual object of the same kind, such as a bus stop, a bus type,

20

a logging switch, or a passenger payment type. Columns (i.e., fields on a line) are
separated by whitespace (spaces or tabs), and represent some attribute or characteristic of
that object. For example, the brt_terminal file might look like this:
zone_id dest_id route_name bus_type headway start_count headway_hold offset
 1 2 L1 bus 120 1 0 200.0
 2 1 L1 bus 120 0 0 200.0
 18 8 L2 bus 120 0 0 200.0
 8 18 L2 bus 120 1 0 200.0

Each row represents a terminal. The data type and (if that type is numeric) the units of
each entry are determined by the column. The first column, “zone_id”, is the Paramics
zone in which the terminal is located (zone indexes are define in the Paramics zones
file). The “dest_id” is also a zone id—it's the destination zone of buses leaving this
terminal. Some entries, such as the “L1” and “bus” values, symbolically connect this file,
brt_terminal, with other SmartBRT input files, which in this case are the files
defining bus routes and bus types, respectively. The “L1” refers to a particular route, and
the “bus” refers to a particular bus type. The value in the headway column is a time, in
seconds. The value in the start_count column is a bus count. The value in the
headway_hold column is a boolean (1 is true, 0 is false). The value in the offset column is
a distance, in meters. The details of the brt_terminal file are discussed in depth in a
section of this chapter.

As an aside, we mention three of the ways in which BRTML simplifies these inputs:

• BRTML lets you specify units as part of the data, decreasing ambiguity.

• BRTML puts all input data in one file and uses a consistent notation for references
between one object and another, as opposed to, for example, the ad hoc use of route
names in the brt_terminal file.

• BRTML lets you group terminals and define common features (such as, in this case,
offset) for all terminals in the group.

3.2.2.2 Comments in input files
The SmartBRT input files may have comments. Comments run from a '#' character to the
end of the line. The files generated by the BRTML compiler typically have comments
inserted for readability. The first line is often a comment describing the fields of each
data line in the file, as in the example above.

3.2.2.3 Format of documentation
In this document, we consider each input file in turn. Since the format of the input files is
very consistent, the format of this document is, too. We explain what kind of objects the
lines of the file represent, and what characteristic of the objects the fields represent.
Much of this documentation is in 9 point courier and is preformatted with space
characters. This is because the source of the text is C include files in the SmartBRT plug-
in source code. To reduce maintenance effort, the text in the include files is simply copied
to this document, retaining its original format.

21

3.2.3 BRT Input files
This section describes, in alphabetical order, every input file that is recognized and read
by the SmartBRT plug-in. Paramics input files are described in the Paramics
documentation.

3.2.3.1 brt_bus_fare_types
 Each bus type has a list of allowed fare types, represented in the
 brt_bus_fare_types file.

 The brt_bus_fare_types file has the following fields on each line:

 type_name = name of bus type
 fare_name = name of a fare type (e.g., "smartcard")

 There is no limit to the number of fare types, or to the number of types
 which a particular bus type can accommodate. Simply use a line in this file
 for each bus type and each fare type that it accommodates. The fare names are
 also referenced in the brt_passenger_payment_type file.

 Note: If a bus type allows "default", then passengers who have an invalid
 payment method will still be able to pay (e.g., with cash), taking
 the default_payment_time. A bus type without "default" can be used
 to model service that admits only passengers who have the specified
 payment method(s).

3.2.3.2 brt_bus_type
 Each line in the brt_bus_type file describes a class of buses (of which many
 instances may exist in a running simulation).

 BRT bus types supplement the heavy vehicle type of Paramics. We must use the
 latter to provide length, dynamics, and anything else affecting the behavior
 or appearance in Paramics. However, all other characteristics are under the
 control of our bus type. There can be more than one of these bus type,
 allowing several different services (such as BRT and local) with different
 characteristics.

 The brt_bus_type file has the following fields on each line:

 type_name = name of bus type
 low_floor = 1 if low floor, else 0
 capacity = total cap., standees included (int)
 seats = num. seats (int)
 speed_limit = maximum speed, in m/s (float), 0 to use the
 limit imposed by the current link
 comfort_accel = comfortable acceleration, in m/s/s (float)
 comfort_decel = comfortable deceleration, in m/s/s (float) (*)
 alight_door_count = number of doors usable for alighting only (**)
 board_door_count = number of doors usable for boarding only
 mixed_door_count = number of doors usable for either purpose
 default_pay_time = added to board time when passenger has none
 of the types listed in brt_bus_fare_types.
 base_dwell_time = time added to board/alight times at stop
 (to open/close doors, etc) (float)

 (*): comfort_decel can be given as positive or negative, and only the
 absolute value is significant.

 (**): Door counts are in terms of the number of passengers which can
 board/alight at the same time (a wide door might count as 2).

22

3.2.3.3 brt_config
 The brt_config file allows some global configuration settings, much like the
 configuration file in Paramics. Each line is a particular setting. The
 brt_config file has the following fields on each line:

 key = string
 value = string

 Each string is just a sequence of characters without spaces. (Quotes are not
 needed.)

 All keys are allowed, but the plug-in ignores all but the following:

 debug (or DEBUG)

 Boolean, with 0 as false and all else as true.

 Turn on debug mode. The only difference in running in debug mode is that
 before all the brt plug-in does its setup, the user is given the
 opportunity to press return or ctrl-C, which is necessary to debug the
 smartbrt plug-in using the gdb debugger.

 This is typically used by the developers of the plug-in, not by users.

 log_trajectories (or LOG_TRAJECTORIES)

 Boolean, with 0 as false and all else as true.

 Output vehicle position data at every time step to the
 'vehicles.log' file for use with SWEditor animation playback.

 log_passengers (or LOG_PASSENGERS)

 Boolean, with 0 as false and all else as true.

 Output each passenger's origin, destination, wait time, sitting time, and
 stand time to the 'passenger.log' file when the passenger exits.

 Note that this is more detailed than the statistical outputs available
 using the statistical logging facility (brt_log).

 log_network (or LOG_NETWORK)

 Boolean, with 0 as false and all else as true.

 Output to 'nodes.log' the position of all nodes. This file has a line
 for each node with the data "node <name> at x, y, z junction". This is
 used as an input to animation.

3.2.3.4 brt_dispatcher
 The BRT dispatcher augments the release policy of BRT terminals. A terminal
 that has a dispatcher will send all available bus to a fixed insertion point
 along the route, after a specifed travel delay, rather than release it from
 the terminal.

 The dispatchers are defined in the brt_dispatcher file, which has the
 following fields on each line:

 zone_id = id of the Paramics zone of terminal that buses are
 dispatched from
 insert_zone_id = id of the Paramics zone where bus is inserted
 (this zone must have an associated BRTTerminal, which

23

 provides the bus type, destination, etc.)
 delay = time to get from orig. terminal to insertion point,
 in seconds (int)

 Each line defines a dispatch policy. The effect of defining a dispatch policy
 is as follows. When a bus finishes its route and arrives at the terminal
 referenced by <zone_id>, it is removed from the terminal. After the specified
 delay, the bus is released at the insertion terminal in zone
 <insert_zone_id>, and begins running along the bus route.

 Currently, there is no adaptive decision-making (which might be based on
 observed and projected headways, arrival times, waiting passengers, etc.). A
 terminal can have only one corresponding insertion point, since there is no
 decision mechanism to choose the best one. This means that terminals always
 are paired, with buses running between them. The only difference between a
 normal pair of terminals and a paired dispatcher terminal and insertion
 terminal is that, in the latter case, one of the two travel directions is
 modeled as a simple delay and the other direction is modeled as a bus serving
 stops, whereas in the normal case both directions are modeled as a bus
 serving stops.

 Typically, this limited form of dispatch will be used in the following way.
 There are two terminals at the ends of the route which release buses
 normally. They do not use dispatch. There are one or more additional
 terminals along the route which use dispatch to increase bus traffic over a
 shorter segment of the route. A dispatch terminal may be placed at the end of
 the route or not, as preferred. The corresponding insert zone may be located
 anywhere along the route. A bus will run along the route from the insert zone
 to the dispatch terminal. Then it will be held for <delay> seconds, moved to
 the insert zone, and released from the insert zone. Note that a single
 terminal with a dispatch policy affects travel in only one direction. It may
 be useful to have several dispatchers releasing buses in the same or in
 different directions.

3.2.3.5 brt_link
 Each Paramics link along the bus route has some additional information
 associated with it by the brt_link file, which has the following fields on
 each line:

 name = name of a Paramics link in links file (string)
 bus_lane = lane used by bus (1, 2, 3...)
 allow_lane_change = 1 if bus can change into traffic lanes, 0 otherwise
 allow_overtake = 1 if bus can overtake other buses, 0 otherwise
 speed_limit = for bus only, in m/s, float, 0 means the link
 imposes no limit (but the bus itself may).

 Note that allow_lane_change and allow_overtake do not currently work. This
 sort of behavior is very difficult, if not impossible, to implement in a
 Paramics plug-in. A different approach, which we may take in the future, is
 to use the network design to force this behavior, by using lane restrictions
 to the links in question. This technique is currently used to keep the bus in
 the lane near the bus stop.

3.2.3.6 brt_link_follow
 The brt_link_follow file defines the route taken by a bus that serves the
 named route. It has the following fields on each line:

 name = name of link defined in brt_link
 route_name = name of bus route
 dest_zone_id = id of the destination zone
 follow_name = name of the next link on the route

24

 The follow_name field defines where the bus goes next after the current link.

3.2.3.7 brt_log
 Each line of the brt_log file specifies a kind of measurement and the
 times at which the measurement is reported. Lines are of the form

 variable statistic delay period window

 The variable is one of:

 ----------------per stop variables

 headway bus headways, measured as the bus leaves the stop
 wait_time passenger wait time
 left_behind num pass. left behind
 alight_count num pass. alighting
 board_count num pass. boarding
 psgr_interarrival_time
 time between successive passenger arrivals
 alight_time pass. alight time
 board_time pass. board time
 dwell_time bus dwell time
 seg_travel_time bus travel time on the segment from the previous stop or
 terminal to this stop
 bus_load num pass. on bus before stopping

 ----------------per route variables

 bus_travel_time time it takes for a bus to travel route
 psgr_sit_pct percent of time on bus that passenger is seated
 psgr_travel_spd speed of passenger travel from orig to dest (in m/s)
 stop_time time bus spent at bus stops (same as dwell time but
 aggregated by route rather than stop)
 route_priority time added to green when bus got priority

 ----------------per signal variables

 signal_priority time added to green when bus got priority
 signal_wait_time time bus was stopped at the signal

 Note that per passenger data is collected separately in the passenger.log
 file and includes, for each passenger, origin, destination, and wait,
 stand, and sit times. These times are cumulative for passengers
 transferring between routes. (The per route variables listed above are
 not.)

 The statistic is one of:

 value
 average
 maximum
 minimum
 variance
 count

 Each line enables measurement of the specified statistic for the specified
 variable. The delay, period, and window settings affect how data is
 collected, aggregated, and reported, as explained below.

 The values of delay, period, and window are each floating-point numbers or
 blank. If delay is blank, then period and window must be, too. If period is
 blank, then window must be, too. Units are seconds.

25

 Currently, a particular statistic for a particular variable can be reported
 in only one way. In other words, it is an error to have two lines whose first
 two fields are the same.

 The delay specifies the time interval at the beginning of the simulation run
 during which the variable is ignored. If the delay is omitted, or 0, logging
 begins as soon as the first data point is observed. This allows the user to
 set a "warm up" time at the beginning of the simulation that is not included
 in statistics.

 The period specifies the time between reports to the log file (each report is
 represented by one output line), regardless of when new data is available. If
 the period is omitted, or 0, the log is written whenever there is new data.

 The window specifies the time interval over which the statistic is
 calculated. If the window is omitted, or 0, cumulative values are reported,
 except in the case of the "value" statistic, in which case only the latest
 value is reported. The window setting has no effect on when data is reported,
 only on the way values are calculated. Note that using the window option with
 the count statistic results in frequency measurements.

 If both delay and window are specified, data will not appear in the log until
 delay+window seconds have elapsed. Windowing requires a complete window
 period, exclusive of the warm-up delay.

 If there are no lines, nothing is logged. As in all brt_* input files, a #
 denotes a comment through the end of the line. The variable and statistic
 fields are case-insensitive.

 Each log is written to a separate file, whose name is constructed from the
 variable and statistic names (e.g., "headway_average.log"). The file consists
 of a header line describing the fields. On each line, there is a time field
 plus one field for each object which has the selected "variable". For
 instance, "headway" is reported for each BRTStop, whereas "bus_travel_time"
 is reported for each terminal. Here is an example of a brt_log file:

 # variable statistic delay period window
 headway maximum 600 100 0
 headway average 600 600 0
 headway variance 600 600 5400

 This file requests the three headway statistics, maximum, average, and
 variance. All three statistics will ignore the first 600 seconds of
 simulation ("warm up"). The current maximum is reported to the log file every
 100 seconds. The current values of the other statistics are reported every
 600 seconds. The maximum and average are reported cumulatively--all values
 after the warm up delay are aggregated into the reported value of each
 statistic. The variance is aggregated in windows of 5400 seconds. This limit
 is desirable because computing variance require keeping all aggregated values
 in memory.

 Here is the resulting "headway_average.log" output file:

 #time outbound_2 inbound_1 inbound_2 outbound_1
 1200.0 20.00 11.00 145.50 142.33
 1800.0 134.00 137.67 162.25 156.22
 2400.0 142.60 157.33 166.20 159.28
 3000.0 153.75 163.62 189.92 164.94
 3600.0 170.36 172.75 187.41 197.86
 4200.0 180.92 179.44 189.92 188.69
 4800.0 175.39 177.22 185.77 182.77

 Column spacing has been manually adjusted for readability. The columns are
 not presented in any particular order--the user may want to rearrange them as

26

 desired. Also, later lines in the log may have more columns than earlier
 lines, because more objects have reported data at that time. In this case, an
 additional header line is generated to describe the new set of columns.

 In cases where no data is available to compute a statistic (for instance, if
 the window is very small), the value of "NIL" will be reported instead. This
 is so that all numeric entries in the table can be assumed to be meaningful.

3.2.3.8 brt_passenger_OD
 The brt_passenger_OD file determines, in combination with the arrival rates
 specified in brt_stop and brt_stop_arrival, the passenger demand in the
 system. The file has the following fields on each line:

 o_name = name of origin stop
 d_name = name of destination stop
 prob = probability (float)

 The probability refers to the proportion of passengers departing from the
 specified origin who intend to travel to the specified destination. Hence,
 for a given origin, all listed probabilities must sum to 1--they represent
 a discrete distribution of destination choices at that origin.

3.2.3.9 brt_passenger_mobility_type
 The brt_passenger_mobility_type file determines, in combination with the bus
 parameters, the time it takes passengers to alight and board. Any number of
 mobility types can be defined in this file. Examples might include "bicycle",
 "disabled", and "elderly". The file has the following fields on each line:

 type_name = name of passenger mobility type
 prob = probability (float)
 hi_floor_alight_time = time (in sec.) to alight from hi_floor bus, float
 lo_floor_alight_time = time (in sec.) to alight from lo_floor bus, float
 hi_floor_board_time = time (in sec.) to board hi_floor bus, float
 lo_floor_board_time = time (in sec.) to board lo_floor bus, float

 Note: these represent the physical board/alight motion, not including
 time for payment, in-bus movements, etc.

3.2.3.10 brt_passenger_payment_type
 The brt_passenger_payment_type file determines, in combination with the bus
 parameters, the time it takes boarding passengers to pay their fare. Any
 number of payment types can be defined in this file. Examples might include
 "fastpass", "smartcard", "token", etc. The file has the following fields on
 each line:

 type_name = name of passenger payment type
 prob = probability (float)
 time = payment time, assuming bus is equipped (float)

 Note: the probability distribution is independent from the mobility type
 distribution.

3.2.3.11 brt_route
 The brt_route file is used to determine which buses stop at which stops. It
 can be used to have two bus routes (e.g., local and BRT) on the same ROW. The
 file has the following fields on each line:

 route_name = name of bus route
 stop_name = name of stop

27

 The route_name is used for correlation with entries in the brt_terminal and
 brt_link_follow files. The stop_name is used for correlation with entries
 in the brt_stop file.

3.2.3.12 brt_signal
 Each entry in the brt_signal file represents a signalized intersection. Only
 those intersections whose signals have BRT-specific behavior, such as
 priority for buses, need to be mentioned in this file.

 The brt_signal file has the following fields on each line:

 node_name = name of a Paramics node in the nodes file
 green_hold = max time, in seconds, to hold green if
 it will benefit bus on BRT corridor
 hold_phase = the Paramics phase number of the signal which
 time is given to (integer), or
 0 if no phase gets priority
 other_phase = phase time is taken from
 queue_jump_lane = lane index of queue jump lane (on major route)
 queue_jump_time = time, in seconds, of green phase given to
 the queue_jump lane
 name = name of the signal

 Currently, queue jumping is not implemented; the two parameters will be
 ignored, but values must be given to complete the input.

 The name is used to identify the signal for logging and statistics. It can
 be any string without spaces. This is useful to make the logging output more
 readable that it would be if the node name was used. It can also be used for
 complex junctions that involve more than one node, but should be considered
 as one intersection for statistical purposes.

3.2.3.13 brt_stop
 The brt_stop defines the locations and characteristics of all the bus stops.
 The file has the following fields on each line:

 name = name of the stop (string)
 link_name = name of the Paramics link in links file (string)
 on which this stop is located
 dist_to_stop = in meters, floating point, from start of link
 offline = 1 if stop is off line, 0 if on line
 max_num_buses_docked = number of docking spaces
 fare_at_stop = 1 if paid at stop, 0 if paid on bus
 frequency = freq. of passenger arrival, in passengers per hour
 (Note: this is the initial frequency, which can be
 superceded after a certain time according to the
 brt_stop_arrival file.)
 seed = seed for the arrival sequence and for
 generating passenger characteristics

 The offline flag currently has no effect--all stops are on line.

3.2.3.14 brt_stop_arrival
 The brt_stop_arrival file is optional and can be used to fine-tune the
 passenger arrival rate by time of day. Normally, the brt_stop file specifies
 the frequency for each stop, and this rate stays the same throughout the
 simulation. When the stop is listed in brt_stop_arrival, this rate can change
 at any number of specified times.

28

 The file has the following fields on each line:

 stop_name = name of stop, as in brt_stop
 change_time = time, in minutes (absolute, like brt_time), at
 which new arrival frequency takes effect
 frequency = rate of passenger arrival, in passengers per hour

3.2.3.15 brt_terminal
 BRT terminals extend the behavior of Paramics zones. Paramics zones serve as
 sources and sinks for all kinds of vehicles, including buses. A BRT terminal
 is associated with a zone that is a source and sink for buses. The BRT
 terminal's characteristics determine what kind of buses are released, how
 many buses are available, what destination is assigned to them, what route
 they will follow, and the headway to be kept between them as they leave
 the terminal. A terminal can release only one type of bus.

 Each terminal corresponds to an endpoint of a bus route. Two distinct bus
 routes, even if they share all of their right of way, must have different
 terminals (with different zones as well), though the terminals can be placed
 close together. Terminals are not passenger stops. A stop may be placed near
 a terminal, however, to have the effect of a bus station.

 The terminals are defined in the brt_terminal file, which has the following
 fields:

 zone_index = id of Paramics zone (integer)
 dest_index = id of destination zone (integer)
 route_name = name of the route that a bus will follow if it is
 released from this terminal
 bus_type = name of bus type
 headway = headway use for bus release (float)
 start_count = initial size of bus pool at this terminal (int)
 headway_hold = whether to hold buses at stops to maintain headway
 (1 = true, 0 = false)
 offset = offset from END of link, in m.

3.2.3.16 brt_trace
 Tracing is a way for the user to see the event history of a simulation. Each
 line of the brt_trace file is an event name, chosen from the first column of
 the following table:

 event name data shown condition when shown

 bus bus state arrival and departure at terminal/stop,
 and link change

 bus_periodic N bus state every N seconds (floating point)

 passenger psgr. state passenger generation, boarding,
 alighting, arrival

 stop stop state arrival and departure of buses and
 passengers, change in arrival rate

 signal signal state extension granted

 terminal terminal bus arrival and departure
 state

 link topology start up time

29

 general - initializing and finalizing the plug-in

 dispatch bus, route, dispatch of buses and
 and terminal arrival of dispatched buses

 Each event named in the file switches on tracing of that event type. Note
 that the bus_periodic event also requires a floating point number to specify
 the period. If there are no lines, no events are traced. As in all brt_*
 input files, lines can be commented out with '#'.

 Events are output in the order in which they happen, along with the time at
 which they occur.

 Currently, tracing output simply goes to the user's terminal ("standard
 output", or stdout), though it can of course be redirected to a file. Later,
 there will be an option to write to a file named in the inputs, or even a GUI
 to parse, display, and query the event history.

 Currently, tracing is best used in combination with a pager program like
 'less' or 'more'. From a Unix command shell, you can run your network with

 processor-cmd -cmd -clean -netpath `pwd` 2>&1 | less

 and use the built-in searching ("grep") commands to jump (forward or
 backward) to events matching a pattern. This can be used, for instance, to
 quickly find all bus arrivals at a particular stop, or to jump to a
 particular time.

3.2.3.17 brt_transfer
 The brt_transfer file defines which stops can be used to transfer between
 which bus routes. In the simulation, this determines if a passenger on a bus
 alights to wait at a stop for another bus, and it determines whether a
 passenger at a stop boards an arriving bus. The model of route choice is very
 simple. Passengers simply take the first available stop (if riding) or bus
 (if waiting) that brings them either to their destination or to a transfer
 stop that is closer to their destination. They do not consider the speed of
 the bus, the directness of the route, or the expected wait time at a stop.

 The file has the following fields on each line:

 curr = name of the stop where the decision is made
 dest = name of a stop which can be reached by transfer
 from curr (possibly after other transfers)
 trans = name of the stop to wait at (should be curr itself
 or within very easy walking distance of curr) for
 transfer

 There should be at most one entry for any given curr and dest. The “trans"
 signifies the most suitable stop at which to transfer, for passengers
 traveling from the curr stop to the dest stop, though there may be other
 stops that are less suitable. It is up to the simulation designer to decide
 in advance what "suitable" means.

 The effect of these inputs, also known collectively as the transfer table, is
 as follows. First, we consider the case of a passenger waiting at a stop S1
 when a bus arrives. We consider in sequence the remaining stops along the
 route of the bus. If such a stop, S2 is the same as the passenger's
 destination, D, the passenger queues to board. If S2 and D are listed in an
 entry of the transfer table, the passenger queues to board.

 Second, we consider the case of a passenger riding a bus upon arrival at a
 stop, S. If S is the same as D, the passenger's destination, then the
 passenger decides to alight. If S is not the same as D, but S and D are

30

 listed in an entry of the transfer table, along with a stop T, the passenger
 decides to alight. In the latter case, the passenger starts waiting for a bus
 at stop T. Note that T may be the same as S, or it may be different. It would
 be different if it is necessary to cross a street, go around a corner, or
 otherwise travel a short distance to reach the bus stop for the next bus in
 the passenger's itinerary.

3.2.3.18 brt_veh_to_log
 The brt_veh_to_log file designates which vehicle, if any, is to be logged
 in detail (trajectory data suitable for 3D visualization), along with
 its surrounding vehicles.

 The brt_veh_to_log file has one line with the following fields:

 vehicle_type the type of vehicle to be selected (integer)
 vehicle_number select the n-th vehicle of the type (integer)
 distance only log vehicles within this
 distance from selected vehicle, in meters (float)

 For example, the following brt_veh_to_log file will log all vehicles
 within 1000 meters of the 10th vehicle of type 1:

 # Type to log Vehicle number to log Area to log
 1 10 1000

 The output goes to the file vehicles.log. The format is:

 time simulation time, in seconds (float)
 vehicle_ptr integer which uniquely identifies the vehicle
 vehicle_type type of vehicle (integer)
 x x coordinate of vehicle (float)
 y y coordinate of vehicle (float)
 z z coordinate of vehicle (float)
 bearing bearing of vehicle (float)
 gradient gradient of vehicle (float)

31

3.3 Outputs
Outputs are currently stored in the network directory, along with inputs. (This may
change in the future.) All outputs generated by SmartBRT have the .log suffix, to
distinguish them from inputs. Note that some of the input files have names ending in
_log.

3.3.1 Statistical outputs
Statistical outputs are described in the section on the brt_log input file.

3.3.2 Passenger traces
Each passenger is considered as an individual, with its own identity and characteristics,
namely:

• origin and destination (bus stops),

• mobility type, and

• payment type.

In addition, as a passenger travels through the system, a record is kept of three cumulative
durations:

• time spent waiting in queues,

• time spent seated on buses, and

• time spent standing on buses.

When the passenger finishes its trip, this data is logged to the passenger.log file,
assuming that the log_passengers flag has been turned on in the brt_config
input file. The output lists the names of the origin and destination stops (but not the
names of any transfer stops the passenger may have visited) and the total time spent
waiting at stops (including transfer stops), seated on buses, and standing on buses.

An example of the output is given below:
#orig dest wait sit stand
stop4 stop5 80 112 0
stop1 stop2 140 124 0
stop5 stop6 214 79 0
stop4 stop6 15 188 0
stop4 stop6 111 193 0
stop2 stop3 57 102 0
stop2 stop3 104 101 0
stop2 stop3 162 106 0
stop2 stop3 182 105 0
stop1 stop3 119 228 0

3.3.3 Debugging outputs
Debugging outputs are specified in the brt_trace input file, which is described in the
section in input files. The tracing output is somewhat self-descriptive. Here is an example

32

of one event from the event history of a simulation.
At 707.0 sec: Bus departed from stop:
 id 9
 type B1
 route R1
 link m5:m4
 lane 1
 dist to link end 180.4 m
 dist to stop 393.4 m
 seated 4: 31 36 39 41
 standee 0:
 speed 0.4 m/s
 nearby stop stop5
 dist_to_signal 573.4 m
 next signal m2
 depart time 707.0 s
 mode car following

This particular event is a bus event. Bus events are reported if the user has requested
either “bus” or “bus_periodic” in the brt_trace input file. The data has the following
meaning:

Event name Value

id The id of the bus.

type The bus type (as used in brt_terminal and
brt_bus_type)

route The bus route (as used in brt_terminal and
brt_route)

link The name (as used in Paramics) of the link in which
the bus is currently located.

lane The number of the lane in which the bus is currently
located.

dist to link end Distance from bus's current position to the end of
the link, in meters.

dist to stop Distance from bus's current position to the next
stop, if any, in meters.

seated Number of seated passengers (in this case 4),
followed by a list of the passenger ids.

standee Number of standee passengers (in this case 0),
followed by a list of the passenger ids.

33

speed Bus's current speed in meters/second.

nearby stop Name of the next stop on the route, if any.

dist to signal Distance from bus's current position to the next
signalized intersection, if any, in meters.

next signal The name (as used in Paramics) of the node where
the next signal is located.

depart time If the bus is at a stop, this is the estimated time in
the future at which the bus will leave the stop, after
exchanging passengers.

If the bus is not at a stop, this is the time at which
the bus most recently left a stop or (if none) the
terminal.

mode One of three modes:
approaching bus stop
stopped at bus stop
car following

These modes are described in the section on bus
movement.

As noted in the section describing the brt_trace input file, using trace output in
conjunction with pattern searches is an easy way to perform queries on past events in the
simulation, or to wait for future events. For example:

• "the next event for bus 6"
• "the 7th bus generated at zone 2"
• "the next arrival at stop stop5"

It would be desirable to develop a GUI that has the same query capabilities, but without
the need for the user to be comfortable with command-line tools and pattern matching
using regular expressions.

3.3.4 Visualization outputs
The plug-in can produce vehicle trajectory data suitable (in form, at least) for 3D
visualization. This is activated by turning on the log_trajectories flag in the
brt_config file. The selection of which vehicle to log is made in the
brt_veh_to_log file, described in Chapter 2. The specified vehicle and all vehicles
within the specified distance from it are logged (by selecting a reasonable distance, the
file size can be kept fairly small). For example, the following brt_veh_to_log file
will log all vehicles within 1000 meters of the 10th vehicle of type 1:

34

Type to log Vehicle number to log Area to log
1 10 1000

The output goes to the file vehicles.log. The file has the following fields on each
line:
 time simulation time, in seconds (float)
 vehicle_ptr integer which uniquely identifies the vehicle
 vehicle_type type of vehicle (integer)
 x x coordinate of vehicle (float)
 y y coordinate of vehicle (float)
 z z coordinate of vehicle (float)
 bearing bearing of vehicle (float)
 gradient gradient of vehicle (float)

In addition, because of internal coordinate transformations in Paramics, it is useful to
output a file of node positions in the same coordinate frame as the vehicle trajectories.
This is activated by turning on the log_network flag in the brt_config file. The
format of the resulting output goes to the nodes.log file and contains the positions
of all nodes. For each node, the file has a line with the data
 node <name> at x, y, z junction

35

3.4 Implementation of the SmartBRT plug-in
Although the source code to the plug-in is not part of the current software release, there
are some implementation issues that are important to discuss.

3.4.1 Paramics limitations and problems
There are a number of limitations and problems in Paramics that we have had to work
around one way or another in developing our plug-in.

3.4.1.1 Lateral movement of vehicles
We found the interface that Paramics provides for controlling vehicle lateral movements
to be unreliable, and as a result the plug-in supports bus stops by using some rather
artificial network design, described in this section.

Our bus stops are unknown to Paramics, because we are not using the overly limited
built-in bus and bus stop functionality. Our buses are, from the point of view of Paramics,
nothing more than heavy vehicles. Consequently, our buses will not stop at our bus stops
without some special effort. We have not found it possible to reliably use the Paramics
API to force the bus to change to the lane adjacent to the stop. We got around this
limitation by using lane restrictions on the links which have bus stops to keep the bus in
the correct lane to make the stop. Since lane restrictions apply to entire links, a city block
with a bus stop is subdivided into at least three links to allow for this restriction near the
stop (the third link has to do with non-buses being allowed to make right turns in the bus
lane).

This problem is one reason why the plug-in cannot be easily used without using the
BRTML compiler to generate networks that have appropriate restrictions. Lane
restrictions are automatically generated by the BRTML compiler based on the user's
choice of bus lane for each block.

Unfortunately, this work-around introduces a new problem: buses cannot pass each other
(or pass cars) while they are in the restricted area around the bus stop. This behavior is
not realistic.

3.4.1.2 Longitudinal movement of vehicles
Another consequence of using our own bus stops, unknown to Paramics, is that it is
necessary to override the Paramics longitudinal model to force a bus to stop at a stop,
wait there while passengers are boarding and alighting, and start up again. However, one
problem with longitudinal movement is that a bus stopped at a bus stop is not recognized
by Paramics to be stopped for any legitimate reason, and so Paramics keeps trying to
make the bus move forward. As a workaround, we must reset the velocity to 0 at every
time step while the bus is (according to our model) stopped, and also we must subtract a
certain amount from its position along the link to account for the distance that Paramics
has already advanced it.

36

3.4.2 Efficiency and scalability
We have made an effort to use efficient, scalable data structures, so that the user will not
have the unpleasant experience of adding one too many of a certain kind of object and
experiencing a failure or unpredictable behavior caused by the plug-in. In very few cases
does the plug-in have a hard-coded limit to the number of entities of any type. We
achieve this by making widespread use of hash tables for associations between objects or
attributes of objects. Hash tables not only have variable size, but also have the additional
benefit of fast lookups. Accessing entries in a hash table is efficient and scalable in the
sense that, as the table grows, the access time does not grow or grows very little.

Rather than use the “LT” hashing library suggested in the Paramics documentation,
however, we use a public domain implementation called “st.c” which was written by
Peter Moore at UC Berkeley. It is widely used (for instance, as the hash implementation
in the Ruby programming language), and has an important advantage over LT: table keys
can be strings as well as pointers or integers. This feature lets us use route names, bus
type names, etc. as keys for table entries. This simplifies using symbolic references
between the plug-in input files.

In the broader implementation picture, there are aspects of the plug-in that have been
implemented in an efficient way to preserve simplicity and ensure reliability. It remains to
be seen whether this will be a problem for larger networks, though our experience so far
suggests not.

3.4.3 Software engineering methodology
Although the plug-in is coded in C, we have followed the standards of object-oriented,
modular programming for functions and variables. Data members of structures are
generally not accessed directly outside of the “class” in which they are defined, the first
argument to a function is usually thought of as the “object” on which the “method” is
being called, public functions are distinguishable by name, private functions are static to
the file in which they are used, function names are chosen to clearly indicate the “class”
to which they belong, and so on. These rules, though not universally followed, make the
code easier to understand and maintain. In addition, all documentation for a “class” or
input file is contained in the header file in which it is defined or the functions to read it
are defined. This documentation is useful to the programmer, but additionally can easily
be extracted and inserted in a document as it is in this one.

3.4.4 Topics for future work
Future work on the SmartBRT plug-in might include:

• Passenger route choice model.

• Signal priority only for designated buses.

• Off line stops.(*)

• Queue jump lanes.(*)

37

• Time-varying passenger OD tables.

The topics marked with a (*) have more to do with network design than with the plug-in
itself, and most of the work would be on the BRTML compiler, rather than the plug-in.

38

4 BRTML Reference

4.1 Introduction
BRTML is a language for modeling transit corridors and for specifying simulation
experiments involving them. The BRTML compiler translates a model expressed in this
language to a set of input files that can be read by Paramics Modeller in combination with
the SmartBRT plug-in. We think of a BRTML model as kind database describing all
aspects of the project, from transit system characteristics to the design of the experiment
to be carried out in simulation.

4.1.1 The need for BRTML
The Modeller GUI is quite powerful, but it cannot be used to configure the SmartBRT
plug-in. SmartBRT represents buses, terminals, passengers, bus routes, bus stops, and so
on in a way that Modeller is mostly unaware of. The design of these bus system
components can be quite complex. Modeller can be extended only in limited ways to
allow the user to input a small set of scalar parameters, but not to design something as
complex as a BRT corridor.

Paramics input files are not meant to be edited by hand, nor are the plug-in inputs (see
SmartBRT Model Report for details on these files). The only solution to this problem,
since Modeller is not open source, is preprocessing: we provide the user with a way of
specifying the corridor and compiling this specification into input files for Modeller and
the SmartBRT plug-in. This process is diagrammed in the illustration below. This
approach has the advantage of unifying all the modeling concepts in a single, seamless
system. The user doesn't need to know anything about Paramics Modeller to use this
system.

4.1.1.1 Key features of BRTML
Concise:

39

BRTML is optimized for concise description of corridors. Since a corridor is an
essentially linear structure (with curves), geometrical parameters are relative, rather than
absolute. The position, shape, and connectivity of roadway segments is specified in terms
of adjoining segments. The basic geometry of each successive section of roadway can be
described simply in terms of length and curvature. This leads to a disadvantage of
BRTML—the difficulty of representing models in absolutely specified coordinates.
However, for typical evaluation problems, such a high degree of geometrical accuracy
may not be necessary. For a quick what-if study, such data may not even be available.

(Example. In the Wilshire modeling project, the BRTML file size (~450K) is about one
fourth that of the resulting set of files that are input to Paramics and the SmartBRT plug-
in. The ratio would be more extreme, except for the high level of precision and detail in
the BRTML file, in which, in which most elements are modeled individually, due to the
level of detail available in the original input data. A quick what-if study might have a
ratio closer to 1 to 10 or more.)

Consistent syntax:
Basic principles apply to all parts of a BRTML document. For example:

• There is standard syntax for number formats and units (including speed,
distance, time, and date).

• All items can be given names.

• Item names can be used in unambiguous references from other parts of the
document (e.g., the bus type that is used along a bus route). There is a
standard syntax for references.

• Items can be grouped in meaningful ways (e.g., the city blocks that are served
by a bus line). Grouping also makes the document more precise since
attributes can be defined once and shared by the group.

Hierarchical:
A key feature of BRTML is inheritance of attributes controlled by the hierarchy of items.

In some respects, the description of a transit system falls naturally into a hierarchical
pattern.

Geographical units range from large (city or even county jurisdictions) to medium-sized
(a downtown region, or segments of a corridor with varying design principles or usage
patterns) to small (a city block, or a junction). Characteristics of the larger unit are
generally passed on to the smaller units, with local exceptions (for instance, a corridor
may have three traffic lanes and one bus lane in both directions, except for the lightly
used segments at each end and a region in the middle that is undergoing construction).

Other hierarchies are not geographical, but abstract: terminals belong to a bus route, for
example. Routes belong to agencies. Another example: stops do not belong to a single
route, but may be grouped by service characteristics: all stops in a certain group have
“high” passenger arrival rate and pre-paid fares, but all stops in another group have “low”
arrival rate and no pre-paid fares. For quickly defining a corridor, this is preferable to

40

setting all characteristics individually.

Note that hierarchies in BRTML are not exclusive: a city block can belong to one
hierarchy which defines the lane structure (number of lanes in each direction, turn lanes,
bus lanes, etc.) and to another hierarchy which defines traffic demand characteristics. In
this sense, BRTML supports inheritance of attributes from multiple parents. In other
words, an item can belong to multiple groups, each of which supplies to the item
attributes of a different kind.

Familiar:
Although the syntax of BRTML is new, the semantics is adapted from the standard file
system semantics used on Unix and Windows computers. Also, the notation for
references using paths of item names is similar to the path notation used by these
operating systems.

Flexible:
Working within a few simple rules, and knowing the meaning of the basic item types and
their attributes, the corridor designer is free to introduce new types and arrange items
using multiple hierarchies in ways that clearly express the intent of the designer. Types
such as “jurisdiction” are not built into BRTML, but are chosen by the user. Outside of
the set of basic types supplied by BRTML and documented here, the designer is free to
use any types.

Ultimately, what is significant to the simulation is not the exact conceptual structure of
the BRTML input, but the association of attributes to items and also the containment
relation described by the hierarchy.

For instance, organizing bus types by manufacturer is of value to the designer, especially
because some attributes are likely to be shared by and can be defined at once for all types
from a certain manufacturer rather than for each bus type individually. The definition of
bus types can, in this way, clearly express the designer's intent. Ultimately, however, the
simulation depends only on the attributes assigned to each bus type, whether they were
assigned by inheritance or individually.

4.1.1.2 A quick look at BRMTL
The following fragment of a BRTML document describes certain aspects of a junction.
The rest of the BRTML document describes other junctions, bus types, terminals,
demands, and so on.

junction 4th and Main
 legs:
 .4th.S [def]
 .Main.b3 [def]
 .4th.N [def]
 .Main.b4 [def]
 phases:
 legs:^legs
 phase east west

41

 length:30 sec
 red length:5 sec
 major
 from:legs[1]
 to:legs[3]
 major
 from:legs[3]
 to:legs[1]
 medium
 from:legs[1]
 to:legs[0]
 medium
 from:legs[3]
 to:legs[2]
 minor
 from:legs[2]
 to:legs[1]
 minor
 from:legs[0]
 to:legs[3]
 phase protected left from east and west
 length:10 sec
 red length:5 sec
 major
 from:legs[1]
 to:legs[2]
 major
 from:legs[3]
 to:legs[0]
 minor
 from:legs[0]
 to:legs[3]
 minor
 from:legs[1]
 to:legs[0]
 minor
 from:legs[2]
 to:legs[1]
 minor
 from:legs[3]
 to:legs[2]
 phase north south
 length:10 sec
 red length:5 sec
 major
 from:legs[0]
 to:legs[2]
 major
 from:legs[2]
 to:legs[0]
 medium
 from:legs[0]
 to:legs[3]

42

 medium
 from:legs[2]
 to:legs[1]
 minor
 from:legs[0]
 to:legs[1]
 minor
 from:legs[2]
 to:legs[3]

Note that the [def] hyperlinks (.4th.S, .4th.N, .Main.b3, .Main.b4) are not functional
because they refer to parts of the original document outside of the fragment listed here.
Also, all of the legs[i] hyperlinks have been disabled, since they link outside the
fragment. Normally, the HTML generated from BRTML has many hyperlinks.

The meaning of this fragment is partly apparent and partly obscure. It's easy to see that:
• there is a junction at “4th and Main”,
• the junction has four legs—two are part of 4th Street and two

are part of Main Street,
• the signal at the junction has three phases, “east west”,

“protected left from east and west”, and “north south”,
• the phases each have a given length and red length, in seconds

(the meaning of these two concepts is the same as in Paramics),
• associated with each phase are major, medium, and minor

motions (terminology as in Paramics) from one given leg to
another.

Also, from these observations it is apparent that indentation is significant—more
precisely that is is closely related with the “has a” relationship between, for example, a
phase and its signal timing attributes, or a junction and its parts.
What's not obvious is how the parts are linked together. What does .Main.b3 refer to?
What does legs[2] refer to? What is legs: ^legs? These questions about how the
BRTML language works are answered in the rest of this introduction. Details about
specific constructs, such as junction and phase, are in subsequent sections.

4.1.1.3 Principles of BRTML
The example in the previous section hints at how BRTML documents are arranged. We
list some basic principles here, leaving precise formal definitions for later:

• The key to understanding BRTML is reading the hierarchical structure from
the pattern of indentation of the lines.
• Each line of text defines a coherent unit of the model.
• Depth of indentation denotes the depth of a unit in the

hierarchy.
• There are three kinds of lines that we have seen so far:

• attribute: a line consisting of a word or short phrase followed

43

by a colon, followed by more text (shown in green in the
example). An attribute associates a name, such as “phase
length” with a value, which can be another item, or a value of a
particular type, such as a time or a distance.

• item: a line consisting of a type (such as junction) followed
(optionally) by a name for the item. The item may also have an
indented list of attributes and subitems.

• item link or reference: an expression like “.Main.b4” or “legs
[0]” that refers to another item.

• A BRTML document is built up out of these items and attributes.
• White space, especially indentation, delimits the parts of BRTML syntax.
• Attributes that are not specifically recognized for some purpose are not

rejected. You can use this to, for example, insert a comment attribute (perhaps
explaining why a certain parameter value was chosen). A more advanced use
would be to add additional information to the model that is not used by
SmartBRT, but might be used by another program (such as cost calculation).
It helps to think of a BRTML model as a database.

• Items have names. Typically, the name is not used to convey information
about the item (it is considered poor form to encode characteristics in the
name—use attributes instead), but it is used as a reference target for other
parts of the document. For instance, there is no inherent need to assign a name
to a street. However, doing so allows one to refer to the street in, for instance,
the design of a bus route.

• Items are listed in order, and the order is sometimes significant (the “legs” of
a junction are listed in clockwise order, and this ordering contributes to the
definition of the topology of the corridor).

• Attributes are unique within an item—for example, an attribute like “color”
would signify the color of the item it is attached to.

• Subitems need not be unique within their parent—for example, a “phase” type
of item might have a list of several “major” subitems (and also “minor” and
“medium” subitems). If two subitems need to be distinguished so that they
can be referred to from elsewhere, they can be given distinct names, or they
can be referred to numerically, usikng the subitem index number.

• In most cases, the depth of a subitem is not important, so grouping of
subitems does not affect meaning, except that it can be used to define
attributes for the group. The mechanism of grouping and inheritance is really
just a way to conveniently organize attributes that are shared among many
items.

4.1.2 Using BRTML
Running the BRTML compiler and using the compiler's output to run Paramics
simulations is discussed in the section on using BRTML.

44

4.1.3 BRTML and Paramics: Two levels of detail
Paramics describes networks in terms of nodes and links. The designer must manually
break up the roadway into links in order to model varying link parameters, such as
number of lanes, turn lanes, and lane restrictions. BRTML make some of these decisions
for the user, letting the user concentrate on transit issues. The designer works at the level
of “blocks”, which the BRTML compiler automatically subdivides into three links in each
of the two directions. If the user specifies the number of turn lanes in one direction, for
example, then the appropriate link is defined to have the required number of lanes.

4.1.4 Numeric Data Types and Units
BRTML is fairly flexible in allowing the user to provide explicit units along with numeric
values. The glossary lists formats for each category:

• Boolean
• Distance
• Speed
• Acceleration
• Time
• Day
• Angle
• Lane number

4.1.5 FAQ: Frequently Asked Questions about BRTML
Q: Can BRTML be used with other simulation engines, besides Paramics?

A: The BRTML language is not dependent on Paramics, though some of its terms and
parameters are obviously influenced by Paramics (e.g., “major”, “medium”, and “minor”
signal phases, “annotations”, “drive side”). The BRTML compiler currently targets
Paramics. A translator from BRTML to another simulation engine could be written if the
simulation engine supports the same set of features that are provided by Paramics and the
SmartBRT plug-in.

Q: Is BRTML necessary to use the SmartBRT plug-in?

A: Strictly speaking, no. BRTML was developed to manage the complexity in the
SmartBRT inputs, both the Paramics inputs and the plug-in specific inputs. It is possible,
though difficult, to develop a model by directly constructing these input files. The
Paramics inputs could be constructed using the Modeller interface. The SmartBRT plug-
in inputs would have to be constructed manually, with careful reference to the Paramics
input files (since the plug-in files need to refer to link names, node names, and other
names defined in the Paramics input files).

Q: Does BTRML have a GUI (graphical user interface)?

45

A: BRTML documents are accessed as text files using a text editor and can be viewed in
a web browser. However, their syntax is simple and expressive, and users can use their
favorite GUI text editor to edit them, rather than be forced into an unfamiliar GUI.

There is a GUI program for running the BRTML compiler and starting simulations based
on its output. See the user's manual for details.

Note that, regardless of user interface, understanding the conceptual structure of BRTML
documents remains essential, and so the GUI would only provide and alternate visual
representation of this conceptual structure. Also, the text representation of models is still
essential with a GUI, since even with a GUI one must save documents to files, and
structured text files (such as BRTML) are better than binary files since they can be edited
by humans and also processed by programs.

It is possible to configure a text editor to recognize BRTML syntax and to color items and
attributes to make them more visually recognizable, as one would do with program source
code in a programming editor. We have done this with the NEdit editor, for example.
Also, the BRTML compiler can output HTML which incorporates syntax coloring and
hyperlinks from an item to a referenced item and back to all referrers. For example, see
the Wilshire BRTML file (warning: this is a large file). This HTML file was created from
the Wilshire BRTML file using the included utility software. See the user's manual for
details.

Q: Is BRTML related to XML?

A: No. BRTML is based on a generic hierarchical modeling language, SuperML. (We
document BRTML and SuperML together, since their integration is seamless from the
user's point of view.) XML serves better as a text markup language than as a modeling
language, since the fundamental XML data type is the character string type, and so an
additional layer of processing is required anyway to treat XML documents as transit
system models. Powerful modeling features, such as complex attributes, grouping,
references, and multiple inheritance, are built into BRTML. BRTML does share some
general ideas with XML: hierarchical structure of items and sub-items and the association
of attributes with items. (However, attributes are not just character strings, as in XML,
but can be other items. This ability is important in designing complex items like traffic
signals that contain and refer to other items.)

Q: Is BRTML a programming language?

A: No. It is a model specification language, or a modeling language, for short. A BRTML
file is a static representation of the various components in a simulation and the
parameters for running an experiment involving those components. BRTML does not
have variables, loops, function calls, etc.

46

Q: How do I use format X with BRTML?

A: This topic is discussed in the section on data sources.

Q: Can BRTML documents be extended to include X data?

A: Yes. As long as you use your own item types, or use new attribute names with existing
item types, you may include other data in your BRTML documents as you wish. Doing so
does not require any changes to the BRTML software—you just use the items and
attributes in your document. The data represented in those items and attributes are
available through the BRTML API. This feature could be used to, for instance, perform
further post-processing of experimental data (such as cost or emission calculations) or to
specify plotting of outputs. We cannot guarantee, however, that any particular item types
or attribute names are reserved and will not be used by BRTML itself.

Note however that BRTML does not have very good support for tables. Currently, tables
(for example, OD tables) are handled using a separate attribute for each row of the table.

4.2 Global Configuration
BRTML offers a number of settings that apply to the entire simulation, affect the meaning
of other parts of the document, or determine how the simulation outputs are produced.
These include:

• Seeds for the Paramics PRNG.
• Time frame and step.
• Debugging settings.
• Logging settings.
• Units.

These settings are contained in items of the types described below.

4.2.1 simulation
There can be any number of items of this type. The item name is not significant. There
may be more than one items of this type; in this case, if two items each specify different
values for a particular attribute, the value specified in the last item is used. There are no
subitems of particular significance to the BRTML compiler. An item of this type can
occur anywhere in the structure of a document, though it is typical to put it at the top level
(i.e., indented flush left), and to use only one simulation item.

Attribute Value Default Meaning
name: character

string
SmartBRT
Prototype
Network

Used for display.

47

Attribute Value Default Meaning
Short name: character

string, must
be legal file
name on
your
platform

SmartBRT Used for display and file
names.

annotate stops: Boolean false
annotate
terminals:

Boolean false

annotate
junctions:

Boolean false

In Modeller visualization,
display text strings with the
names of a stop, terminal,
or junction at the location
of the entity. See also, e.g.,
the color attributes of a bus
stop item and blocks.

Start time: Time 0:00 Time of day at which
simulation starts.

Start day: Day Monday Day of week on which
simulation starts.

simulation time: Time 1:00 Duration of simulation

timestep: float 1.0 Granularity of time.

timestep detail: character
string

-1 See Paramics manual.

seed: integer -2 Seed for Paramics PRNG.

Units: character
string

metric Sets the default unit system
for all values. Currently,
only metric is supported,
but individual values can be
specified in feet if explicit
units are given.

Drive side: character
string:
left or
right

-3 Currently, only right hand
drive is supported by
SmartBRT.

1 Same as Paramics default.

2 Same as Paramics default.

3 Same as Paramics default.

48

Attribute Value Default Meaning
Debug: Boolean false
log network: Boolean false
log trajectories: Boolean false
log passengers: Boolean false

Configure
SmartBRT
plug-in. See
the model
report for
details. See
also
veh_to_log.

Debug mode.

For
animation.

For
animation.

Detailed
passenger
logging.

4.2.2 veh_to_log
This item selects which vehicle will be logged when the log trajectories attribute
of the simulation item is true. BRTML allows any number of vehicles to be selected
for logging, but the current version of the plug-in only logs the first selected vehicle.
Details of the feature, and explanation of output format, are in the model report.

There can be any number of items of this type. The item name is not significant. There
are no significant subitems. An item of this type can occur anywhere in the structure of a
document, though it is typical to put it at the top level or in a simulation item.

Attribute Value Default Meaning
Type: bus or car bus Type of vehicle to be

selected for logging.

number: positive
integer

1 Ordinal of vehicle (in order
of creation of vehicles of
that type)

distance: Distance 1000
meters

Log all vehicles within this
distance from selected
vehicle.

4.2.3 trace
This item is used to turn on tracing output, which is useful for debugging a simulation, or
simply for observing the event history of the simulation. Each attribute of a trace item
turns on tracing of a specific kind of event. Tracing is discussed in more detail in the
model report, under debugging outputs and brt_trace. See also the discussion in running
smarbrt.

There can be any number of items of this type. The item name is not significant. There
are no significant subitems. An item of this type can occur anywhere in the structure of a
document, though it is typical to put it at the top level.

49

Attribute Value Default Meaning
bus: Boolean false Trace bus events.

bus periodic: Time or
Boolean

false Trace bus at fixed time
interval.

terminal: Boolean false Trace terminal events.

passenger: Boolean false Trace passenger events.

Stop: Boolean false Trace bus stop events.

Link: Boolean false Trace link events.

signal: Boolean false Trace traffic signal events.

dispatch: Boolean false Trace bus dispatcher
events.

4.2.4 log
The log item specifies statistical logging. It has no significant attributes of its own
(though of course it may provide attributes to be inherited by subitems). The subitems of
significance are described in the table below.

There can be any number of items of this type. The item name is not significant. An item
of this type can occur anywhere in the structure of a document, though it is typical to put
it at the top level.

50

Subitem type Significance of subitem
name

Significance of subitem
order

variable Signifies variable to
measure. Name must be one
of following, also described
in the brt_log section of
the model report:
headway
wait time
left behind
alight count
board count
psgr interarrival
time
alight time
board time
dwell time
seg travel time
bus load
bus travel time
psgr sit pct
psgr travel spd
stop time
route priority
signal priority
signal wait time

none

4.2.5 variable
The variable items each specify a variable to observe over time, possibly for many
different objects (e.g., buses) in the simulation. It has no significant attributes of its own
(though of course it may provide attributes to be inherited by subitems). The subitems of
significance are described in the table below. A variable item must be an indirect
child of a log item.

51

Subitem type Significance of subitem
name

Significance of subitem
order

statistic Signifies statistic to collect.
Name must be one of the
following, also described in
the brt_log section of the
model report:
value
average
maximum
minimum
variance
count

none

4.2.6 statistic
The statistic items each specify a statistic to apply to a variable. The statistic
items have no significant subitems, but do have significant attributes, listed in the table
below. A statistic item must be an indirect child of a variable item. Details of
the feature, and explanation of output format, are in the model report.

Attribute Value Default Meaning
delay: Time or none none Time delay before

collecting data for the
statistic, none means
no delay.

period: Time or
when
available

when
available

Time between reports to
the log file.

window: Time or
cumulative

cumulative Time interval over
which the statistic is
calculated.

Back to BRTML Reference

4.3 Geometric model used in BRTML
Before trying to understand the types of items that are used to specify roadway geometry
(street, block, junction) and the types of items that refer to these items (bus_line,
terminal, demand, passenger_demand, bus_stop), it's important to understand
their conceptual basis.

52

4.3.1 Relative coordinates
Roadways are defined in relative coordinates, rather than absolute ones. This means that
each segment of the roadway (that is, each block) is given a length and a curvature by
the user, but most blocks are not directly assigned (x,y,z) coordinates or heading angle.
The user picks one block to “pin down” in the absolute coordinate system, and chooses
the (x,y,z) and heading of the beginning of the block. The adjoining blocks get their
coordinates based on these values and the length and curvature of this block, and so on
throughout the network.

4.3.2 Junction topology
Currently, all junction angles are right angles.

The order of legs in junctions is key to defining the way two roadways intersect. Each of
the two roadways has two legs that touch the junction. This information is not in itself
enough to assign coordinates to all the blocks. Either of the roadways could be rotated
180 degrees and still have a legitimate junction. That's where the order given for the legs
is used. In the definition of the junction, the legs are listed in clockwise order. This
ensures that there is a unique interpretation of the junction.

4.3.3 Orientation: outbound and inbound
It's necessary to talk in some way about the direction of travel along a corridor. For
example, which direction of travel does a particular bus stop serve? Compass directions
are not useful for describing how a bus or stop is oriented on the corridor, because a street
may change directions. Local street numbers are not useful because the transit corridor
may change streets. Instead we use the fact that a corridor has an essentially linear shape,
and we use two fairly arbitrary terms for orientation: inbound and outbound. The
outbound orientation is defined by the order of blocks as they are defined: reading down
the list is the same as moving outbound. The inbound orientation is the reverse.

4.3.4 Subdivision
A single block translates to several links in Paramics. The purpose of this translation is
to simplify the model from the point of view of the transit system designer. A block
defines behavior in both directions of travel (inbound and outbound), such as number of
lanes, turn lanes, and lane restrictions (a Paramics link is for just one direction of travel).
Also, a block has within itself three subdivisions. The middle subdivision has the lane
usage characteristics defined by the user. However, the subdivision containing the end of
the block must be different to allow cars to make right turns using the bus lane. The and
subdivision containing the start of the block (if there is a bus stop there) must have lane
restrictions to force the bus to be in the curb lane (we have been unable to impose a
lateral bus control model on Paramics).

These subdivisions are carried out behind the scenes, and usually not of interest to the
user of SmartBRT. However, it is good to be aware that select lane restrictions may apply

53

only to the middle part of the block for which they are selected.

4.3.5 Corridors and networks
Although BRTML has been designed as a corridor language, it can be used for some
more complex networks, such as crossing corridors. More precisely, the current version
of BRTML can represent loop-free networks—networks in which any two points are
connected by only one route.

4.3.6 Lane numbering
Lane numbering in BRTML is consistent with Paramics: lane numbers are counted
starting with the curb lane as lane 1. This is confusing if you are used to lane 1 being the
lane nearest the median. For this reason, BRTML has an alternative: you may use
negative lane numbers to count from the median, starting with -1.

4.4 Roadway types

4.4.1 street
Streets are used to group blocks and to assign an ordering to them. The order of blocks
that are found among the indirect children of the street determines the order in which the
blocks are placed along the roadway. The street item itself has no significant attributes,
but of course it may be assigned attributes to be inherited by all of its blocks. This is
useful if, for instance, all blocks have the same number of lanes, or the same length. If
some of the characteristics vary along the roadway, grouping the blocks by section can
reduce redundancy.

Attribute Value Default Meaning
- - - -

4.4.2 block
Blocks are the basic unit of roadway construction, as far as BRTML is concerned. (A
block typically translates to a sequence of several links in two directions in Paramics,
however—see the Geometry section.) A block can represent an ordinary city block, or a
more general roadway section with constant curvature and through lane count. Note that a
block represents both directions of traffic.

Attribute Value Default Meaning
length: Distance - Length of the block

measured along center line.

54

Attribute Value Default Meaning
lanes: Integer

0

Number of lanes in each
direction. If these two
numbers differ, use the
(in/out)bound thru lanes
attributes.

Bus lane: Lane number Positive means the number
is counted from curb side,
starting with 1, as is
standard in Paramics.

Negative means the
absolute value of the
number is counted from the
median side.

allow lane change: Boolean false Can the bus change into
traffic lanes?

allow overtake: Boolean false Can the bus overtake other
buses?

speed limit: Speed Default is the
limit
imposed by
the link itself
(on all
traffic)

Speed limit for buses.

outbound color:
outbound colour:

Color name
(as defined
by Paramics)

green Color used for outbound
annotations, such as bus
stop names. See also
simulation.

inbound color:
inbound colour:

Color name
(as defined
by Paramics)

yellow Color used for inbound
annotations, such as bus
stop names. See also
simulation.

flow: Floating
point
number, in
vehicles/hour

0
vehicles/
hour

Flow of traffic entering the
network on this block, if the
block is at the edge of the
network.

55

Attribute Value Default Meaning
X:, y:, z: Floating

point
number, in
arbitrary
units

-

heading: Angle -

Exactly one block is
assigned absolute
coordinates using these
attributes. The remaining
blocks get their coordinates
by their relation to this one
block.

4.4.3 junction
Junctions are very complex items. They define the traffic signal logic (or stop-sign
control), the arrangement of entering roadways, and turning patterns of the ambient traffic
in the simulation.

Attribute Value Default Meaning
Legs: Orphan item - List of the blocks that touch

this junction. The order
must be clockwise, starting
with any one leg. If one leg
is absent (in a T-junction),
use a “-” as the item
instead.

green hold: Time 0 seconds Maximum time which the
green phase will be
extended by to let a bus
through (signal priority).

demands: Orphan item - List of demand items,
defining the turning ratios
for traffic flowing through
the junction.

Stop control: Boolean false Is this junction controlled
by an all-way stop sign? (A
true value is incompatible
with the phases attribute.)

phase offset: Floating
point number

0 Timing offset of entire
phase structure from start of
simulation.

phases: Orphan item - List of phase items.

Junctions are automatically annotated by the SmartBRT compiler for the Paramics

56

visualization, assuming that annotations have been turned on in the global settings.

4.4.4 phase
A phase item describes an individual phase of the traffic signal at a junction.

Attribute Value Default Meaning
length: Time 30

seconds
The length of the phase.

max length: Time length*2
seconds

The maximum length of the
phase, including green
extension.

red length: Time 5 seconds The length of the red phase.

The subitems of the phase item define the allowed movements during the phase. These
subitems are of type major, medium, and minor, and are discussed below.

4.4.5 major
A major movement is for traffic that has primary right of way during a phase.

Attribute Value Default Meaning
From: block

reference
- The leg of the junction from

which traffic approaches on
this movement.

to: block
reference

- The leg of the junction to
which traffic departs on this
movement.

4.4.6 medium
A medium movement is for traffic that has right of way, yielding to major movements,
during a phase.

Attribute Value Default Meaning
From: block

reference
- The leg of the junction from

which traffic approaches on
this movement.

to: block
reference

- The leg of the junction to
which traffic departs on this
movement.

57

4.4.7 minor
A minor movement is for traffic that has right of way, yielding to major and medium
movements, during a phase.

Attribute Value Default Meaning
from: block

reference
- The leg of the junction from

which traffic approaches on
this movement.

to: block
reference

- The leg of the junction to
which traffic departs on this
movement.

4.4.8 demand
Demand items define the the turning ratios for traffic flowing through the junction. The
values can be given on any scale (percent, for example). Regardless of the scale, only the
ratios are significant. In other words. There is one demand item for each incoming traffic
stream, and the demand item defines what fraction of that stream turns left or right, or
continues through the junction.

Attribute Value Default Meaning
from: block

reference
- The leg of the junction from

which traffic approaches.

left:

right:

thru:

Floating
point number

0 Ratio of traffic that turns
left.

0 Ratio of traffic that turns
right.

1 Ratio of traffic that
continues through.

4.5 Transit system types

4.5.1 bus_stop
Items of the bus_stop type represent stops along bus routes. Passengers arrive at bus
stops, wait, and select an arriving bus to board, depending on whether it serves their
destination. Bus stops may serve one or more bus routes—the mechanism for specifying
the routes served is described below. The recognized attributes of bus stops are:

58

Attribute Value Default Meaning
orientation: Orientation outbound The direction of travel

along the corridor served by
the stop. (This setting also
affects coloring used in
annotations.)

block: block
reference

- The block at which the stop
is located.

offset: Distance 50 meters A positive value means the
offset of the stop from the
near end of block. A
negative value means the
offset is measured from end
of block.

lines: Orphan item - List of bus lines which
serve this stop. (One of two
alternate ways to associate
bus lines with bus stops—
the alternative is to list the
stops under the “stops”
attribute of the bus line
item.)

offline: Boolean false Not yet supported in
SmartBRT plug-in.

max docked: Positive
number

1 The maximum number of
buses that can dock at the
stop and load/unload
passengers at the stop.

prepaid: Boolean false Do passengers pay at the
stop, rather than on the bus?

frequency: Floating
point number

0 Frequency of passenger
arrival, in passengers per
hour. Note that this
frequency describes the
initial state of the bus stop.
The frequency may vary by
time of day.

59

Attribute Value Default Meaning
Seed: Integer 0 Seed for PRNG that

controls passenger arrival at
this stop.

Bus stops are often grouped under a parent item that contains all bus stops for a particular
bus route. This parent item might, by convention, be given the type bus_stops, but that
type is not internally defined and the designer may use any type that is not built in.

Note on annotation. Paramics allows some simple annotation of the visual display with
text strings located at certain coordinates. BRTML makes this easier to use by, optionally,
using user-defined names of items such as bus stops and automatically calculating
coordinates at which to place the annotation. Turning annotation on or off is easy -- see
the globals section. For bus stops, the annotation text colors are either given default
values or chosen based on attributes specified for the block on which the stop is located.
The default for inbound is yellow. The default for outbound is green.

4.5.2 terminal
Each bus route must have at least two terminals, plus possibly additional terminals used
for bus dispatch. A terminal is not also a stop—the designer should explicitly place a stop
near the terminal if that behavior is desired. The terminals should be subitems of the
bus_line item, and therefore inherit from this bus_line item. Typically, the bus type
attribute is inherited in this way rather than specified for each terminal independently.
Bus dispatch is described in more detail in the model report.

Attribute Value Default Meaning
route name: Text string - Name of the route (usually

inherited from the bus_line
item).

block: block
reference

- The block at which the
terminal is located.

offset: Distance 50 meters A positive value means the
offset of the stop from the
near end of block. A
negative value means the
offset is measured from end
of block.

60

Attribute Value Default Meaning
bus type: Orphan item - The orphan item must have

a unique item, which is the
name of the bus_type
item that is emitted from
this terminal.

number of buses: Integer 0 Initial number of buses
available to leave from this
terminal.

headway: Floating
point number

5 minutes Minimum time interval
between release of buses.

dispatch: Orphan item - If provided, the dispatch
item must have to and
delay attributes—see
below.

(in
dispatch
orphan
item)

to: terminal
reference

- The insertion terminal to
which buses are sent from
this terminal to begin travel
on the corridor.

delay: Time - The delay incurred by off-
corridor travel to the
insertion terminal.

Terminals are annotated for visualization by the BRTML compiler in much the same was
as stops (see above).

4.5.3 bus_line
A bus line comprises a physical route along streets, a list of bust stops, and some
terminals.

Attribute Value Default Meaning
route name: Text string - Name of the route, used for

informing user and for
annotations in the
visualization.

61

Attribute Value Default Meaning
route: Orphan item - An item which must have

two attributes listing the
blocks along the inbound
and outbound portions of
the route. See below.

(in
route
orphan
item)

inbound: Orphan item - List of block items, in
order, along which the bus
travels when following the
inbound direction on this
line.

outbound
:

Orphan item - List of block items, in
order, along which the bus
travels when following the
outbound direction on this
line.

stops: Orphan item - List of bus_stop items
that are served by this route.
(This is an alternative to
using the lines: attribute
of the stops.)

4.5.4 bus_type
A bus type item (that is an item whose type is “bus_type”) defines a class of buses that
can be selected to run along a bus route. Bus type characteristics are discussed in more
detail in the model report.

Attribute Value Default Meaning
low floor: Boolean false Is the bus designed to have

a low floor or to be able to
kneel to improve boarding?

capacity: Number 0 Maximum occupancy of
bus.

seats: Number 0 Maximum seated
occupancy of bus.

comfort accel: Acceleration 2 m/s/s The maximum rate of
acceleration that is
comfortable on this bus.

62

Attribute Value Default Meaning
comfort decel: Acceleration 2 m/s/s The maximum rate of

deceleration that is
comfortable on this bus.

alight doors: Number 0 Number of doors available
for alighting.

board doors: Number 0 Number of doors available
for boarding.

mixed doors: Number 1 Number of doors available
for alighting or boarding.

default pay time:
(OR)
default payment
time:

Time 2 seconds Time to pay if passenger
doesn't have specialized
payment methods and must
use default method
(typically cash).

Base dwell time: Time 3 seconds Estimate of typical time at
stop, not including boarding
and alighting. (May include
opening and closing doors,
for instance.)

speed limit: Speed 65 mph Maximum speed of bus.
(Speed is also constrained
by the roadway and traffic.)

length:

height:

width:

Distance - Physical dimensions of the
bus.

(Not currently used. All
buses have the same
dimensions in Paramics.)

Fare options: Orphan item - List of fare_type items
that are accepted for
payment on this bus.

4.5.5 fare_type
A fare type represents a type of payment that certain passengers can use on certain buses.
A bus may accept more than one fare type. The corridor designer is free to define any fare
types, such as smart cards, tokens, electronic payment, etc. Fare type affects only board
time in the simulation. A passenger may have only one fare type (although passengers are
assumed to be able to make a default payment on any bus if their fare type is not on the

63

“fare options” list of the bus type. The default payment time depends on the bus.)

Attribute Value Default Meaning
pay time: Time 0 seconds Time to make this kind of

payment, if the bus is
capable of accepting it.

Prob: Floating
point number

0 Probability that any given
passenger can make this
kind of payment.

4.5.6 mobility_type
A mobility type represents a set of mobility limitations that certain passengers may have,
such as being in a wheelchair or carrying a bicycle. Each mobility type can have its own
effects on boarding and alighting, and this effect may differ depending on whether the bus
is a low floor bus or a kneeling bus. A passenger may have only one mobility type.

Attribute Value Default Meaning
hi floor alight: Time 0 seconds Time to alight from a high

floor bus.

hi floor board: Time 0 seconds Time to board a high floor
bus.

lo floor alight: Time 0 seconds Time to alight from a low
floor bus.

lo floor board: Time 0 seconds Time to board a low floor
bus.

Prob: Floating
point number

0 Probability that any given
passenger has this kind of
mobility.

4.6 Demand types

4.6.1 Traffic demand
Traffic demand is discussed in the roadway types section, under block (the flow
attribute) and demand.

64

4.6.2 Passenger demand
Passenger demand is more complex in BRTML than traffic demand, because it is
expected to be more central to the planning and analysis of BRT systems. As described
under bus_stop, each bus stop may be assigned an initial arrival frequency. This
number is independent of the OD (origin-destination) ratios, and also the arrival rate may
change during the course of the simulation.

4.6.2.1 Time-varying passenger arrival rates
Passenger arrival may be defined to change at specified times during the day using the
following BRTML items.

4.6.2.2 passenger_arrivals
This item contains items of type arrival, discussed below. It has no significant
attributes. (There may be more than one item of this type, but that has the same effect as
combining all their subitems under a single item of this type.)

4.6.2.3 arrival
An arrival item specifies the time at which a stop's passenger arrival rate changes to a
new value.

Attribute Value Default Meaning
stop: bus_stop

reference
- The bus stop to which this

setting applies.

day: Day Same as
the
simulatio
n start
day.

The day on which the
change occurs.

time: Time Same as
the
simulatio
n start
time.

The time of day at which
the change occurs.

frequency: Floating
point number

0 Frequency of passenger
arrival, in passengers per
hour.

65

4.6.3 Passenger OD tables

4.6.3.1 passenger_demand
This item defines the origin-destination ratios of generated passengers. (There may be
more than one item of this type, but that has the same effect as combining all their
subitems under a single item of this type.) This item is essentially a large matrix whose
rows and columns are indexed by bus stops. Unfortunately, this kind of structure is not
yet well represented in BRTML. It's easiest to explain this type of item using an example:

The out1, out2... and in1, in2,... attributes are simply short local names for the stops. In
this form the table is easy to read. For example, 90% of passengers from out1 (that is, the
origin stop on the outbound direction of route L1) desire to travel to out2. The numbers in
a row do not need to add up to 100, in which case they are prorated accordingly to
preserve their ratios.

Note that a passenger's destination stop does not have to be on the same bus route as the
origin stop. The details of transfers are explained in the model report.

4.6.4 Passenger characteristics
Two characteristics of passengers affect calculations of board and alight times: fare type
and mobility type. These two characteristics are generated from discrete distributions that
are independent of the arrival distributions. The distributions are defined by the “prob”
attributes in the fare_type and mobility_type items.

4.7 Using other data sources
BRTML may be used as the design language for a transit system. This approach works
well when the parameters of the system are understood in imprecise terms (for instance,

66

no absolute node coordinates), or the amount of precisely given data is small enough for
manual entry into a BRTML document. In many cases, however, large amounts of data
may already be available in external files which have a format that is beyond the user's
control (e.g., output of a data collection activity, or of a simulation). Using these data
sources in a BRTML specification can be difficult, requiring either tedious and error-
prone data entry or intelligent but difficult programming.

In the SmartBRT project, we developed translators for several external formats. Note that
each of these translators produces only a fragment of a BRTML document. It is also
necessary to write code to integrate these fragments into a consistent whole.

Our program starts with a base BRTML model, specifying global simulation parameters,
bus types, passenger types, fare types, and so on. These are not derived from external data
files but chosen by the user, perhaps based on some knowledge of the corridor and bus
system. Then several programs read from external files, read the BRTML model, and
contribute some additional information to it, such as demand tables or signal designs. The
data sources are:

• TRAFFIX simulation outputs, with traffic flow data and some signal
design data.

• Manually coded CAD drawings, with geometrical data, stop locations,
street names, etc. We developed a specialized notation for manually
coding this data. The manual coder can quickly type in this shorthand,
and the shorthand is precise enough to be read be software.

• Spreadsheets of passenger demand data. Our software performs OD
estimation.

One of the difficulties of this process is that there are varying levels of precision and
completeness in the inputs, which must be smoothed over. Another is that sometimes
different data sources are not consistent with each other, and they have to be reconciled. It
is difficult to do these intelligent manipulations by software in a way that is general
enough to apply to more than one corridor.

These programs are all defined in terms of the BRTML API. They are not included in the
current release of the BRTML software since they are, to a large extent, specific to the
Wilshire corridor. Some of the data formats involved are not standard and will not be of
use to other users.
Back to BRTML Reference

4.8 Reference Syntax
BRTML has a consistent syntax for referring from one part of a document to another.
References are necessary for many reasons: for example, if an item is defined within one
group, a reference is needed to make it part of another group. Also, attribute values are
sometimes allowed to be references to items. Detailed and precise discussion of that
syntax is out of the scope of the current document.

67

4.9 Glossary
This document is the glossary of terms used in the BRTML tutorial and reference.

Model
A mathematical representation of some physical entity or process, described in
terms of equations, logical rules, parameters, etc. In BRTML, a transit system
model is expressed as a document in the BRTML language.

Document
In the BRTML language, a document is a text file that represents a model. The
distinction between the document and the model is due to the possibility of many
documents expressing the same model. The syntax rules applied to the document
determine the correctness of the document and, if correct, the way in which
textual elements are to be interpreted as mathematical or conceptual elements of
the model.

BRTML language
The primary input format for using SmartBRT. It is translated by the BRTML
compiler into files that are read by Paramics and the SmartBRT plug-in during
execution of a simulation. Actually, “BRTML language” is redundant, since “L”
stands for language; however, we use this phrase to emphasize the “L”, and
distinguish from the tools associated with BRTML.

BRTML compiler
The program that translates documents in the BRTML language to files that are
read by Paramics and the SmartBRT plug-in during execution of a simulation.

BRTML API
The Application Program Interface to a BRTML model. Knowledge of the
BRTML API is not needed for ordinary use of BRTML and SmartBRT: designing
corridors, running simulations, processing outputs, etc. The BRTML API is not
documented in this release of SmartBRT.

The BRTML API is used by the BRTML compiler and by programs that construct
BRTML documents based on other input files (see data sources). A program uses
this API to build a BRTML model, and then automatically render it to a
document, or to parse a document into a model so that the program can operate on
it at the level of modeling elements rather than syntactical elements. This
approach is much easier than forcing programs to generate the document directly
in correct BRTML syntax.

Item
An item in a BRTML model is defined by its type, its name, and its attributes. An
item may also be related to other items, in the following ways:

• An item may have a list of child items (or subitems).
• An item may be listed among the children of another item, in

which case we say that the other item is the parent item.
• An item may be referenced as an attribute of another item.

68

Items that have a common parent are listed in sequence, and their order is
significant. The order is, in some cases, interpreted by the BRTML compiler as
defining the physical or logical order of entities in the simulation, such as the
logical order of stops along bus route, or the physical order of blocks along a
corridor.

An item can represent something in the simulation such as a bus type or a
terminal, but does not need to. There are items that are used for defining the
variables that are to be measured and logged, for instance. The user can introduce
items (of new types, if desired) whose only purpose is grouping, or even just
documentation.

Item type
The type of an item is used in the item definition and referred to in the document
simply by a string with no spaces or special characters: only letters, numbers, and
underscores are allowed. A type can be a built-in type or a user-defined type).

Built-in item type
Some item types are recognized by the BRTML compiler for special purposes,
such as the simulation type. These types are documented in the BRTML
reference and related files.

User-defined item type
The user can introduce new types simply by using them (no special declaration is
needed). Items of those types can be used for grouping other items (which may be
of a built-in type or of a user-defined type) and assigning attrubutes through
inheritance. For example, the block type is built-in, but the user may find it
useful to group them into items of type neighborhood, and to group those into
items of type jurisdiction.

Item definition
In a BRTML document, an item is defined in the following way:

item_type the item name

Subsequent indented lines define the attributes and child items. Contrast item
reference.
Note that the item name can have spaces, but the item type cannot.

Item reference
An item may be referred to from a different part of the document. References are
built using a special reference syntax, involving the characters ^ (up a level), .
(down a level), [n] (down to n-th item), item names, and attribute names.
Reference syntax is explained here. Contrast item definition.
References may occur in two kinds of places:

69

• In attribute values.
• In the list of child items of an item. The item thereby becomes

a secondary parent of the referenced child.

Reference target
The item to which a reference refers.

Attribute
An attribute of an item is a property that has a name, unique among all attributes
of the item, and a value, which may be another item or a string that can be
interpreted as a value of a specific type, such as a distance or a time.

In a BRTML document, an attribute is denoted by the second line below:
item name

attribute: value

The attribute belongs to the item because it is listed below it with a greater
indentation, and there is no intervening lines of text with a higher indentation.
Attributes can also be assigned to an item by inheritance from a parent item.

Parent
The primary parent of an item i1 is the item i2 which, in the document, has less
indentation than i1, is defined before i1, and is not textually separated from i1 by
another item of less indentation than i1. We refer to i1 as the child or subitem of
i2.
An item may have additional, secondary parents. A secondary parent is associated
with an item by referring to the item, as in the following example:

item parent 1
item child

item parent 2
^parent 1.child

The second line defines the child item as a child of the first (and primary) parent.
The fourth line references the child and makes it a child of the second parent.

Child
Also known as subitem or direct child. See parent. See also indirect child.

70

Indirect child
An indirect child of an item is a child of the item or, recursively, a child of an
indirect child of the item. For example:

item parent
item child 1

item child 2
item child 3

item child 4

All of the “child n” items are indirect children of the parent, but only child 1 is a
direct child.

In practice, this concept is more important than direct child, because attributes are
inherited through any number of parent-child relations. Most items that place
significance on their children do not distinguish between direct and indirect
children. This practice enables flexible grouping using intermediate items that can
provide additional attributes.

Child index
Each children of a parent item has a unique index, starting with 0, and increasing
by 1 for each successive child at that level:

item parent
item child with index 0
item child with index 1

item child with index 0
item child with index 2
item child with index 3

Note that numbering starts over in each indented level. Using the index to refer to

71

children is not usually the best practice: it is easily broken if new children are
inserted or exiting ones removed or if a child is moved up or down a level in the
hierarchy. It's generally better to use items names.

Item group
Loosely speaking, all the children of an item i1 and, recursively, children of
members of the group. These are the items to which passes on its attributes by
inheritance. Grouping is a useful way to assign a default value (which can be
overridden) of an attribute to a large class of items.

Inheritance
Inheritance in BRTML refers to an attribute that is passed from a parent to a child
item. Unless the child assigns a different value to the attribute, the attribute will
have the same value in the child as in the parent.

Orphan item
An item that is defined as the value of an attribute. (This is different from an item
that is simply referred to by the value of an attribute.) The notation is:

attr:

a1: value1

a2: value2

item sub1
item sub2

The item whose attributes are “a1” and “a2” and whose subitems are “sub1” and
“sub2” is the orphan item in this example. Unlike most items, orphan items do not
have a type or name. They only have attributes and subitems. Using an orphan is
essentially the same as defining an item elsewhere and using a reference to it as
the value of the attribute, as in this example, which is more or less equivalent to
the one above:

attr: some other item

...

...

...

72

item some other item
a1: value1

a2: value2

item sub1
item sub2

However, in this example, “some other item” inherits any attributes from its
parent.

Orphan items are useful for two reasons:
• An orphans does not have parents, and it does not inherit from

the item above it in the hierarchy. An orphan starts with a clean
slate of attributes.

• An orphan keeps the definition of the new item close (within
the document) to the attribute whose value it is.

PRNG
Pseudo-random number generator. Paramics Modeller and the SmartBRT plug-in
have distinct sets of seeds. The latter has a distinct seed for each random variable,
such as passenger inter-arrival time at each bus stop. PRNGs in SmartBRT are
discussed in the model report.

Boolean
Boolean values for attributes are the following (case insensitive):

• Truth: true, yes, on, 1
• Falsity: false, no, off, 0

Distance
Distances are real numbers and can be specified in the following units:

• m, meter, meters
• km, kilometer, kilometers
• f, foot, feet
• mi, mile, miles

Spaces between value and unit designation are ignored.
If units are omitted, meters are assumed.
If the distance is interpreted as an offset, negative numbers are allowed.

Speed
Speeds are real numbers and can be specified in m/s, mph, or kph.

73

Acceleration
Accelerations are real numbers and can be specified only in m/s/s.

Time
Duration or time of day (duration since midnight). In a BRTML document,
recognized formats are:

• 50.25 seconds
• 90 minutes
• 1.5 hours
• 1:30
• 1:30:15

Abbreviations allowed for seconds are: s, sec, second
Abbreviations allowed for minutes are: min, minute
Abbreviations allowed for hours are: h, hour
If units are omitted, and no colons are present, seconds are assumed.
Spaces between value and unit designation are ignored.

Day
Weekday. In a BRTML document, recognized weekday names are:
Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday

Angle
Units currently allowed for angles are degrees, with the following forms:

• 1 degree
• 2.5 deg
• 45 degrees

Lane number
A lane number is a positive or negative integer. A positive lane number is counted
from curb side, starting with 1, as is standard in Paramics. A negative lane number
is counted from the median side, starting with -1 and decreasing.

Orientation
Direction of travel. Each street has two directions of travel, which we refer to as
outbound and inbound. There are also some synonyms:

• outbound: out, down
• inbound: in, up

Outbound and inbound are given meaning by the order of blocks as they are listed
in the street. Outbound is the order obtained by reading down this list. Inbound is
the reverse order.

74

5 Tutorial

This document follows a sequence of examples leading up to a simple case
study. It uses these examples to explain the construction of BRTML

models and the interpretation of their outputs using the SmartBRT plug-in
for Paramics.

This document is part of the SmartBRT project.

THE TUTORIAL IS INCOMPLETE DUE TO
FAULTY PARAMICS LICENSES—WE ARE

CURRENTLY UNABLE TO DEVELOP OR TEST
ANY PARAMICS MODELS OR PLUG-INS.

6 User's Manual

6.1 System requirements
The SmartBRT software runs on Windows, SPARC/Solaris, and Linux/x86. We
recommend Pentium III or equivalent, 128M memory, and 100Mb free disk space.

SmartBRT requires licensed installations of both Paramics Modeller and Paramics
Programmer.

6.2 Installing Paramics plug-ins
Instructions for all platforms are in the document entitled ParamicsV4-
ProgrammerUserGuide.pdf (which we do not distribute or link to here, as required
by Quadstone).

Briefly, you should get the appropriate plug-in file from the download page, unpack it,
and put it into your plug-in directory. Here are the relevant instructions quoted (with
minor corrections) from the Programmer User Guide.:

75

1. Place the DLL/SO file in the default plugins directory i.e.

<PARAMICSHOME>\plugins\<PLATFORM>

i.e.

C:\Program Files\Paramics\plugins\windows

Or

/home/username/Paramics/plugins/sparc/

2. Place the full path to the plugin in the default plugins load file i.e.

<PARAMICSHOME>\plugins\<PLATFORM>\plugins

i.e.

C:\Program Files\Paramics\plugins\windows\plugins

Or

/home/username/Paramics/plugins/sparc/plugins

3. Place the name of the Plugin is a network specific file called programming. The new
programming files can also be application and platform specific i.e.

programming
programming.modeller
programming.modeller.windows

The Plugin named in the programming file should be placed in the Paramics
directory [for example, C:\Program Files\Paramics]. Programming files
are really designed to let you specify specific plugins for specific networks.

In addition using a programming file gives you the option to specifically enable or
disable a QPX function from being called improving execution performance and run
times for your plugins.

Some “programming” files are automatically created by the BRTML compiler, but you
are not required to use them.

You may select any one of the three options. The first two are simpler, but imply that the
plug-in will be active even for non-SmartBRT networks. If you are using Paramics for

76

work that is not based on SmartBRT, you should either use method (3) or use method (1)
or (2) and remove the SmartBRT plug-in from the plugins directory before running a non-
SmartBRT network.

Note that, on Windows, there are two plug-in files in the download. The file named
smartbrt-mod.dll is used for Modeller (Paramics with concurrent visualization).
The file named smartbrt-proc.dll other is used for Processor, the program for
executing batch runs. Use of this program with SmartBRT is described in the section on
running SmartBRT. These files are automatically created by the BRTML compiler.

Troubleshooting the programming files.
• Note that the programming files for Processor are confusingly named

“simulator” as in programming.simulator and
programming.simulator.windows rather than
programming.modeller and programming.modeller.windows.

• If you are using version 4.x of Paramics or earlier and are working on Linux
or Solaris, file names are case sensitive, and you must capitalize each word in
the file name, such as Programming.Modeller.Linux.

• On Linux, Paramics V4 is not able to load plugin files. We hope this will be
fixed in V5.

• In all cases, there must be a blank line after the plug-in name in the
programming file.

Back to the User's Manual.

6.3 Installing platform-independent SmartBRT software tools
Tools such as the BRTML compiler are written in the platform independent Ruby
programming language. First you must install Ruby (and, for SPARC/Linux, you must
separately install Fox and FXRuby)—see the brief instructions on the download page.

Now that ruby is installed, installing the SmartBRT tools follows the same steps on all
platforms. Simply download the sbrt-tool.zip file and unpack it wherever you wish. It
contains documents from this web site as well as the program SmartBRT-tool.rb. You can
run this program by double clicking it, assuming ruby was installed correctly. This
program is documented in the Running SmartBRT section of the User's Manual.

6.4 Troubleshooting

6.4.1 Using Modeller in Windows
Modeller hangs while loading a large network in Windows.
The progress meter may say something like “Allocating cost tables: 68%”, and the

77

application becomes unresponsive. This is recognized by Quadstone as a problem with
Exceed, but fortunately it has an easy fix:

The reason for the problem relates to a conflict between
Exceed and Windows XP. We have noticed this occur and have
worked around the problem by giving the user the option to
remove the progress bar and so enable the network to
initialise.
There are two ways to do this:
1) load a new or demo network and then ensure that the
Tools>>Options>>Progress Bar is off. Saving the network
will save the option to the ParamicsApp.cfg file and next
time Paramics is initialised and a network is loaded the
progress bar will not be used, circumventing the conflict.
2) Manually edit the ParamicsApp.cfg file and change the
‘genopt 16 1’ line to ‘genopt 16 0’, switching off the
Progress Bar option via the initialisation file.
The effects will be the same.

6.4.2 Using plug-ins on Linux

Regardless of which mechanism used (“programming” files, the plugins directory, the
plugins file), Modeller (or Processor) doesn't seem to find the plugin.

This problem has been reported to Quadstone and recognized as a bug to be fixed in
Paramics V5. It is apparently not possible, therefore, to run SmartBRT on Linux, with
Paramics V4 or earlier.

6.4.3 Using plug-ins on Windows

The programming file refers to a plug-in, but the plug-in is not loaded by Modeller (or
Processor).

Check that the line in the file ends with a Windows-style line termination. Many text
editors have commands to do this.

6.4.4 Modeller License Issues

If Modeller starts up with the message “This licence for Paramics is supplied purely for

78

use as a demonstration copy...”, then your license file is incorrect or out of date, or your
HASP key is not correctly installed.

6.5 Running SmartBRT

6.5.1 BRTML Tools
The tool for working with BRTML is written in the platform-independent Ruby
programming language. First you must install Ruby (and, for Solaris or Linux, you must
separately install Fox and FXRuby)—see the brief instructions on the download page.

With Ruby installed, installing the SmartBRT tools follows the same steps on all
platforms. Simply download the sbrt-tool.zip file and unpack it wherever you wish. It
contains the documents from this web site as well as the program SmartBRT-tool.rb. You
can run this program by double clicking it, assuming Ruby was installed correctly. Feel
free to make a shortcut to this program and place it anywhere. However, do not move the
SmartBRT-tool.rb file itself outside of its directory. On windows, clicking on SmartBRT-
tool.rbw (note the “w” in the extension) will avoid showing the DOS window.
(Otherwise, the two programs are the same.)

You can use this program to:

• compile a BRTML document into a network directory that
Paramics (along with the SmartBRT plug-in) can use to run
your simulation,

• export a BRTML document as an HTML document, which can
be opened in a web browser, and

• start Paramics Modeller on the network directory you have
generated using SmartBRT-tool.rb.

If you wish to use SmartBRT-tool.rb to start Modeller, you must make sure that your
system's PATH environment variable lists the directory containing the Paramics
executables. The procedure for setting this up varies from system to system. It may have
been set automatically during the Paramics installation process.

Operation of this program is simple. The main window is shown below.

79

Use the “Select BRTML file” button, or type in the box next to the button, to select the
BRTML file you wish to work with. Use the “Select Network dir” button, or type in the
box, to select the directory where the generated network files will be placed so that they
can be loaded by Paramics with the SmartBRT plug-in. The File menu has commands to
compile the BRTML file to the network directory and to export an HMTL version of the
BRTML file. The Run menu has the “Start Modeller” command to run Paramics
Modeller on the selected network directory. Output and error messages from Modeller are
shown in the boxes below.

The functionality of this GUI program can also be accessed from the command line. For
syntax help, run it with the following option:
ruby SmartBRT-tool.rb --help

6.5.2 Running SmartBRT in Modeller
The SmartBRT-tool.rb program is not necessary to execute a SmartBRT network. You
can simply run a SmartBRT network in Modeller as you would normally run a simulation
—simply use the File/Open menu command to open the directory in which your network
files are located. (The BRTML document must have been processed using SmartBRT-
tool.rb, first.) Opening the network directly in Modeller is equivalent to the “Start
Modeller” command in SamrtBRT-tool.rb.

6.5.2.1 Batch runs and other command-line runs
Modeller is useful for a single run at a time, with concurrent visualization. Modeller is
not useful in the following situations:

80

• You want to perform an experiment consisting of many runs.

• You need fast simulation, without the overhead of
visualization.

• You want to run in trace mode and use a “pager” or other filter
program to process the text-only output of event data, as
described in the model report, in the section on debugging
output.

• You want to save the trace output to a file.

The Paramics suite comes with a program that is intended for use in these situations:
Paramics Processor. Processor has a GUI for defining a sequence of scenarios, executing
them, and gathering their outputs. Processor can also be run from the command line to
execute a single run without starting up any GUI. Processor is described in the Paramics
manual “Processor User Guide”, which should be part of your Paramics installation.

Running Paramics Processor
Unfortunately, the Processor GUI does not recognize the SmartBRT inputs, and it cannot
be extended. We hope, in future work, to develop a comparable program for SmartBRT.
In the meantime, we use the Processor command line program. This is executed as
follows:
processor-cmd -netpath dir
Where dir is the directory of the network. Note: for some reason, you cannot use simply
“.” for dir, if you have already changed into the directory where your network files are
located. In that case, you must supply a longer path, either the absolute path
(\my\simulation\example) or ..\example. (This bug has been reported to
Quadstone.)

You can get help on options for the processor command by typing
processor -h
One other useful option is -clean, which automatically removes the annoying paralock
file.

Processor and the plug-in
Note also that you may need to inform Paramics where your plug-in is located. Recall
from the plug-in installation instructions that there are three ways to install a plug-in. If
you have chosen the first or second way, there is no additional work needed. If you have
chosen the third way, the use of “programming files” in your network directory, you will
need a special programming file to use the plug-in with Processor, as opposed to
Modeller. The word “simulator” must replace “modeller” in the file name (this
inconsistency has been reported to Quadstone). For example, on Windows, you might
have a file called
programming.simulator.windows

81

which has a single line in it:
smartbrt-proc.dll
This tells Processor to use the Processor version of the SmartBRT plug-in when you run
this network. On Windows, these files are automatically created by the BRTML compiler.
On Linux and Solaris, the current version of Paramics (V4) does not use programming
files correctly.

Using Processor output
If you have enabled tracing in the SmartBRT plug-in, the plug-in will produce a
substantial amount of informative output along with a small amount of output from
Processor itself. Tracing shows events, such as bus arrival, passenger boarding, signal
priority granting, and so on, as they occur. Tracing can be enabled through BRTML (or
directly in the plug-in input file brt_trace)—see the BRTML reference for details.

The output can be piped into another program. For instance,
processor-cmd -netpath dir 2>&1 | more
(This may not work on Windows 95/98/ME.) This does two things with output. First, the
2>&1 causes error messages to be sent out along with normal output. Second, the |
more causes all of this output to be read by the “pager” program called more, which
exists on both Windows and Unix-like systems. It allows you to scroll through the output
rather than lose it as it goes past. A better program called “less” also allows you to search
for patterns, such as “the arrival of a bus at the stop at 3rd and Main streets”, or “the next
signal priority event”. Note that these two operations on simulation output are not part of
Paramics or SmartBRT—they are standard features of Windows NT/2000/XP and
Unix/Linux. See your OS manual for details.

To save output to a file, use the following command line:
processor-cmd -netpath dir 2>&1 > file
where file is the name of your file.

Processor and visualization
Processor does not have concurrent visualization, but this does not affect the ability of
SmartBRT to generate outputs for off-line visualization using SWEditor. The procedure
is the same as when using SmartBRT with Modeller. See Connecting to SWEditor for
details.

Scripting multiple runs
Using the command-line access described above, it is easy to use either DOS scripts or
Unix shell scripts to navigate through a sequence of directories and run the simulation
specified in each one. It is beyond the scope of this document to explain this process. We
expect future developments to make it easy for users to design and execute experiments
with multiple runs, and scripting will be unnecessary except for advanced users.

82

6.6 SWEditor Manual
The SWEditor manual is provided in an additional file.

6.7 SmartBRT Software Downloads
This page links to the software provided with the SmartBRT project deliverables and to
the additional free and commercial software needed to run SmartBRT. The user's manual,
with installation instructions, can be browsed here, and is also included with the
“SmartBRT platform independent software and documentation package”, below. Items
relevant to each platform, Windows, SPARC, and GNU/Linux, are marked with W S L
respectively. Please take note of the copyright text at the bottom of this page. For help
with this web site, please contact Joel VanderWerf, vjoel@path.berkeley.edu.

http://www.parami
cs-online.com

Paramics Modeller, Processor, Programmer, and other tools.
Licenses for both Modeller and Programmer are required for
SmartBRT. The Paramics suite is a commercial traffic modeling
package. W S L

smartbrt.dll.zip Paramics plug-in for
Windows. W

smartbrt.so.gz Paramics plug-in for
Solaris/SPARC. S

smartbrt.so.gz Paramics plug-in for
Linux/86. L

To install, follow standard instructions
in Paramics documentation for your
platform. See also the user's manual.

sbrt-tool.zip SmartBRT platform independent software tools and documentation
package. W
Follow installation instructions in the user's manual.

Includes all the documents from this web site.

83

ruby-1.8.1 Ruby Windows installer. W
Please select the latest version, at least
ruby181-13.exe. You may select ruby182-
XX.exe, but only if it is not labelled “RC”, or
“Release Candidate”.

Run the installer program and follow the
instructions. You may choose any location
for installation directory. The installer
includes includes the Fox/FXRuby GUI
library; please do not disable the FXRuby
option.

ruby-1.8.1.tar.gz Ruby source for Solaris and Linux. S L
Fox Toolkit Fox source for Solaris and Linux. (Use the

latest fox-1.0.xx tarball. Do not use fox-1.1
or fox-1.2.) S L

FXRuby FXRuby source for Solaris and Linux. S L

Ruby is a
programming
language which
SmartBRT depends
on. It is free software
with a license that is
compatible with
commercial uses.
Ruby's home page is
http://www.ruby-
lang.org

Fox is a GUI library,
and FXRuby is Fox
binding for ruby. See
http://www.fox-
toolkit.com and
http://www.fxruby.or
g.

SWEditor V1.zip SWEditor installer for Windows
only W
To install, unpack the zip file,
open the folder, and run the
installer in side, following the
instructions.

Note that the zip file size is about
115Mb.

SWEditor is a tool for designing
3D visualizations of transit
corridors, complete with near-
photo quality buildings, vehicles,
signs and so on. It can be used to
play animations of simulations
generated by SmartBRT.

SWEditor is not necessary for
running simulations and
performing analyses.

7 The Wilshire Model
The data collection and modeling effort covered the Wilshire corridor from the Santa
Monica terminal to downtown Los Angeles. We performed the following tasks:

• Manual coding of the road geometry, intersection characteristics, and lane
configurations from CAD drawings.

• Processing of outputs from a TRAFFIX simulation to provide phase information
and turning counts for most of the traffic signals. (We wrote a program to
automate this task.)

• Observation of passenger board and alight counts and estimation of OD tables for

84

several combinations of time of day and day of week. (This work was done for the
BRT Deployment Planning project.)

• Photographic imagery of many recognizable features along the corridor, which are
now incorporated into the SWEditor 3D visual model.

• Discussions with LACMTA to define scheduling and bus insertion operational
procedures, bus characteristics, bus stop locations, signal priority design, etc.

• Additional corridor details were filled in from road maps and personal
observations.

Further details on these tasks are given below. Note that the software used to convert
formats may or may not be useful for other networks, depending on which data formats
are available; the software can be provided to users of SmartBRT on request.

7.1 Network Coding
We entered data from CAD drawings into a simple shorthand form, and we wrote a
program to translate from that form into the more complex BRTML required for the
SmartBRT simulation. An example of the shorthand is shown below:

85

This fragment of a CAD drawing translates (manually) into the following encoded data:

-
3w 3e m
220

+
80
Brockton Ave. sw
signal
1s20 1n20

-
3w 3e wltl
90

86

Then, this data file is read as one input (among several) to a program which generated
BRTML. The data includes bus stop locations (if available), link lengths and curvatures,
lane counts and widths, turn lane configurations, street names.

The TRAFFIX data was produced by a consultant for LACMTA using the TRAFFIX
simulation program. We were given data for both AM and PM conditions. Sample
TRAFFIX data is shown below:

**
**
Intersection #25 Centinela Ave /Wishire Blvd
**
**
Cycle (sec): 60 Critical Vol./Cap. (X): 0.557
Loss Time (sec): 0 (Y+R = 7 sec) Average Delay (sec/veh): 9.4
Optimal Cycle: 53 Level Of Service: A
**
**
Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R L - T - R
------------|---------------||---------------||---------------|
|---------------|
Control: Split Phase Split Phase Permitted Permitted
Rights: Include Include Include Include
Min. Green: 21 21 21 0 0 0 32 32 32 32 32
32
Lanes: 0 1 0 1 0 0 0 1! 0 0 1 0 1 1 0 1 0 1 1 0
------------|---------------||---------------||---------------|
|---------------|
Volume Module: >> Count Date: 13 May 1999 <<
Base Vol: 156 14 85 16 4 18 2 1421 127 78 1122
19
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00
Initial Bse: 156 14 85 16 4 18 2 1421 127 78 1122
19
User Adj: 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03
1.03
PHF Adj: 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
0.95
PHF Volume: 169 15 92 17 4 20 2 1541 138 85 1216
21
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
0
Reduced Vol: 169 15 92 17 4 20 2 1541 138 85 1216
21
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00
Final Vol.: 169 15 92 17 4 20 2 1541 138 85 1216
21
------------|---------------||---------------||---------------|
|---------------|
Saturation Flow Module:
Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900
1900
Adjustment: 0.97 0.89 0.89 0.87 0.87 0.87 0.16 1.00 1.00 0.12 1.01
1.01

87

Lanes: 1.00 0.14 0.86 0.41 0.10 0.49 1.00 1.84 0.16 1.00 1.97
0.03
Final Sat.: 1835 236 1446 689 162 811 297 3503 314 220 3786
65
------------|---------------||---------------||---------------|
|---------------|
Capacity Analysis Module:
Vol/Sat: 0.09 0.06 0.06 0.02 0.02 0.02 0.01 0.44 0.44 0.39 0.32
0.32
Crit Moves: **** **** ****
Green/Cycle: 0.35 0.35 0.35 0.03 0.03 0.03 0.62 0.62 0.62 0.62 0.62
0.62
Volume/Cap: 0.26 0.18 0.18 0.71 0.71 0.71 0.01 0.71 0.71 0.63 0.52
0.52
Delay/Veh: 14.1 13.6 13.6 63.4 63.4 63.4 4.5 9.0 9.0 16.4 6.7
6.7
User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00
AdjDel/Veh: 14.1 13.6 13.6 63.4 63.4 63.4 4.5 9.0 9.0 16.4 6.7
6.7
DesignQueue: 4 0 2 1 0 1 0 22 2 1 17
0
**
**

Our program parses this data and extracts information relevant to signal timing and
vehicle turning movements for each intersection. This information is then encoded in the
single BRTML document that describes the corridor.

7.2 Passenger Demand Model

7.2.1 Data Collection
We collected data during Metro Rapid’s weekday peak periods for average and heavy
passenger loads, that is, between 7am and 10am for morning peak and 4pm and 7pm for
afternoon peak. Data was collected during morning and afternoon peak periods on two
typical weekdays (Monday and Thursday) and represented average and crush passenger
volume load days, respectively. Data was collected by observation as to the number of
passengers boarding and alighting each bus and the passenger load for each bus upon its
departure from the bus stop together with the bus arrival and departure time and bus
identification number, that is, the bus’ run number. The focus was on that part of the
Wilshire-Whittier Metro Rapid line between Santa Monica and Downtown Los Angeles.
During the morning peak periods we collected data on Metro Rapid buses heading in the
west direction while in the afternoon we collected data on Metro Rapid buses heading in
the east direction. We were not able to collect data at each of the twenty Metro Rapid bus
stops during each of the designated directional peak periods; however, most bus stops
were covered.

Due to limited resources, data was collected only on either day for half of the 20-mile
corridor. Therefore, in order to obtain a complete estimate of boarding and alighting
passengers at each individual stop, a Monday/Thursday ridership ratio was used to
convert the recorded passenger counts of one day to the estimates of the counts for the
other day. The ratio was about 1.1457, calculated based on observed passenger counts at

88

six stops where data were collected on both days. In addition, adjustments were made
where appropriate to deal with issues such as missing bus counts and late arrivals or early
departures of data collectors.

7.2.2 OD Estimation
Given total numbers of boarding/alighting passengers at individual stops, estimating O-D
trip tables was essentially the same problem as the conventional O-D distribution problem
with trip generation/attraction in traffic zones in the conventional four-step travel demand
analysis procedure. Since all necessary data to calibrate the models was not available, we
adopted a simple O-D estimation procedure based on the assumption that number of
alighting passengers is proportionally divided among all the possible origins according to
the respective number of boarding at these origins.

An example of an OD table resulting from this process is shown below.

eastbound on Monday, 4:00-5:00
Ocean/Colorado4th 14th Bundy Barrington VA HospitalWestwood Santa MonicaBeverly Robertson La CienegaFairfax La Brea Crenshaw Western NormandieVermont Alvarado

Ocean/Colorado 0 3 0.331858 0.155174 0.086621 0.059727 0.475857 0.095967 0.080685 0.067739 0.498734 0.149731 0.100983 0.161396 1.058763 0.495726 0.432896 0.351684
4th 0 0 7.168142 3.351752 1.871019 1.290095 10.2785 2.072877 1.742787 1.463171 10.77265 3.234192 2.181234 3.486149 22.86927 10.70768 9.350553 7.596379
14th 0 0 0 2.493075 1.391688 0.959589 7.64528 1.541832 1.296307 1.088325 8.012832 2.405632 1.622429 2.593042 17.01045 7.964506 6.955059 5.650282
Bundy 0 0 0 0 1.650672 1.138162 9.068018 1.828757 1.537541 1.290855 9.503969 2.853305 1.924353 3.07559 20.17599 9.44665 8.249351 6.701763
Barrington 0 0 0 0 0 1.092968 8.707946 1.756141 1.476489 1.239598 9.126587 2.740007 1.847941 2.953465 19.37484 9.071544 7.921787 6.435651
VA Hospital 0 0 0 0 0 0 4.824396 0.972941 0.818008 0.686765 5.056332 1.518025 1.0238 1.636285 10.73409 5.025837 4.388846 3.565494
Westwood 0 0 0 0 0 0 0 8.731486 7.341065 6.163248 45.37715 13.62324 9.187914 14.68455 96.33121 45.10348 39.38692 31.99789
Santa Monica 0 0 0 0 0 0 0 0 3.040452 2.552635 18.79387 5.642344 3.805362 6.081907 39.89754 18.68053 16.3129 13.25258
Beverly 0 0 0 0 0 0 0 0 0 1.945427 14.32328 4.300171 2.900162 4.635173 30.40691 14.2369 12.43247 10.10012
Robertson 0 0 0 0 0 0 0 0 0 0 12.03459 3.613056 2.436751 3.894529 25.54825 11.96201 10.44591 8.486245
La Cienega 0 0 0 0 0 0 0 0 0 0 0 7.920295 5.341679 8.53732 56.00514 26.22231 22.89881 18.60297
Fairfax 0 0 0 0 0 0 0 0 0 0 0 0 2.627392 4.199219 27.54704 12.89787 11.26315 9.150171
La Brea 0 0 0 0 0 0 0 0 0 0 0 0 0 2.061374 13.52269 6.331492 5.529018 4.491769
Crenshaw 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15.86869 7.42992 6.488227 5.271029
Western 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25.22828 22.03077 17.89777
Normandie 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42.41335 34.45656
Vermont 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45.12721
Alvarado 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Witmer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5th 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
nowhere 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.2.3 Photographic Images
A sample of the collection of images taken along the corridor is shown below:

89

8 Copyright and License
Components of the SmartBRT software that were developed at
California PATH are subject to the following copyright notice:

Copyright (c)2001-2004 The Regents of the University of California (Regents). All Rights
Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for
educational, research, and not-for-profit purposes, without fee and without a signed
licensing agreement, is hereby granted, provided that the above copyright notice, this
paragraph and the following two paragraphs appear in all copies, modifications, and
distributions.

Contact The Office of Technology Licensing, UC Berkeley, 2150 Shattuck Avenue, Suite
510, Berkeley, CA 94720-1620, (510) 643-7201, for commercial licensing opportunities.

IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. REGENTS SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY,
PROVIDED HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

90

SWEditor Version 1. 0
User Reference

University of California
Berkeley, PATH

1

Table of Contents
SWEditor Version 1. 0...1
User Reference...1
University of California Berkeley, PATH..1

SWEditor license... 6
Support ...6
Outline of document ... 6

Chapter 2. System Requirements and Installation ... 7
System requirements.. 7
Install the SWEditor...7
Uninstall SWEditor..8

About SWEditor Format.. 8
Menus...9
Toolbars .. 11

File access toolbar..11
Viewing window toolbar..11
Grid toolbar..12
The Grid toolbar allows the user to display selected grid, sets the grid properties or
clear all grids. One cannot clear just one grid. Please refer to section 4.1.3 Grid planes
for details... 12
Editing Mode Toolbar..13
The user can select from the following three editing modes. Please refer to section
4.1.2 Editing Modes in Chapter 4 for more details..13
Object property toolbar.. 13
Rendering toolbar...14
Connectivity toolbar ..14
Animation toolbar.. 15
Object selection toolbar... 15

Dialog boxes.. 15
General Properties of the objects... 16

Coordinate Frame...16
Network Objects.. 18

Roadway...18
a. Engineering Design Parameters... 18
b. Basic design parameters...19
c. Advanced design parameters..20
e. Roadside Attributes ...23

Intersection ...24
a. Components that can be changed... 26

Due to the technical issues in synchronizing Paramics traffic control devices with
SWEditor’s traffic control devices in animation run-time, traffic light phase is not
animated in our Paramics off-line animations. ... 27
Supplemental Objects.. 27

Building..27
Barrier.. 29
Road Sign...29
Bus Stop and Bus stop sign ...29
Trees...31

2

3DS Models... 32
Camera... 33

4.1 Manual Modeling Method... 35
4.1.1 Viewing display setting...35
4.1.2 Editing Modes...35
4.1.3 Grid planes.. 36

a. Change Grid Plane properties.. 36
b. Move grid planes with mouse.. 36

4.1.4 Rendering Mode..36
4.1.5 Object Type...36
4.1.6 Create a new object... 36
4.1.7 Select an existing object..37
4.1.8 Unselect the selected object.. 38
4.1.9 Delete an existing object ..38
4.1.10 Modify an existing object... 38
4.1.11 Move an existing object with mouse.. 38
4.1.12 Move the control points of a Roadway/Barrier object with mouse.................... 38
4.1.13 Change the properties of a lane in roadway with mouse.....................................38
Modify Intersection ...38
Move junction branches with mouse... 39
4.1.15 Move traffic control devices of a junction with mouse...................................... 39
4.1.16 Change the properties of a traffic control device.. 39
4.1.17 Connect two roadways with mouse.. 39
4.1.18 Connect roadway-junction with mouse...39
4.1.19 Connect Junction-Junction with mouse.. 40
4.1.20 Insect a roadway between roadway-roadway and roadway-junctions with mouse.
 40
4.1.21 Disconnect a connected object from the network .. 40
4.1.22 Create a new file... 41
4.1.23 Open an existing file .. 41
4.1.24 Save the edited database... 41
4.1.25 Merge two exiting files... 41
4. 2 Create simulated world from script file.. 41
Script Modeling Method.. 41

a. Bus stop ...42
b. Roadway...42
c. Intersection .. 42

Texture... 43
3DS Model... 43
6.1 Camera View Point.. 44

3

Table of Figures
Coordinate frame defined in the SWEditor... 17
A straight two-way roadway created by default parameter values.20
Roadway property dialog box with default numbers ... 20
Fig. 3.4 a. A straight two-way roadway with a merge .. 21
Advanced roadway property dialog box with default values... 22
Lane property dialog box... 23
A straight two-way roadway with gap (median) = 20 ft, grass and barriers by the sides 23
Attribute property dialog..24
Junction property dialog...25
Definition of l and s... 26
A 4-way junction with default parameter number... 26
Fig. 3.11. An example of overhead traffic light...27
Arco gas station..28
Building property dialog.. 28
Fig. 3.13.a . A speed limit sign. ...30
Fig. 3.13.b. Road Sign property dialog30
Bus stop property dialog.. 30
Bus Shelter Type 1 with length of 20ft.. 31
Bus Shelter Type 2 with length of 20ft.. 31
Tree property dialog...32
A building’s 3DS model.. 33
Camera property toolbar.. 34
When the number of lanes of the roadway and the number of lanes on the corresponding
branch of an intersection do not match the program connects them regardless of the
mismatch. The user must be careful! .. 40

4

Chapter 1. Introduction

Simulated World Editor (SWEditor) is a graphical software developed to create a three-
dimensional virtual world of urban traffic networks in close to photo-realistic quality in
which vehicle movement can be animated. A specialty of SWEditor is its capability of
visualizing transit infrastructure and animating transit operation. The greatest advantage
of SWEditor is that it is easy and quick to learn and use.

SWEditor was developed to ease and speed up the process of building a three-
dimensional virtual urban environment in which transit infrastructure and operation can
be visually demonstrated. Users can create a virtual urban transportation environment in
SWEditor by “building” roads and intersections complete with traffic lights and traffic
signs. In addition, they can populate the surrounding of this transportation network with
the usual urban street objects, such as buildings, sidewalks, or trees. This environment
can be customized to resemble actual real word streets and buildings relatively
inexpensively through using digital photographic images of real buildings as wallpapers
on the virtual buildings. Once the virtual environment is built, using vehicle movement
trajectory data from a separate file vehicle and bus movement can be animated within
SWEditor’s virtual world.

Our goals were to develop a tool that
• requires no prior knowledge of other computer aided design (CAD) tools or any

computer graphics skills,
• easy and quick to learn by anyone,
• provides an inexpensive, quick way to build 3D visual environment,
• provides an inexpensive, quick way to make this virtual environment resemble a

real environment where the new transit system is planned to be deployed,
• utilizes vehicle trajectory data to animate vehicle movement in this 3D

environment.

We developed SWEditor for quick and efficient demonstration of Bus Rapid Transit
(BRT) infrastructure and operation concepts. BRT is still a relatively new concept. Our
goal was to develop a tool that aids transit planners to communicate their design ideas to
decision makers and to the public. Transit agencies would be greatly helped by such tool
but they are unlikely to be able to afford an expensive CAD software and unlikely to have
the personnel and time required by applying these tools. SWEditor is free, easy to learn
and use. Transit planner need to communicate their ideas to the local community and
local decision-makers, therefore it is very beneficial that SWEditor’s virtual environment
can be built to resemble the actual streetscape where the project is proposed. Finally,
unlike other CAD program, SWEditor give the special capability to transit planner to
show not only the static transit environment, but also vehicle movement within this
virtual environment.

5

SWEditor license
SWEditor is free software for research purposes. Applications for any commercial
purposes need to obtain permissions from PATH, University of California at Berkeley.

Support
If you have any technical questions, please contact Swe-Kuang Tan at
swekuang@path.berkeley.edu .

SWEditor is a stand alone visualization tool that runs in Windows operating systems
(Windows 2000/XP). Unlike other commercial modeling tools, such as Multigen Creator
and 3DS Max, that users have to build models at polygon level, SWEditor is designed for
users to create the virtual world at model level. It means the users only need to define the
parameters for predefined models.

SWEditor has used to animate the off-line Paramics simulation in its 3D virtual world for
SmartBRT project. To do so, a translator program, PST (Paramics-SWEditor Translator)
has implemented to translate the Paramics network to SWEditor’s network script to
regenerate the Paramics network in SWEditor automatically. In addition, vehicle
trajectory files have to be generated by Paramics in order to replay the simulation in
SWEditor. Please refer to Chapter 7 for details.

Outline of document

In this document we introduce SWEditor in detail in the order a user would proceed.

Chapter 2 list the minimum system requirements, gives instruction as to how to
install/uninstall SWEditor, and lists all file formats created or used by
SWEditor.

Chapter 3 introduces the graphical user interface through lists of menus, toolbars and
dialog boxes. If needed commands are given short explanation. In addition,
each command is linked to its detail explanation later in the document.

Chapter 4 describes the coordinate system and gives detailed description of the design
parameters of objects in SWEditor.

Chapter 5 describe the process of manipulating individual objects to build the virtual
world. It discussed both manual and script file based modeling methods.

Chapter 6 instructs users about how to navigate within the virtual world to inspect it or to
view their animation.

Chapter 7 discussed animation in SWEditor’s, such as what files are needed, how to use
them, how to run the animation, and what file are generated as a results of the
animation.

6

Chapter 2. System Requirements and Installation

In this section we specify minimum system requirements for the SWEditor software, as
well as installation and uninstallation procedures.

System requirements

The following is the minimum system requirement for Windows operating system:

1. Intel Pentium III 800 MHz CPU or higher
2. 128 MB memory or higher
3. 150 MB or greater free hard drive space
4. OpenGL compatible 3D accelerator card with 32 MB texture RAM or higher
5. 1280x1024 or higher screen resolution
6. CD Rom
7. Windows 98, Windows 2000 Professional, Windows ME, or Windows XP

operating systems.

Install the SWEditor

In the following we describe how to install SWEditor.

Step 1. Insert the SWEditor CD into the CD-ROM drive. The SWEditor InstallShield
wizard will run automatically. If the wizard does not run, explore your CD-ROM drive
and double click on Setup.exe to execute the “installshield wizard”.

Step 2. Click Next or press Enter on the Welcome Window to advance to License
Agreement Window.

Step 3. Click Yes to agree to the licensing terms in order to advance to User Information
Window. If terms are not accepted the setup will terminate.

Step 4. Enter information to Name and Company fields on the User Information
Window. Key in anything on the Serial Number field. The software is not protected by
serial number, but input is required to activate the Next button on the window. Click on
Next or press Enter to continue the setup process.

Step 5. On the Choose Destination Location Window, choose your final destination for
the software location. The default location is
C:\Program Files\PATH\SWEditor\.
After destination is selected, click on Next or press Enter to initiate the installation
process.

Step 6. Click Finish in the InstallShield Wizard Complete Window to complete the setup
process. An “explore” window will open to show the installed files.

7

Step 7. To startup the program, go to the Bin folder under your destination folder and
double click on Editor.exe. We recommend creating a shortcut on the desktop for this
executable.

Step 8. To create a shortcut, place your mouse cursor on the Editor.exe icon and press
right mouse button, select Create Shortcut item in the pop up menu and left click on it. A
shortcut icon of the executable will appear on the same window. Move the shortcut icon
to your desktop.

Uninstall SWEditor

To uninstall SWEditor, go to Control Panel and double click on Add or Remove
Programs. The Add or Remove Program Window will pop up and display a list of the
program names the Windows uninstaller can uninstall. Double clicks or press the
Remove button on SWEditor. The uninstaller will uninstall the program.

About SWEditor Format

SWEditor uses its own format, road database (rdb), to display the virtual world database.
This format is designed in the form to minimize the memory space required for the
SWEditor graphical objects. In general, the object properties and minimum set of data
are stored to the database. This format can be converted to other formats, such as 3DS if
proper tools are available.

8

Chapter 3. Graphical User Interface

SWEditor is a graphical editor used to construct three-dimensional virtual world with
transit elements. Like other Computer Aided Design (CAD) tools, SWEditor has a set of
modeling features and viewing windows the editing purposes. All these features are
accessed through the Graphical User Interface (GUI).

The GUI consists of menu bar, toolbars and dialog boxes. Menu bar is mainly for file
access and some display options. Toolbars are mainly used for editing settings on
functionalities and dialogs show the properties of the settings. This chapter shows the
functionalities embedded on toolbars. Items listed in this chapter are linked to their
detailed explanations that are given in later chapters.

Menus

SWEditor has limited functions embedded into menus. There are only two menus: File
and Options.

The File Menu consists of the functionalities for opening and saving files. The
‘Merge Current File With …’ option is implemented so that two SWEditor
database files (in rdb format) can be combined. The ‘File Merge Property’ is an
option that allows users to define what types of objects will be copied from the
selected merged file to the current file.

The Options menu provide the flexibilities of object type drawings and object
merge type while combining two files. The object type drawing option is an
option that allows users to define what types of objects to be drawn on the screen.
For example, if camera objects are not desired to be seen in animations, the users
can select ‘Object Drawing Options’ and a dialog with a list of object names will
pop up. Simply unchecked the camera object, and camera objects will be
disappeared from the screen. ‘File Merge Object Type Options’ is an option that
allows users to define what types of objects will be copied from the selected
merged file to the current file.

Chapter 4 will explains more about these two functions.

File and Options Manu bar

9

10

Toolbars

File access toolbar

This toolbar includes functionalities related to manipulating files, such as creating new
files and working with existing files:

a. Create a new file.
To create a new rdb file, click on this icon and a dialog will pop up and ask whether you
want to save the current rdb file before this new rdb file is created. Click Yes if you want
to save the current file, otherwise click No.

b. Open an existing rdb file.
To open an existing rdb file, click on this icon and a file browser will pop up to allow the
users to select the desired file and click on Open to open the file.

c. Save current rdb file.
To save current rdb file, click on this icon and the current rdb file will be saved. If no file
name has been assigned, a file browser will pop up to let the users to browse and enter the
file name. Click on Save to save the file. If a file name has been assigned, the current file
will be saved to the assigned file name.

d. Merge an existing rdb file with current opened rdb file
To merge current opened rdb file with an existing rdb file, click on this icon and a file
browser will pop up and users can select the desired existing file and click on Open for
merging.

e. Open a SWEditor network script file
To generate a transit network from a script file, click on this icon and a file browser will
pop up. Select the desired network script file and click on Open. SWEditor will then
create a network based on the descriptions in the selected script file. The Data folder in
the SWEditor program directory is the default folder for network script files.

f. Open an animation trajectory file
To run an animation, click on this icon to load the vehicle trajectory file. A file browser
will pop up to allow users to select the desired trajectory file. Click on Open to load the
selected trajectory file. The Trajectory folder in the SWEditor program directory is the
default folder for network script files.

Viewing window toolbar

11

This toolbar allows the user to select a viewpoint to view the whole scene. For the
definition of front, side, top, and perspective cameras, please refer to section Coordinate
Frame in Chapter 4.
a. Front view window
A view captured by the default front view camera.

b. Side view window
A view captured by the default side view camera.

c. Top view window
A view captured by the default top view camera.

d. Perspective window
A view captured by the default perspective view camera.

e. Camera selection
A list of user-created-camera allows user to select a desired camera from the list and
change the current view point to the view point of the selected camera.

Grid toolbar

SWEditor defines an absolute three-dimensional coordinate system that applies to any
objects within the animation. Axes X and Z form the horizontal plain with while the
vertical Y axis measure elevation. The grid system visualizes the scale of this coordinate
system, helping the user in sizing up objects and seeing dimensions.

The Grid toolbar allows the user to display selected grid, sets the grid
properties or clear all grids. One cannot clear just one grid. Please refer to
section 4.1.3 Grid planes for details.

a. Show grid on YZ plane

b. Show grid on XZ plane

c. Show grid on XY plane
d. Show grid on all planes

e. Clear all grids
f. Show current grid properties

12

Editing Mode Toolbar

The Editing toolbar allows the user to select among editing modes.

The user can select from the following three editing modes. Please refer to
section 4.1.2 Editing Modes in Chapter 4 for more details.

a. Surf mode
In surf mode, the users can navigate around the ‘world’ with mouse in addition to arrow
keys. Press and hold on the left mouse button, the ‘world’ will be moved along with the
mouse movement. No object can be created in this mode.

b. Create mode
Objects can only be created in this mode. Once the left mouse button is clicked, a new
object will be created at where the mouse is pointing on the screen. The created object
type is defined by the selected object type in object selection tool bar.

c. Modify mode
In this mode, the properties of existing objects can be modified. Use left mouse click to
select the desired object, once the object is selected, a red bounding box will appear on
the object as indication. A green ball will appear at the center of the object once an object
is selected.

Object property toolbar

This toolbar handles object editing functionalities. Please refer to Chapter 4 for more
details.
a. Show new object properties
To create a new object (after selecting Edit mode and selecting the object type that you
want to create) press this button. The object’s dialog box will pop up.

b. Delete an object
When selected, the selected object will be deleted.

c. Retrieves a selected object’s properties.
When selected, this button will open a dialog box containing the properties of the selected
object allowing the user to view/review and change properties of already existing objects.

13

Rendering toolbar

This toolbar allows the user to select how the objects are drawn. The selection applies to
all views.

This toolbar sets object rendering details
a. Simple wire-frame drawing (see through)
When selected, the objects are drawn by the simplest wire-frame representation to reduce
CPU (Central Processing Unit) load.

b. Wire-frame drawing (see through)
When selected, the objects are drawn in wire-frame. This rendering mode provides more
details in wire-frame than simple wire-frame drawing mode does.

c. Polygon drawing (not see through, simple textures or representations of objects)
Objects are drawn in polygons. This rendering mode helps the users to visualize the
virtual world without introduce much load onto CPU.

d. Texture drawing (not see through, real textures)
This mode provides photo-realistic view of virtual world. All textures on the objects will
be loaded and display on the screen.

Connectivity toolbar

This tool bar provides function to connect and disconnect object. Please refer to Chapter
4 for more details.

This toolbar executes
a. Connect two selected network objects
When selected, the two selected network objects will be connected to form a network, if
conditions are met.

b. Disconnect selected objects from connected objects
If a connected network object is no longer desired, it can be removed by this function.
Simply select the object and click on this icon, the selected objected will be removed
from the database.

c. Insert a roadway between two selected objects. This function is implemented to
ease the editing effort if one wants to connect two network objects with an additional
roadway object without defining explicit roadway parameters.

14

Animation toolbar

This toolbar sets animation functionalities
a. Play an off-line animation

b. Pause the running animation

c. Stop the running animation
d. Record the running animation shown on the screen to a movie file
e. Show the animation data

Object selection toolbar

This toolbar presents the user the available object types, such as:
a. Roadway
b. Intersection
c. Bus stop

d. Road/Traffic sign

e. Building

f. Barrier

g. Tree

h. 3DS model

i. Camera

Dialog boxes

Dialog boxes display and allow modification of the properties of the SWEditor objects. In
addition to the properties of the selected objects, most of the dialogs have a preview
window to display the objects with updated properties. However, the objects will get
updated only if the Preview button is pressed. To confirm the modifications, press the OK
button. If Cancel button is pressed, the modifications are ignored. The details of dialogs
for each object will be discussed in Chapter 3 where the objects are discussed in detail.

15

Chapter 4. Design Parameters of the SWEditor Objects

In SWEditor, an object is a 3D model with predefined parameters. There are two types of
object in SWEditor: network objects and supplemental objects. Network objects are used
to create a traffic network while supplemental objects are used to make the simulated
world look more realistic. Network objects consist of Roadways and Junctions while
supplemental objects are Buildings, Barriers, Trees, Road/Street Signs, Bus Stops, and
other 3DS models.

Objects are created in a three-dimensional coordinate system. Their location and
orientation are determined within this coordinate system. Furthermore, position and
angle of the users’ view point for inspecting the animated world is defined within this
coordinate system.

In the first sections of this chapter, we introduce the coordinate system and view points,
define object location and orientation. In the second section we introduce all available
objects and discuss their design parameters. Later, in Chapter 4 we present how to
manipulate these objects to create the animated world.

General Properties of the objects

All objects are created within SWEditor three-dimensional coordinate frame. This
coordinate system also determines the viewpoint of the user, such as top, side or front
view, as if looking though a binocular positioned along the axes of this coordinate
system. With relationship to this coordinate system, all objects are characterized by their
location and orientation. In this section first we describe the coordinate system and
explain the available viewpoints, then, second, we present how location and orientation
are defined. The following larger section of this chapter discusses each object in detail.

Coordinate Frame

SWEditor defines an absolute three-dimensional coordinate system that applies to any
objects within the animation. Figure ** shows the coordinate frame defined in
SWEditor. Axes X and Z form the horizontal plain with while the vertical Y axis measure
elevation.

Also, point of view of the user is defined with reference to this coordinate system. Figure
3.1 shows the default view point positions:

The front-view point is placed somewhere at +Z axis and is looking at –Z direction.
The side-view point is placed somewhere at +X axis and is looking at –X direction.
The top-view point is placed somewhere at +Y axis and is looking at –Y direction.

16

The perspective-view point is placed somewhere in the three-dimensional space, on X-Z
plane with some elevation and is looking toward the Y axis.

Note that it is significant that not only the viewpoint’s position is predefined within this
coordinate system, but also the direction each viewpoint is looking.

Coordinate frame defined in the SWEditor

These view points have an additional significance: objects can be edited in top, side and
front view, but not in perspective view. Perspective position only allows viewing.

Location and orientation of any object is determined within this coordinate system as
follows:

Location: consists of x, y, z coordinates in feet.

Orientation: measured by yaw, pitch, and row, angles in degrees with relationship to the

respective axes of the coordinate system. Row is the angle associates with X axis,
Pitch angle associates with Z, and Yaw angle associates with Y axis.

In practice, the view point’s position and its viewing direction together with the
orientation determine left and right of an object. Given such definition, left and right
remains the same, since objects are always viewed from a predetermined view point that
cannot be changed in top, side and front view. (Note, that the perspective camera may
change its position within the three-dimensional space, but it is always looking toward the
Y axes. Therefore, even looking through that camera, left and right remains the same.)

17

Row

Y

Pitch

Yaw

Front-View

Perspective-View Z

X

Top-View

Side-View

The following second section of this chapter describes all objects available within
SWEditor, first network objects then supplemental objects.

Network Objects

Network objects are used to create the transportation infrastructure, such as roads and
intersections. Therefore, there are two network objects: roadway and intersection. These
are created individually and then connected together to form a network. Here we discuss
the properties/parameters of these objects. The methods of manipulating these objects,
connect them, to create a infrastructure network will be discussed later in Chapter 4.

Roadway
the first point on the dialog box is “method”. This determines how the roadway object is
created either with engineering parameters or with control points. Engineering
parameters are numerical input from the user. Control points are used to graphically
create a roadway. These two modes have other repercussions. Roads’ shape can be
changed by dragging with the mouse only in control points mode. In engineering
parameter mode the road size and shape can only be changed through entering different
values.

Roadway is defined by a group of parameters, such as:
• engineering design parameters,
• basic design parameters, and
• advanced design parameters.

a. Engineering Design Parameters
These parameters create the object Roadway in its basic outline: length and whether it is
straight or curved. These parameters are displayed in the Roadway Properties dialog box.
They are used to design a segment of a roadway in basic engineering terms that include:

Roadway Physical Type: describes whether this piece of roadway is straight or curved.
The default type is straight.

Length: defines length of the roadway at its center. The default length is 100ft.
Radius1: defines the radius of a curve roadway
Side, such as left or right: describes the side where the center of the radii is located.

Start side and left side are defined depending on the way the roadway was generated. If it
is generated by engineering parameters, then start side is on the left side of the screen.
Left side of the road is the bottom edge, right side is the top edge.
If the roadway is generated using control points, start side is where the first control point
was put down.

Left and right side of the roadway is defined by looking out from the END side onto the
roadway. Forward direction leaves the end side to arrive to the start side, backward
direction arrives at the end side form the start side.
1 We understand that in reality a curved road is rarely designed with one constant radius. However,
Paramics makes this assumption. Given that trajectory data for car movement will come from Paramics it
seemed necessary to match this assumption.

18

Merge lanes are added to directions, not to the roadway. Therefore, when the user
decides which side to put the merge lane left and right are in relationship to the direction,
not to the roadway. Left and right side of a direction is defined by looking in the
direction you are going. For merge lanes, end and start side are still defined by the
roadway.

Just by looking at a created roadway object one cannot determine any of these references.
Since roads can be created in any direction and since after creation one cannot determine
which was the first control point, the best way to orient oneself on a roadway object is to
put grass or sidewalk on one side of the roadway, to mark it. (see two curved rodas
drawings)

Note that since objects can be created and changed in only the front, side and top view,
that these views are tied to the coordinate system and their point of view is always the
same, therefore left and right side of the objects remain always the same.

b. Basic design parameters
These parameters determine the details of the roadway through direction, number of lanes
and width of lanes. These parameters are displayed in the Roadway Properties dialog
box.

Roadway Type: determines whether a road is One Way and Two Way. If a piece of
roadway is defined as one way, then only “forward” lane properties can be
defined. Otherwise, “forward” and “backward” lane properties are used. The
default type is Two Way.

Roadway Name: Name of the roadway.

Number of Lane per direction: defines the number of lane on a roadway segment for
each direction. The default number is 2 per direction.

Lane Width: defines the width of all lanes in one direction. The default number is 12ft.
This means that all lanes have the same width. Individual lane width cannot be
defined.

Median: defines the distance between the two directions of a roadway. This parameter is
used when the roadway is two way. The default is 0.

If the type of a roadway is two way, then Number of Lane and Lane Width are defined for
forward and backward lanes separately.

19

A straight two-way roadway created by default parameter values.

Roadway property dialog box with default numbers

c. Advanced design parameters
An optional advanced design features that the Roadway object has is Merge. This feature
allows the user to create an additional lane whose length is less then that of the roadway
segment’s total length. This feature can be used, for example, to create a turning lane. A
merge lane can be added to both directions. That is, there are forward merge and
backward merge properties on a segment of roadway if the roadway is two way. These are
parameters are displayed in the Advanced Roadway Properties dialog box that can be

20

pulled up by clicking on the Advanced Property button, next to the lane numbers in the
Roadway Properties dialog box.

Merge: This optional property allows the roadway to have lane addition/reduction
features.

The parameters that define a merge are:
 Location: A merge can be placed at Start or End section of the roadway. If a

merge is defined at the beginning of a roadway, it’s used as lane reduction.
Otherwise, it’s used as lane addition.

Side: A merge can be located at Left or Right side of each direction of roadway.

A merge can be located on either side of the through lanes of either direction.
 Number of Merge Lane: the number of merge lane is 1. Only one merge can be

added to a direction of a road section. (The total number of lane after
merge is the sum of number of lane (+/-) number of merge.)

Merge Lane Width: The width of the merging lane. The default number is 12ft.
This is a user input that can be changed. Also, it can be different from the width of other
(through) lanes’ width.

Merge Distance: The actual length for the merging lane. The default number is
 100ft.

Merge Transition Distance: This parameter describes the length needed for the
 lane deduction/addition. A user input

Fig. 3.4 a. A straight two-way roadway with a merge

21

Merge distance Transition distance

Advanced roadway property dialog box with default values

d. Components: Lane:
Cannot get to this dialog box from the RoadWay properties dialog. Only through
selecting the lane on the picture of the roadway.

The properties of a lane include index, length, width, and type. Length and width are
calculated and defined internally by the program when the segment of the roadway is
generated. The only user accessible parameter is Type.

Index: use to correlate the lanes in a roadway. Given, user cannot change this parameter.
Lanes are counted from the median out in each direction, starting from 0.
Length: length of the center line of the lane.
Width: width of the lane, cannot be changed.

Type: describes the use of the lane. A lane can be defined as a regular lane, car pool
lane, dedicated bus lane, offline bus stop lane, merge lane, ramp way, left turn
only lane, and right turn only lane. Choice of type effects the visualization of the
lane.

22

Lane property dialog box

e. Roadside Attributes
These specify attributes of the roadsides as either “grass”, “barrier”, or “sidewalk”. In
this case, “grass”, “barrier”, or “sidewalk” are not objects. Here they are attributes of the
Roadway object and thus cannot be separated from the roadway. User can specify
attributes of the left and right side of the roadway separately, as well as the attributes of
the median.

The width of the median is defined on the Roadway Properties dialog box in feet. The
Middle Attribute Property button brings up the dialog box called Barrier. In there user
can select texture as either “grass”, “barrier”, or “sidewalk”.

Grass: Width and texture are the properties of grass. If these properties are not specified,
the program will use the default settings. The default width is 12ft.

Barrier and Sidewalk: The size and dimensions of the barrier can be defined by the
user by determining the top and bottom width and the height of the barrier. This
way, the user can create a tall wall or can use this object to create a sidewalk.

A straight two-way roadway with gap (median) = 20 ft, grass and barriers by the
sides.

23

Texture: the selected texture is pasted on the surfaces to show the material properties.
Top Width: Top width of barrier. The default number is 2.
Bottom Width: Bottom width of barrier. The default number is 4.
Height: Height of barrier. The default number is 3.5.

Attribute property dialog

Intersection

When an intersection object is created, it is first generated in its default setting. All the
branches are assumed to have same number of lanes and all the lanes have the same
width. The number of lane and lane width for all branches can be modified afterward.
There are parameters used to define an intersection:

Number of branches: defines the number of branches the intersection has. The default
number is 4.

Number of Lanes: defines the number of lanes that each branch has. The default number
is 2 in each direction. Each branch can have different number of lanes as long as
the configuration makes sense in term of traffic flow.

Lane Width: defines the lane width for lanes on all the branches. The default number is
12ft.

Traffic Control: defines the traffic control devices used at the intersection. Choices
include: “overhead traffic light”, “traffic light post”, “stop sign”, or “no control
device”. The default setting is “overhead traffic light”.

Graphically the intersection is characterized by the following
Center of the intersection: this point is geometric center of the default intersection. It

will remain the same no matter how the default intersection is changed. This is
the reference point when moving the image of intersections.

Length of Branch (l): defines the distance from the center point of the junction to the
end of each branch. The default number for this length depends on the number of
lanes on the adjoining branch. Cannot be changed by the user. See Figure 3.9.

24

Branch offset from the center of junction (s): defines the branch offset from the center
of the junction. See Figure 3.9. The distance between two parallel lines that are
both perpendicular to the edge of the branch, one drawn from the center of the
intersection to the edge of the branch, the other drawn from the axes of the median
of the branch (not from the axis of the branch since a branch can have different
numbers of lanes in each direction). It is not an input.

Orientation of the branch (α): The orientation angle of a branch is referenced to +x axis
and clockwise positive. Not an input, although can be changed by the user. See in

Junction property dialog

25

Definition of l and s

A 4-way junction with default parameter number

a. Components that can be changed

26

ls

α

Roadway on the branches: please refer to Roadway section for properties and
descriptions. When the roadway is assigned, the branches will show the street
name sign at the traffic lights.

Traffic Control Device: Three types of traffic control devices are available. There are
“traffic light post”, “overhead traffic light”, and “stop sign”.

A Traffic light has following design parameters:
Type: defines the type of the traffic light, Post / Overhead. The default type is

“Overhead”.
Height: defines the height of the traffic light. The default height is 15ft.
Number of Panels: defines the number of panels the traffic light has, only works with

overhead traffic light. This number is calculated internally by the program based
upon the number of lanes on the associated roadway. Therefore the user cannot
change it.

Fig. 3.11. An example of overhead traffic light

Due to the technical issues in synchronizing Paramics traffic control devices with
SWEditor’s traffic control devices in animation run-time, traffic light phase is not
animated in our Paramics off-line animations.

Supplemental Objects

Supplemental objects make the simulated world look more realistic by populating it with
objects on the roadside. These objects include: buildings, barrier, road sign, bus sign

Building
Rectangles are used to represent buildings in the SWEditor. Parameters used to define a
building are: Type, Front Texture, Side Texture, Length, Width, and Height. There are
only two types of building: Building and Gas Station. Texture is a picture that makes the
simple rectangles look like buildings or gas stations. Building type has front and side
textures. Gas Station has only front textures. If Gas Station is chosen as Type, Front
Texture field will display a list of gas stations.

Type: two types of buildings, one is Building and another one is Gas Station.

27

Front Texture: the selected texture is pasted on the front surface of the rectangle.
Side Texture: the selected texture is pasted on the side and back surfaces of the

rectangle.
Length: defines the length of the rectangles. The default Length is 30 ft.
Width: defines the width of the rectangles. The default Width is 20 ft.
Height: defines the height of the rectangles. The default Height is 40 ft.

Arco gas station

Building property dialog

28

Barrier

Barrier can be created separately from roadway. In this case, Barrier is not a property of
the roadway, but a separate object. It can be place anywhere and in any direction, for
example, even across a roadway to close that roadway. The size and dimensions of the
barrier can be defined by the user by determining the top and bottom width and the height
of the barrier. This way, the user can create a tall wall or can use this object to create a
sidewalk. This object’s parameters are: texture, top width, bottom width, and height. See
Figure ** for the property dialog box.

Texture: the selected texture is pasted on the surfaces to show the material properties.
Top Width: Top width of barrier. The default number is 2.
Bottom Width: Bottom width of barrier. The default number is 4.
Height: Height of barrier. The default number is 3.5.

Road Sign

There are two kinds of sign in Road Sign object: Traffic Sign and Street Sign. Traffic sign
works with textures that the user can select from image library (however, user cannot
change the text on the image found in the library). Street sign works with user-input text.
The only common parameter is height.

Type: two types, traffic sign and street sign.
Street Sign Name: If Type is street sign, then the user can type in the name of the street
and that will be shown on the sign.
Traffic Sign: if Type is Traffic sign, the user can select from texture to be displayed.
Height: the height of the sign. The default number is 6 ft.
Location and orientation determines where the sign is.

Bus Stop and Bus stop sign

Bus stop is the object specially designed for BRT system. Bus stop can be a simple bus
stop sign post or a bus shelter. There are two kinds of shelters, available in two sizes
each. The sign post and the shelters can be used together or separately. The following
properties define this object:

Type: Total of five choices available: bus pole and two types of bus shelter with two
sizes each.

Sign and Schedule Texture: The user can select the texture to be shown on the selected
object type.

Logo Texture: The selected texture only applies to shelters.
Height: This is the height of the pole.

29

Fig. 3.13.a . A speed limit sign. Fig. 3.13.b. Road Sign property dialog

Bus stop property dialog

30

Bus Shelter Type 1 with length of 20ft.

Bus Shelter Type 2 with length of 20ft.

Trees

Tree is another supplemental object that makes the simulated world more realistic. The
current properties of a tree object are texture, height, and width.

Texture: use to create different types of trees.
Height: defines the height of the tree. The default number is 20 feet.

31

Width: defines the width of the tree. The default number is 10 feet.

Tree property dialog

Billboard switch on/off plays a role in how the tree object is visualized in side and front
view. To see the best picture of the tree in both views, click on. If Off is set, the image
can be seen only in the front view. In side view only the surrounding rectangle will show.
This switch does not effect the image in perspective view.

3DS Models

In addition to the already available library of images, 3DS models can be used to enrich
the simulated world. The 3DS format is a popular format used for 3d modeling. Many
models are freely others commercially available in the market. SWEditor can only load
the 3DS models that are version 3.0 or later

Once downloaded, these 3DS models can be resized to desirable size. The parameters
used for resizing can be height, width, or length. Users can input a desirable number to

32

one of this parameters and the corresponding scale value to the original size will be
calculated and other two parameters will be changed accordingly

Height: Desirable height of the model.
Width: Desirable width of the model.
Length: Desirable Length of the model.
Note: only one of these three can be an input by the user.

A building’s 3DS model.

Camera

Camera is a special supplemental object. Its purpose is not to beautify the scene; instead,
it provides additional view point in addition to the default scenes during
simulations/animations. User can specify and place numerous cameras at any location

33

with any orientation to view the animation. Cameras can be moved, but only before
starting the animation run. These cameras provide opportunity to view the animation
from different locations. Also, the user can jump from one camera location to another,
easily and quickly changing view points. A camera object has the following properties:

ID: Identity of the camera. This helps the users to identify/choose the desired camera
Location and orientation determine the position of the camera.

Camera property toolbar

34

Chapter 5. Modeling Methods

In this chapter, we will discuss the basic modeling methods used in the SWEditor. To
accomplish the modeling tasks, the SWEditor has included viewing windows, mouse
interactions and a number of features. A simulated world can be created by two ways.
One method is the manual method that users edit the networks and scenes manually.
Another method is to write down the network descriptions in certain formats and load the
descriptions into the SWEditor to generate the scene automatically.

4.1 Manual Modeling Method

4.1.1 Viewing display setting
To begin your editing, the first thing is to set the desired viewing window. The SWEditor
provides front, side, top, and perspective viewing windows. Front, side, and top windows
are editing windows that handle process the editing work. The perspective view is only
used to show the edited database at first person view. To choose a viewing window,
simply press on the corresponding icon on viewing windows toolbar and the windows
will be changed immediately.

The camera icon contains the list of camera objects created in the editing database. The
change on camera selection does not change the viewing windows but the location of the
view point.

4.1.2 Editing Modes
There are three editing modes, Surf, Edit, and Modify mode.

Surf Mode: Allows the users to move around the edited database (the animated
environment) with the mouse. However, it only works for top, side, and front
windows. To move the animated environment, press the left mouse button and
hold it, then move the mouse around. The view-point will be updated according to
the mouse movement. If the objects on the plain cannot be seen from the
perspective view point, in this mode the animated world can be moved so that the
objects become visible from this view point. This mode also allows the change on
grid planes and will be discussed in section 4.1.3.

Edit Mode: Allows the users to create new objects.
Modify Mode: Allows the users to modify and move existing objects.

35

4.1.3 Grid planes
Grid plane provides reference location and scale in the animated world (database). To
show grid planes, click on an icon associates with the desired grid plane from Grid
toolbar. (Please refer to section 2.1.2) However, the grid planes do not show up on
texture mode.

a. Change Grid Plane properties
The properties of grid planes can be changed through a dialog box. To bring up the dialog
box, first set the editing mode to Surf, then double left clicks at the center (the little blue
box) of the grid plane, the dialog will pop up. The properties of grid planes can be
modified now. Click on OK button to confirm the changes.
Alternatively, one can click on the “Show current grid properties” icon to access this
dialog box.

b. Move grid planes with mouse
The grid planes can be moved with the mouse. To do so, the editing mode must be Surf
and press the left mouse button at the center of the grid planes (no need to hold it down).
The grid planes now are following your mouse movement. To deactivate this feature,
press the right mouse button once where you want to place the center of the grid.

Moving the grid can change what can be seen in the perspective view. While in top, side
and front you can move the entire view screen to navigate around (in Surf mode), in
perspective view that is not possible. But moving the grid will move the position of the
perspective view point with it, thus one can place it so that the desired objects are within
the view point’s vision.

4.1.4 Rendering Mode
The last thing to do before editing is to set the object-drawing mode. The rendering mode
decides the presentation of the animated world. There are simplified wire-frame, wire-
frame, polygon, and texture.

Simplified wire-frame mode: Render objects in simple wire-frame
Wire-frame mode: Render objects in wire-frame with more complexity (see through)
Polygon mode: Render objects in polygon (not see through)
Texture mode: Render objects with texture, if applies.

4.1.5 Object Type
Before creating or modifying or selecting an object, the desired object type has to be
selected. Please refer to Chapter 3 for object types.

4.1.6 Create a new object
To create a new object, one of intersection, building, bus stop, sign post, or tree, the
editing mode must be Edit and the desired object type has to be selected on the object
toolbar. To define the object properties, press the new object property icon (2.1.4a), an
object dialog will pop up and show the new object properties. The properties now can be
changed.

36

After the desired properties have been set, click OK – the dialog box closes. If the object
that you created is one of intersection, building, bus stop, sign post, or tree, move the
mouse cursor to a desired location and press the left button to place the object. The
clicked location will be the center location of the newly created object. In case you want
to have two of the same object, left click again to create a second of the same object.
Otherwise, either change to Modify mode, or select your next object type.

There are two ways to create a new roadway. Both start by selecting Roadway object,
Edit mode, new object. The new object button will bring up the property box of the
roadway. There are two methods to create a roadway: control point or engineering
parameters.

If the desired edit method is set to control points, set the desired parameters, but
not the engineering parameter, click OK, then left clicks on the view window to
create control points for the new roadway object. At least three control points are
needed to create a new roadway object but you can have as many as desired. Once
done with control point creation, press the right mouse button once, a new
roadway object will be created based upon the control points.

If the editing method is set to Engineering parameters, set all parameters,
including the engineering parameters, and then just click the left mouse button on
the view screen once to create/place the object. Instead of being the center
location of the new created roadway, the clicked location is the left end of the
roadway object.

If you have: engineering parameters – cannot modify the shape of the road by the mouse.
If you have: control point – you can change the shape by dragging the points
If you switch to control points and change the shape of the curve, the engineering
parameters will not get updated. If you accidentally change mode from control points to
engineering parameters after you manipulated the object, you loose all modifications you
made while in control point mode.

To create a barrier object, select Edit mode, select Barrier object type, select new object,
the property box pops up, select desired parameters, click OK. This object can be created
only through using control point. So once the dialog box closes after hitting OK, click
the left mouse button on the view screen to place the first control point. Minimum three
control points are needed to create a barrier object. Click right mouse button once after
you placed all desired control points.

For most of the object types, a green sphere is drawn to indicate the center location of the
new created object.

4.1.7 Select an existing object
To select an existing object, first set the Edit mode to Modify and the object type
selection to be the object that you want to select. Then, click the left mouse button within
the bounding box of the particular object, the bounding box of the object will be drawn in
red lines, which means your selection has been confirmed.

37

4.1.8 Unselect the selected object
There are two ways to unselect the selected object: left click to any other object of the
selected object class (selecting another object), or right click anywhere.

4.1.9 Delete an existing object
To delete an object, select Modify mode, select the type of object that need to be deleted,
then select the particular object to be deleted and press the “delete object button” (2.1.4b).
An object can be deleted regardless of its correlation to the network. If the deleted object
is connected to other objects, the end of the connected objects will be free.

4.1.10 Modify an existing object
To modify the properties of the selected object, select Modify mode, select the type of
object you want to modify, select the particular object to be modified, press the object
property icon, a property dialog will pop up allowing modification of the object. Once the
modification is done, click on OK button to confirm the change. If Cancel button is hit,
the properties will not get updated.

4.1.11 Move an existing object with mouse
Most of the object types have a green sphere to show its center point while the object is
selected. To move the selected object, place mouse cursor inside the sphere and click on
left mouse button. Hold on the left mouse button and move your mouse, the selected
object will be moved to keep its center location where the mouse cursor is.
For the object types without sphere at its center location, just click within the bounding
box.
When reaching the desired location, just release the mouse button to place the object.

4.1.12 Move the control points of a Roadway/Barrier object with mouse
The control points of a roadway/Barrier object can be moved to a new location by mouse.
Place the mouse cursor on the control point’s bounding box and press and hold on the left
mouse button. If the control point is highlighted, then it is activated and it will follow the
mouse movement to modify the roadway geometrical properties. Once the selected
control point is at the desired location, release the left button.

4.1.13 Change the properties of a lane in roadway with mouse
Place the mouse cursor within the desired lane and double click the left mouse button.
The lane property dialog will pop up. (This is the only way to get to this dialog box.)
Select the desired description. Click on OK button to confirm the changes. A single left
click will highlight the selected lane when the drawing mode is on wire-frame and
polygon modes.
Note that while it looks as if the lane width were an input, it is actually not. Even if the
number is changed, there will be no change in the visualization of the roadway. Lane
width is defined on the Roadway dialog box. Furthermore, all lanes must have the same
width.

Modify Intersection
First, you have to create a default intersection. Select Edit mode, object type intersection,
new object properties, input desired parameters, click OK, left click on view screen where

38

you want the intersection. Note that at this time, the intersection can only be created so
that it has the same number of lanes in all branches in both directions.

Move junction branches with mouse
To move a branch of a junction, place the mouse cursor at the end point of the
desired branch (over the little red box at the middle). Press and hold on the left
mouse button, a blue arrow will show at the end point and the branch location will
follow the cursor’s movement. Note that only the orientation of the branch can
changed this way, the length remains the same.

Changing the number of lanes on an intersection’s branches
To change the number of lane on the branches of an intersection, you have to
proceed branch by branch. Double left click on the end point of the desired
branch (over the little red box at the middle). The Roadway properties dialog box
will pop up. Changing the configuration of the branch is now the same procedure
as it is to modify the configuration of a roadway.

4.1.15 Move traffic control devices of a junction with mouse
To move traffic control devices of a junction, place the mouse cursor at the bounding
sphere of the particular traffic control device, press and hold on the left mouse button and
move the mouse, the selected traffic control device will be relocated to where the mouse
cursor is located. Let go of the button to place the traffic control device to its new
location.

4.1.16 Change the properties of a traffic control device
To change the properties of a particular traffic control device double clicks on left mouse
button within the device’s bounding box; the traffic control device dialog will pop up.

4.1.17 Connect two roadways with mouse
To connect two roadways, select object type roadway, select one of the end control points
(little red box) of roadway A and then select the end control points of roadway B that you
wish to connect. Blue arrows will be shown on the selected end control points if the
selections are detected. Press the Connect button (2.1.7a) to execute the connection.

If both of the roadways are not connected to other objects, the first selected roadway will
be relocated to match the geometry of the second selected roadway while doing the
connection. If one of the roadways is connected to other objects and another one is free of
connection, then the free-connected roadway will be relocated. If both of the selected
roadways are connected to other objects, then the connection is invalid.

In other words, in order for a roadway-roadway connection to be valid, one of the two
selected roadways must not be connected to other objects.

4.1.18 Connect roadway-junction with mouse
Select the end point of a branch of a junction (when the object type selection is junction)
and select an end point of a roadway (when the object type selection is Roadway). Press
the Connection button for the connection.

39

When the roadway has not connection with other objects, the roadway will be relocated to
match with the branch. Otherwise, if the roadway has connection with other object and
the junction does not have connections, then the junction will be relocated. If both of the
objects have connections, then the connection is invalid.

When the number of lanes of the roadway and the number of lanes on the corresponding
branch of an intersection do not match the program connects them regardless of the
mismatch. The user must be careful!

4.1.19 Connect Junction-Junction with mouse
Direct connection between two junctions is not allowed. To connect two junctions, a
piece of roadway has to go in between.

4.1.20 Insect a roadway between roadway-roadway and roadway-
junctions with mouse
This function is necessary because you cannot connect two objects that are already
connected on their other sides. In this case, you need to insert a roadway in between. The
software automatically matches the properties of the roadway by the inserted roadway.

To insert a roadway between two objects (roadway-roadway, roadway-junction), select
the end points of the objects that the inserted roadway connects to, and press the Insert
icon (2.1.7c), the inserted roadway will be created and connects to the selected end points.

Manipulating connected objects
Even though objects are connected, they can still be changed just like when they are not
connected. For example, on can add a right turning lane to the roadway and to the
connecting intersection even after the two object had been connected.

If one end of a roadway is connected to another object, the other still free control points
can still be moved. Even if both ends are connected the control points in between the two
ends can still be moved.
If a junction is connected by one branch to a roadway, that connected branch is fixed.
The other free branches can still be moved.
When two objects are connected together they cannot be moved around as a unit, their
location is fixed.

4.1.21 Disconnect a connected object from the network

To disconnect a roadway from the network, the other end of the roadway must be free. If
both ends of the roadway are connected, this roadway cannot be disconnected unless one
end of the roadway is free.

If intersection only has one branch connected to the network, then the junction can
disconnect from the network, otherwise, the connected roadways to the branches of the
junction must be disconnected first before the junction can disconnected from the
network.

40

To execute the disconnect feature, select the object and press the Disconnect icon
(2.1.7b). The object will be disconnected from the network if the conditions mentioned
above are fulfilled.

4.1.22 Create a new file
To create a new file, press the New (2.1.1a) icon. A pop up message will ask the users
whether they want to save the current file before the new file is created.

4.1.23 Open an existing file
To open an existing file, press the Open (2.1.1b) icon and a file dialog will pop up. Then
the users can browse the directories and select the files. Double (left mouse button) click
on the filename and the selected file will be opened.

4.1.24 Save the edited database
To save the edited database, press the Save (2.1.1c) icon and a file dialog will pop up to
let the users to key in the file name and the database will be saved under the selected
directory with the key-in name. The SWEditor files are saved as rdb extension, which
stands for road database.

4.1.25 Merge two exiting files

As copy and paste functions are not implemented in SWEditor, the merge function is an
alternative to copy objects from one file to the other. This function is helpful, for
example, if you want to copy only some particular objects (i.e. the whole transit network
without any other surroundings) from an existing file to current one to change the
surroundings.

To merge two existing files, one of the file has to be opened. Then press the Merge
(2.1.1d) and a file dialog will pop up. Select the desired file and click on OK. The
selected file will be merged with the current opened file.

However, there is an option to define what kind of object types are desired to merge from
the files. The default sets to all objects. To set the merging object types, click on Options
from menu bar and select “File merge object type option”. The checked object types are
the object types that will be merged.

4. 2 Create simulated world from script file

In the previous section we discussed how to create the animated environment manually.
The second way of creating this animated world is loading existing script files. To load
an existing script files, press the Data (2.1.1e) icon. A file dialog will pop up. Select the
desired script file and click on OK. The scripts will be loaded and the objects will be
created automatically. Script files are normal text files in dat extension.
Script Modeling Method

41

One can write a new script file. In version 1.0, only roadway and junction can be
generated this way.

To define an object, parse keywords are defined for each objects and the design
parameters.
The object keywords are busstop, roadway, and junction. The property keywords for
objects are the names of its design parameters. Note that the keyword input is case
insensitive.

To describe an object, the object keyword has to be defined. Then define the properties at
the following lines with property keywords. The value of the property should be at least a
space gap after the keywords. Leave a line between the descriptions of two objects to
separate them.

The following is the object and property keywords and values.

a. Bus stop
Object keyword: busstop

Property Keyword Value
texture Texture name that apply on bus stop
height Height of the pole
x, y, z Location
roll, pitch, yaw Orientation

b. Roadway
Object keyword: roadway

Property Keyword Value
id Roadway id
physical-type straight/ curve
road-type one-way/ two-way
left-attr sidewalk/barrier/grass
right-attr sidewalk/barrier/grass
lanes-forward Number of forward lanes
lanes-backward Number of backward lanes
lane-width Lane width
x,y,z Location
roll,pitch, yaw Orientation

c. Intersection
Object keyword: junction

Property Keyword Value
id Intersection id
lanes Number of lanes on each branch

42

Control Stop-sign/traffic-light-long/traffic-light-stand
x,y,z Location
roll,pitch, yaw Orientation
branch Branch id

Under branch keyword, the branch properties can be
redefined. The definitions are exactly the same as
roadway, except location and orientation could not be
defined here

Please refer to Index A for an example of script file.

Texture
SWEditor uses two types of image formats, BMP and TGA. Most of the objects use
BMP images as texture. Only trees and some of traffic signs use TGA. The reason for
TGA images is that it provides transparency to the images.

To add a new texture for an object, you need to modify the image size to 2x, i.e 256 or
512 pixels. To change the image size and the format image editing software, such as
Adobe Photoshop or Windows Paint, is required. Then, save the image as BMP format to
the appropriate folders. Save the image in TGA format if there’s need for transparency.
Once the image is in the appropriate folder, it is ready to be used in SWEditor!

3DS Model
To add a new 3DS model to the SWEditor’s image library, move the 3DS models to the
Models folder and SWEditor will load the models automatically. The 3DS models must
have the version greater than 3.0 in order to work in SWEditor.

43

Chapter 6. Navigation

Navigation is a handy feature in SWEditor to view and inspect the simulated world. To
provide a perspective view of the simulated world, a view point is predefined at (0,0,0)
when a new database is created or an existing file is loaded.

There are four view points: front, side, top and perspective. Each can be moved around
to navigate in the simulated world. The following table lists the controls for each view
point.

Controls Front View Side View Top View Perspective
View

Arrow Up Up Up Forward Forward
Arrow Down Down Down Backward Backward
Arrow Left Left Left Left Left
Arrow Right Right Right Right Right
Shift+Arrow
Up

Forward Forward Zoom In Up

Shift+Arrow
Down

Backward Backward Zoom Out Down

Control+Arrow
Up

* * * Turn Up

Control+Arrow
Down

* * * Turn Down

Control+Arrow
Left

* * * Turn Left

Control+Arrow
Righ

* * * Turn Right

* not applicable

6.1 Camera View Point

As mentioned in Chapter 4, camera is the object that allows users to customize their
viewing points in the virtual scenes. One the user created the virtual world he can
“install” these cameras at any desired locations with any desired orientations. Each
camera object gets an identification name which can be changed by the users. Once the
cameras are “installed” the user can select through which camera he views the virtual
world and the animation running in it.

To view the virtual scenes from a particular camera, press Camera icon (2e) and a dialog
box with camera list will pop up. Choose the desired camera and click OK. The
perspective scene will be updated to show the virtual world from the selected camera’s
view point. The chosen camera will not be drawn on the screen.

44

Chapter 7 Animation

SWEditor is not only a graphical modeling tool that lets the user create a simulated world.
It is capable of visualizing vehicle movement in this simulated world.

In addition to SWEditor’s modeling capabilities, discussed in previous chapters, it is
capable of Off-line2 animation of vehicle movement. To run an off-line animation, the
vehicle trajectories from a previous and separate simulations have to be recorded in a
predefined format (, which will be shown later in this section). SWEditor virtual world
has to be built to match with this simulation’s transportation environment. Once the
trajectory data – is available, load the file to SWEditor. SWEditor automatically creates
vehicles to match with the trajectories for the animation run.

The animation toolbar (discussed in Chapter 3) consists of the buttons that controls the
animations. However, one feature worth mentioning here: the movie recording feature.
There is a list of video format available to choose from before starting recording the
animation. Press on OK to confirm the selected format and the animation will be
recorded. To stop the recording, simply press the STOP button.

Video format dialog box

Before looking at the steps of running an animation, the format of trajectory data needs to
explain. The trajectory files can be generated by any simulation programs as long as the
format is correct. SWEditor only recognize the data format, it does not look for any
software generation headers. The following is the format of trajectory file. A sample
trajectory file is included in Appendix A.

Time ID Type X Y Z Yaw Pitch

Time : in second with at least one significant digit , i.e. 4.2 sec

2 It is called off-line because the animation uses prerecorded trajectory data that was recorded as an output
file of a previous, separate simulation run by an appropriate software, such as Paramics. On-line animation
would mean that the simulation and the animation runs simultaneously.

45

ID : Identity number of the vehicle, it helps to identify the vehicle and assign vehicle
 types during the animations.

Type : Vehicles are all Type 1, buses are Type 100.
X,Y,Z : Coordinate of the vehicle at the particular time stamp. The unit is in feet.
Yaw : Heading of the vehicle. The unit is in degrees.
Pitch : Rotation about Z axis. Use when the vehicle is going up/down on a hill. The unit

 is in degrees.

The following is the steps for starting an animation.
1. Open a SWEditor database (the rdb format file)
2. Load a Trajectory file. Please make sure that the rdb file that opened in step 1
synchronize with trajectory file.
3. Press the Play button and the animation will start playing. The users can navigate
around while the animation is running.
4. If video recording is desired, press the Record button and select the video format to
record the animation.
5. Press the Stop button to stop the simulation. It stops the video recording as well. The
Stop button is pressed automatically when the animation ends.
6. The movie file is saved in the Trajectory folder or the folder that last accessed by the
users before the recording. The filename is Movie.avi.

Chapter 8 Future Work
SWEditor version 1.0 provides a set of models to create photo-realistic virtual world for
animation. We are planning to enhance the features of this software in the following areas
in version 2.0
a. include more editing features, such as copy/paste, undo, etc.
b. include more object types, such as more complex buildings
c. include traffic phase into animation
d. include more commercial 3D models, such as Multigen Creator’s models.
e. improve rendering algorithm
f. improve software resource efficiency

46

Index A Network script file
roadway
 id 0
 control-point begin
 x 25178.089844
 y 0.000000
 z -14937.303711
 control-point end
 x 24376.501953
 y 0.000000
 z -14937.839844
 physical-type two-way
 lanes-forward 2
 lanes-backward 2
 midwidth 8.000000
 lane-width 3.700000
 connection start
 roadway 1
 point begin
 connection end
 roadway 3
 point begin

junction
 id 0
 branches 4
 x 20687.501953
 y 0.000000
 z -12521.927734
 branch 0
 x 20688.496738
 y 0.000000
 z -12547.308246
 connector end
 roadway 30
 point begin
 branch 1
 x 20697.808106
 y 0.000000
 z -12535.947121
 connector end
 roadway 29
 point begin
 branch 2
 x 20688.232891
 y 0.000000
 z -12496.538253
 connector end
 roadway 28
 point begin
 branch 3
 x 20675.504458
 y 0.000000
 z -12499.539788
 connector end
 roadway 27
 point begin

47

 Index B. Trajectory file
25548.500000

46413a8 1

-2543.105713 1695.835449 0.000000 -356.000000 0.000000

25548.500000
4642a68 1

-2516.322266 1341.743530 0.000000 -356.000000 0.000000

25548.500000
46425a8 1

-2552.691406 1870.955322 0.000000 -356.000000 0.000000

25548.500000
4642ba8 1

-2547.874512 1807.271362 0.000000 -356.000000 0.000000

25548.500000
463d468 1

-2543.695801 1752.028442 0.000000 -356.000000 0.000000

25548.500000
4642c68 1

-2520.384277 1443.837158 0.000000 -356.000000 0.000000

25548.500000
46423a8 1

-3274.500977 2005.880249 0.000000 -185.457733 0.000000

25548.500000
4642a28 1

-3296.204102 1854.296021 0.000000 -354.000000 0.000000

25548.500000
4640328 1

-3272.696533 1865.987183 0.000000 -268.000000 0.000000

25548.500000
4640728 1

-3266.303223 1866.280029 0.000000 -268.000000 0.000000

25548.500000
4640da8 1

-3259.911377 1866.572876 0.000000 -268.000000 0.000000

25548.500000
4640c28 1

-3253.512939 1866.710815 0.000000 90.285492 0.000000

25548.500000
46404a8 1

-3272.864502 1869.649780 0.000000 -268.000000 0.000000

25548.500000
46405a8 1

-3266.630127 1869.935303 0.000000 -268.000000 0.000000

25548.500000
4640768 1

-3261.640137 1870.163940 0.000000 -268.000000 0.000000

25548.500000
46409a8 1

-3255.244629 1870.358154 0.000000 90.849907 0.000000

25548.500000
46419a8 1

-3282.659912 1891.024902 0.000000 -185.000000 0.000000

25548.500000
4641b68 1

-3285.468994 1897.810913 0.000000 -153.584076 0.000000

25548.500000
463ec68 1

-3286.316162 1891.293823 0.000000 -185.000000 0.000000

25548.500000
463eb28 1

-3289.972900 1891.562744 0.000000 -185.000000 0.000000

25548.500000
46411a8 1

-3247.515137 1866.871826 0.000000 -268.000000 0.000000

25548.500000
46414a8 1

-3241.125244 1867.192383 0.000000 -268.000000 0.000000

25548.500000
4640a28 1

-3249.245361 1870.438843 0.000000 -268.000000 0.000000

25548.500000
4641268 1

-3242.854248 1870.759521 0.000000 -268.000000 0.000000

48

