
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Sticky Incentives and Dynamic Agency

Permalink
https://escholarship.org/uc/item/8610x7hs

Author
Zhu, John Yiran

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8610x7hs
https://escholarship.org
http://www.cdlib.org/


Sticky Incentives and Dynamic Agency

John Yiran Zhu

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

University of California, Berkeley

Dissertation Committee:

Robert Anderson, Chair

Chris Shannon

Benjamin Hermalin

Spring 2011





Abstract

Sticky Incentives and Dynamic Agency

by

John Yiran Zhu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Robert Anderson, Chair

I explicitly derive the optimal dynamic incentive contract in a general continuous time
agency problem where inducing static first-best action is not always optimal. My
framework generates two dynamic contracts new to the literature: (1) a “quiet-life”
arrangement and (2) a suspension-based endogenously renegotiating contract. Both
contractual forms induce a mixture of first-best and non-first-best action. These con-
tracts capture common features in many real life arrangements such as “up-or-out”,
partnership, tenure, hidden compensation and suspension clauses. In applications,
I explore the effects of taxes, bargaining and renegotiation on optimal contracting.
My technical work produces a new type of incentive scheme I call sticky incentives
which underlies the optimal, infrequent-monitoring approach to inducing a mixture of
first-best and non-first-best action. Furthermore, I show how differences in patience
between the principal and agent factor into optimal contracting.
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Chapter 1

Introduction

The paper explicitly solves for the optimal contracts in a broad Brownian framework
where inducing static first-best action is not always optimal.1 This continuous-time
setting models a dynamic principal-agent relationship where some asset (a firm, a
project etc.) owned by a risk-neutral principal is contracted out to a risk-neutral
agent to manage. The asset’s variable cash flow is governed by a continuous stochas-
tic process; the framework allows for this process to be either Brownian Motion or
geometric Brownian Motion.2 The profitability of the asset is influenced by the hid-
den actions of the agent. At any moment in time, the agent can either choose the
first-best action or a non-first-best action I call the agency action. Agency action
provides a private benefit to the agent and can be naturally interpreted as perks con-
sumption or shirking depending on the specific realizations of the fundamentals. The
principal owns the cash flow. To properly motivate the agent, the principal writes a
contract which stipulates a compensation plan contingent on observables along with
a termination clause.

This framework and its related discrete-time counterparts have been considered by
a number of previous papers including Biais et al (2005), DeMarzo and Sannikov
(2006), and He (2009). All of these papers have two things in common: 1) they all
solve for the best contract that is restricted to always inducing first-best action, pro-
viding insights into some high-powered incentive contracts used in practice, 2) they
all find that this static first-best action contract is, in general, not always optimal.
The second fact is not necessarily surprising. Empirical findings show perquisites play
a large role in CEO contracts (Schwab and Thomas, 2006). Moreover, many contrac-
tual arrangements such as tenure, partnership, involuntary separation and suspension
entail variable effort levels and do not fit neatly with the first-best action or even the
stationary action viewpoint. In this paper, I demonstrate that the optimal contract
of the Brownian framework reflects many of the aforementioned contractual features

1Just to emphasize, in this setting an incentive-compatible contract that induces static first-best
action is not the same as the first-best contract, which is usually not incentive-compatible.

2The paper and its results are presented in the Brownian Motion setting. In 4.3 D I explain how
the results translate into the geometric Brownian setting.
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frequently observed in practice.

Theorem 2.3.1 states that the optimal contract takes on one of four forms depending
on the fundamentals: 1) baseline form, 2) static form, 3) Quiet-Life form, 4) Rene-
gotiating Baseline form. Baseline contracts only induce first-best action. In baseline
contracts, the agent is rewarded with cash compensation, and his performance is
constantly monitored by the principal. In static contracts the agent applies agency
action forever with salary, and there is no monitoring. The main contributions of
this paper involve the other two forms, both of which mix in periods of agency action
with first-best action.

Quiet-Life contracts provide hidden compensation to the agent by inducing agency
action. After a sustained period of good performance, a “Quiet-Life phase” is trig-
gered. During this phase the principal infrequently monitors the agent, and the agent
frequently consumes perks. The incentive scheme of the contract becomes some-
what unresponsive to asset performance. After the Quiet-Life phase concludes, the
principal returns to constantly monitoring the agent, and the agent applies first-
best action. Then either sustained good performance triggers another round of the
Quiet-Life phase or sustained poor performance brings about termination. Compar-
ing Quiet-Life contracts with baseline contracts, I find that the hidden compensation
packages of Quiet-Life contracts tend to be less lucrative than the cash compensation
packages of baseline contracts. Termination also tends to be delayed in Quiet-Life
contracts (Corollary 3.1.1).

The last optimal form is the Renegotiating Baseline form. Renegotiating Baseline
contracts are baseline contracts where termination is replaced with suspension phases.
There is a state variable that both keeps track of the agent’s continuation payoff and
serves as a dynamic rating of the agent’s managerial performance. When poor perfor-
mance pushes the agent’s rating down to an endogenously determined low threshold,
the contract triggers a suspension phase during which cash compensation is post-
poned, and the agent frequently exerts low effort. While the agent serves his sus-
pension, the performance rating is “pegged” around the low threshold. Afterwards,
the agent is forgiven for some of his prior poor performance, and the agent’s rat-
ing is pushed upwards as the principal renegotiates some more slack for the agent.
The underlying baseline contract of a Renegotiating Baseline contract is usually not
renegotiation proof. In a baseline contract, it is important that the principal com-
mits not to renegotiate in order to preserve the first-best action incentive scheme of
the contract. A Renegotiating Baseline contract endogenously embeds some of the
“renegotiable-ness” of the underlying baseline contract allowing both the principal
and agent to internalize some of the value of renegotiation in an incentive-compatible
way (Remark 3.2.1).

In this paper, I show the reason why the Quiet-Life and Renegotiating Baseline

2



contracts are sometimes optimal has much to do with the relative patience of the
principal. There is a contractual technique where the principal delays the enactment
of a lucrative contract by first enacting a less lucrative period of agency action either
to reward or punish the agent. This “saving-the-best-for-last” technique, which plays
an important role in the construction of the Quiet-Life and Renegotiating Baseline
contracts, is only useful if the principal is relatively patient (Remark 4.1.1). In fact,
I show how in an equal patience setting, the inability of the principal to profitably
utilize this technique depresses the value of the optimal contract. When the principal
is more patient, saving-the-best-for-last implies a role for agency action in optimal
contracting even when agency action is inefficient - just not too inefficient. Previous
papers have already made note of this fact that the optimal contract may not always
induce first-best action when agency action is not too inefficient. However, my paper
is both the first to formalize the reason for this fact by analyzing the value of saving-
the-best-for-last and the first to derive the optimal contract when agency action is
not too inefficient.

With the optimal contract taking one of a number of forms, many natural com-
parative statics can be performed on the form of the optimal contract by shifting the
fundamentals. I show how the optimal contract takes on the form that best highlights
the contractual advantages of a particular realization of the agency action’s value to
the agent and cost to the principal (4.2 Implementation Part II - General Case). For
example, if agency action is very valuable to the agent and not too bad for the princi-
pal, the optimal contract is the Quiet-Life contract which uses hidden compensation.
I also show how the optimal contract changes depending on the relative bargaining
power of the agent. In particular, I look at optimal contracting when 1) the agent
can bargain for higher outside options and 2) when the agent can bargain for higher
contract payoffs.3

In addition, I analyze how optimal contracting is affected by the presence of taxes.
In this setting hidden compensation becomes more attractive due to the inefficiency
of taxed cash compensation. Proposition 4.3.1 states how a tax hike induces a sim-
ple shift of emphasis from the two contract types that employ cash compensation
(baseline and Renegotiating Baseline) to the two that don’t (Quiet-Life and static).
Specifically, taxes turn some situations where the baseline contract is optimal into sit-
uations where the Quiet-Life contract is optimal and also turn some situations where
the Renegotiating Baseline contract is optimal to situations where the static contract
is optimal.

Furthermore, I find that a subset of the Renegotiating Baseline contracts are renegotiation-
proof. Contracts in this model, optimal or otherwise, are usually not renegotiation-
proof. To design a renegotiation-proof contract inducing only first-best action, the

3The emphasis is on agent bargaining power because the principal holds all the bargaining power
in the base model.
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principal would have to employ randomization and bound the value of the contract
to be equal to the value of his outside option. However, renegotiation-proof Renego-
tiating Baseline contracts never employ randomization, nor must they be worth less
than the principal’s outside option. Furthermore, costly termination is never exer-
cised in any Renegotiating Baseline contract, which is, again, in direct contrast to
the renegotiation-proof static first-best action contracts (Remark 4.3.2).

While the four forms of the optimal contract are all structurally simple, a proper
understanding of their value requires a number of technical advancements. The in-
centive scheme of the Quiet-Life and Renegotiating Baseline contracts follow what is
known as Sticky Brownian Motion. This motion has not previously appeared in the
contracting literature. And yet an understanding of Sticky Brownian Motion is a pre-
requisite to rigorously interpreting the results of this paper (Proposition 3.1.1, Lemma
3.1.1). For example, take a look back at the paragraph introducing the Quiet-Life con-
tract. Much of the paragraph would not make formal sense without knowledge of the
dynamics of Sticky Brownian Motion. The concepts of “infrequent” and “frequent”,
the term “somewhat unresponsive”, and the comparative results between Quiet-Life
and baseline contracts all have their formal roots in Sticky Brownian Motion.

The proof that the optimal contract only takes on the four listed forms is also tech-
nically nontrivial. Typically, the strategy in continuous-time agency problems is to
deduce the optimal value function and extract from it the optimal contract. In this
setting, the optimal value function is tied to two ODEs: the first-best action ODE de-
duced by DeMarzo and Sannikov (2006) and the agency action ODE which I explicitly
solve in Lemma 4.1.2. The optimal value function pieced together from solutions to
these two ODEs is, in general, not smooth. So even applications of Ito’s Lemma and
optional sampling, which are straightforward in the previous literature, become com-
plicated and require care. Moreover, the principal has great flexibility in switching
between first-best and agency action. Virtually any action sequence can be made to
be incentive-compatible. Whittling down this set can be challenging. For example, a
major step in the optimality theorem is to simply show that there is at most one phase
change point in the optimal value function - i.e. only one agent continuation pay-
off value in the optimal contract at which the principal will induce a switch of actions.

The techniques developed in this paper pave the way for more work to be done
in dynamic agency models where agency cost is not prohibitive. The explicit optimal
contracts derived in this paper represent a first step in the continuous-time literature
to understanding the specific roles of perks and shirking in business. Overall, the
theory of this paper provides some formal dynamic foundations for the agency action
research that has already begun in earnest on the empirical side.
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1.1 Related Literature

Grossman and Hart (1983) demonstrated that simultaneously determining the op-
timal action levels and the associated optimal incentive scheme is complex even in
simple principal-agent models. One strain of the literature gets around this difficulty
by deriving the optimal static first-best action contract or optimal stationary action
contract, and providing some conditions under which such contracts are optimal.
Such papers include Holmstrom and Milgrom (1987), Biais et al (2005), DeMarzo
and Sannikov (2006), He (2009) and Edmans, Gabaix and Landier (2009). Another
solution is to formulate some general principle about how to optimally induce arbi-
trary action sequences, but avoid the issue of finding the optimal action sequence
(e.g. Edmans and Gabaix, 2009). Yet another way is to use the powerful machinery
of stochastic calculus to produce theorems about the existence of optimal contracts
in general settings at the expense of concreteness. The notable example of this strain
of the literature is Sannikov (2008), which produces an existence theorem that im-
plies a role for shirking without specifying the exact nature of that role. Lastly, one
can restrict attention to static models. For example, two recent papers in the perks
literature - Bennardo, Chiappori and Song (2010) and Kuhnen and Zwiebel (2009) -
produce explicit contracts that involve perks consumption.

Thus there is a gap in the literature. On the one hand, papers like Sannikov (2008)
(not to mention the myriad real-life contracts) tell us that agency action ought to
play an important role in optimal contracting in general. But most of the explicit
optimal dynamic contracts produced either induce only first-best action or some fixed
stationary action. The need to close this gap is one of the primary motivations of my
paper.

More broadly, this paper serves as a theoretical counterpart to a number of recent
empirical papers investigating the role agency action in business. The debate over
agency action started with the seminal papers Jensen and Meckling (1976) and Fama
(1980). The agency cost versus ex-post settling up perspectives espoused by these two
papers serve as the backdrop to the recent empirical work. Yermack (2006) shows that
“the disclosed personal use of company aircraft by CEOs is associated with severe and
significant underperformance of their employers’ stocks.” However, the results do not
unambiguously vindicate the agency cost perspective. For example, there does not
seem to be a significant correlation between managers’ fractional stock ownership and
personal aircraft use. It may be that the compound problem of “managerial shirk-
ing in the presence of lavish perks” is symptomatic of other human capital specific
problems, and is not necessarily a blanket indictment on agency action. Bertrand
and Mullainathan (2003) suggests that observable CEO preferences may indicate a
desire for the “quiet life,” contrary to the active empire building theory that casts
a pall on agency action. Rajan and Wulf (2006) finds that “the evidence for agency
[cost] as an explanation of perks is, at best, mixed.” The paper argues that perks can
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be productivity improving and can also serve as a form of tax-free hidden compensa-
tion. Thus, perks can be justified as rational expenditures, and their findings point
to more responsible practices of using agency action. My paper posits some of the
ways a responsible principal can justify inducing agency action.
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Chapter 2

Preliminaries

2.1 The Model

The paper is presented from the Brownian perspective. For a discussion about the
geometric Brownian model, see 4.3 D.

A. Setting

There is an asset belonging to a principal, for which he contracts an agent to manage.
The asset produces a stochastic revenue stream. Over time, we assume that the cu-
mulative revenue stream behaves as Brownian Motion with a drift process influenced
by the hidden action applied by the contracted agent.

Formally, there is a stochastic process Z = {Zt}t≥0 defined on a probability space
Ω with probability law P µ. Under P µ, Z is Brownian motion with drift µdt. At
time t, Zt is the cumulative revenue stream of the asset up to time t. The µdt drift
corresponds to the default expected returns and can be interpreted as the intrinsic or
maximum expected profitability of the asset.

B. Actions

The agent affects asset performance by selecting an action at each moment in time.
Over time the agent’s action process a = {at}t≥0 is a stochastic process taking values
in a set {0, A} with A > 0. {0} is first-best action and {A} is agency action. The
action process a affects the underlying probability law: the default law P µ changes
to P µ−a, which is defined to be the law under which Z is Brownian motion with drift
(µ− at)dt.

The principal can choose a compensation scheme for the agent. Compensation is
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represented by a random nondecreasing process I = {It}t≥0 started at zero that
keeps track of the cumulative cash payments made to the agent up to time t. Termi-
nation is a stopping time τ .

C. Preferences

The principal is risk neutral, discounts at rate r, retains the cash flow of the asset,
compensates the agent, and can exercise an outside option worth L < µ

r
after the

termination of the contract. His utility is

EPµ−a

[ ∫ τ

0

e−rs(dZs − dIs) + e−rτL

]
The agent is risk neutral, discounts at rate γ, receives compensation from the prin-
cipal, and can exercise an outside option worth K ≥ 0 after the termination of the
contract. The agent also receives an instantaneous utility flow φatdt by applying
action at ∈ {0, A} at time t, where φ > 0. His utility is

EPµ−a

[ ∫ τ

0

e−γs(dIs + φasds) + e−γτK

]
We assume for now that the principal is more patient: r < γ. Later on we will
consider the implications of having an equally patient agent: r = γ. The assumption
that the principal is at least as patient as the agent is an important one. Typically,
one thinks of the agent as an actual individual like a CEO who is separated from a
principal representing ownership. In certain cases ownership may also consist of a
single individual. However, when there is separation between ownership and control,
the more typical case is where ownership representation is in the form of an institu-
tion such as a board, shareholders, institutional investor etc. It is then reasonable to
assume that such a permanent or semi-permanent entity would be relatively patient.

2.2 Incentive-Compatibility

Definition 2.2.1. A contract is a tuple (a, I, τ) consisting of an action process a, a
compensation scheme I, and a termination clause τ .

Fix a contract (a, I, τ). The agent’s continuation payoff Ut is defined to be the
agent’s expected future utility given the history Ft up to time t:

Ut = EPµ−a

[ ∫ τ

t

e−γ(s−t)(dIs + φasds
)

+ e−γ(τ−t)K

∣∣∣∣Ft

]
t ≤ τ

The evolution of Ut is the contract’s incentives. The motion of Ut is characterized by
the following stochastic differential equation:
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Lemma 2.2.1. There exists a stochastic process β = {βt}t≥0 such that

dUt = γUtdt− dIt − φatdt+ βt(dZt − (µ− at)dt)

Proof. Standard.

The process βt drops out of the martingale representation theorem, and represents
how sensitive the contract’s incentive scheme is to asset performance. High sensitivity
will induce the agent to apply first-best action, and low sensitivity will mean the agent
will apply agency action. To determine whether a contract is incentive-compatible
requires comparing the contract’s action process to the sensitivity process.

Lemma 2.2.2. (Incentive-Compatibility Criterion) A contract (a, I, τ) with sensitiv-
ity process β is incentive-compatible if and only if for all t, Ut ≥ K and

i) at = 0⇒ βt ≥ φ ii) at = A⇒ βt ≤ φ

Proof. Standard.

The criterion tells us that in order to induce first-best action, the sensitivity factor
needs to be at least φ. However, the greater the sensitivity, the more volatile the
incentives, which entails a cost. Thus in optimality, whenever the principal wants
to induce first-best action, he will always choose the lowest possible sensitivity: φ.
Similarly, the best way to induce agency action is to select sensitivity 0. We can now
pin down the two laws that will govern the incentives of the optimal contract:

Definition 2.2.2. When the optimal contract stipulates first-best action, the contin-
uation payoff of the agent follows the first-best action law:

dUt = γUtdt− dIt + φ(dZt − µdt)

which says to induce first-best action the continuation payoff of the agent needs to be
sensitive to asset performance, and in expectation, compounds at the agent’s discount
rate less the cash dIt delivered to the agent right now.

Similarly, when the optimal contract stipulates agency action, the continuation payoff
of the agent follows the agency action law:

dUt = γUtdt− dIt − φAdt

which says the agent’s continuation payoff is not sensitive to asset performance, and
compounds at the agent’s discount rate less the cash dIt delivered to the agent right
now and less the utility φAdt the agent obtains from applying agency action A.
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2.3 The Four Forms of the Optimal Contract

It turns out the optimal contract always follows a particular format which I describe
in the following subsection - A. The General Form of the Optimal Contract. This
general form is a set of rules governing the motion of the optimal contract’s agent
continuation payoff Ut. In subsection B I state the optimality theorem which specifies
the four realizations of the general form taken by the optimal contract. Two of the
realizations have appeared in the previous literature - baseline form and static form,
and I list a few relevant facts about them in subsection C.

A. The General Form of the Optimal Contract

The principal selects a good performance threshold U good and a poor performance
threshold Upoor subject to the condition K ≤ Upoor ≤ U good. These thresholds will
be the upper and lower bounds on the agent’s continuation payoff Ut. Next, a value
U contract ∈ [Upoor, U good] is selected which is the total payoff of the contract to the
agent. The continuation payoff of the agent is started at this value:

U0 = U contract

While the agent’s continuation payoff Ut is in between Upoor and U good it follows the
first-best action law:

dUt = γUtdt+ φ(dZt − µdt) Ut ∈ (Upoor, U good)

When Ut reaches one of the thresholds we have the following possibilities:

At the good performance threshold the principal selects one of the following two
options to reward the agent:

1) Provide the agent with cash compensation dIt:

– Cash compensation is chosen in such a way so that the Brownian Ut reflects
downwards at U good.

2) Induce agency action as a form of hidden compensation:

– The law of Ut at the good performance threshold U good switches to the
agency action law dUt|Ugood = (γU good − φA)dt.

– This choice is available only if U good is chosen to be less than or equal to
φ
γ
A.1

1If Ugood was instead chosen to be greater φ
γA, then Ut would continue to go upwards at Ugood,

contradicting the upper bound assumption of Ugood.
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Upoor U good

dUt = γUtdt+ φ(dZt − µdt)

axis for agent’s continuation payoff process and performance rating Ut

termination or cash compensation or

U0 = U contract

first-best action law

agency actionagency action
on (Upoor, U good)

Figure 2.1: Schematic diagram of the general form of the optimal contract.

At the poor performance threshold the principal selects one of the following two
options to punish the agent:

1) Terminate the contract:

– This choice is incentive-compatible only if Upoor = K.

2) Induce agency action as a form of suspension:

– The law of Ut at the poor performance threshold Upoor switches to the
agency action law dUt|Upoor = (γUpoor − φA)dt.

– This choice is available only if Upoor is chosen to be greater than or equal
to φ

γ
A.

B. The Optimal Contract

Theorem 2.3.1. In the optimal contract the principal selects two thresholds: a poor
performance threshold Upoor and a good performance threshold U good. The agent’s
continuation value is started between these two values and follows the first-best action
law

dUt = γUtdt+ φ(dZt − µdt)
While following this law, Ut is sensitive to asset performance and serves as a dy-
namic rating of the agent’s managerial performance. When good performance
pushes the rating up to U good the principal rewards the agent either through cash
compensation or through hidden compensation by inducing agency action. When poor
performance pushes the rating down to Upoor the principal either terminates the con-
tract or punishes the agent by inducing agency action. The four different ways to
choose between these options produce the four forms of the optimal contract which are
summarized in the table below:

Upoor

U good

cash compensation agency action

termination Baseline Quiet-Life
agency action Renegotiating Baseline Static

Baseline contracts always induce first-best action. Static contracts always induce
agency action. The Quiet-Life and Renegotiating Baseline contracts both induce
agency action non-permanently in between periods of first-best action.
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C. Some Remarks on the Baseline and Static Contracts

The baseline form and the conditions under which it is optimal have already been
derived in the previous literature. It always induces first-best action and is identical
to the credit limit contract of DeMarzo and Sannikov (2006). It is also the additive
version of the no-shirking contract of He (2009) and the continuous-time version of
the optimal contract of Biais et al (2007).

The following are a few relevant facts about the static contracts:

1) Static contracts induce agency action forever and may supplement the agent
with a fixed salary sdt. Consequently, the good and poor performance thresh-
olds coincide, and the agent’s continuation payoff is permanently fixed at this
value: Upoor,S = Ut = U good,S = φA+s

γ
.

2) The optimal static contract supplements the agent with a salary sdt just enough
to prevent him from quitting: s = max{0, γK − φA}. The payoff to the agent

is max{φA
γ
, K} and the payoff to the principal is min{µ−A

r
, µ−A−(γK−φA)

r
}.

The rest of the paper is primarily concerned with the Quiet-Life form and the Rene-
gotiating Baseline form. Both forms induce agency action non-permanently.

12



Chapter 3

The Optimal Contracts

3.1 The Quiet-Life Contracts

This section analyzes the incentive scheme of Quiet-Life contracts, culminating in a
rigorous characterization of Quiet-Life contracts in subsection D. Dynamics of the
Quiet-Life Contracts. The concepts of infrequent monitoring (Proposition 3.1.1 and
Definition 3.1.1) and sticky incentives (Lemma 3.1.1 and Proposition 3.1.2) are in-
troduced. Infrequent monitoring and sticky incentives are the key properties of the
Quiet-Life and Renegotiating Baseline contracts that differentiate these contracts
from baseline contracts. These concepts imply certain appealing contractual charac-
teristics (Corollary 3.1.1) which, combined with the discussion of patience in chapter
4, help explain why Quiet-Life and Renegotiating Baseline contracts are sometimes
better than baseline contracts.

A. Agency Action as Reward

Recall, a Quiet-Life contract induces agency action non-permanently when the agent’s
continuation payoff and performance rating Ut reaches the contract’s good perfor-
mance threshold. Termination is triggered when Ut drops down to the poor perfor-
mance threshold. All Quiet-Life contracts satisfy K = Upoor < U good < φA

γ
. The

first equality is due to the fact that termination means the agent exercises his outside
option. The middle strict inequality is there because if the thresholds were equal the
instructions of the contract would contradict. The last strict inequality comes from
two observations: U good cannot be greater than φA

γ
because such a threshold would

constitute a promised continuation payoff greater than what agency action utility
alone can deliver, nor can it be equal to φA

γ
since that would imply permanent agency

action when Ut reaches U good, contradicting the assumption that Quiet-Life contracts
induce agency action non-permanently.

What Ut ≤ U good < φA
γ

implies is that when the agent finally reaches the good
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performance threshold, he receives an agency action flow, which if extended indefi-
nitely, would represent a value greater than anything the contract actually promises.
Thus agency action in Quiet-Life contracts serves to reward the agent, as a form of
hidden compensation.

B. Infrequent Monitoring

What does a typical hidden compensation package look like? Let H denote the
nondecreasing hidden compensation process (similar to the cash compensation process
I), where Ht is the amount of agency action utility received by the agent up to time
t. We already know for every moment t when Ut = U good the agent receives a fixed
agency action utility flow φAdt. This implies:

dHt =

{
0dt Ut < U good

φAdt Ut = U good

Thus to characterize H it suffices to characterize the random set of hidden compen-
sation times T U(U good) = {t|Ut = U good}.

Near the good performance threshold U good, the continuation payoff and performance
rating Ut of the agent follows the first-best action law:

dUt|Ut<Ugood = γUt + φ(dZt − µdt)

which is sensitive to asset performance. This requires the principal to constantly
monitor asset performance to properly adjust Ut. At the good performance threshold
U good, Ut follows the agency action law:

dUt|Ut=Ugood = γU good − φAdt

and is no longer sensitive to asset performance. Consequently, the principal shuts
down monitoring. Thus around the U good threshold the principal mixes constant
monitoring and no monitoring, producing a set of hidden compensation times with
the following properties:

Proposition 3.1.1. Any neighborhood of a hidden compensation time contains in-
finitely many other times of hidden compensation. Formally, the random set of hidden
compensation times T U(U good) almost surely satisfies the following three properties:
1) positive measure, 2) nowhere dense, 3) perfect.1 (See Figure 3.1)

Proof. This is a simple consequence of Lemma 3.1.1 of the next subsection.

1Compare with the random set of cash compensation times of a baseline contract which is also
nowhere dense and perfect, but has zero measure. A set is perfect if it contains all of its limit points,
and has no isolated points.
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t

Figure 3.1: A sample sequence of hidden compensation times.

The positive measure property implies that, in particular, T U(U good) does not look
like this:

t

Hidden compensation takes time. This is because a fixed utility flow over a set of
times of measure 0 amounts to no utility at all. If a Quiet-Life contract’s hidden
compensation times were actually trivial then it would not be incentive-compatible.

The nowhere dense property implies that, in particular, T U(U good) does not look
like this:

t

By dispersing an interval of hidden compensation, the principal can in expectation
fit more first-best action times before the end of a period of hidden compensation.
The downside is that by mixing first-best action with agency action there is an added
risk that termination may occur in the “gaps” between hidden compensation times.
However, the risk is slight provided the dispersion is not too great. This gives us the
third property, T U(U good) is a perfect set.

Definition 3.1.1. The characterization of the hidden compensation times T U(U good)
implies a local (around U good) monitoring structure where no monitoring times are
inserted in between the monitoring times in a temporally nontrivial, nowhere dense
and perfect way. Call this mixture infrequent monitoring. Call the periods of
time in the Quiet-Life contract when the principal is infrequently monitoring, the
Quiet-Life phases.

C. Sticky Incentives

Given a Quiet-Life contract Q with some good performance threshold U good, we can
design the companion baseline contract B with the same threshold U good. Let UQ

t

denote the Quiet-Life contract’s agent continuation payoff process and define UB
t sim-

ilarly. Obviously these two contracts exhibit a large amount of structural similarity:
they have the same performance thresholds,2 the agent continuation payoffs of the two
contracts follow the same first-best action law on the open interval (Upoor = K,U good),
and both contracts terminate at Upoor = K. The only structural difference is at U good

where Q induces agency action as a form of hidden compensation and B delivers
cash compensation.

2Their poor performance thresholds are both K by assumption.

15



Remark 3.1.1. Comparing Q and B allows us to isolate and study the compara-
tive advantages of using hidden-compensation-based versus cash-compensation-based
incentives.

We know from the previous literature that UB
t is reflected Brownian motion.3 The

technical term for UQ
t is Sticky Brownian motion. The following is the crucial

technical result on Sticky Brownian motion:

Lemma 3.1.1. Sticky Brownian motion is reflected Brownian motion under a decel-
erated time change.

Proof. See Harrison and Lemoine (1981).

This immediately implies:

Proposition 3.1.2. Hidden-compensation-based incentives are slower than those of
cash compensation. We call this slower incentive scheme of the Quiet-Life contract
sticky incentives. Formally, there is a decelerated time change which is a random
nondecreasing process S(t) ≥ t such that

UQ
S(t) =d U

B
t

Let HQ
t denote the hidden compensation process of Q, and τQ denote the termination

time of Q. Similarly, let IB
t denote the cash compensation process of B, and τB

denote the termination time of B. The following formalizes the value of slowing
down incentives:

Corollary 3.1.1. A sticky incentive scheme implies that hidden compensation is more
modest than cash compensation:

HQ
S(t) =d I

B
t ⇒ E[HQ

t ] < E[IB
t ] for all t > 0

and delays termination:
τQ =d S(τB) ≥ τB

D. Dynamics of the Quiet-Life Contracts

We can now give a precise description of the dynamics of a Quiet-Life contract. In
a Quiet-Life contract the agent initially applies first-best action and his continuation
payoff and performance rating Ut follows the first-best action law. Sustained good
performance brings Ut up to the good performance threshold U good. At this point the
contract enters the Quiet-Life phase (Definition 3.1.1) where agency action is trig-
gered as a form of hidden compensation (see subsection A), and the agent frequently
(Proposition 3.1.1) consumes perks. During the Quiet-Life phase the principal infre-
quently monitors (Definition 3.1.1) the agent and as a result Ut sticks around U good

3For example, DeMarzo and Sannikov (2006).
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for a while (Proposition 3.1.2) following Sticky Brownian motion.

Eventually, poor performance brings Ut back down and the contract exits the Quiet-
Life phase. The principal resumes constant monitoring of the agent and this dynamic
remains until sustained good performance triggers another round of the Quiet-Life
phase or sustained poor performance finally triggers termination.

The Quiet-Life arrangement has some comparative advantages over the cash com-
pensation arrangement of baseline contracts. In particular, termination tends to be
delayed, and the agent receives less expected compensation (Corollary 3.1.1). When
perks consumption is not too harmful to the principal, these advantages will imply
that the optimally designed Quiet-Life contract outperforms the optimal baseline con-
tract.

3.2 Renegotiating Baseline Contracts

Definition 3.2.1. The underlying baseline contract of a Renegotiating Baseline
contract R is the baseline contract with the same good performance threshold as R.

This section shows how we can view a Renegotiating Baseline contract as the under-
lying baseline contract under repeated renegotiation. I explain how agency action can
be induced as punishment in the form of suspension phases. The suspension phases al-
low the principal to credibly renegotiate without compromising the first-best incentive
structure of the underlying baseline contract (Remark 3.2.1), and represent a poten-
tial advantage over baseline contracts which require commitment to not renegotiate.
The concepts of sticky incentives and infrequent monitoring which were introduced in
the previous section reappear. A characterization of the dynamics of Renegotiating
Baseline contracts is found in subsection C.

A. Agency Action as Punishment

In Renegotiating Baseline contracts, agency action is induced at the poor perfor-
mance threshold Upoor which need not be equal to K. Mathematically, the dynamics
of a Renegotiating Baseline contract’s agent continuation payoff at Upoor is the mirror
image of the dynamics of a Quiet-Life contract’s agent continuation payoff at U good.
Therefore, the concepts of sticky incentives, infrequent monitoring, and the proper-
ties of the agency action times (e.g. positive measure, nowhere dense, perfect) all
translate over.

However, the role of agency action and the value of the associated infrequent moni-
toring and sticky incentives are different.
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Unlike in Quiet-Life contracts, in Renegotiating Baseline contracts φA
γ
< Upoor ≤ Ut.

This means that when the agent’s continuation payoff and performance rating Ut
drops down to the poor performance threshold Upoor, he receives an agency action
flow, which if extended indefinitely, would represent a value strictly less than any-
thing the contract actually promises. Thus agency action in Renegotiating Baseline
contracts serves to punish the agent.

This is not to say the agent dislikes agency action. On the contrary, the applica-
tion of agency action is simply the best the agent can do for himself in this arrested
phase of the contract. The canonical example of this phenomenon is suspension. Dur-
ing a suspension, the agent’s compensation is frozen, so he exerts low effort. Despite
the agent’s fondness for low effort, he would rather be working hard and receiving
compensation then be stuck in this low state.

B. Suspension and Renegotiation

The idea of contractual punishment is not new. A termination clause serves the same
purpose. So why not just terminate like in a baseline contract?

In many baseline contracts (including the optimal one) when the agent’s continu-
ation payoff and performance rating Ut is near the poor performance threshold Upoor

and termination is probabilistically imminent, the principal is better off giving the
agent some more slack. The principal achieves this by simply shifting the perfor-
mance rating Ut upwards, removing it from the vicinity of Upoor. By forgiving the
agent for his poor performance, the principal is effectively renegotiating the baseline
contract. Each time this is done the principal increases his own continuation payoff
as well as that of the agent. However, the value of this renegotiation is predicated
on the agent not expecting to be forgiven and applying first-best action throughout.
Unfortunately, if the agent expects that the principal will renege on termination, then
the incentives to apply first-best action will be destroyed. Thus such a renegotiation
is not incentive-compatible, and it is imperative that the principal commits to not
renegotiate.

However, the potential losses due to a premature end to the principal-agent rela-
tionship may be great. Thus it is important to find a way to both induce first-best
action most of the time but still be able to back out of termination during periods
of poor performance. The Renegotiating Baseline contract achieves this by picking
a poor performance threshold and inducing agency action there as a suspension phase.

From our discussion of agency action phases in the Quiet-Life contracts we know
two things will happen when the principal induces agency action at Upoor:
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1) Ut will eventually leave the vicinity of Upoor after the end of the suspension
phase.

2) The contract will spend a nontrivial amount of time at Upoor.

Remark 3.2.1. That the Renegotiating Baseline contract naturally pushes the agent’s
continuation payoff and performance rating Ut upwards (observation 1 above) after
poor performance means that this contract is endogenously renegotiating the underly-
ing baseline contract. That the renegotiation happens only after the suspension phase
(observation 2 above) means that the first-best action incentives of the underlying
baseline contract are not compromised by the renegotiation. The agent doesn’t get the
extra slack of renegotiation for free. By having to first suffer through suspension, the
agent is effectively “buying” the principal’s forgiveness through the postponement of
the cash compensation promised by the underlying baseline contract.

C. Dynamics of the Renegotiating Baseline Contracts

A Renegotiating Baseline contract begins as its underlying baseline contract, inducing
first-best action and providing cash compensation whenever the agent’s continuation
payoff and performance rating Ut hits the good performance threshold U good.

However, when poor performance pushes Ut down to the poor performance threshold
Upoor, a suspension phase is triggered. During suspension, the principal infrequently
monitors the agent and the agent, lacking proper incentives to work, frequently exerts
low effort. As a result Ut sticks to or is “pegged” around Upoor for a period of time,
following the dynamics of Sticky Brownian motion.

Eventually, suspension ends, the agent is forgiven for some of his poor performance,
and Ut is allowed to float again as the principal renegotiates some more slack for
the agent. The contract returns to the first-best action incentives of the underlying
baseline contract where the principal constantly monitors and good performance is
rewarded with cash compensation. This dynamic remains the norm until sustained
poor performance triggers suspension again.
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Chapter 4

Comparative Statics

4.1 Implementation Part I - Inefficient Agency

Given the optimality theorem, the most pertinent question is what form does the op-
timal contract take? Naturally, the answer will depend on the fundamentals, specifi-
cally, on agency action’s relative value to the agent and relative cost to the principal.
This question will be answered in full in the next section - 4.2 Implementation Part II
- General Case. In this section let us approach the general implementation problem
by first exploring the following special case: what form does the optimal contract
take when agency action is inefficient (see Definition 4.1.3)? The answer is Lemma
4.1.5. The results developed for this particular case provide the basic language and
intuition used to tackle the general implementation problem in section 4.2.

Specifically, this section shows that what role, if any, agency action plays in optimal
contracting has to do with the usefulness of the contractual technique saving-the-
best-for-last (see subsection D). This technique arises from the following situation,
in which the principal will often find himself: at some point in time the principal
will have access to a lucrative contract (the “best” in saving-the-best-for-last) which
he would like to exercise. However, the payoff of this contract to the agent will not
match the agent’s promised continuation payoff at this particular moment in time. To
achieve his goal of exercising the lucrative contract while still maintaining incentive-
compatibility, the principal can postpone implementing that lucrative contract, and
first induce agency action for a little while to get the agent continuation payoff right.
This technique is what I call saving-the-best-for-last.

We now begin our approach to the implementation problem with a discussion of
some relevant value functions. These value functions, which will appear throughout
the rest of the paper, are useful because they contain information about an important
contracting process called the continuation payoff point process:

Definition 4.1.1. Fix a contract with agent continuation payoff process Ut. We can
define the corresponding principal continuation payoff process Vt. Together, (Ut, Vt) is
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the continuation payoff point process of the contract and (U0, V0) is the payoff
point of the contract.

A. Value Functions

Typically, the way optimal contracts are derived is by first deriving the optimal value
function and then extracting from it the optimal contract. This process requires that
we have two pieces of information:

1. The relevant differential conditions for the optimal value function.

2. The contractual interpretations of these relevant differential conditions.

There are two relevant differential conditions corresponding to the two types of ac-
tions:

• The first-best action ODE

ry = µ+ γxy′ +
φ2

2
y′′ (4.1)

• The agency action ODE

ry = µ− A+ (γx− φA)y′ (4.2)

In what follows, Lemma 4.1.1 interprets solutions to the first-best action ODE and
Lemma 4.1.3 interprets solutions to the agency action ODE. In subsection C I also
explicitly solve the agency action ODE (see Lemma 4.1.2).

B. A Review of the First-Best Action ODE

This subsection is distilled from the work of DeMarzo and Sannikov (2006).

Lemma 4.1.1. Suppose there are two contracts, one with payoff point (U1, V 1) and
the other with payoff point (U2, V 2) with U1 < U2. There is a unique solution f to
first-best action ODE that connects these two points. Fix any point U contract between
U1 and U2. Then (U contract, f(U contract)) is the payoff point of the following contract:

• Start agent’s continuation payoff Ut at U0 = U contract.

• Ut follows the first-best action law until

1) Ut = U1 at which point the contract becomes the one with payoff point
(U1, V 1).

2) Ut = U2 at which point the contract becomes the one with payoff point
(U2, V 2).
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F ext,B

(0, µ
r
)

(K,L)

FB

U contract U good,B

µ = ry + γx

Figure 4.1: The optimal baseline value function FB and the extended optimal baseline
value function F ext,B.

This lemma implies a number of useful facts about static first-best action contracts
and their value functions (also see Figure 4.1):

1) Assume µ > rL + γK. The optimal baseline value function FB is a concave
solution to the first-best action ODE on [K,U good,B] where FB and U good,B are
uniquely determined by a smooth pasting condition.1

2) The optimal static first-best action contract delivering payoff x ∈ [K,U good,B]
to the agent exists. It is the baseline contract with good performance threshold
U good,B, the agent’s continuation payoff is started at U0 = x, and the payoff
to the principal is FB(x). Call this contract the optimal baseline contract
delivering payoff x ∈ [K,U good,B] to the agent.

3) One can extend FB to values of x > U good,B. More generally, the extended
optimal baseline value function F ext,B is FB with a straight line of slope -1
attached to the end.

4) The optimal static first-best action contract delivering payoff x > U good,B to the
agent exists. It first delivers a lump sum x − U good,B to the agent. Then the

1There exists a unique Ugood,B and a unique FB such that FB(K) = L, FB ′(Ugood,B) = −1,
and FB ′′(Ugood,B) = 0.
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contract becomes the optimal baseline contract delivering payoff U good,B to the
agent. The payoff to the principal is F ext,B(x). Call this contract the optimal
baseline contract delivering payoff x > U good,B to the agent.

5) The optimal baseline contract is the optimal baseline contract delivering
payoff arg max F ext,B = arg max FB to the agent. The payoff to the principal
is maxF ext,B = maxFB.

6) Fix an optimal baseline contract delivering some payoff to the agent. At time t
if the agent’s continuation payoff is Ut then the principal’s continuation payoff
is F ext,B(Ut).

7) Cash compensation occurs when the principal’s and agent’s required expected
cash flows exhaust expected returns:

µ = rFB(U good,B) + γU good,B

8) Suppose µ ≤ rL + γK. Then FB is just the single point (K,L) and optimal
baseline contract is simply to terminate right away. Also F ext,B is just the
straight line of slope -1 starting at (K,L).

If we are only interested in static first-best action contracts then we would be done.
But since the optimal contract may induce agency action, we also need to analyze
the ODE that governs the value function of agency action periods in contracts.

C. Solving the Agency Action ODE

In this subsection, I explicitly solve the agency action ODE (Lemma 4.1.2) and show
how to contractually interpret it (Lemma 4.1.3).

Definition 4.1.2. The agency action point is defined to be (φA
γ
, µ−A

r
). This is

the payoff point of the static contract with no salary - the agent receives a utility flow
φAdt forever and the principal receives an expected flow (µ− A)dt forever.

Lemma 4.1.2. The family of solutions to the agency action ODE is characterized
as follows: Fix any point (U, V ) 6= (φA

γ
, µ−A

r
). The unique solution to equation (4.2)

going through (U, V ) is the set of points (x, y) satisfying(
y − µ−A

r

V − µ−A
r

) 1
r

=

(
x− φA

γ

U − φA
γ

) 1
γ

(4.3)

Proof. Clear.

Thus solutions to the agency action ODE are just the power functions with power r
γ

and base point equal to the agency action point (φA
γ
, µ−A

r
). See Figure 4.2.
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Figure 4.2: r < γ: Sample solutions to the agency action ODE. The middle point
is the agency action point (φA

γ
, µ−A

r
). All solutions emanate from the agency action

point. The horizontal and vertical lines are also solutions because they correspond to
the limiting power functions with coefficients equal to 0 and ∞ respectively.

Lemma 4.1.3. Suppose there is a contract with payoff point (Ũ , Ṽ ) 6= (φA
γ
, µ−A

r
).

Let g be the unique solution to the agency action ODE going through (Ũ , Ṽ ). Let
(U0, V0) be any point lying on g in between (Ũ , Ṽ ) and (φA

γ
, µ−A

r
). Then (U0, V0) is

the payoff point of an initial agency action period of length D followed by the contract
with payoff point (Ũ , Ṽ ) where

D =
1

γ
log

(
Ũ − φA

γ

U0 − φA
γ

)
=

1

r
log

(
Ṽ − µ−A

r

V0 − µ−A
r

)
≥ 0

During the initial agency action period, the continuation payoff point process slides
along g, deterministically heading toward (Ũ , Ṽ ), which it reaches at the end of the
agency action period.

Proof. This is a simple consequence of optional sampling and a little algebra.

D. “Saving the Best for Last”

Now that we have some technical results about value functions, the next step is to
apply them to understand the value of a contracting technique called saving-the-
best-for-last. Remark 4.1.1 summarizes the potential usefulness of this technique.
Determining the viability of this technique helps us solve the motivating problem of
this section, which is the problem of determining the optimal contractual form when
agency action is inefficient.

If the static contract with payoff point (φA
γ
, µ−A

r
) is not optimal, then there will

be some other contract C with payoff point (Ũ , Ṽ ) where Ṽ > µ−A
r

.

Over the course of designing an optimal contract, the principal at some point will
be faced with the problem of delivering some continuation payoff Ut to the agent
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g when r < γ

g when r > γ

(Ũ , Ṽ )

(φA
γ
, µ−A

r
)

Figure 4.3: Saving-the-best-for-last and Randomization - A Comparison

which is between Ũ and φA
γ

. To solve this problem, the principal can write a contract
mixing C and the static contract. One way to do this is to simply randomize over
the two options. The other option is the saving-the-best-for-last technique:

• First employ the static contract for some fixed duration of time D.

• Then employ the more lucrative contract C.

Randomization can generate any payoff point lying on the straight line between (Ũ , Ṽ )
and (φA

γ
, µ−A

r
). Lemma 4.1.3 tells us that the saving-the-best-for-last technique can

generate any payoff point lying on the unique solution g to the agency action ODE
between (Ũ , Ṽ ) and (φA

γ
, µ−A

r
).

How do these two options compare? The decision over which option is preferable
is dictated by the relative patience of the principal, measured by the discount ratio
r
γ
:

Remark 4.1.1. If the principal is more patient than the agent, saving-the-best-for-
last is better than randomization because the principal does not mind waiting out the
agency action period to get to the more desirable contract. On the other hand, if the
principal were more impatient than the agent, randomization is better. With ran-
domization there is a chance the principal can immediately enact the more desirable
contract. Despite the risks involved (i.e. getting stuck with the static contract), it is
more efficient for an impatient principal to gamble than wait out the predetermined
agency action period required by saving-the-best-for-last.

This is graphically confirmed by the relevant solution g to the agency action ODE
representing the potential payoff points generated by saving-the-best-for-last (see Fig-
ure 4.3). The discount ratio r

γ
dictates the concavity of g. A patient principal implies

r
γ
< 1 and the concave g curves over the straight line representing the potential payoff
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points generated by randomization. Conversely, an impatient principal implies r
γ
> 1

and the convex g curves under the straight line representing the potential payoff points
generated by randomization.

E. The Optimal Contract when Agency Action Inefficient

I now solve the warmup to the general implementation problem: the implementation
problem when agency action is inefficient (Lemma 4.1.5).

Definition 4.1.3. Agency action is inefficient when the agency action point (φA
γ
, µ−A

r
)

lies below the extended optimal baseline value function F ext,B.

Recall there are two contracting techniques that incorporate agency action: random-
ization and saving-the-best-for-last. Because F ext,B is concave and because we have
assumed that agency action is inefficient:

Employing agency action through randomization is not useful.

However, Remark 4.1.1 tells us that saving-the-best-for-last is better than random-
ization. This is not to say that saving-the-best-for-last is a surefire way to improve
the optimal baseline contract. But if the principal is artful in how he employs this
technique, it is possible that the optimal baseline contract can be beat. In particular,
the principal needs to be mindful of the following:

• The “last” can’t be too far away - depriving oneself of the best for too long is
not optimal.

• The “best” has to be good enough - saving-the-best-for-last is not worth using
if the best is only marginally better than the alternative.

• The “best” can’t be too good - if it’s too good, waiting for the best is inefficient.

The principal can always control the duration of the agency action period in saving-
the-best-for-last, so satisfying the first condition does not pose much of a challenge.
That I have assumed agency action is inefficient in this section means that the second
condition is not an issue either. The tricky part is the third condition. Now if
agency action is “too” inefficient, then the “best” is too good to give up, even for
a little while, and that’s when the optimal contract takes the baseline form. But
when agency action is not too inefficient, the value of saving-the-best-for-last implies
that the optimal baseline contract can be beat. This intuition is formalized in the
following lemma:

Lemma 4.1.4. The optimal contract takes the baseline form (i.e. is the optimal
baseline contract) if and only if first-best action beats saving-the-best-for-last on the
margin:

d

dx
F ext,B

∣∣
x=U
≥ r

γ

F ext,B(U)− µ−A
r

U − φA
γ

for all U ∈ [K,∞) (4.4)
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F ext,B

d
dx
F ext,B

∣∣
x=U
≥ r

γ

F ext,B(U)−µ−A
r

U−φA
γ

Baseline Domain

Quiet-Life Domain
Renegotiating Baseline Domain

?

?
?

for all U ∈ [K,∞)
(K,L)

Figure 4.4: The three regions under F ext,B determined by condition (4.4).

Condition (4.4) is a modification of the one found in DeMarzo and Sannikov (2006)
Proposition 8. Written in the form of (4.4), the condition can be understood to be
a statement about the superiority of first-best action over saving-the-best-for-last.
The left hand side d

dx
F ext,B

∣∣
x=U

simply denotes the marginal utility of delivering an
extra unit of utility to the agent through first-best action. What about the right
hand side? Recall, randomization produces payoff points lying on the straight line
between some payoff point (U, F ext,B(U)) and the agency action point (φA

γ
, µ−A

r
).

Thus the marginal utility of delivering an extra unit of utility to the agent through

randomization is
F ext,B(U)−µ−A

r

U−φA
γ

. Remark 4.1.1 tells us that saving-the-best-for-last

introduces a value-added distortion by picking up the measure of relative patience
of the principal: r

γ
. The marginal utility of delivering an extra unit of utility to the

agent by departing from first-best action and implementing saving-the-best-for-last
is the right hand side of (4.4):

r

γ

F ext,B(U)− µ−A
r

U − φA
γ

So condition (4.4) simply says that if the principal cannot profitably deviate on the
margin from first-best action by implementing saving-the-best-for-last, then the op-
timal contract is the optimal baseline contract.

Lemma 4.1.5. Lemma 4.1.4 splits the region under F ext,B into three regions (see
Figure 4.4). The bottom region is where condition (4.4) holds and Lemma 4.1.4
implies the optimal contract is the optimal baseline contract. If instead, the agency
action point is in the right region then the optimal contract is the optimal Quiet-Life
contract. Finally, if the agency action point is in the left region then the optimal
contract is the optimal Renegotiating Baseline contract.
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(Ũ , F ext,B(Ũ)

(U, g(U))

g

(φA
γ
, µ−A

r
)

F ext,B

Markov intuition

piece of a solution to the agency action ODE

(φA
γ
, µ−A

r
)

F ext,B

piece of a solution to the first-best action ODE

Figure 4.5: On the left: saving-the-best-for-last with (Ũ , F ext,B(Ũ)) as the “best”
leads to an improvement over F ext,B. On the right: use Markov intuition to get an
almost Quiet-Life contract.

I now give a heuristic proof that the optimal contract is the optimal Quiet-Life con-
tract when the agency action point is in the right region. One can mirror this argu-
ment to give a heuristic proof that the optimal contract is the optimal Renegotiating
Baseline contract when the agency action point is in the left region. The formal
proof of the general implementation problem (The Domains of Optimality Theorem
of section 4.2) is given in the Appendix.

So suppose the agency action point is in the right region. That condition (4.4)
is not satisfied implies the existence of a contract payoff point (Ũ , F ext,B(Ũ)) such
that if the principal properly employs saving-the-best-for-last with this point as the
“best,” then he can outdo the optimal baseline contract. To understand this state-
ment graphically, let g be the unique solution to the agency action ODE going through
(Ũ , F ext,B(Ũ)). Lemma 4.1.3 tells us that the achievable payoff points when the prin-
cipal uses saving-the-best-for-last with (Ũ , F ext,B(Ũ)) as the “best” are all the points
on g between the agency action point and (Ũ , F ext,B(Ũ)). Remark 4.1.1 tells us that
g is concave. This upward curvature represents the extra value of saving-the-best-
for-last over randomization which is due to the relative patience of the principal :
r < γ. Graphically we see that the curvature of the relevant portion of g is great
enough to “pierce” the extended optimal baseline value function and the part that lies
above F ext,B are all the payoff points that represent improvements (see left graphic
of Figure 4.5). For example, the point (U, g(U)) is achieved if the principal uses
saving-the-best-for-last with (Ũ , F ext,B(Ũ)) as the best and waits for a duration of

D = 1
γ

log

(
Ũ−φA

γ

U−φA
γ

)
= 1

r
log
(
Ṽ−µ−A

r

V−µ−A
r

)
before enacting the lucrative contract. Thus

saving-the-best-for-last delivers U to the agent more efficiently than does the optimal
baseline contract.
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(φA
γ
, µ−A

r
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Ũ U good,Q

FQ

Figure 4.6: On the left: a Quiet-Life contract. On the right: the optimal Quiet-Life
contract which is also the optimal contract.

The next step is to apply a little Markov intuition. If initially inducing agency
action for D-units of time is better than first-best action, then it should should be
done every time the agent’s continuation payoff Ut hits U . The resultant contract
is structurally almost a Quiet-Life contract - inducing agency action for a D-length
duration every time the agent’s continuation payoff and performance rating Ut hits
the “good” performance threshold U . The value graph2 of this almost Quiet-Life
contract is a union of a piece of a solution to the first-best action ODE and a piece of
a solution to the agency action ODE (see right graphic of Figure 4.5). And now we
see that if the principal starts the agent’s continuation payoff at the arg max of the
value graph then he will have written a contract with a higher payoff than that of the
optimal baseline contract. Notice this contract’s agent continuation payoff Ut travels
through the interval (Ũ , U) in two ways over the course of the contract. During agency
action periods, it travels down the interval, with the continuation payoff point pro-
cess moving leftwards on the upper trajectory (which solves the agency action ODE).
And during first-best action periods, it travels stochastically in the interval, with
the continuation payoff point process moving on the lower trajectory (which solves
the first-best action ODE). The gap between these two paths represents an efficiency
loss and an opportunity for improvement - the principal would always rather be on
the top path. To eliminate the efficiency loss, the principal will shift U downwards
until U = Ũ . Now the gap is closed and the new contract induces agency action
at the good performance threshold U = Ũ , and we have produced a true Quiet-Life
contract. Notice that the solutions to the first-best action and agency action ODEs
which were used to build the value graph of the almost Quiet-Life contract have now
pasted together at a single point for the true Quiet-Life contract (see left graphic of

2I use graph because technically the value “function” of this contract is not a function.
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Figure 4.6). Pasting means that the derivatives of the two solutions coincide. The
value function of this true Quiet-Life contract is the first-best action solution going
from (K,L) to the pasting point plus the pasting point itself.3

Finally, optimality requires that the pasting point be smooth - the second deriva-
tives must coincide. So the final step is to shift the good performance threshold Ũ
to the unique value U good,Q where the smooth pasting condition holds. The resultant
value function is the optimal Quiet-Life value function FQ (see right graphic of Figure
4.6). I can now extract from FQ the optimal Quiet-Life contract which is also the op-
timal contract. The good performance threshold is U good,Q, the agent’s continuation
payoff is started at U0 = U contract = arg max FQ, and the payoff to the principal is
maxFQ.

F. Equal Patience Versus a More Patient Principal

In the previous subsection I solved the implementation problem when agency action
is inefficient under the model assumption that the principal is more patient: r < γ.
The goal of the present subsection is to give a formal statement (Lemma 4.1.6) of the
importance of patience and saving-the-best-for-last by describing how the results of
the previous subsection change when r = γ.

Throughout this subsection I will keep γ fixed and let r ≤ γ be variable.

Recall when r < γ, there is an extended optimal baseline value function F ext,B,r

which governs, among other things, the optimal baseline contract Br.4

When r = γ, there is no optimal baseline contract. However, there are arbitrar-
ily close-to-optimal baseline contracts. The principal can simply import the optimal
baseline contract Br from a setting where r < γ. As r ↑ γ, Br becomes arbitrarily
close-to-optimal in the r = γ setting.5 The extended close-to-optimal baseline value
function F ext,B,γ is defined to be

F ext,B,γ = lim
r↑γ

F ext,B,r

F ext,B,γ governs the close-to-optimal baseline contracts in the r = γ setting. Recall
F ext,B,r is concave for all r < γ,6 and indeed, so is F ext,B,γ.

3I emphasize the pasting point itself so the reader is not tempted to think of this as purely a
first-best action contract. The pasting point is part of the solution to the agency action ODE as
well.

4An “r” superscript is added because r is allowed to vary in this subsection.
5The reason there is no Bγ is because as r ↑ γ, the good performance threshold Ugood,B,r ↑ ∞.
6See fact 1 about baseline contracts in subsection B.
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Remark 4.1.2. F ext,B,r is concave for all 0 < r ≤ γ. Since F ext,B,r governs the opti-
mal baseline contract, concavity means the optimal baseline contract is randomization-
proof. Why is this so? Recall the two main effects of randomizing over contracts are:

• Increases variance of payoffs.

• Allows the principal to gamble on the possibility of immediately exercising the
lucrative contract in situations where the principal could alternatively choose
saving-the-best-for-last (see Remark 4.1.1).

Intuitively, since the principal and agent are both risk neutral and the principal is at
least as patient as the agent, neither of these effects should be utility improving over
an otherwise optimally designed baseline contract.

But this gives us the punchline for the r = γ case. When r = γ, saving-the-best-for-
last is utility-equivalent to randomization, and since F ext,B,γ is concave and therefore
randomization-proof, we have:

Lemma 4.1.6. When the principal and agent are equally patient, the best contracts
are baseline contracts if and only if agency action is inefficient.

For the complete domains of optimality result when r = γ see Appendix Figure 5.2.

4.2 Implementation Part II - General Case

The domain of the agency action point is {(X, Y )|X > 0 and Y < µ
r
}. I now solve

the general implementation problem culminating in The Domains of Optimality The-
orem. For simplicity, I assume K = 0.7

In section 4.1, I solved the implementation problem when agency action is inefficient
(see Lemma 4.1.5). Recall, I introduced a contractual technique called saving-the-
best-for-last which is useful only if the “best” is both good enough and not too good.
Lemma 4.1.4 formalized this intuition which is summarized in the following remark.

Remark 4.2.1. When agency action is inefficient, the principal can always find a
“best” that is good enough. The only problem is that this “best” might be too good.
If the best is too good then the optimal contract is the optimal baseline contract. If
the best isn’t too good then the optimal contract is either the optimal Quiet-Life or
optimal Renegotiating Baseline contract.

The second part of the implementation problem is when agency action is efficient (i.e.
lies above F ext,B). And we have a companion mirror-image intuition for the efficient
agency action case:

7Higher K’s introduce boundary conditions that complicate the analysis. See Appendix for when
K > 0.
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Figure 4.7: An example extended optimal static value function when agency action
is efficient.

Remark 4.2.2. When agency action is efficient, the principal can always find a
“best” that is not too good. The only problem is that this “best” might not be good
enough. If the best is not good enough then the optimal contract is the optimal static
contract. If the best isn’t too good then the optimal contract is either the optimal
Quiet-Life or optimal Renegotiating Baseline contract.

Just as Lemma 4.1.4 formalizes the intuition of Remark 4.2.1, so will I derive a lemma
to formalize the intuition of Remark 4.2.2.

Definition 4.2.1. For any point (X, Y ) in the domain of the agency action point:
{(X, Y )|X > 0 and Y < µ

r
}, define F ext,B

(X,Y ) to be the function that is the extended
optimal baseline value function in the alternate universe where the outside option
point (K,L) is equal to (X, Y ).

Since K = 0, the optimal static contract provides no salary, and its payoff point is
simply the agency action point (φA

γ
, µ−A

r
).8 Since the agency action point is assumed

to be efficient (i.e. lies above F ext,B), we know the optimal contract, whatever form
it may be, will employ agency action. The simplest method to incorporate agency
action is to employ it in a permanent way: use first-best action incentives when the
agent’s continuation payoff is not equal to φA

γ
, but when Ut = φA

γ
make a permanent

switch to agency action. This method leads to an improvement because by assumption
permanent agency action delivers payoff φA

γ
to the agent more efficiently than any

first-best action contract:
µ− A
r

> F ext,B

(
φA

γ

)
8See fact 2 about static contracts in section 2.3 C.
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dx
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∣∣
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dx
F ext,(X,Y )
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≤ 0

d
dx
F ext,B

∣∣
x=U
≥ r

γ
F ext,B(U)−Y

U−X for all U ∈ [K,∞)

(0, µ
r
)

(K = 0, L)

Example (X, Y ) points

Figure 4.8: The domains of optimality that determine the form of the optimal
contract. The pictured quadrant is the domain of the agency action point:
{(X, Y )|X > 0 and Y < µ

r
}.

The faint dotted curve near the bottom is the extended optimal baseline value
function F ext,B. There is a bold curve underneath F ext,B. Any point (X, Y ) below

this bold curve satisfies Condition (4.4) of Lemma 4.1.4: d
dx
F ext,B

∣∣
x=U
≥ r

γ
F ext,B(U)−Y

U−X
for all U ∈ [K,∞). If the agency action point lies in this region then it is too
inefficient and the optimal contract takes the baseline form.

Above F ext,B there is a V-shaped bold curve. Any point (X, Y ) above this V-
shaped bold curve satisfies Condition (4.5) of Lemma 4.2.1: d−

dx
F ext,(X,Y )

∣∣
x=X
≥ 0 and

d+

dx
F ext,(X,Y )

∣∣
x=X
≤ 0. If the agency action point lies in this region then the optimal

contract takes the static form. Each branch of this V-shaped curve represents a
boundary at which one of the two differential inequalities of Condition (4.5) holds
with equality.

The remaining two regions are where saving-the-best-for-last can be utilized in
a manner just like or mirroring the method of section 4.1 E. These regions are the
domains of the Quiet-Life and Renegotiating Baseline forms.
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The resultant value function is what I call the extended optimal static value function.
Formally,

Definition 4.2.2. The extended optimal static value function F ext,S is the
unique solution to the first-best action ODE going from (K,L) to the agency action
point (φA

γ
, µ−A

r
) plus the agency action point itself plus F ext,B

(φA
γ
,µ−A
r

)
(see Figure 4.7).

More generally, for a point (X, Y ) in the agency action domain, define F ext,(X,Y )

to the union of the unique solution to the first-best action ODE going from (K,L) to
(X, Y ) plus the point (X, Y ) itself plus F ext,B

(X,Y ).

I can now state the lemma that formalizes the intuition of Remark 4.2.2.

Lemma 4.2.1. When agency action is efficient, the optimal contract takes on the
static form if and only if the principal can’t find a good enough “best” with which to
use saving-the-best-for-last either to the left or to the right of the agency action point:

d−

dx
F ext,S

∣∣
x=φA

γ

≥ 0 and
d+

dx
F ext,S

∣∣
x=φA

γ

≤ 0 (4.5)

Putting everything together, we have:

The Domains of Optimality Theorem. For any realization of the model param-
eters, the domain of the agency action point {(X, Y )|X > 0 and Y < µ

r
} can be

split into four regions (see Figure 4.8). The boundaries of the four regions are deter-
mined by the differential conditions of Lemmas 4.1.4 and 4.2.1. The bottom region
is the Baseline Domain and the top region is the Static Domain. The right region
is the Quiet-Life Domain and the left region is the Renegotiating Baseline Domain.
Whichever domain contains the agency action point, the optimal contract takes the
corresponding form.

Proof. See Appendix.

4.3 Applications and Extensions

A. Optimal Contracting Under Taxes

Introduce a tax T ∈ [0, 1) on cash compensation, so that for every dollar paid by
the principal the agent only receives a fraction 1 − T . To achieve a target agent
continuation payoff, a tax forces the principal to inflate the portion of the cash flow
paid to the agent.

Definition 4.3.1. The taxed efficiency threshold is the line µ = ry + γx
1−T . The

taxed efficiency threshold is a locus of efficient payoff points in the first-best action
setting taking taxes into account (see fact 7 about baseline contracts in section 4.1 B).
To achieve a continuation payoff point (Ut, Vt) lying on the taxed efficiency threshold,
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Figure 4.9: The effect of a tax on the efficiency threshold and the extended optimal
baseline value function.

the principal with access to first-best returns µdt and subject to tax T simply diverts
a portion γUt

1−T dt of the flow to the agent.

If T = 0 then we call the threshold simply the efficiency threshold.

The following is a straightforward generalization to the tax setting of Proposition 1,
DeMarzo and Sannikov (2006) (proof omitted, see stronger version Lemma 5.0.3 in
Appendix):

Lemma 4.3.1. The optimal static first-best action contract in the setting with tax T
exists and is a baseline contract: the optimal taxed baseline contract. Denote
the corresponding optimal taxed baseline value function by FB

T , and the good perfor-
mance threshold by U good,B

T . The cash compensation point (U good,B
T , FB

T (U good,B
T )) of

the optimal taxed baseline contract lies on the corresponding taxed efficiency threshold:

µ = rFB
T (U good,B

T ) +
γU good,B
T

1− T
and is determined by a smooth-pasting condition. FB

T is the unique solution to the
first-best action ODE going from the outside option point (K,L) to (U good,B

T , FB
T (U good,B

T ))
and it is concave.

The optimal taxed baseline contract has good performance threshold U good,B
T , the agent’s

continuation payoff is started at U0 = arg max FB
T , and the payoff to the principal is

maxFB
T .
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If the principal exercised cash compensation either before or after U good,B
T , then the

cash compensation point would lie below the taxed efficiency threshold and imply an
efficiency loss. Graphically, we observe that a tax T lowers the efficiency threshold,
bringing down with it the optimal baseline contract’s good performance threshold,
principal’s payoff, and agent’s payoff. The optimal taxed baseline contract is also
more susceptible to termination.

Not surprisingly, a tax T alters the domains of optimality. Recall, the boundaries
of the domains of optimality are defined by differential conditions on the extended
optimal baseline and optimal static value functions (see conditions (4.4) and (4.5)).
While the differential conditions remain unchanged, the extended value functions are
affected by the tax,9 leading to altered boundaries (see Figure 4.9). A tax hike’s effect
on the domains of optimality can largely be summarized by two shifts from contracts
emphasizing cash compensation (baseline and Renegotiating Baseline) to those that
don’t (Quiet-Life and static).

Remark 4.3.1. With a tax hike, a subset of the agency action point values in the
domain of the baseline form pre-tax now belong to the domain of the Quiet-Life form.
This reflects the increased attractiveness of tax-free perks-based hidden compensation
over taxed cash compensation.

Mirroring this shift, a subset of the agency action point values in the domain of
the Renegotiating Baseline form pre-tax now belong to the domain of the static form.
As taxes increase, the underlying baseline contract that the Renegotiating Baseline
contract is renegotiating becomes increasingly unprofitable, and not worth the trou-
ble renegotiating. So the principal drops it and the Renegotiating Baseline contract
degenerates into the static contract.

B. Optimal Contracting with Bargaining

When the principal’s outside option L is very low (e.g. there is a threat of litiga-
tion by the agent for termination) the principal will employ a static contract or a
Renegotiating Baseline contract to avoid termination. More generally, suppose the
principal and agent can bargain for their outside options along some efficient bar-
gaining possibility frontier, which is a concave decreasing function b. Assume that
the principal can’t bargain for more than the asset is worth (b < µ

r
) and the agent’s

outside option will be at least zero (domain of b is [0,∞)).

Lemma 4.3.2. Fix any bargaining possibility frontier and a tax T . For all agents
with sufficiently strong bargaining power, the optimal contract is either a low effort

9Recall the extended optimal baseline value function F ext,B is defined to be FB with the straight
line of slope -1 attached to its end. In the tax T setting, the extended optimal taxed baseline value
function F ext,BT is similarly defined to be FBT with the straight line of slope 1

T −1 attached to its end.

Just like F ext,B in the no tax setting, F ext,BT implies the structure of the optimal first-best action
contract delivering payoff x ∈ [K,∞) to the agent in the tax setting.
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contract with salary (optimal static contract) or a high-effort contract with a suspen-
sion clause (optimal Renegotiating Baseline contract). The optimal choice is the low
effort contract with salary if and only if agency action lies on or above the taxed ef-
ficiency threshold.

In particular, sufficiently high taxes and agent bargaining power means the optimal
contract is the low effort contract with salary.

Proof. This is a consequence of the Domains of Optimality Theorem when K > 0
found in the Appendix.

Other bargaining models include if the agent is able to bargain for a fixed salary
sdt throughout the duration of the contract. In this case the change in setting is
isomorphic to a linear change-of-variables (µ → µ − s, φA → φA + s, etc.) and all
the previous optimal contracting results apply.

Finally, the agent can bargain for a higher payoff than that of the optimal contract.
The complete optimal contracting theorem for higher agent payoffs can be found in
the Appendix section D.

C. Renegotiation-Proof Contracts

Recall baseline contracts are usually not renegotiation-proof. Indeed, the main rea-
son the Renegotiating Baseline contract is sometimes optimal is because it allows the
principal to renegotiate the underlying baseline contract to some extent. Not sur-
prisingly, Renegotiating Baseline contracts are less renegotiable, and some are even
renegotiation-proof.

A contract is renegotiation-proof if its value function is never upward sloping. Con-
sider the setting in Figure 4.10a which depicts the value functions of the optimal
baseline contract and the optimal Renegotiating Baseline contract (which is also the
optimal contract). Both value functions have upward sloping portions so neither con-
tract is renegotiation-proof. However, the upward slope of the Renegotiating Baseline
value function is less steep than that of the baseline. Hence, the Renegotiating Base-
line contract is closer to being renegotiation-proof. This is achieved because the
principal has set the poor performance threshold of the Renegotiating Baseline con-
tract to be higher than K - the poor performance threshold of the baseline contract.
This alteration prevents the agent’s continuation payoff from dropping too low, which
precipitates the need to renegotiate.

In general, the higher the poor performance threshold, the more renegotiation that
is embedded in the contract, and consequently, the closer the contract is to being
renegotiation proof. At some point, the poor performance threshold is high enough
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Figure 4.10: (a) The optimal baseline value function and above it the optimal Rene-
gotiating Baseline value function. The dotted lines are not part of the value func-
tion, but rather highlight the solutions to the first-best action and agency action
ODEs used to construct the value function. (b) There are now three additional value
functions. Of the three new value functions, the top one is not quite renegotiation-
proof, the middle one is just barely renegotiation-proof, and the bottom one is “too”
renegotiation-proof.

that the value function no longer has an upward sloping portion. The value function
simply starts with slope 0, then gradually decreases form there. The corresponding
Renegotiating Baseline contract is then renegotiation-proof. (See Figure 4.10b)

Now the principal can continue to set even higher poor-performance thresholds, and
the resultant Renegotiating Baseline contracts will also be renegotiation-proof. But
“over-forgiving” the agent entails an efficiency loss, and these renegotiation-proof
contracts are not as profitable. (See Figure 4.10b)

Recall from DeMarzo and Sannikov (2006), there also exist renegotiation-proof first-
best action contracts which are basically modified baseline contracts. The poor per-
formance threshold of baseline contracts is always K, and termination always occurs
there. In the modified renegotiation-proof baseline contracts, the poor performance
threshold is shifted upwards, and termination is randomized there.

As Figure 4.11 demonstrates, the renegotiation-proof contracts using agency action
may dominate those only inducing first-best action. Moreover:

Remark 4.3.2. Renegotiation-proof contracts that use agency action do not require
randomization or termination, and their value to the principal is not bounded by the
value of the principal’s outside option L. This is in direct contrast to renegotiation-
proof contracts only inducing first-best action.
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Figure 4.11: The bottom value function is that of the optimal renegotiation-proof first-
best action contract. The lightly dotted line attached to it represents the contract
stipulation that termination be randomized at the poor performance threshold.

D. The Geometric Brownian Setting

All the results of this paper can be translated over to the corresponding geometric
Brownian setting. The model is as follows:

Setting

There is an asset belonging to a principal, for which he contracts an agent to manage.
The asset produces a stochastic revenue stream. Over time, we assume that the cu-
mulative revenue stream behaves as geometric Brownian Motion with a drift process
influenced by the hidden action applied by the contracted agent.

Formally, there is a stochastic process Z = {Zt}t≥0 defined on a probability space Ω
with probability law P µ. Under P µ, Z is Brownian motion with drift µdt. Upon Zt
is defined a geometric Brownian Motion:

dSt = StdZt

At time t, St is the cumulative revenue stream of the asset up to time t. The µdt
drift corresponds to the scaled, default expected returns and can be interpreted as
the scaled, intrinsic or maximum expected profitability of the asset.

Actions

The agent affects asset performance by selecting an action at each moment in time.
Over time the agent’s action process a = {at}t≥0 is a stochastic process taking values
in a set {0, A} with A > 0. {0} is first-best action and {A} is agency action. The
action process a affects the underlying probability law: the default law P µ changes
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to P µ−a, which is defined to be the law under which Z is Brownian motion with drift
(µ− at)dt.

The principal can choose a compensation scheme for the agent. Compensation is
represented by a random nondecreasing process I = {It}t≥0 started at zero that keeps
track of the cumulative cash payments made to the agent up to time t. Liquidation
is a stopping time τ .

Preferences

The principal is risk neutral, discounts at rate r, retains the cash flow of the asset,
compensates the agent, and can retain a value LSt after the liquidation of the asset.
His utility is

EPµ−a

[ ∫ τ

0

e−rt(dSt − dIt) + e−rτLSτ

]
The agent is risk neutral, discounts at rate γ, receives compensation from the prin-
cipal, and retains a value KSt after the liquidation of the contract. The agent also
receives an instantaneous utility flow φatStdt by applying action at ∈ {0, A} at time
t, where φ > 0. His utility is

EPµ−a

[ ∫ τ

0

e−γs(dIt + φatStdt) + e−γτKSt

]
We assume that the principal is at least as patient: r ≤ γ. We also require µ < r,
L < 1

r−µ , and K ≥ 0.

Equivalence via Scaling

Despite the existence of two state variables now: the familiar agent continuation
payoff Ut and the new geometric Brownian St, the key is to realize that there is only
one effective state variable, which is the scaled agent continuation payoff ut = Ut

St
. This

is the main point of He (2009). Once the model is scaled, all of the technical constructs
from the Brownian model translate over: the first-best action and agency action laws
fall out, as do the first-best action ODE and agency action ODE. As a result, the
optimal contracts, the notions of sticky incentives and infrequent monitoring, the
analysis of saving-the-best-for-last, the domains of optimality, and the rest of the
comparative statics all translate over largely unchanged.
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Chapter 5

Conclusion

In this paper I have explicitly solved for the optimal contract in a general Brownian
framework where agency action plays an integral role in optimal contracting. The
framework underlies the models of DeMarzo and Sannikov (2006), Biais et al (2007)
and He (2009). However, all of these papers focus on finding the optimal contract
that is restricted to always inducing first-best action.

While static first-best action contracts have provided a great deal of insights into
some contracting problems observed in real-life, many arrangements do not always
employ static first-best action. Indeed, recent empirical work such as Yermack (2006)
and Rajan and Wulf (2006) have pointed to possible uses of agency action in business.

In my dynamic model, I find that the optimal contract takes on one of four forms
depending on fundamentals, including two that mix agency action phases in between
periods of first-best action: the Quiet-Life form and the Renegotiating Baseline form.
Quiet-Life contracts induce agency action as a form of reward and can be thought
of as contracts that allow for efficient perks consumption. Renegotiating Baseline
contracts are contracts that mostly induce first-best action but periodically trigger
agency action phases as a form of punishment. These agency action phases can be
thought of as suspension during which the agent applies low effort.

That the optimal contract may take one of these two forms helps demonstrate not
only the value of agency action but also more broadly, the value of infrequent mon-
itoring and slowing down incentives. Moreover, I show how taxes affect what form
the optimal contract takes and how agency action can be utilized to produce optimal
renegotiation-proof contracts.

Overall, the results of this paper help not only to bridge a gap in the dynamic con-
tracting literature, but also provide a theoretical counterpart to the ongoing empirical
research into the role of agency action.
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Appendix

A. Preliminary Results

It is best to skip directly to section B and to refer back to section A when needed.

The following lemma is an easy generalization of DeMarzo and Sannikov (2006) to
the tax setting stated without proof.

Lemma 5.0.3. Fix a setting with tax T ∈ (−∞, 1). The following set of facts
characterize optimal static first-best action contracting in the tax setting:

1) If the outside option point (K,L) is strictly below the taxed efficiency threshold:

µ > rL+
γK

1− T

then the optimal taxed baseline value function FB
T is a concave solution to the

first-best action ODE on [K,U good,B
T ] where FB

T and U good,B
T are uniquely deter-

mined by a smooth pasting condition: There exists a unique U good,B
T and a unique

FB
T such that FB

T (K) = L, FB
T
′(U good,B
T ) = 1

T −1
, and FB

T
′′(U good,B

T ) = 0. FB
T is

strictly concave on (K,U good,B
T ) and FB

T
′(x) ≥ 1

T −1
for all x ∈ [K,U good,B

T ].

2) The optimal taxed static first-best action contract delivering payoff x ∈ [K,U good,B
T ]

to the agent exists. It is the baseline contract with good performance threshold
U good,B
T , the agent’s continuation payoff is started at U0 = x, and the payoff to

the principal is FB
T (x). Call this contract the optimal taxed baseline contract

delivering payoff x ∈ [K,U good,B
T ] to the agent.

3) One can extend FB
T to values of x > U good,B

T . More generally, the extended
optimal taxed baseline value function F ext,B

T is FB
T with a straight line of slope

1
T −1

attached to the end. F ext,B
T ∈ C2[K,∞).

4) The optimal taxed static first-best action contract delivering payoff x > U good,B
T

to the agent exists. It first delivers a lump sum x−U good,B
T to the agent. Then the

contract becomes the optimal taxed baseline contract delivering payoff U good,B
T to

the agent. The payoff to the principal is F ext,B
T (x). Call this contract the optimal

taxed baseline contract delivering payoff x > U good,B
T to the agent.
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5) The optimal taxed baseline contract is the optimal taxed baseline contract
delivering payoff arg max F ext,B

T = arg max FB
T to the agent. The payoff to the

principal is maxF ext,B
T = maxFB

T .

6) Fix an optimal taxed baseline contract delivering some payoff to the agent. At
time t if the agent’s continuation payoff is Ut then the principal’s continuation
payoff is F ext,B

T (Ut).

7) Cash compensation occurs when the principal’s and agent’s required expected
cash flows exhaust expected returns taking taxes into account:

µ = rFB
T (U good,B

T ) +
γU good,B
T

1− T

8) If the outside option point lies on or above the taxed efficiency threshold then FB
T

is just the single point (K,L) and optimal taxed baseline contract is simply to
terminate right away. Also F ext,B

T is just the straight line of slope 1
T −1

starting
at (K,L).

9) Let T1 < T2 be two taxes. For all x > K, µ
r
> F ext,B

T1 (x) > F ext,B
T2 (x). Also

F ext,B
T1

′(K) > F ext,B
T2

′(K).

The Regularity Lemma. Let f1 and f2 be two distinct solutions to the first-best
action ODE and x∗ ≥ 0. If

f1(x∗) ≥ f2(x∗) and f ′′1 (x∗) ≤ f ′′2 (x∗)

then
f ′′1 (x) < f ′′2 (x) for all x ∈ (x∗,∞)

If
f1(x∗) ≥ f2(x∗) and f ′′1 (x∗) ≥ f ′′2 (x∗)

then
f ′′1 (x) > f ′′2 (x) for all x ∈ [0, x∗)

Proof. The straightforward, albeit tedious, proof of this lemma involves Euler’s Method.
Fix a set of initial conditions for the first-best action ODE: (x∗, f(x∗), f ′(x∗)) with
x∗ ≥ 0. Then

f ′′(x∗) =
rf(x∗)− µ− γx∗f ′(x∗)

φ2/2

and by Euler’s Method, we have

f(x∗ + ∆x) ≈ f(x∗) + f ′(x∗)∆x

f ′(x∗ + ∆x) ≈ f ′(x∗) +
rf(x∗)− µ− γx∗f ′(x∗)

φ2/2
∆x
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f ′′(x∗ + ∆x) ≈ rf(x∗ + ∆x)− µ− γ(x∗ + ∆x)f ′(x∗ + ∆x)

φ2/2

=
r(f(x∗) + f ′(x∗)∆x)− µ− γ(x∗ + ∆x)(f ′(x∗) + rf(x∗)−µ−γx∗f ′(x∗)

φ2/2
∆x)

φ2/2

=
(1− γ(x∗ + ∆x) ∆x

φ2/2
)[rf(x∗)− µ− γx∗f ′(x∗)]− (γ − r)∆xf ′(x∗)

φ2/2

=

[
1− γ(x∗ + ∆x)

∆x

φ2/2

]
f ′′(x∗)− (γ − r)∆xf ′(x∗)

φ2/2

Now let f1 and f2 satisfy the hypothesis of the first half of the lemma at x∗ and
fix an arbitrary upper bound D with x∗ < D. Let ∆x be small enough so that
1− γ(D + ∆x) ∆x

φ2/2
> 0. The assumptions imply f ′1(x∗) > f ′2(x∗), and then it is easy

to see that the Euler approximations of f1 and f2 satisfy the hypothesis of the first
half of the lemma at x∗ + ∆x as well. In fact, the second derivative of the Euler
approximation of f1 is now strictly less than that of the Euler approximation of f2 at
x∗+∆x. Then induction shows that the second derivative of the Euler approximation
of f1 is strictly less than that of the Euler approximation of f2 at x∗ + n∆x, so long
as x∗ + n∆x ∈ (x∗, D]. Letting ∆x→ 0, we have

f ′′1 (x) < f ′′2 (x) for all x ∈ (x∗, D]

Since D was arbitrary, the first half of the lemma holds.

Now suppose f1 and f2 satisfy the hypothesis of the second half of the lemma. If
f1 > f2 on [0, x∗) then the second half of the lemma must hold. Suppose not, then
there is some x̃ ∈ [0, x∗) such that f ′′1 (x̃) ≤ f ′′2 (x̃). But then the first half of the lemma
implies that f ′′1 (x∗) < f ′′2 (x∗). Contradiction.

So it suffices to prove f1 > f2 on [0, x∗). The hypothesis of the second half of the
lemma immediately implies that f1 lies above f2 in a left neighborhood of x∗. This
means that if it is not true that f1 > f2 on [0, x∗) then there must be some point x̃
such that f1(x̃) = f2(x̃) and f ′1(x̃) > f ′2(x̃). But then this implies that f ′′1 (x̃) < f ′′2 (x̃)
and once again the first half of the lemma implies a contradiction.

Corollary 5.0.1. Let f1 and f2 be two distinct solutions to the first-best action ODE
and x∗ ≥ 0. If

f1(x∗) ≥ f2(x∗) and f ′1(x∗) ≥ f ′2(x∗)

then
f ′1(x) > f ′2(x) for all x ∈ (x∗,∞)

If
f1(x∗) ≥ f2(x∗) and f ′1(x∗) ≤ f ′2(x∗)

then
f ′1(x) < f ′2(x) for all x ∈ [0, x∗)
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Proof. If f1 and f2 satisfy the assumptions of the second half of the corollary, then
f ′′1 (x∗) < f ′′2 (x∗). Then the second half of the corollary follows from the second half
of the Regularity Lemma.

Now suppose f1(x∗) ≥ f2(x∗) and f ′1(x∗) ≥ f ′2(x∗) and there exists an x ∈ (x∗,∞) such
that f ′1(x) ≤ f ′2(x). Without loss of generality, we may choose x so that f1(x) > f2(x).
But then the second half of the corollary implies a contradiction.

Corollary 5.0.2. Let T1 < T2 be two taxes and x ≥ K. Then

F ext,B
T1

′(x) > F ext,B
T2

′(x)

Proof. F ext,B
T1

′(x) = F ext,B
T1

′(x ∧ U good,B
T1 ) > F ext,B

T2
′(x ∧ U good,B

T1 ) ≥ F ext,B
T2

′(x). If

x∧U good,B
T1 is in the domain of the linear branch of F ext,B

T2 then the middle inequality

comes from Lemma 5.0.3. If x ∧ U good,B
T1 is in the domain of FB

T2 then the middle
inequality comes from Corollary 5.0.1.

Corollary 5.0.3. The limit FB
−∞ of the extended optimal taxed baseline value func-

tions:
FB
−∞(x) = lim

T ↓−∞
F ext,B
T (x) for all x ≥ K

is a solution to the first-best action ODE. For all x ≥ K, FB
−∞

′(x) > 0 and

FB
−∞

′(x) = lim
T ↓−∞

F ext,B
T

′(x)

Proof. For any tax T , define sT ≡ F ext,B
T

′(K). For any slope s, define fs to be the
unique solution to the first-best action ODE starting at (K,L) with initial slope s.

We will need to make use of the fact that µ
r

is a constant solution to the first-best
action ODE.

We begin by proving some results that show fsT and F ext,B
T are close to each other.

Let us first show that |f ′sT −F
ext,B
T

′| ≤ 1
1−T . Since FB

T = fsT |[K,Ugood,BT ), f
′
sT

(U good,B
T ) =

F ext,B
T

′(x) = 1
T −1

for all x ≥ U good,B
T , so it suffices to show that fsT |[Ugood,BT ,∞) is

decreasing, convex. fsT |[Ugood,BT ,∞) is certainly initially decreasing. If it is not al-

ways decreasing then there is some value x∗ > U good,B
T such that fsT (x∗) < µ

r
and

f ′sT (x∗) = 0. Comparing fsT and µ
r
, Corollary 5.0.1 tells us that fsT is increasing on

[K, x∗). Contradiction. So fsT |[Ugood,BT ,∞) is always decreasing. Furthermore, we know

that f ′′sT (U good,B
T ) = 0. Again comparing fsT and µ

r
, the Regularity Lemma tells us

that fsT |[K,Ugood,BT ) is convex.

From this result we can easily deduce the following two results. On any bounded
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interval [K,D] we have |fsT −F
ext,B
T | ≤ D

1−T . Also, since FB
T
′ ≥ 1

T −1
(Lemma 5.0.3),

FB
T
′(U good,B
T ) = 1

T −1
(Lemma 5.0.3), and fsT is convex after U good,B

T , it must be that

f ′sT (x) ≥ 1
T −1

for all x ≥ K.

Let us now show that s−∞ ≡ limT ↓−∞ sT is finite. Let x > 0 and let hx be the
solution to the first-best action ODE such that hx(x) = µ

r
and h′x(x) = 1. By com-

paring hx to µ
r
, The Regularity Lemma tells that hx is concave increasing on [0, x].

Now if x = K + µ
r
− L, then hx(K) < L. By intermediate value theorem, there is

some x∗ ∈ (K,K + µ
r
− L) such that hx∗(K) = L. Thus we have found a solution

to the first-best action ODE starting at (K,L) that crosses the line y = µ
r
. Clearly,

sT < h′x∗(K) for all T and we have shown s−∞ ≤ h′x∗(K) <∞.

Clearly, fs−∞ = limT ↓−∞ fsT and f ′s−∞ = limT ↓−∞ f
′
sT

. Since we have already shown

that f ′sT (x) ≥ 1
T −1

, it must be that f ′s−∞(x) ≥ 0 for all x ≥ K.

Let us now prove the stronger result claimed by the Corollary: f ′s−∞(x) > 0 for
all x ≥ K. Suppose not. Then there is some value x∗ such that f ′s−∞(x∗) = 0. Now
compare fs−∞ to µ

r
. If fs−∞(x∗) ≥ µ

r
then Corollary 5.0.1 tells us that fs−∞ either is

µ
r

or always lies above µ
r

on [K,∞). Both are contradictions. So fs−∞(x∗) < 0. But
then f ′′s−∞(x∗) < 0 which means that fs−∞ is decreasing after x∗. Contradiction.

We can now prove the last part of the Corollary. Fix a bounded interval [K,D].
Then on this interval:

lim
T ↓−∞

|fs−∞ − F
ext,B
T | ≤ lim

T ↓−∞
|fs−∞ − fsT |+

D

1− T
= 0

Since D is arbitrary, we have fs−∞ = limT ↓−∞ F
ext,B
T . Moreover,

lim
T ↓−∞

|f ′s−∞ − F
ext,B
T

′| ≤ lim
T ↓−∞

|f ′s−∞ − f
′
sT
|+ 1

1− T
= 0

and so we have f ′s−∞ = limT ↓−∞ F
ext,B
T

′. Thus FB
−∞ = fs−∞ and we are done.

Corollary 5.0.4. Recall F ext,B
(X,Y ) is F ext,B in the alternate universe where the outside

option point is (X, Y ) (see Definition 4.2.1). Similarly define FB
(X,Y ) and U good,B

(X,Y ) . Fix

an X and let Y1 > Y2 be two numbers such that (X, Y1) and (X, Y2) are below the
efficiency threshold. Let x ∈ [X,U good,B

(X,Y1) ]. Then

FB
(X,Y1)

′(x) < FB
(X,Y2)

′(x)

Proof. We have FB
(X,Y1)

′(U good,B
(X,Y1) ) < FB

(X,Y2)
′(U good,B

(X,Y1) ). Corollary 5.0.1 implies the
result.

50



Definition 5.0.2. The first-best action inequality is the first-best action ODE
with equality replaced with a “≥”:

ry ≥ µ+ γxy′ +
φ2

2
y′′

Similarly, the agency action inequality is:

ry ≥ µ− A+ (γx− φA)y′

The C1 Maximum Principle. Let F ext be some function on [K,∞) such that
F ext(K) ≥ L, F ext is concave, F ext ∈ C1[K,∞), F ext ′ ≥ −1, and F ext ′ is absolutely
continuous. If F ext satisfies both the first-best action and agency action inequalities,
then F ext is an upper bound on the optimal value function.

More restrictive versions of the maximum principle have appeared in the previous
literature. The main difference here is that the function F ext is not assumed to be
continuously twice differentiable, so it is not immediately apparent how to apply Ito’s
lemma. However, there is a more general Ito’s Lemma for functions satisfying the
hypotheses of this principle. See Theorem 22.5, Kallenberg (2001).

B. Proof of Theorem 2.3.1 and The Domains of Op-

timality Theorem

The Domains of Optimality Theorem implies Theorem 2.3.1, so I will prove The Do-
mains of Optimality Theorem. Also, Lemmas 4.1.4 and 4.2.1 pertaining to when the
optimal contract takes on the baseline and static forms have already been proven
in DeMarzo and Sannikov (2006). It remains to be shown that the two remaining
unclaimed regions in Figure 4.8 in section 4.2 are the domains of the Quiet-Life and
Renegotiating Baseline contracts. For expositional simplicity, I assume K = 0 and
the optimal baseline value function has an interior optimum.

The strategy of the proof is quite straightforward. When the agency action point
is in the right domain, I begin by noting that if the principal was in an alternate
universe with very negative taxes then the optimal taxed baseline contract would be
the optimal contract. As I start shifting up the tax parameter, at some point the
principal is going to be indifferent between sticking with the optimal taxed baseline
contract and some other contract that uses agency action. The punchline is that the
“other contract” is a Quiet-Life contract which is the optimal contract in the actual
no tax universe. Similarly, when the agency action point is in the left domain I begin
by noting that if the principal was in an alternate universe where his outside option
was very high then the optimal baseline contract would be the optimal contract. As I
start lowering the principal’s outside option parameter, at some point the principal is
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going to be indifferent between sticking with the optimal baseline contract and some
other contract that uses agency action. The punchline is that the “other contract” is
a Renegotiating Baseline contract which is the optimal contract in the actual universe.

Case 1: Quiet-Life Domain
Let the agency action point be in the right region.

For all sufficiently low (negative) taxes, F ext,B
T satisfies the agency action inequal-

ity and is therefore an upper bound for the optimal value function. For example,
Corollary 5.0.3 implies the existence of a unique (negative) tax T such that:

F ext,B

T
′
(
φA

γ

)
= 0

Since the agency action point is in the right region,

d−

dx
F ext,S

(
φA

γ

)
< 0

and since both F ext,B

T and F ext,S meet at the outside option point, so Corollary 5.0.1
implies that:

F ext,B

T

(
φA

γ

)
>
µ− A
r

This means that F ext,B

T satisfies the agency action inequality.1 Now pick the least

negative such tax T ∗. By continuity, there will be at least one point (a, F ext,B
T ∗ (a))

that satisfies the agency action inequality with equality. This simply means:

g′a(a) = F ext,B
T ∗

′(a)

where ga is the unique solution to the agency action ODE going through (a, F ext,B
T ∗ (a)).

Furthermore, a must be in the domain of FB
T ∗ . If not, then the pasting point

(a, F ext,B
T ∗ (a)) lies on the linear branch of F ext,B

T ∗ and a < φA
γ

. But then for all ã

in a small left neighborhood of a, we have g′ã(ã) > F ext,B
T ∗

′(ã) where gã is the unique
solution to the agency action ODE going through (ã, F ext,B

T ∗ (ã)). This then implies
that F ext,B

T ∗ does not satisfy the agency action inequality at ã. Contradiction.

By the least negativity property of T ∗, it must be that T ∗ > T . Then Corollary 5.0.2
tells us that F ext,B

T ∗ must also be downward sloping to the right of φA
γ

, which implies

that a < φA
γ

. Ito’s Lemma and optional sampling imply FQ ≡ F ext,B
T ∗

∣∣
[0,a]

= FB
T ∗
∣∣
[0,a]

is the value function of a Quiet-Life contract.

1Indeed, any concave function attaining its maximum at φA
γ and with maximum greater than or

equal to µ−A
r satisfies the agency action inequality.

52



F ext,B
T ∗ satisfies the assumptions of the C1 Maximum Principle, so it is an upper

bound on the optimal value function. And since the FQ portion is an actual value
function and includes the maximum point of F ext,B

T ∗ , FQ must be the optimal value
function. The optimal contract is then the Quiet-Life contract with good performance
threshold U good,Q = a, the agent’s continuation payoff is started at U0 = arg max FQ,
and the payoff to the principal is maxFQ.

Case 2: Renegotiating Baseline Domain
Let the agency action point be in the left domain.

Using arguments similar to before, for all sufficiently high alternate principal outside
options l, F ext,B

(0,l) (see Definition 4.2.1) satisfies the agency action inequality. Then
the idea is the same as before: find the lowest alternate outside option l∗ such that
F ext,B

(0,l∗) satisfies the agency action inequality. l∗ > L since by assumption F ext,B does
not satisfy the agency action inequality.

Again like before, the minimality of l∗ implies the existence of a pasting point
(a, F ext,B

(0,l∗) (a)). Mirroring the argument in Case 1, Corollary 5.0.4 implies a > φA
γ

.

Call the good performance threshold of FB
(0,l∗), U

good,R. Then define the function FR

to be FB
(0,l∗)

∣∣
[a,Ugood,R]

. F r is of course the value function of a Renegotiating Baseline
contract.

The C1 Maximum Principle implies that F ext,B
(0,l∗) is an upper bound of the optimal

value function. The FR portion contains the maximum point, so FR is the optimal
value function. The optimal contract is the Renegotiating Baseline contract with poor
performance threshold Upoor,R = a, good performance threshold U good,R, the agent’s
continuation payoff is started at U0 = arg max FR, and the payoff to the principal is
maxFR.

The Domains of Optimality Theorem when K > 0
Recall, the previous proof and section 7.A assumed that K = 0. How does the Do-
mains of Optimality Theorem change when K > 0? There’s not much change (see
Figure 5.1):

When the agency action point is in the region {(X, Y )|X ≥ K and Y < µ
r
} the

boundaries are defined exactly like in the K = 0 case. Thus the only question is
how to appropriately extend the boundaries to the region O = {(X, Y )|0 < X <
K and Y < µ

r
}.

Recall in the K = 0 case there is a bottom curve that is a byproduct of Condition
(4.4) Lemma 4.1.4. Since the value function F ext,B of the condition is independent of
the agency action point, the bottom curve can be naturally extended using the same
condition.
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F ext,B

Quiet-Life Domain

Baseline Domain

Static Domain

Renegotiating
Baseline Domain

d+

dx
F ext,(X,Y )

∣∣
x=X

= 0

d−

dx
F ext,(X,Y )

∣∣
x=X

= 0

d
dx
F ext,B

∣∣
x=U
≥ r

γ
F ext,B(U)−Y

U−X for all U ∈ [K,∞)

(0, µ
r
)

(K > 0, L)

Efficiency Threshold

Figure 5.1: The Domains of Optimality Theorem when K > 0. The heavy bold lines
are how the boundaries of the domains of optimality are extended to the region to
the left of K.

Now suppose the agency action point is in O, above the bottom curve. For any
l < µ

r
, define gl to be the unique agency action solution going through (K, l) and

recall F ext,B
(K,l) (see Definition 4.2.1). The agency action point is above the efficiency

threshold if and only if the optimal static payoff point (K, µ−A−(γK−φA)
r

) is as well. If

this is the case, then the C1 Maximum Principle implies that F ext,B

(K,
µ−A−(γK−φA)

r
)

is an

upper bound on the optimal value function and the optimal contract is the optimal
static contract.

I now claim that if the agency action point is in O and between the bottom curve and
the efficiency threshold, then the optimal contract is a Renegotiating Baseline con-
tract. The method is almost identical to the K = 0 case. Because the agency action
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point is assumed to be below the efficiency threshold, F ext,B

(K,µ−γK
r

)
satisfies the agency

action inequality and is an upper bound on the optimal value function. Pick the min-
imal l∗ such that F ext,B

(K,l∗) satisfies the agency action inequality. Then (K, l∗) is below

the efficiency threshold which means that F ext,B
(K,l∗) (see Lemma 5.0.3) is nontrivial with

a good performance threshold which I will call U good,R. Furthermore, by the minimal-
ity of l∗ there exists a pasting point (a, F ext,B

(K,l∗)(a)). Then FR ≡ F ext,B
(K,l∗)

∣∣
[a,Ugood,R]

is the

optimal value function. The optimal contract is the Renegotiating Baseline contract
with poor performance threshold Upoor,R = a, good performance threshold U good,R,
the agent’s continuation payoff is started at U0 = arg max FR, and the payoff to the
principal is maxFR.

We can now extended the V-shaped curve: starting at the left most point of the
old V-curve, go straight up until the efficiency threshold is hit, then travel up the
efficiency threshold until reaching (0, µ

r
). See Figure 5.1.

The Domains of Optimality when r = γ

Recall that the good performance threshold U good of a Quiet-Life contract is restricted
to be < φA

γ
. If however U good = φA

γ
then Ut = U good is an absorbing event. I call such

a contract a tenure contract. Similarly, the poor performance threshold Upoor of a
Renegotiating Baseline contract is restricted to be > φA

γ
. If however Upoor = φA

γ
then

Ut = Upoor is an absorbing event. I call such a contract an inside option baseline
contract. The domains of optimality theorem when r = γ is summarized in Figure
5.2.

Notice, in particular, ifK = 0 then contracts that induce agency action non-permanently
(e.g. Quiet-Life and Renegotiating Baseline) are never optimal. This is a reflection of
the intuition that saving-the-best-for-last is not useful. The reason why the Renego-
tiating Baseline contract is sometimes optimal when K > 0 is because the principal
is required to keep the agent’s continuation payoff Ut ≥ K. This boundary condition
prevents incentive-compatible contracts from using permanent agency action without
salary.

The proof of this result is similar to the r < γ case and is omitted.

C. Smooth-Pasting

Definition 5.0.3. Two functions paste at a point (x, y) if both functions go through
(x, y) and have the same derivative there.

Definition 5.0.4. A point (a, b) such that a 6= φA
γ

is called a concave smooth
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F ext,B

Tenure Domain

Baseline Domain

Static Domain

Inside Option
Baseline Domain

d+

dx
F ext,(X,Y )

∣∣
x=X

= 0

d−

dx
F ext,(X,Y )

∣∣
x=X

= 0

d
dx
F ext,B

∣∣
x=U
≥ F ext,B(U)−Y

U−X for all U ∈ [K,∞)

(0, µ
r

= µ
γ
)

(K,L)

Efficiency Threshold

straight line of slope F ext,B ′(K)

Renegotiating
Baseline Domain

Figure 5.2: The Domains of Optimality Theorem when r = γ.

pasting point if the following condition is satisfied:

f ′′(a) = g′′(a) < 0

where g is the unique solution to the agency action ODE and f is the unique solution
to the first-best action ODE such that f and g paste at (a, b).

The Concave Smooth Pasting Lemma. Consider the following concave smooth-
pasting function

S(x) =
µ− A
r

+
γ

rφ

(x− φA
γ

)2

φ
2A

(1− r
γ
)− (x− φA

γ
)

defined on the open interval (−∞, φ
2A

(1− r
γ
)+ φA

γ
). A point (a, b) is a concave smooth

pasting point or the agency action point if and only if a ∈ (−∞, φ
2A

(1− r
γ
) + φA

γ
) and

b = S(a).
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S is a differentiable, convex function with unique interior minimum point equal to
the agency action point (φA

γ
, µ−A

r
).

Proof. Suppose a point (x, y) is a concave smooth pasting point. Let g, f be the
associated functions. Then

g′(x) =
r

γ

y − µ−A
r

x− φA
γ

g′′(x) =
r

γ

(
r

γ
− 1

)
y − µ−A

r(
x− φA

γ

)2

f ′′(x) =
ry − µ− γxf ′(x)

φ2/2
=
ry − µ− γx r

γ

y−µ−A
r

x−φA
γ

φ2/2

Setting f ′′(x) = g′′(x) < 0 and solving for y produces the function S(x) and the
associated domain.

Corollary 5.0.5. Let ga denote the unique solution to the agency action ODE going
through (a, S(a)) with a < φA

γ
. Suppose ga and some F ext,B

(X,Y ) paste at some point

(x∗, ga(x
∗)) with x∗ ∈ [a, φA

γ
). Then

F ext,B
(X,Y ) > ga on

[
a,
φA

γ

)
− {x∗}

Proof. First assume x∗ ∈ (a, φA
γ

), continuity will take care of the x∗ = a case. Now

note that in any pasting between some ga and some F ext,B
(X,Y ) satisfying the hypotheses

of the the corollary, ga is always strictly more concave at the pasting point. This is
because S is convex, ga is concave, and so g(x∗) > S(x∗). This means the corollary
holds locally.

Let E : {(x, y) | x < φA
γ
− ε} → R2 be a (smooth) embedding that is both x-

coordinate and orientation preserving (i.e. (x, y1) is above (x, y2) ⇒ E((x, y1)) is
above E((x, y2))), and maps solutions to the agency action ODE into the horizontal
lines. Assume ε is small enough so that x∗ ∈ (a, φA

γ
− ε)

Now suppose that F ext,B
(X,Y )(x̃) = ga(x̃) for some x̃ ∈ [a, φA

γ
) − {x∗}. This implies

that E ◦ F ext,B
(X,Y )(x

∗) = E ◦ F ext,B
(X,Y )(x̃). Furthermore, since the corollary holds locally,

(x∗, E ◦F ext,B
(X,Y )(x

∗)) is a local minimum for E ◦F ext,B
(X,Y ). That means there is a point x̃′

in between x∗ and x̃ where (x̃′, E ◦ F ext,B
(X,Y )(x̃

′)) is a local maximum. The pullback of

the horizontal line y = E ◦ F ext,B
(X,Y )(x̃

′) is a solution g̃ to the agency action ODE. The

pullback of the local maximum condition says that F ext,B
(X,Y ) and g̃ paste at (x̃′, g̃(x̃′))

but that g̃ is less concave at the pasting point. But g(x̃′) > S(x̃′). Contradiction.
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Corollary 5.0.6. Fix a point (a, S(a)) with a ∈ [0, φA
γ

). Let ga be the unique solution

to the agency action ODE going through (a, S(a)). Suppose

g′a(a) ≥ F ext,B
(a,ga(a))

′(a)

Then there is unique point (x∗, ga(x
∗)) such that x∗ ∈ [a, φA

γ
) and

g′a(x
∗) = F ext,B

(x∗,ga(x∗))
′(x∗)

Furthermore, F ext,B
(x∗,ga(x∗)) satisfies the agency action inequality.

Proof. Define the continuous function δ(x) = g′a(x) − F ext,B
(x,ga(x))

′(x). By assumption

δ(a) ≥ 0 and clearly lim
x→φA

γ

δ(x) = −∞. Existence of the pasting is implied.

Now suppose there were two distinct values x∗1, x∗2 such that x∗i ∈ [a, φA
γ

) and

g′a(x
∗
i ) = F ext,B

(x∗i ,ga(x∗i ))
′(x∗i ) i = 1, 2

By extending F ext,B
(x∗i ,ga(x∗i )) leftwards through the first-best action ODE, one can find Y1

and Y2 such that
F ext,B

(x∗i ,ga(x∗i )) ⊂ F ext,B
(0,Yi)

Clearly, F ext,B
(0,Y1) and F ext,B

(0,Y2) are distinct, and therefore do not intersect. But both F ext,B
(0,Y1)

and F ext,B
(0,Y2) paste with ga and Corollary 5.0.5 implies that they both lie above ga on

[a, φA
γ

). Contradiction.

Finally, recall the embedding function E of the previous corollary. We know E ◦
F ext,B

(x∗,ga(x∗)) is locally increasing to the right of x∗. Indeed, Corollary 5.0.5 implies it

cannot decrease on [x∗, φA
γ

). The pullback of the nondecreasing condition says that

F ext,B
(x∗,ga(x∗)) satisfies the agency action ODE on [x∗, φA

γ
). That F ext,B

(x∗,ga(x∗)) satisfies the

agency action inequality on [φA
γ
,∞) comes form the more general fact that any de-

creasing concave function f defined on [φA
γ
,∞) satisfies the agency action inequality

if and only if f(φA
γ

) ≥ µ−A
r

(which F ext,B
(x∗,ga(x∗)) satisfies by Corollary 5.0.5).

Bargaining

Let FOpt denote the optimal value function. Let U contract = arg max FOpt and let
U good and Upoor be the good and poor performance thresholds of the optimal con-
tract. The optimal value function gives us the optimal contracts delivering pay-
offs x ∈ [Upoor, U good] to the agent. I will now derive the extended optimal value
function F ext,Opt which, in addition to governing optimal contracts delivering payoffs
x ∈ [Upoor, U good] to the agent, also governs the optimal contracts delivering payoffs
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x > U good to the agent.

It is already known that when FOpt = FB then F ext,Opt = F ext,B. Recall from
9.B FR was defined as F ext,B

(K,l∗)

∣∣
[a=Upoor,R,Ugood,R]

. Using similar reasoning one can eas-

ily show that if FOpt = FR then F ext,Opt = F ext,R ≡ F ext,B
(K,l∗)

∣∣
[Upoor,R,∞)

. Also if

the optimal contract is the optimal static contract with payoff (φA+s
γ
, µ−A−s

r
) where

s = max{0, γK − φA}, then F ext,Opt = F ext,B

(φA+s
γ

,µ−A−s
r

)
.

The only nontrivial case is when FOpt = FQ. Recall FQ was defined as F ext,B
T ∗

∣∣
[K,a=Ugood,Q]

.

It was shown that
g′a(a) = F ext,B

T ∗
′(a) < 0

where ga is the unique solution to the agency action ODE going through (a, F ext,B
T ∗ (a)).

In fact, (a, F ext,B
T ∗ (a)) is a concave smooth pasting point:

g′′a(a) = F ext,B
T ∗

′′(a)

This is because if

g′′a(a) > F ext,B
T ∗

′′(a) or g′′a(a) < F ext,B
T ∗

′′(a)

then F ext,B
T ∗ does not satisfy the agency action inequality in a neighborhood of a. For

example, suppose g′′a(a) < F ext,B
T ∗

′′(a), then pick a slightly higher solution g̃ to the
agency action ODE. Then g̃ crosses F ext,B

T ∗ twice in the neighborhood of a: once from
the below and once from above. At the point where g̃ crosses from above, the agency
action inequality is not satisfied. This means that g′a(a) ≥ F ext,B

(a,ga(a))
′(a).

Now Corollary 5.0.6 implies the existence of a F ext,B
(x∗,ga(x∗)). F

ext,Q is then F ext,B
T ∗

∣∣
[K,a=Ugood,Q]

plus ga
∣∣
[a,x∗]

plus F ext,B
(x∗,ga(x∗)). This is because not only is every point on the function

a payoff point of a contract but also because the function satisfies the assumptions of
the C1 Maximum Principle.
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