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Effect of wavefunction delocalization on shift current generation

Liang Z. Tan1 and Andrew M. Rappe2

1Molecular Foundry, Lawrence Berkeley National Laboratory,

Berkeley, California 94720, United States

2Department of Chemistry, University of Pennsylvania,

Philadelphia, PA 19104, United States of America

Abstract

We derive upper bounds on the magnitude of shift photocurrent generation of materials in

two limiting cases: the flat-band limit of almost-isolated systems such as molecular crystals, and

the wide-band limit of one-dimensional or quasi-one-dimensional materials such as ferroelectric

polymers or other materials with chain-like motifs. These bounds relate the magnitudes of the

shift current bulk photovoltaic effect to materials parameters. In both cases, we find that ratio

of electron hopping amplitudes to the band gap plays a vital role in maximizing the amount of

nonlinear response. Furthermore, by using the Wannier function formalism, we quantify the effect

of long-range hopping amplitudes, showing how delocalization of electronic states gives rise to

larger photocurrents. These results inform the design and selection of new materials for large shift

current generation.
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I. INTRODUCTION

Shift current is a leading candidate for the bulk photovoltaic effect, which is the gener-

ation of a photocurrent in the bulk of a noncentrosymmetric crystalline material, without

the presence of interfaces [1]. Shift current is a nonlinear optical effect, and is driven by

the coherent evolution of excited carrier wavefunctions under external illumination. The

breaking of centrosymmetry is essential for shift current, as it provides preferred directions

for current propagation. First studied in ferroelectrics [2, 3], the shift current has more re-

cently been studied in topological and 2D materials [4–7], and proposed as means to achieve

high efficiency light harvesting [8]. While there have been a number of other mechanisms

proposed for the bulk photovoltaic effect [9–11], first-principles calculations and experiments

indicate that shift current is expected to be a sizable contribution [12, 13]. As such, it is

vital to assess the magnitudes of shift current not only for individual materials, but also to

understand its trends across entire materials classes.

The delocalization of conduction and valence band wavefunctions has been suggested

as an important parameter controlling the shift current magnitude [14]. Intuitively, the

delocalization of the wavefunctions across different sites in a material favors the propagation

of carriers when excited into these bands. These characteristics tend to be found in covalently

bonded materials, and may be quantified by the tight-binding hopping amplitudes between

orbitals located at the different sites of the material. It has been shown that, for a 3D bulk

material, these hopping amplitudes, together with other materials parameters such as the

band gap, place an upper bound on the maximum shift current attainable [15].

In this paper, we extend the analysis of Ref. [15] to one-dimensional materials, finding

tighter bounds in two limiting cases: (i) where there are hopping amplitudes that are weak,

and (ii) where there are hopping amplitudes that are strong. These findings are significant

in the light of recent theoretical calculations of 1D systems and quasi-1D systems [14, 16]

with the highest shift current responses predicted to date.

II. THEORY

Shift current can be derived from perturbation theory at second-order in the electric field

strength of the light field [17]. Under illumination at frequency ω, the Cartesian components
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of the photocurrent, Jr can be expressed in terms of the nonlinear conductivity σrst and

Cartesian components of the electric field (Es). It can be written as (summing over repeated

indices)

Jr =σrst(ω)EsEt

σrst(ω) =πe
( e

m~ω

)2∑
cvk

〈c|pr|v〉〈v|ps|c〉δ(ωc − ωv − ω)Rrt(c, v, k)
(1)

which sums contributions, between every conduction (c) and valence (v) band pair and

at every point in the Brillouin zone (k), of the transition dipole moments (〈c|pr|v〉 are

matrix elements of the Cartesian components of the momentum operator, pr) and the shift

vector (Rrt(c, v, k)). This photocurrent is generated only for transitions where the difference

between conduction band (~ωc) and valence band (~ωv) energies is resonant with the incident

light, as enforced by the δ-function in Eq. 1. The shift vector is a quantity that measures

the change in the center of charge as it is excited from valence to conduction bands:

Rrt(c, v, k) = − ∂

∂kt
arg〈c|pr|v〉 − [χvt(k)− χct(k)] (2)

Here, it is given in terms of Berry connections of the conduction (χct(k)) and valence bands

(χvt(k)). This link between topological quantities and nonlinear optics has been explored

in recent theoretical papers [4, 5, 18]. This formalism for calculating the shift current has

been used in a number of first-principles simulations, which have been used to explain

experimental observations of the bulk photovoltaic effect, and to predict new materials with

large shift current responses [8].

The derivation of an upper limit on the shift current begins with the Wannierization of

energy bands [19]. For simplicity, we consider the lowest conduction band and the highest

valence band as these account for most of the optical response in solar-relevant applications.

Unitary rotations of the Bloch functions in the space of these two bands results in maximally

localized Wannier functions, and a tight-binding Hamiltonian for these two bands, which

reproduces their band dispersion, and can be written as

H(~k) = ~h(~k) · ~τ =
3∑
i=1

hi(~k)τi (3)

Here, the τi are Pauli matrices in the basis of the maximally localized Wannier functions

for these two bands, and ~h(~k) is a vector of 3 real parameters that parameterize this Hamil-
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tonian. The approach taken here is equivalent to the diagonal tight-binding approximation

of Ref. [20]. Being maximally localized, the hopping amplitudes between these Wannier

functions would decay exponentially with their separation. They can therefore be bounded

as

~h(~k) =
∑
n1n2n3

~hn1n2n3 exp
(
i~k · (n1

~R1 + n2
~R2 + n3

~R3)
)

|~hn1n2n3| <A exp

(
−n1

ξ1

− n2

ξ2

− n3

ξ3

) (4)

for a 3D material. Here, ~Rj are the lattice vectors, and ~hn1n2n3 are the hopping amplitudes

between Wannier functions with relative displacement (n1, n2, n3), and which decay with

characteristic ranges (ξ1, ξ2, ξ3). The quantity A is the upper bound for magnitude of the

hopping amplitudes.

In Ref. [15], M =
∣∣∣~ ∫CB1,V B1

σrrrdω
∣∣∣ was used as a figure of merit for the magnitude of

shift current. This integral is taken over the energy range spanned by all transitions from the

highest valence band (VB1) to the lowest conduction band (CB1), and gives an indication

of the typical shift current magnitude in this energy range, for the longitudinal part of the

response tensor, where the light polarization and current directions are parallel. This figure

of merit can be written as

M =
πe3

2~

∣∣∣∣∣
∫

d3k

(2π)3

~h(~k) · ~h′(~k)× ~h′′(~k)

E(~k)3

∣∣∣∣∣ (5)

where the derivatives ~h′ = d
dkr
~h, ~h′′ = d2

dk2r
~h are along the direction of light polarization

and current, r. Here, E(~k) is the energy difference between conduction and valence bands

at ~k. A derivation of Eq. 5 is given in the Appendix. By using the bound on the hopping

amplitudes (Eq. 4) in the evaluation of the shift current generated by the Hamiltonian Eq. 3,

a general bound for the shift current of 3D materials was obtained Ref. [15].

M <
2πe3

~

(
A

Eg

)2

Ξ
(
~R1, ~R2, ~R3, ~ξ, v̂

)
(6)

Here, Eg is the band gap, and ~v is a unit vector in the direction of light polarization and

current measurement. Ξ is a rapidly growing function in ~ξ, and quantifies the dependence

of the shift current magnitude on wavefunction delocalization.
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A. Derivation of bound in the flat-band limit

We now consider the behavior of the bound in some limiting cases, to better understand

the effects of localization and hopping. Eq. 6 shows that wide band systems, which must

necessarily have large A values, have the potential to have large responses. The limit of

isolated systems (clusters or molecules), however, is not directly addressed by Eq. 6 because

such systems can have large or small A values depending on the strength of the hopping

within the isolated system. Nevertheless, a different upper bound can be derived for the

nonlinear response of a system in the isolated, or flat-band limit.

To access this limit, we start with a one-dimensional system containing periodic images of

an isolated system. We pass to the flat-band limit by letting the hopping between different

images (λ) go to zero while keeping the hopping within the system fixed (Fig. 1). We

assume that the Wannier centers of this system are separated by distance a. The effective

Hamiltonian of this system takes a simple form, for there is only nearest-neighbor hopping

between the two Wannier centers of this system in this limit.

H(k) = lim
λ→0

 hz hxye
−ika + λe−ik(L−a)

hxye
ika + λeik(L−a) −hz

 (7)

with k being the crystal momentum and L the size of the supercell. Here, hxy =
√
h2
x + h2

y

is the hopping between the two Wannier centers. In the limit λ → 0, the Hamiltonian

approaches ~h(k) = (hxy cos ka, hxy sin ka, hz). To visualize the parameter space available

for this system, we plot the graph of ~h as a function of k in Fig. 1, which shows that it

is an arc with a radius the size of the hopping amplitude hxy, and a height of the on-site

potential difference hz between the two Wannier centers. If the band gap Eg of this system

is considered fixed, this arc is constrained to lie on a sphere of radius Eg = 2
√
h2
xy + h2

z. For

the Hamiltonian in Eq. 7, Eq. 5 gives

M =
πe3

2~
a3

V

h2
xyhz

(h2
xy + h2

z)
3/2

(8)

where V is the volume of the supercell. To bound the nonlinear response in this limit, we

maximize Eq. 8 subject to the constraint that Eg = 2
√
h2
xy + h2

z, i.e. with the height hz of

the arcs in Fig. 1 as the only independent degree of freedom. We note from Eq. 8 that the

extreme cases of hz = 0 and hz = Eg/2 both give no nonlinear response. The former case is
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centrosymmetric as both Wannier centers have the same on-site energy, while the latter has

vanishing oscillator strength for the transition between two Wannier centers.

We find that the optimal value is hz = Eg/(2
√

3). To rewrite this in terms of the oscillator

strengths, we use fcv = 2mωcv
~ |rcv|

2, and

|rcv|2 =
(hz

d|h|
dk
− |h|dhz

dk
)2 + (hx

dhy
dk
− hy dhxdk )2

4|h|2(|h|2 − h2
z)

(9)

as derived in [21]. At the optimum point, we have |rcv|2 = a2/6, which results in

M <
πe3

~
n

(
~2fcv
mEg

)3/2

(10)

where n = 1/V is the number density of molecules and fcv the oscillator strength of the

HOMO-LUMO transition.

Second harmonic generation (SHG) is another nonlinear optical phenomenon closely re-

lated to shift current generation. While both are second-order nonlinearities, SHG results in

an response at frequency 2ω, whereas shift current results in a zero-frequency response

(dc current). The expressions for the susceptibilities of both processes are very simi-

lar [17, 22, 23], which suggests that materials that have large shift currents would have

large SHG susceptibilities as well. However, there are some differences between this and

earlier work on the limits of SHG [24, 25]. We emphasize that the formalism [17] used

here only considers the resonant component of the nonlinear response. In this respect,

Eq. 10 is different from the off-resonant SHG bound for molecules proved by Kuzyk [24],

in which the frequency of light is not resonant with any electronic transitions. In using

Eq. 1, we are implicitly assuming that broadening of bands caused by phonons, disorder,

or many-body effects is less than the band width. In this limit, the amount of broadening

(width of δ-functions) in Eq. 1 is inconsequential as it does not affect the energy integral in

M = |
∫
σdE|. In contrast, the expressions for resonant molecular SHG in Ref. [25] depend

on a broadening parameter because they are applicable in the limit where broadening is

larger than the band width. Therefore, the bound Eq. 10 proved here should be interpreted

as the maximum response of almost isolated systems, as the hopping between images tends

towards zero.

The total steady-state photocurrent of a completely isolated system consists of multiple

components, including the shift current and recombination current, which must all sum to
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FIG. 1. a) Schematic of one-dimensional system in the isolated, or flat-band limit. The hop-

ping amplitude between periodic images of the system (λ) vanishes, while the hopping amplitude

between the Wannier centers within the system (hxy) is kept finite. The Wannier centers have

relative displacement a in a supercell of size L. b) Graph of the Hamiltonian parameters of iso-

lated systems. At each point in the Brillouin zone, k, the parameters ~h(k) = (hx, hy, hz) together

define the Hamiltonian H(k) via Eqs. 3 and 7. The path that ~h(k) takes through parameter space

as k traverses the Brillouin zone is plotted as a continuous line, with endpoints corresponding to

k = −π/L and k = π/L. The constant energy splitting between HOMO and LUMO constrains

~h(k) to lie on a sphere (shaded gray). Shown in color are an inversion symmetric case (hz = 0,

green), the optimal case that maximizes the nonlinear response (red), and a case with vanishing

oscillator strength (hxy = 0, blue). For each case, the contributions to the nonlinear response is

constant for all wavevectors k.

zero. While the shift current is argued [1, 12, 26] to be the dominant component in extended

systems, it is cancelled by the recombination current if open-circuit conditions are strictly

enforced. We emphasize that the above bound only applies to the shift current component

of the current in this limit.
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B. Derivation of bound in the wide-band limit

Next, we consider the limit of strong hopping. We consider a one-dimensional system

where the hopping parameters are allowed to increase while keeping the band gap fixed at

Eg. In contrast to the previous section where the energy bands were flat, the case considered

here corresponds to the wide-band limit. Again, the Hamiltonian is defined by ~h(k), which

we plot as a path in parameter space in Fig. 2a. As we pass from the flat-band limit to the

wide band limit, the graph of ~h(k) changes from a circular arc of radius Eg/2 (Fig. 1) to

a path with mink|~h(k)| = Eg/2. The length of this path increases as the hopping strength

increases. As this happens, the majority of the nonlinear response is concentrated near the

band edges (light colored regions in Fig. 2). In addition, the magnitude of ~h′′(k) near the

band edge increases, which increases the total amount of nonlinear response, as allude. We

now show that these features are generically present for one-dimensional systems, under the

assumptions of finite range hopping and nondegenerate band minima.

We start with some arbitrary fixed Hamiltonian with parameters ~hfix(k) and add an

adjustable correction which scales the hopping magnitude, so that the parameters of H(k)

are

~h(k) = ~hfix(k) + λ~∆(k) (11)

We are interested here in the strong hopping limit of large λ. The exact choice of ~hfix(k) does

not matter as we approach this limit as its contribution will eventually become negligible.

We assume that the Fourier components are exponentially bounded, as in Eq. 4:

|~hfix,n| < Afixe
−n/ξ

|~hn| < Ae−n/ξ
(12)

where ~hfix(k) =
∑

n
~hfix,ne

inkL, ~h(k) =
∑

n
~hne

inkL, and ~∆(k) =
∑

n
~∆ne

inkL. By the triangle

inequality, these two bounds limit the magnitude and the distance (n) dependence of the

adjustable part of the Hamiltonian

λ|~∆n| <Ae−n/ξ + Afixe
−n/ξ

< 2Ae−n/ξ
(13)

where we have used A > Afix since we are interested in the limit A→∞.

Furthermore, we assume that the adjustable part of the Hamiltonian does not change the

band gap of the system: ~∆(k = 0) = 0 because we wish to fix the band gap to be constant
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in order to investigate how it affects the final expression for the figure of merit. We assume

that the band gap occurs at only a single point in the Brillouin zone. Here, the band gap

location is taken to be at k = 0 without loss of generality. Apart from these conditions, the

form of ~∆(k) is otherwise not constrained.

We write the figure of merit for the integrated nonlinear response as (Eq. 5)

M =
πe3

2~
n1

∣∣∣∣∣
∫

dk

2π

ĥ(k) · (~h′fix(k) + λ~∆′(k))× (~h′′fix(k) + λ~∆′′(k))

|~hfix(k) + λ~∆(k)|2

∣∣∣∣∣ (14)

where n1 is the areal density of these one-dimensional systems. Performing a Taylor expan-

sion about k = 0,

~hfix(k) =~hfix(0) + ~h′fix(0)k +
1

2
~h′′fix(0)k2

~∆(k) = ~∆′(0)k +
1

2
~∆′′(0)k2

(15)

we see that the factor 1/|h|2 approaches a δ-function as λ→∞

lim
λ→∞

1

|~hfix(k) + λ~∆(k)|2
= lim

λ→∞

1

|~hfix(0)|2 + (λ~∆′(0))2k2

=
π

λEg|~∆′(0)|
δ(k)

(16)

This δ-function signifies that the contribution to the shift current is concentrated near the

band edge in the wide-band limit. As λ → ∞, we discard the terms in the numerator of

Eq. 14 which are proportional to λ0 and λ1 in favor of the larger λ2ĥ · ~∆′× ~∆′′, which yields

M <
πe3

2~
n1
λ|~∆′′(0)|

2Eg
(17)

The second derivative λ|~∆′′(0)| is bounded by

λ|~∆′′(0)| <
∑
n

n2L2λ|~∆n|

< 2A
∑
n

n2L2e−n/ξ
(18)

Where we have used the bounds of the distance (n) dependence of ~∆n (Eq. 17). Combining

Eqs. 17 and 18, we find that the figure of merit for total nonlinear response follows the

asymptotic bound
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M <
πe3

~
A

Eg
Ξ1(ξ) (19)

as A/Eg →∞, where Ξ1(ξ) = 2n1L
2 e−1/ξ+e−2/ξ

(1−e−1/ξ)3
. This bound, being proportional to A/Eg, is

tighter than the general bound ((A/Eg)
2, Eq. 6) in the wide-band limit (large A/Eg). The

reason for the different power law in the one-dimensional wide-band limit can be deduced

from Eq. 5. While ~h′(k) and ~h′′(k) are both proportional to A in magnitude, the region of

the Brillouin zone which contributes to the nonlinear response is inversely proportional to

A, leading to the overall linear in A scaling of Eq. 19.

Finally, we discuss the special case where the adjustable part of the Hamiltonian is

stationary at k = 0: ~∆′(0) = 0. This corresponds to the choice of not changing the

Hamiltonian at k = 0. This should not be expected to result in a larger figure of merit than

if one is allowed to change the Hamiltonian at k = 0. Even though Eq. 16 diverges when

~∆′(0) = 0, the bound is not affected. Eq. 16 becomes

lim
λ→∞

1

|~hfix(k) + λ~∆(k)|2
= lim

λ→∞

1

|~hfix(0)|2 + (λ~∆′′(0) · ~hfix(0))k2

=
π

Eg

√
λ|~∆′′(0) · ~hfix(0)|

δ(k)
(20)

while the numerator of Eq. 14 scales as ĥ(k) ·~h′fix(k)× λ~∆′′(k), leading to an overall scaling

of
√
λ, which is of subleading order compared to Eq. 17.

III. CONCLUDING REMARKS

In summary, we have found upper bounds of the shift current response in two limits:

the flat-band limit corresponding to almost-isolated systems, and the wide-band limit of ex-

tended 1D systems corresponding to strong hopping and electron delocalization. A common

trend emerges from the analysis of these limiting cases. In both cases, the upper bound

is increased by having a small band gap and a large hopping strength (oscillator strength,

for the flat-band limit) between the Wannier centers of the system. These features are also

shared by the general bound for 3D materials, although with a different scaling behavior.

The bound for the wide-band limit contains an additional factor not present in the flat-

band limit; Ξ1(ξ) describes the enhancement of shift current with the hopping range ξ(i.e.
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FIG. 2. a) Graph of the Hamiltonian parameters of an extended system. At each point in the

Brillouin zone, k, the parameters ~h(k) = (hx, hy, hz) together define the Hamiltonian H(k) via

Eqs. 3 and 11. The path that ~h(k) takes through parameter space as k traverses the Brillouin zone

is plotted as a continuous line, with endpoints corresponding to k = −π/L and k = π/L. I this

plot, the energy difference between conduction and valence bands is given by the distance from

the origin. The band gap is located at the intersection with the constant energy surface of radius

Eg/2 (sphere shaded gray). The contribution to the nonlinear response is depicted in color, with

the regions near the band gap having large (light color) contributions, and the regions away from

the band gap having low (dark color) contributions. b) Band structure plot of a sequence of 1d

Hamiltonians, given by Eqs. 3 and 11, showing the evolution from the flat-band limit to the wide-

band limit as λ increases. As in a), the contribution to the nonlinear response is depicted in color.

In the flat-band limit, moderate contributions are distributed evenly throughout the Brillouin zone,

while the wide-band limit has large contributions predominantly at the band edges.
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hopping beyond nearest-neighbors). We find that shift current is sensitive to the hopping

range, asymptotically scaling as ξ3 for very long range hopping, but not as sensitive as the

3D case, where the asymptotic scaling is ξ9.

The bounds discussed here are valid only in their respective limits. On the other hand,

they are tighter than the general bound for 3D materials in Ref. [15]. For the flat-band

limit, we have explicitly constructed a model that saturates the bound. In the wide-band

limit, the bound derived here is asymptotically smaller than the bound for 3D materials, in

the limit of large hopping magnitudes. These bounds therefore afford a greater amount of

certainty in suggesting materials design strategies for shift current materials.

To relate the results presented here to a specific material system, we consider the class

of polar, conjugated polymers. A series of these have been recently predicted to support

large shift currents [16]. The polymers constructed in this series contained two different het-

erocyclic rings, and varying numbers of vinylene linkage units, which result in the breaking

of inversion symmetry necessary to support shift current. These polymers were computed

to have large shift currents compared to other benchmark polar materials. An analysis of

the band edge wavefunctions showed highly delocalized wavefunctions, which is in agree-

ment with the general trend suggested by the upper bounds in this work. Furthermore, in

Ref. [16], optimizing the magnitude of the current by changing the vinylene chain lengths

showed that chains with smaller band gaps had larger shift currents, if the structures were

otherwise the same. This observation is consistent with the inverse scaling with Eg shown

above (Eq. 19). It should be stressed that these bounds should be interpreted as descriptors

of aggregate behavior, and may not always reflect the effects of making structural modifi-

cations to any individual material, depending on the proximity of a material to the upper

bound, and because such modifications may affect more than one of the factors which enter

into the upper bounds.

We expect that these results will be useful in the selection and design of materials for

novel photovoltaics. The flat-band limit is applicable to systems consisting of weakly in-

teracting components, such as molecular crystals, while the wide-band limit is applicable

to extended 1d systems. The latter includes the organic systems discussed above, which

have experimental reports of large nonlinear response [27, 28]. The wide-band limit also

includes bulk materials containing chain-like 1D motifs, such as some ternary alkali-metal

chalcoarsenates [14, 29]. From the perspective of the wide-band limit, these materials seem
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particularly attractive because of the combination of high packing density of 1D chains with

strong extended hopping amplitudes along the chain direction.

IV. APPENDIX: DERIVATION OF EQ. 5

Here, we outline the derivation of Eq. 5, following Ref. [6]. We first rewrite Eq. 1 in terms

of inter-band position matrix elements

racv = 〈c|i d
dka
|v〉 = |racv|e−iφ

a
cv (21)

where we have introduced the phase of the position matrix elements, φcv. The k-space

generalized derivatives of the position matrix elements are

racv;b =
d

dkb
racv − i(χcb − χvb) racv

=

(
d

dkb
|racv|

)
e−iφ

a
cv + |racv| e−iφ

a
cv

d

dkb
e−iφ

a
cv − i(χcb − χvb) racv

(22)

Re-expressing the momentum matrix elements in terms of position matrix elements,

racv =
~〈c|pa|v〉

i(~ωc − ~ωv)m
(23)

the equation for the nonlinear conductivity (Eq. 1) can be written as

σaab =
πe3

~2

∑
cvk

Im
[
ravcr

a
cv;b

]
δ(ωc − ωv − ω) (24)

This form of the conductivity is simpler for two-band systems when evaluated using a sum

rule for racv;b. The general sum rule is (Ref. [6])

racv;b = − 1

~ωc − ~ωv
(racv∆

b
cv+rbcv∆

a
cv)+

wabcv
i(~ωc − ~ωv)

+
∑
p 6=c,v

(
iracpr

b
pm

ωcp
ωcv
− irbcprapm

ωpv
ωcv

)
(25)

Here, wabcv = 〈c| d2

dkadkb
H|v〉 and ∆b

cv = d
dkb

(~ωc − ~ωv). For two band systems, the last term

in Eq. 25 vanishes. The first term in Eq. 25 does not contribute to Im
[
racvr

a
cv;b

]
in Eq. 24

when the light polarization direction is parallel to the current direction (a = b), which is the

case treated here. The figure of merit becomes
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M =
2πe3

~
∑
k

∣∣∣∣Im[ravcw
aa
cv ]

~ωc − ~ωv

∣∣∣∣ (26)

Here, the sum over conduction and valence bands has been removed because we are treating

a two-band system, but the factor of 2 arises from spin degeneracy. By writing racv =

−i〈c| d2
dka
H|v〉/(~ωc−~ωv), we see that Hamiltonian derivatives are required for the evaluation

of the figure of merit, Eq. 26. For a two-band system given by the Hamiltonian Eq. 3, the

wavefunctions can be written explicitly

|c〉 =
1√
2|h|

(−
√
|h| − hz, ei arctan (hy/hx)

√
|h|+ hz)

|v〉 =
1√
2|h|

(
√
|h|+ hz, e

i arctan (hy/hx)
√
|h| − hz)

(27)

Using these wavefunctions in the evaluation of the Hamiltonian derivatives 〈c| d2
dka
H|v〉 and

〈c| d2

dkadkb
H|v〉 in Eq. 26 results in the expression of the figure of merit in terms of the Hamil-

tonian parameters ~h and its derivatives ~h′,~h′′ which is Eq. 5.
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[20] J. Ibañez-Azpiroz, S. S. Tsirkin, and I. Souza, Phys. Rev. B 97, 245143 (2018).

[21] B. M. Fregoso, T. Morimoto, and J. E. Moore, Phys. Rev. B 96, 075421 (2017).

[22] T. Morimoto and N. Nagaosa, Science Advances 2, e1501524 (2016).

[23] L. Wu, S. Patankar, T. Morimoto, N. L. Nair, E. Thewalt, A. Little, J. G. Analytis, J. E.

Moore, and J. Orenstein, Nat Phys 13, 350 (2016).

[24] M. G. Kuzyk, Physical Review Letters 85, 1218 (2000).

[25] M. G. Kuzyk, The Journal of Chemical Physics 125, 154108 (2006).

15

http://dx.doi.org/ 10.1038/ncomms14176
http://dx.doi.org/ 10.1038/ncomms14176
http://dx.doi.org/10.1088/1361-648X/aa8bfc
http://dx.doi.org/ 10.1103/PhysRevLett.119.067402
http://dx.doi.org/ 10.1103/PhysRevLett.119.067402
http://arxiv.org/abs/1708.05433
http://arxiv.org/abs/1708.05433
http://dx.doi.org/10.1021/acs.jpcc.7b00374
http://dx.doi.org/10.1002/adma.201603345
http://dx.doi.org/ 10.1103/RevModPhys.84.1419
http://dx.doi.org/ 10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/PhysRevB.97.245143
http://dx.doi.org/10.1103/PhysRevB.96.075421
http://dx.doi.org/10.1126/sciadv.1501524
http://dx.doi.org/10.1038/nphys3969
http://dx.doi.org/10.1103/PhysRevLett.85.1218
http://dx.doi.org/10.1063/1.2358973


[26] P. Král, J. Phys. Condens. Matter 12, 4851 (2000).
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