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Abstract

In this paper, we developed a truncated Lévy flight model to study the crime
dynamics. In the discrete case, our model allows criminals to perform long jumps
in between committing crimes with a speed light. This is a more realistic extension
of a pioneering random walk model by Short et. al [M. Short, et al., Math. Models
Methods Appl. Sci., 18 (2008), pp. 1249-1267] and a Lévy flight model thereafter in
[S. Chaturapruek, et al., SIAM J. Appl. Math., 73(4) (2013), pp. 1703–1720]. We also
derive a continuum limit and perform a stability analysis to study the formation of
crime hotspots. Our model is more realistic than the Lévy Flight Model, and provides
an alternative to the Random Walk Model when the criminals can perform long jumps
in between committing crimes. In the next step, we introduce patrolling police officers
to our new model following that in [P. Jones, et al., Math. Models Methods Appl. Sci.,
20 (2010), pp. 1397-1423]. We examine the effects of police patrol when the police
choose to adopt different strategies, including unbiased random walk, biased random
walk, and truncated Lévy flight. We evaluate the effectiveness of the police patrol with
the number of crime events in a given time frame. With spatially non-uniform initial
conditions, we find that the truncated Lévy flight to be the best strategy in general.
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1 Introduction

Crime modeling is a growing field of mathematical modeling. Notable contributions can be
attributed to the UCLA models [19, 1], which has helped thirty cities worldwide curb crime.
This model, hereafter referred to as the “Random Walk Model (RWM)”, assumes that the
criminals follow a random walk that is biased toward regions with high “attractiveness”.
The concept of “attractiveness” is rooted in criminology research. When a crime happens
at a given place, that place as well as places nearby become more attractive to similar
crimes [19, 3, 22]. This phenomenon is known as the repeat or near-repeat victimization,
which depends on whether a criminal revisit the previous place or a neighboring place
respectively. Some have likened this phenomenon to the “broken windows effect” whereby
disorder and minor crimes such as jaywalking and littering lead to an increase in major
crimes like burglary and murder. In previous crime models, the broken windows effect
is usually treated together with repeat and near-repeat victimization as a critical factor
determining the change in attractiveness [9, 6, 3, 22]. The Random Walk Model successfully
picks up the crime hotspots: i.e., disjoint areas with high crime rates [20, 8]; and compares
favorably with the real data [18].

However, the assumption that criminals take a random walk with constant velocity is
a very restricted one. In real life, criminals can take a train or other vehicle and move
much farther than a similar criminal on foot. Previous researches have shown that human
motions are better modeled with Lévy flights, instead of random walks [10, 2, 7]. Also, data
of distances between homes of criminals and their targets suggests that they are willing to
make long trips for valuable targets [17, 21]. To this end, Chaturapruek et al. developed a
new model by assuming that the criminals undergoes a Lévy flight in [4], i.e., criminals can
go anywhere in one time step with a probability proportional to attractiveness and inversely
proportional to some power µ of distance [5]. We refer this model as the “Lévy Flight Model
(LFM)” from now on.

Nevertheless, a real criminal can only move as fast as traffic or public transit, i.e.,
the property of LFM that criminals can take arbitrarily long jumps in a time step does
not accurately reflect the reality. Furthermore, movement patterns of different types of
criminals can vary greatly. As was shown in [21, 12], professionals and older criminals can
travel faster than amateur and younger criminals. With these facts in mind, we propose a
Truncated Lévy Flight Model (TLFM) for the movement of criminals, in which we eliminate
arbitrarily long jumps by imposing a speed limit on the Lévy flight. Truncated Lévy flights
have been applied in the field of finance [15, 13, 16], and it is proven that the sum of
independent truncated Lévy flights converges to a Gaussian process [14]. In the continuum
limit, our model involves only a Laplace operator, which differs from that of the Random
Walk Model only by a scaling constant. This is because our model incorporates both the
“nonlocal” feature of criminals by allowing them long range jumps and the “local” feature of
them that is restricted by the speed limit. Additionally, with varying speed limits, TLFM
can simulate criminals’ movement patterns of different types. For example, to simulate
dynamics of amateur or younger criminals, we take the speed limit to be small, which leads
to a pattern that is similar to that generated by RMW. Likewise, if there is a group of
professional criminals with better mobility, we can increase the speed limit accordingly. In
this case, the generated pattern will look like the pattern generated by LFM, except that
the unrealistic long jumps will no longer occur. We also show that, quantitatively, both
RWM and LFM are special cases of TLFM. Another remarkable feature of TLFM is that
the Laplace operator in the continuum system, other than the fractional Laplace operator
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in the Lévy Flight Model [4, 24], is more amenable to various kinds of boundary conditions
numerically.

In the next step, we examine the effects of police patrol on TLFM as following. We
adopt a basic assumption in [11] that the attractiveness of a site decreases exponentially
with the number of police officers at that site. There, based on RWM, three executable
strategies are designed for the police officers: an unbiased random walk, a random walk
biased towards the sites with high attractiveness, and a “peripheral interdiction” which
send police officers to perimeters (instead of the center) of crime hotspots. However, since
the criminals in TLFM can take long jumps, protecting the perimeters of a hotspot does
not necessarily prevent criminals from entering the center of the hotspot. As a result, we do
not consider “peripheral interdiction” in this paper. Instead, we also let the police officers
do a truncated Lévy flight biased towards the hotspots as a patrol strategy. By measuring
the total number of crimes committed, we compare the effects of police adopting different
strategies: an unbiased random walk, a biased random walk, and a biased truncated Lévy
flight. With experiments on different initial conditions, we found that the biased truncated
Lévy flight is the best strategy for the police in general.

The rest of paper is organized as follows. In Section 2, we review the basic assumption of
the repeat and near-repeat victimization, and then derive, in both discrete and continuum
settings, the biased truncated Lévy flight for the criminals. For the continuum system, we
perform a linear stability analysis on the homogeneous steady state solution to study the
formation of hotspots. We also explore the relations between TLFM with previous RWM
and LFM. Then in Section 3, we incorporate the effects of law enforcement. By comparing
the efficiency of different patrol strategies, we see that the biased truncated Lévy flight is the
best strategy in general. We also simulate the police patrol in a two dimensional domain,
and obtain the same conclusion. Finally, an appendix for details of derivations and proofs
in Section 2.5.

2 Modeling Criminal Behaviors with the Truncated Lévy
Flight

In this section, we will describe the model in which there are only criminals but no police.
These models can be defined on any connected graph (which accurately reflects the geometry
of a city). As a first step, we define the models on a one-dimensional grid graph with grid
length l with periodic boundary conditions, unless otherwise specified. We will define first
the dynamics of the local attractiveness and then the evolution of the distribution of the
criminals.

2.1 Local Attractiveness

As in [19, 4, 11], we define the varying vulnerability to burglary events of different sites as
follows. For each burglary site k, we define a dynamic attractiveness. Criminals are more
likely to travel to more attractive areas, and more likely to commit crimes once there. To
describe the evolution of attractiveness over time, we decompose the attractiveness field as

Ak(t) = A0
k + Bk(t), (1)

where A0
k is a static term depending only on k, and Bk(t) is a dynamic term related to the

effects of repeat and near-repeat victimization.
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Now we take into account the repeat and near-repeat victimization. We define Ek(t) to
be the number of crimes committed in the time interval (t, t + δt) at site k. Considering
the self-exciting nature of crime, and temporarily neglecting the near-repeat victimization
effect, we can then express the evolution of Bk(t) as Bk(t+ δt) = Bk(t)(1− ωδt) + θEk(t),
where ω is the decay rate of the attractiveness field, and θ is the increase in Bk for each
crime that occurs at k. If we also consider the near-repeat victimization, the evolution
equation of Bk(t) can be expressed as

Bk(t+ δt) =
[
(1− η)Bk(t) +

η

2
(Bk−1(t) + Bk+1(t))

]
(1− ωδt) + θEk(t), (2)

where η ∈ (0, 1) is a constant measuring the significance of the near-repeat victimization
effect.

Initially, a given number of criminals are distributed over the graph. The movement
of criminals is restricted to discrete time steps t = nδt, n ∈ N. We define ρk(t) to be the
average number of criminals at site k during the time interval [t, t+ δt). At each time step,
a criminal either moves to another burglary site or commits a crime. We consider a criminal
committing a crime in the time interval (t, t + δt) at site k as a standard Poisson process,
the probability of which, pk(t), is given by

pk(t) = 1− e−Ak(t)δt, (3)

where Ak(t) denotes the expectation of Ak(t). We also denote the expectation of Bk(t) as
Bk(t). Then it follows immediately from (1) that

Ak(t) = A0
k +Bk(t). (4)

Moreover, in accordance with a standard Poisson process, the expectation of Ek(t) is
δtAk(t)ρk(t) Thus we take the expectation of both sides in (2), and obtain

Bk(t+ δt) =
[
(1− η)Bk(t) +

η

2
(Bk−1(t) +Bk+1(t))

]
(1− ωδt) + θδtAk(t)ρk(t). (5)

2.2 The Discrete Truncated Lévy Flight

In the Random Walk Model, the criminals can only move to a neighboring site in each time
step. By contrast, in the Lévy Flight Model, we allow the criminals to move to any site
on the graph. As in [4], we define the relative transition likelihood wi→k subject to the
following Lévy power law

wi→k =
Ak

(l|i− k|)µ
, (6)

where µ ∈ (1, 3). In other words, although arbitrarily long jumps are allowed in a Lévy
flight, the probability of traveling to a distant site in one time step is low.

Moreover, in contrast with the Lévy Flight Model, for the truncated Lévy flight, one
can move no more than L gridspaces within one time step, with L ∈ Z, L ≥ 1. The relative
transition likelihood, still denoted as wi→k with abuse of notation, is defined as follows

wi→k =

{ Ak
lµ|i−k|µ , 1 ≤ |i− k| ≤ L,
0 otherwise.

(7)
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The (normalized) transition probability is then defined as

qi→k =
wi→k∑
j 6=i wi→j

. (8)

Following the settings in the Random Walk Model as in [19], the criminals obey the
following rules: in the time interval (t, t + δt), a criminal either commits a crime which
obeys the standard Poisson process or else moves on according to a biased truncated Lévy
flight; also, some new criminals appear with a constant rate Γ. Given the criminal density
at time t, the criminal density after one time step can be calculated as

ρk(t+ δt) =
∑
i∈Z

1≤|i−k|≤L

[1−Ai(t)δt]ρi(t)qi→k(t) + Γδt. (9)

2.3 The Continuum Limit of TLFM

Now we take the continuum limit for the above discrete model as δt and l both converge
to 0. Firstly we observe that, following the same procedure as in [4], we can derive the
continuum limit for (5) as follows

At =
l2η

2δt
Axx − ω(A−A0) +Aρθ, (10)

where we write ∂A
∂t as At for consistency of notation. We will use the same type of notations

for partial derivatives hereafter.
The derivation of the continuum limit for ρ, however, is more difficult, and much different

from the process in [4] due to the truncation.
First, we define

zL := 2

L∑
k=1

1

kµ
, (11)

and

L(fi) :=
∑
j∈Z

1≤|i−j|≤L

fj − fi
(|j − i|l)µ

. (12)

Then it follows immediately from (7) that∑
i∈Z

1≤|i−k|≤L

wi→k = l−µzLAi + L(Ai). (13)

With (13) and (8), we obtain

qi→k =
wi→k∑
j∈Z

1≤|j−k|≤L
wi→j

=
wi→k

l−µzLAi(
L(Ai)
l−µzLAi

+ 1)

∼ wi→k
[

1

l−µzLAi
− L(Ai)

(l−µzLAi)2

]
=

Ak
|i− k|µ

(
1

zLAi
− L(Ai)l

µ

A2
i z

2
L

)
, 1 ≤ |i− k| ≤ L,

(14)
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where, in the second step, we have applied the approximation 1
1+x ∼ 1− x for small x.

We then obtain by (9)

ρk(t+ δt)− ρk(t)

δt
=

1

δt

 ∑
1≤|i−k|≤L

ρi(1−Aiδt)qi→k − ρk

+ Γ. (15)

Now applying (14) to the RHS of (15), we obtain

ρk(t+ δt)− ρk(t)

δt
=

1

δt

∑
1≤|i−k|≤L

ρi(1−Aiδt)
Ak
|i− k|µ

(
1

zLAi
− L(Ai)l

µ

A2
i z

2
L

)
− ρk
δt

+ Γ

=
Ak
δt

 ∑
1≤|i−k|≤L

(1−Aiδt)
ρi
Ai

1

zL|i− k|µ
− ρk
Ak


− Ak

δt

∑
1≤|i−k|≤L

[
(1−Aiδt)

ρi
|i− k|µ

L(Ai)l
µ

A2
i z

2
L

]
+ Γ.

(16)

We also find that (11) and (12) implies∑
i∈Z

1≤|i−k|≤L

ρi
|i− k|µ

=
∑
i∈Z

1≤|i−k|≤L

ρi − ρk
|i− k|µ

+
∑
i∈Z

1≤|i−k|≤L

ρk
|i− k|µ

= lµL(ρk) + zLρk ∼ zLρk, (17)

where we ignore the O(lµ) term in the final step. Then by (17) and (16), we obtain

ρk(t+ δt)− ρk(t)

δt
=
Ak
δt

∑
1≤|i−k|≤L

[
ρi
Ai

1

zl|i− k|µ
− δt ρi
|i− k|µzL

− ρk
Ak

1

zL|i− k|µ

]

− Ak
δt

∑
1≤|i−k|≤L

[
ρi

|i− k|µ
L(Ai)l

µ

A2
i z

2
L

− ρiLAi
Aiz2

L|i− k|µ
lµδt

]
+ Γ

∼ Ak
δt

∑
1≤|i−k|≤L

[
ρi
Ai
− ρk

Ak

|i− k|µzL
− ρi
|i− k|µ

L(Ai)l
µ

A2
i z

2
L

− δt ρi
|i− k|µzL

]
+ Γ

∼ lµ

zLδt

[
AkL

(
ρk
Ak

)
− ρkL(Ak)

Ak

]
−Akρk + Γ,

(18)

where, at the second step, we ignore the O(lµδt) terms in the summation. We also observe
that

L(Ak) =
∑
j∈Z

1≤|j−k|≤L

Aj −Ak
(|j − k|l)µ

=
1

l

∑
j∈Z

1≤|j−k|≤L

Aj −Ak
(|j − k|l)µ

l. (19)

We make the following changes of variable

x = kl, yj = jl, Aj = A(yj), Ak = A(x).

Then the right hand side of (19) can be regarded as a midpoint Riemann sum on the interval
defined as follows:

I :=

[
x− (L+

1

2
)l, x− 1

2
l

]
∪
[
x+

1

2
l, x+ (L+

1

2
)l

]
. (20)
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Hence, (19) implies

L(Ak) ∼ 1

l

∫
M

A(y)−A(x)

|y − x|µ
dy, (21)

lµ

zLδt
L(Ak) =

lµ−1

zLδt

∫
M

A(y)−A(x)

|y − x|µ
dy.

As l converges to 0, the integration is local at x, and we can apply Taylor expansion at x
on the integrand to obtain

lµ

zLδt
L(Ak) =

lµ−1

zLδt

∫
M

|y − x|−µ
[
Ax(x)(y − x) +Axx(x)

(y − x)2

2
+O((y − x)3)

]
dy

∼ lµ−1

zLδt

[∫
M

Ax(x)(y − x)

|y − x|µ
dy +

∫
M

Axx(x)(y − x)2

2|y − x|µ
dy

]
=
lµ−1

zLδt

∫ x+(L+ 1
2 )l

x+ 1
2 l

|y − x|2−µAxx(x)dy

=
l2

zLδt(3− µ)

[
(L+

1

2
)3−µ − (

1

2
)3−µ

]
Axx(x),

(22)

where, at the second step, we ignore the O((y − x)3−µ) terms, since |y − x| � 1 and µ < 3.
Applying (22) to (18), we obtain

ρt =
l2

δtzL(3− µ)

[
(L+

1

2
)3−µ − (

1

2
)3−µ

] [
A(

ρ

A
)xx −

ρ

A
Axx

]
−Aρ+ Γ. (23)

To simplify the expressions, we reparametrize (23) as follows:

A = Āω, ρ =
ρ̄ω

θ
, t =

t̄

ω
, η̄ =

l2η

2δtω
.

This together with (10) and (23) implies (we drop the bars for now)

At = ηAxx −A+ α+Aρ, (24)

ρt = D
[
A(

ρ

A
)xx −

ρ

A
Axx

]
−Aρ+ β, (25)

where

D =
l2

ωδtzL(3− µ)

[
(L+

1

2
)3−µ − (

1

2
)3−µ

]
, α =

A0

ω
, β =

Γθ

ω2
. (26)

2.4 Numerical Simulations

To verify the derivation of the continuum limit, we compare the solutions of the discrete
model (5) and (9), and the continuum limit (24) and (25) numerically. For the discrete
model, we use the grid points xi, i = 1, 2, · · · , 60 with xi− xi−1 = 1/60. For the continuum
system we consider the computational domain x ∈ [0, 1] with ∆x = 1/60, ∆t = 1/3600. We
use forward Euler method for time discretizations and spectral method for space derivatives.
Periodic boundary conditions are implemented in both cases.

For the sake of computation for the continuum limit, we assume periodic boundary
conditions for the solution. Therefore, we also apply the periodic boundary condition to the
discrete model.
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(f) t = 200

Figure 1: Simulations of biased truncated Lévy flight when µ = 2.5, l = 1/60, δt = 0.01,
and the speed limit L is 9. The solid curve represents the continuum limit, and the dots
represent the discrete model. The initial conditions are taken to be A0 = 1 − 0.5 cos(4πx)
and ρ = 1. Other relevant parameters are: η = 0.1, Γ = 0.3, ω = 1

Figure 1 shows a comparison between our numerical simulations for the discrete and con-
tinuum models. We can observe a great agreement even at the boundary. However, periodic
boundary condition is not so realistic (incorporating more realistic boundary conditions for
the continuum model is discussed in [24]). Eventually, we observe a steady state with two
hotspots for both models when time gets large.

Figure 2 compares the steady states of our models when the speed limit L is set to be
distinct values, and Figure 3 compares the steady states for different values of µ. We see
that the models fit one another fairly well for a large range of L and µ, providing numerical
validity for our continuum model.

2.5 Linear Stability Analysis

To analyze the long-term behavior of the model, we perform a linear Turing stability analysis
on (24) and (25) around the homogeneous steady state

Ā = α+ β, ρ̄ =
β

α+ β
. (27)

We perturb the steady state as follows

A(x, t) = Ā+ δAe
λteikx, ρ(x, t) = ρ̄+ δρe

λteikx. (28)

9



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

A

↓ρ
↓

(a) L = 3l

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

A

↓
ρ
↓

(b) L = 18l

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

A

↓
ρ
↓

(c) L = 27l

Figure 2: Comparisons of the steady state obtained using different L. All parameters are
the same as in Figure 1 except L. The shots are taken at t = 200.
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(c) µ = 2.5

Figure 3: Comparisons of the steady state obtained using different µ. All parameters are
the same as in Figure 1 except µ. The shots are taken at t = 200.

Substituting (28) into (24) and (25), we obtain[
−η|k|2 − 1 + ρ̄ Ā

2ρ̄
Ā
D|k|2 − ρ̄ −D|k|2 − Ā

] [
δA
δρ

]
= σ

[
δA
δρ

]
(29)

A detailed derivation of (29) can be found in the appendix. Furthermore, by analyzing (29),
we obtain the following theorem characterizing the necessary and sufficient condition for the
system to be unstable around the homogeneous steady state.

Theorem 2.1. When ρ̄ < 1/3, the homogeneous equilibrium in (27) is stable. When ρ̄ >
1/3, then the equilibrium is unstable if and only if Ā < Ā∗, where

Ā∗ = Dη−1(
√

3ρ̄− 1)2. (30)

A proof of Theorem 2.1 can be found in the appendix.

2.6 Comparison with Previous Models

Now we compare the Truncated Lévy Flight Model with the Random Walk Model and the
Lévy Flight Model. The equations for the attractiveness field are the same for all three
models, and all the differences lie in the equations for the density of criminals.
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2.6.1 Comparison with the Random Walk Model

We recall that the continuum limit in [19] for the criminal density in the one-dimensional
Random Walk Model is as follows:

ρt = D1

[
A(

ρ

A
)xx −

ρ

A
Axx

]
−Aρ+ β, (31)

where

D1 =
l2

2ωδt
. (32)

Comparing (25) and (31), we observe that they are the same except that D does not
equal D1. On the one hand, when L is large, the difference is prominent as is shown in
figure 4. On the other hand, when L = 1, i.e., the criminals can move at most one grid in a
single time step, which is exactly the same as the discrete Random Walk Model. Then we
see that the solutions to (31) is close to the solutions to (25). Indeed, we have that D ≈ D1

when L = 1 and µ ∈ (1, 3) as shown in Figure 4. Thus, we can consider the Random Walk
Model as a special case of our truncated Lévy flight when L = 1.

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L

 

 

D

mu=1.5

mu=2

mu=2.5

Figure 4: Comparisons of D (26) and D1 (32) as a function of L with different µ’s. The
related coefficients are those in Figure 1.
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2.6.2 Comparison with the Lévy Flight Model

The continuum limit in [4] for the criminal density in the one-dimensional Lévy Flight Model
is

ρt = D2

[
A∆s ρ

A
− ρ

A
∆sA

]
−Aρ+ β, (33)

where

D2 =
l2s

δt

π1/22−2s|Γ(−s)|
zΓ(s+ 1

2 )ω
, s =

µ− 1

2
, z = 2

∞∑
n=1

1

nµ
.

Notice that we have the fractional Laplace operator in (33), which is non-local. However,
when L gets larger, the solution of the continuum truncated Lévy flight is closer to the
solution of the continuum Lévy Flight Model, as is shown in figure 5.

2.6.3 Comparing the Solutions of the Three Models

As shown in Figure 5, the dynamics of the criminals in the Random Walk Model, Lévy
Flight Model, and Truncated Lévy Flight Model are significantly different with identical
initial conditions when µ = 2.5 and L 6= 1. In LFM and TLFM, the criminals are more
concentrated around the hotspots than in RWM, probably because the longer jumps in
the Lévy flight allow criminals to aggregate on a hotspot more quickly. Moreover, LFM
has more concentrated hotspots than the TLFM. Also, as mentioned above, we notice that
when L = 1, the solution of TLFM behaves the same as the solution of RWM. However,
as L increases to infinity, the truncated Lévy flight behaves more like a untruncated Lévy
flight.

3 Modeling the Effects of Police Patrol

3.1 Criminological Background

The Random Walk Model has been generalized to model the effects of police activity as in
[11]. Here, we will extend our truncated Lévy Flight Model to incorporate the effects of the
law enforcement. Let ψk(t) denote the number of officers at site k time t. As in [11], we
introduce a new variable representing the attractiveness in the presence of police officers:

Ãk(t) := e−χψk(t)Ak(t),

where χ is a given constant measuring police efficiency. In the discrete model, the relative
weight of a criminal moving from i to k becomes

wi→k =

{
Ãs

lµ|i−k|µ , 1 ≤ |i− k| ≤ L,
0, otherwise.

(34)

Thus, the movement of criminals now obeys the following rule:

ρk(t+ δt) =
∑

1≤|i−k|≤L

ρi(1− Ãiδt)qi→k + Γδt. (35)

The evolution of Bk(t) becomes

Bk(t+ δt) =
[
(1− η)Bk(t) +

η

2
(Bk−1 +Bk+1)

]
(1− ωδt) + δtÃkρkθ. (36)
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Figure 5: Comparing solutions of the Truncated Lévy Flight Model (with speed limit L =
1, 5, and 10), the Random Walk Model, and the Lévy Flight Model of the criminals when
t = 10. The parameters and initial conditions are the same as in Figure 1.

Now the continuum limit for the evolution of A and ρ becomes

At = ηAxx −A+ α+ Ãρ, (37)

ρt = D

[
Ã(

ρ

Ã
)xx −

ρ

Ã
Ãxx

]
− Ãρ+ β. (38)

Notice that in this model, the patrolling officers never arrest criminals, in accordance with
the setting in [11]. Instead, the officers decrease the total number of burglary events by
affecting the environment, that is, affecting Ã. We will discuss this effect in detail in the
next section.

3.2 Dynamics of the Police

We assume that the total number of police officers is constant. This assumption reflects the
reality that police departments have limited resources. Here we discuss the one dimensional
case. We will propose a few applicable strategies for the police and compare the effectiveness
of these strategies.

3.2.1 Random Walk

An unbiased random walk is perhaps the simplest strategy to implement. In each step, a
police officer either moves one step to the left or to the right with equal probability. Thus,
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the evolution of the number of officers satisfies the following relation:

ψk(t+ δt) =
1

2
(ψk−1(t) + ψk+1(t)). (39)

The continuum limit as l and δt both converge to 0 for the above equation is then as follows

ψt =
l2

2δt
ψxx, (40)

which is exactly the master equation for a standard Brownian motion. An obvious disad-
vantage of random walk is then clear: the spacial distribution of police will become nearly
uniform in the long run. In other words, random walk does not give enough protection to
important locations.

Figure 6 shows the effect of the unbiased random walk. We observe that random walking
police reduce average site attractiveness. They do not however reduce hotspot activity.

This is consistent with the empirical evidence in [11]. Therefore, we will treat the random
walk strategy as a “control group”, and introduce two more effective strategies.
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Figure 6: The comparison of the discrete model and its continuum limit when the criminals
follow a truncated Lévy flight and the police follow an unbiased random walk. The green
curve and dots represent officers in the continuum and discrete model respectively. The
parameters for the criminal are the same as in Figure 1. The initial conditions for the police
are ψ = 1/3. Also we set χ = 8

3.2.2 Biased Random Walk

We hope that the police can be attracted to criminal hotspots, so we make the strategy of
the police biased towards the same attractiveness as criminals. Then the discrete evolution
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equation for the police adopting a random walk biased towards the hotspots can be written
as

ψk(t+ δt) =
Ak

Ak +Ak−2
ψk−1(t) +

Ak
Ak +Ak+2

ψk+1(t). (41)

The corresponding continuum limit is then

ψt =
l2

2δt

[
A(
ψ

A
)xx −

ψ

A
Axx

]
. (42)

This strategy is also studied in [23], and is referred to as “cops on the dots”.
The effect of this strategy is shown in Figure 7. We observe that the long-term distri-

bution of the police officers generally corresponds to that of the attractiveness. Also, the
average value of ρ is lower and approaches a steady state faster than in the case when police
follow an unbiased random walk.
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Figure 7: The comparison of the discrete model and its continuum limit when the criminals
follow a truncated Lévy flight and the police follow a biased random walk. The parameters
are the same as in Figure 6.

3.2.3 Biased Truncated Lévy Flight

As we have discussed in the introduction, a truncated Lévy flight reasonably approximates
the dynamics of the criminals. The police, naturally, can also choose a truncated Lévy flight
as a patrol strategy. The discrete dynamics of the police taking a biased truncated Lévy
flight is as follows

ψk(t+ δt) =
∑
|i−k|≤L

ψi(t)qi→k(t), (43)
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where
qi→k =

wi→k∑
j wi→j

, (44)

and

wi→k =

{
Ak

lµ|i−k|µ , 1 ≤ |i− k| ≤ L,
0, otherwise.

(45)

We set the patrolling strategy of the police to have the attractiveness field Ak so that they
are biased towards the crime hotspots. Also, the police and the criminals share the same
parameters µ and L in the underlying Lévy power law, reflecting the reality that all modes
of transport available to criminals are also available to police. Moreover, this strategy is
easy to deploy, since the police only need to move up to L steps in δt.

We derive the continuum limit for this case in the same way as in Section 2.3, and obtain

ψt = D

[
A

(
ψ

A

)
xx

− ψ

A
Axx

]
. (46)

We note that the above continuum limit does not have the linear terms, −Aρ+ β, as in
(25), because the number of police officers should be conserved.

We simulate this case in Figure 8. Comparing Figure 8 and Figure 7, we see that there
is not much qualitative difference between the two steady states. To address the difference
between the two strategies, we will examine the quantitative difference of the total number
of crimes in a given time period closely in the next subsection.
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Figure 8: The comparison of the discrete model and its continuum limit when the criminals
follow a truncated Lévy flight and the police also follow a biased truncated Lévy flight. The
parameters are the same as in Figure 6.
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3.3 Evaluation of Different Patrol Strategies

In this section, we will evaluate the effectiveness of each patrolling strategy quantitatively.
The expectation of total number of burglary events, which we denote as S, is naturally
a good measure of the effectiveness. Recall that Ek(t), the number of burglary events at
location k in the time interval (t, t+δt), has expectation Ãk(t)ρk(t)δt. Then the total number
of burglary events until time T has expectation

∑
k

∑
t<T Ãk(t)ρk(t)δt. When we take the

continuum limit as t and l converge to 0, the previous double sum is approximated by a
double integral, which we define as S:

S(T ) =

∫ T

0

∫
M
Ã(x, t)ρ(x, t)dxdt, (47)

where M is our spacial domain. In practice, the domain M is bounded, thus has a finite
measure. Furthermore, we define the instantaneous crime rate R(t) at time t as

R(t) :=
∂S

∂t
(t) =

∫
M
Ã(x, t)ρ(x, t)dx. (48)

Police Pattern S(5) Improvement 1 Improvement 2
No Police 13874 - -

Random Walk 9316.6 32.85% -
Biased Random Walk 9124.6 34.23% 2.06%

Biased Truncated Lévy Flight 8750.0 36.93% 18.16%

Table 1: The expectation of total number of burglary events S before time T = 5 when
the cops follow different patterns using the parameters and initial conditions in Figure 5.
Improvement 1 shows the corresponding improvement compares to the situation without
cops, and improvement 2 compares to situation when cops choose unbiased random walk.
The initial condition in this case simulates the situation that there are two major regions
of high attractiveness to the criminals.

Police Pattern S(5) Improvement 1 Improvement 2
No Police 13827 - -

Random Walk 9890.1 28.47% -
Biased Random Walk 9269.0 32.96% 6.28%

Biased Truncated Lévy Flight 8836.8.0 36.09% 10.65%

Table 2: The expectation of total number of burglary events S before time T = 5 when the
cops follow different patterns with the same parameters and initial conditions as in Table 1,
except that A0 = 1− 0.5 cos(8πx), and ρ = 1− 0.3 cos(8πx). In this case, there are initially
four regions of high attractiveness. We observe that the biased truncated Lévy flight is still
the best strategy among the three.
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Figure 9: The plot of R(t). The initial conditions are A0 = 1 − 0.5 cos(4πx), ρ = 1 −
0.3 cos(4πx), and ψ = 1/3 sin(πx).

3.3.1 Steady State Crime Rate

We observe that, the crime rate in our model, regardless of hotspot activity, will approach
a constant which equals to the rate of criminals entering the system.

Theorem 3.1. We assume periodic boundary conditions with (24) and (25) on the spacial
domain M. If (24) and (25) is in a steady state, then the crime rate within the system is
equal to β|M|, where |M| is the measure of M.

Proof. We integrate (38) over the domain M, and obtain

d

dt

∫
M
ρ =

∫
M
ρt =

∫
M
D

[
Ã

(
ρ

Ã

)
xx

− ρ

Ã
Ãxx

]
− Ãρ+ βdx

=

[
Ã(

ρ

Ã
)x −

ρ

Ã
Ãx

] ∣∣∣∣
M
−
∫
M

(Ãρ− β)dx.

(49)

With periodic boundary conditions on M, we have

d

dt

∫
M
ρ = β|M| −

∫
M
Ãρ = β|M| −R. (50)
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Police Pattern S(5) Improvement 1 Improvement 2
No Police 13758 - -

Random Walk 10006 27.27% -
Biased Random Walk 9227.1 32.93% 7.78%

Biased Truncated Lévy Flight 8489.5 38.29% 15.16%

Table 3: The expectation of total number of burglary events S before time T = 5 when the
cops follow different patterns using the same parameters and initial conditions as in Table
1, except that A0 = 1 − 0.5 cos(16πx), and ρ = 1 − 0.3 cos(16πx), i.e. there are initially
eight regions of high attractiveness, even more hotspots than before. We observe that the
biased truncated Lévy flight is again the best strategy among the three.

When the system is at a steady state, we have

d

dt

∫
M
ρ = 0.

It follows that
R(t) = β|M|. (51)

This implies that the crime rate will eventually converge to a constant. As a result,
we shall only focus on the effect of patrol before the crime rate getting close enough to
this constant rate. Furthermore, we notice that when T ≥ 5, with a set of chosen initial
conditions and parameters, the crime rate is always within 5% difference compared with
the steady state crime rate. In other words, significant difference of crime rates only arise
within the time interval T ∈ [0, 5). Therefore, we only need to compare S(5) to measure the
effects of different strategies. We find that, as shown in Table 1, 2 and 3, the police reduce
the total number of crimes most effectively when they choose biased truncated Levy flight.
We set certain cosine functions as the initial conditions for A0, ρ and ψ in order to simulate
different cases with different number of crime hotspots initially. We see that regardless of
the number of hotspots initially, the biased truncated Lévy flight tends to outperform the
biased random walk and the unbiased random walk.
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3.4 Simulations in Two Dimension

To get a better understanding of how different strategies behave in the real life phenomena,
we now show the discrete simulations in the two dimensional domain, that is, we extend the
discrete models discussed in section 3.2 and 3.3 to the two dimensional case. We discretize
the domain, and define the distance between two grid points as their Euclidean distance.
Then, we create dynamics arrays crpos and polpos to store the locations of criminals and
polices. In addition, we create arrays A,B,ψ to represent A,B, and the density of polices,
and 2D arrays A2D, B2D to represent A and B in the 2D space. In addition, we use array E
to represent the number of crimes committed at each spot at each time step. At each time
step a specific person (a criminal or a police officer) will make his or her own decision based
on our discrete formulation as described in (5), (9), (39), (41), and (43). The algorithm is
outlined as follows

program 2D Simulation

input n, ∆t number of criminals Nc, number of the police Np, initial attrac-
tiveness A0(xi), and model parameters L, µ, η, ω, β, χ

for tk = 1 : (t/δt)

Initialize E to be 0.

Calculate the probability of a criminal committing a crime at each spot.

for i = 1 : Nc

Determine whether the ith criminal will commit a crime based on its
location and a random number we generate.

If it commits a crime, update E.

Otherwise, determine where it goes following a biased truncated Lévy
flight.

Update crpos.

end

for i = 1 : Np

Determine where the ith police will go based on the strategy of the
police.

Update polpos.

end

Update ψ based on polpos.

Update A,B based on E and ψ.

end

end 2D Simulation
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(a) No Police (b) Random Walk

(c) Biased Random Walk (d) Biased Truncated Lévy Flight

Figure 10: The simulations in two dimension when the police follow different strategies as
shown in (a)-(d). The color represents the attractiveness of certain spots. We set the main
parameters to be µ = 2.5, l = 1/60, δt = 0.01, and the speed limit is L = 9. Also, we
let ω = 1/15, θ = 1, and η = 0.03. For the initial condition, we set A0 ≡ 1/30 and 1000
criminals and 500 polices randomly distributed on the 3600 grids. We run the simulations
for 1000 steps.

To simulate this stochastic process, we use the Monte Carlo method. Figure 10 shows
the result of the simulations. We observe that the police reduce the attractiveness most
effectively when they adopt the biased truncated Lévy flight. From this observation, we
infer via equation (48) that the biased truncated Lévy flight reduces crime rate better than
other strategies. Also, a biased random walk strategy is better than an unbiased random
walk strategy. These results agree with the corresponding results in the one-dimension
model.

4 Discussion

The Truncated Lévy Flight Model generalizes both the Random Walk Model and the Lévy
Flight Model in the following sense. Firstly, the discrete biased random walk is a special
case of the discrete biased truncated Lévy flight when L = 1. Meanwhile, the continuum
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limit of RWM matches the continuum limit of TLFM. Secondly, as L → ∞, the discrete
truncated Lévy Flight Model approaches closely to the discrete Lévy Flight Model, while
the solutions of the continuum truncated Lévy flight behaves similarly to the solutions of
the continuum Lévy flight as in Figure 4.

We then consider the effects of police patrol assuming that the criminals follow a trun-
cated Lévy flight. We select the three executable strategies: an unbiased random walk, a
biased random walk, and a biased truncated Lévy flight. The results in Section 3.3 show
that, with spatially non-uniform initial conditions, the most effective strategy among the
three is the biased truncated Lévy flight. Although in this paper, we only focus on the three
strategies mentioned above, we hope to find a better executable strategy for the police in
the future.

As we have simulated the dynamics of police and criminals in a two-dimensional domain,
a future work will be to generalize all our results to the two-dimensional case for the deriva-
tion of the continuum limit. Also, in order to further analyze the effect of police patrol, we
hope to introduce a term to allow criminals leaving the system without committing a crime
with the appearance of the police .

5 Appendix

We first show a detailed derivation for (29). Recall that in Section 2.5, we want to examine
the behavior of solutions of the form

A(x, t) = Ā+ δAe
σteikx, (52)

ρ(x, t) = ρ̄+ δρe
σteikx. (53)

Substituting the solutions into (25), we obtain

−η|k|2δAeσteikx − Ā+A0 − δAeσteikx + (Ā+ δAe
σteikx)(ρ̄+ δρe

σteikx) = σδAe
σteikx,

− η|k|2δA − δA + ρ̄δA + Āδρ + δAδρe
σteikx = σδA. (54)

We rewrite (54) in the matrix form, ignoring the second order term δAδρe
σteikx, and obtain

[
−η|k|2 − 1 + ρ̄ Ā

] [δA
δρ

]
= σδA (55)

Similarly for ρ, from (53), we derive the the corresponding matrix equation as follows

[
− 2ρ̄
AD|k|

2 − ρ̄ −D|k|2 − Ā
] [δA
δρ

]
= σδρ (56)

Combining (55) and (56), we thus obtain (29).
Now we provide a proof for Theorem 2.1.

Proof of Theorem 2.1. To solve the eigenvalue problem (29), we first rewrite (29) as[
−η|k|2 − 1 + ρ̄− σ Ā

2ρ̄
Ā
D|k|2 − ρ̄ −D|k|2 − Ā− σ

] [
δA
δρ

]
= 0 (57)
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By setting the determinant of the square matrix in the left hand side of (57) to be zero, we
obtain

σ2 − τσ + δ = 0, (58)

where

τ = −D|k|2 − η|k|2 − Ā− 1 + ρ̄, (59)

δ = D|k|2(η|k|2 + 1− 3ρ̄) + η|k|2Ā+ Ā. (60)

We know that the equilibrium is stable if and only if both solutions to (58) have negative
real parts. Since α, β > 0, and thus Ā > 0, 0 < ρ̄ < 1, we observe that τ ≤ 0. Therefore,
the equilibrium is stable if and only if δ > 0. We then observe that if ρ̄ < 1/3, then δ > 0.
It follows that the equilibrium is stable when ρ̄ < 1/3.

Now we consider the case when ρ̄ > 1/3. Since the equilibrium is unstable if and only if
δ < 0, from (60) we rewrite the condition δ < 0 equivalently as

Ā < D|k|2
(
− 1 +

3ρ̄

η|k|2 + 1

)
,∀k. (61)

We set x = η|k|2. From (61), we obtain

Ā < Ā∗ = max
x≥0

[Dη−1x

(
− 1 +

3ρ̄

x+ 1

)
]. (62)

We then calculate the right-hand side of (62) by setting the derivative of the correspond-
ing function equal to zero, and we obtain

Dη−1x
−3ρ̄

(x+ 1)2
+Dη−1(−1 +

3ρ̄

x+ 1
) = 0,

x2 + 2x+ 1− 3ρ̄ = 0. (63)

The positive root of (63) is x = −1 +
√

3ρ̄ (recall that ρ̄ > 1
3 ), which we substitute into

(62) and obtain

Ā < Ā∗ = Dη−1(−1 +
√

3ρ̄)2, (64)

which serves as the stability condition as in (30).
To conclude, when ρ̄ < 1/3, the equilibrium is stable. When ρ̄ > 1/3, the equilibrium is

unstable if and only if (64) is satisfied.
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