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1 Introduction 
This paper discusses important developments in discrete choice modeling for 

transportation applications. Since there have been a number of excellent recent surveys 

of the discrete choice literature aimed at transportation applications ( see Bhat, 1997 and 

2000a), this paper will concentrate on new developments and areas given less weight in 

recent surveys. Small and Winston (1999) give an excellent review of the transportation 

demand literature that includes many examples of how discrete choice models have been 

used in demand analysis. 

Discrete choice modeling is closely related to activity-based modeling of travel demand 

and duration modeling. Since I have little to add to the excellent recent surveys on these 

topics by Bhat (2000b) and Bhat and Koppelman (2000), I have restricted this paper to 

"pure" unordered discrete choice modeling. 

The next section discusses recent developments in flexible discrete choice modeling. 

Note that I define flexible to mean that the parametric model family is rich enough to 

arbitrarily approximate any discrete choice process consistent with random utility 

maximization, and I concentrate on the mixed logit model. There is also a relatively new 

literature which seeks to estimate discrete choice models without making parametric 

functional form assumptions (see Savin, 2001, Horowitz, 1998, and Koop and Poirier, 

2000 for a Bayesian approach). Since this literature is currently limited to binary discrete 

choice, I have not included it in this paper. 

Although the flexible discrete choice models discussed in Section 2 have improved our 

ability to estimate realistic disaggregate transportation models, there are still difficult 

problems with inference and model selection. Section 3 argues that these problems can 

only be solved by adopting a Bayesian perspective, and it reviews Bayesian discrete 

choice modeling. Measurement error in either the dependent or independent variables 

causes serious problems for discrete choice modeling. Multiple imputations is a new 

general technique for dealing with measurement error, and it is described in Section 4. 
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Measurement error in transportation demand models is typically caused by imputing key 

travel time and cost variables from network models. The example in Section 4 shows 

how multiple imputations can be used to correct for this type of measurement error when 

a small validation study is available to model the measurement error process. 

Almost all transportation demand surveys are stratified on mode choice, since it is 

typically very expensive to collect a simple random sample with sufficient observations 

taking each mode. This choice-based sampling causes few problems for estimating the 

conditional logit model, but may be a serious problem for the more flexible models 

discussed in Section 2. Section 5 reviews the difficulties caused by choice-based 

sampling and their current solutions. 

As panel surveys become more common, transportation demand analysts are going to 

need to specify and estimate dynamic discrete choice models. Although formally a 

special case of the flexible models discussed in Section 2, dynamic models have some 

special characteristics that are discussed in Section 6. 

Finally, transportation demand analysts are rarely interested in making inferences about 

the individual parameters in discrete choice models. Typically value of time estimates 

are complicated nonlinear functions of the underlying model parameters. Section 7 

describes simple bootstrap methods for generating valid confidence regions for these 

nonlinear functions. 

2 Flexible Discrete Choice Models 
Since McFadden (1973) pioneered disaggregate discrete choice modeling of travel 

behavior in the 1970s researchers have been concerned about the Independence from 

Irrelevant Alternatives (IIA) property implied by the conditional logit model. Of course, 

the IIA property is also implied by any discrete choice model with independent and 

identically distributed unobserved utility terms. McFadden's Nested Logit (1978) model 

provided a generalization that could handle the types of unobserved error corelations 

frequently encountered in transportation applications. Nested Logit is the most popular 
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member of the wider class of generalized extreme value models. Small ( 1987) derived 

the ordered generalized extreme value model, and Chu (1981) derived the paired 

combinatorial logit model (see also Koppelman and Wen, 2000). 

None of these generalized extreme value models are flexible enough to approximate 

arbitrary discrete choice models, and recent work by Bhat (1998a and b, and 1999) and 

Brownstone and Train (1999) have demonstrated cases where Nested Logit is not 

sufficiently flexible to model travel behavior. The only models that are flexible enough 

to approximate any discrete choice model are Multinomial Probit and Mixed Logit. I will 

discuss Multinomial Pro bit in Section 3, since most of the interesting new developments 

are Bayesian. 

At the last IA TBR meetings in Austin there was considerable "buzz" about mixed logit 

models, and Section 2.1 reviews current developments. Although there have been some 

new applications from new investigators (Calfee, et. al., 1998, and Hensher, 2000), most 

of the recent work on mixed logit has come from the same authors cited in Bhat (1997). 

One practical problem with mixed logit is that the initial software packages were 

computationally slow. This problem has been substantially improved by the application 

of powerful new methods for drawing "pseudo-random" numbers. These new numerical 

techniques (see Section 2.2) are also useful for simulated moment or simulated likelihood 

estimators for probit models, but so far they have only been implemented for mixed logit 

models. 

The most fundamental problem with applying flexible discrete choice models is the 

difficulty of identifying error correlations from discrete choice data. Massive amounts of 

data are required to accurately estimate all but the simplest departures from IIA. It is 

therefore not surprising that all applications impose many restrictions (such as those 

implied by simple nesting or error component structures) on unobserved error 

correlations. For many practitioners, the only practical impact of flexible models is to 

justify various specification tests for the IIA assumption. The lagrange multiplier tests 
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for mixed logit models described below in Section 2.1 represent an important 

improvement over earlier tests. 

Flexible models are particularly important for forecasting demand. Average coefficient 

values, which are all that is needed for value of time or willingness to pay estimation, are 

typically unchanged from MNL estimates. Brownstone and Train ( 1999) and 

Brownstone, et. al. (2000) give a number of examples where mixed logit showed 

substantial departures from IIA, but the average willingness to pay estimates were very 

similar to those obtained from misspecified conditional logit models. However, the 

mixed lo git forecasts of market shares for new alternatives were very different from the 

conditional logit forecasts. 

2.1 Mixed Logit Models 

A person faces a choice among J alternatives, which will be modeled using a random 

utility framework. I assume that the person's utility from any alternative can be 

decomposed into a nonstochastic, linear-in-parameters part that depends on observed 

data, a stochastic part that is perhaps correlated over alternatives and heteroskedastic, and 

another stochastic part that is independently, identically distributed over alternatives and 

people. In particular, the utility to person n from alternative i is denoted 

(2.1) 

where Xin is a vector of observed variables relating to alternative i and person n; ~ is a vector 

of structural parameters which characterizes choices by the overall population; 'llin is a 

random term with zero mean whose distribution over people and alternatives depends in 

general on underlying parameters and observed data relating to alternative i and person n; 

and Ein is a random term with zero mean that is independent and identically distributed over 

alternatives and does not depend on underlying parameters or data. For any specific 

modeling context, the variance of Em may not be identified separately from ~' so it is 

normalized to set the scale of utility. 
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Stacking the utilities, we have: U = ptX+[11+c] where V( £)=al with known (i.e., 

normalized) a and V(11) is general and can depend on underlying parameters and data. For 

the standard conditional logit model, each element of£ is independent and identically 

distributed extreme value, and, more importantly, 11 is zero, such that the unobserved portion 

of utility (i.e., the term in brackets) is independent over alternatives. Taken together, these 

assumptions give rise to the IIA property and its restrictive substitution patterns. 

The Mixed Lo git class of models assumes a general distribution for 11 and an iid extreme 

value distribution for £. Denote the density of 11 by f( 11 IQ) where Q are the fixed parameters 

of the distribution. (The density f may also depend upon explanatory data for people and 

alternatives, but in what follows this is suppressed for notational convenience.) For a given 

value of 11, the conditional choice probability is simply lo git, since the remaining error term 

is iid extreme value: 

(2.2) 

Since 11 is not given, the (unconditional) choice probability is this logit formula integrated 

over all values of 11 weighted by the density of 11: 

(2.3) 

Models of this form are called "mixed logit" because the choice probability is a mixture of 

logits with fas the mixing distribution. The probabilities do not exhibit IIA, and different 

substitution patterns are attained by appropriate specification off. 

The choice probability cannot be calculated exactly because the integral does not have a 

closed form in general. The integral is approximated through simulation. For a given value 

of the parameters Q, a value of 11 is drawn from its distribution. Using this draw, the logit 
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formula L('ll) is calculated. This process is repeated for many draws, and the average of the 

resulting Li(11)'s is taken as the approximate choice probability: 

(2.4) 

where R is the number ofreplications (i.e., draws of 11), 'llr is the r-th draw, and SPi is the 

simulated probability that the person chooses alternative i. By construction, SPi is an 

unbiased estimate of Pi for any R; its variance decreases as R increases. It is strictly positive 

for any R, so that ln(SPi) is always defined, which is important when using SPi in a log­

likelihood function (as below). It is smooth (i.e., twice differentiable) in parameters and 

variables, which helps in the calculation of elasticities and especially in the numerical search 

for the maximum of the likelihood function. The simulated probabilities sum to one over 

alternatives, which is useful in forecasting. 

The choice probabilities depend on parameters~ and Q, which are to be estimated. Using 

the subscript n to index sampled individuals, and denoting the chosen alternative for each 

person by i, the log-likelihood function Lnln(Pm) is approximated by the simulated log­

likelihood function Inln(SPin) and the estimated parameters are those that maximize the 

simulated log-likelihood function. Lee (1992) derives the asymptotic distribution of the 

maximum simulated likelihood estimator based on smooth probability simulators with the 

number of replications increasing with sample size. Under regularity conditions, the 

estimator is consistent and asymptotically normal. When the number of replications rises 

faster than the square root of the number of observations, the estimator is asymptotically 

equivalent to the maximum likelihood estimator. 

The gradient of the simulated log-likelihood function is simple to calculate, which is 

convenient for implementing the search for the maximum: 
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where dnj = 1 for j=i and zero otherwise. The derivative d'llnr;an depends on the 

specification of 11 and f. Also, if the same parameters enter~ and Q the gradient is adjusted 

accordingly. 

Analytic second derivatives can also be calculated. However, in contrast to the standard 

MNL model with its globally concave log-likelihood function, the inclusion of the Q 

structural parameters removes the guarantee of global concavity, and the Hessian matrix is 

not guaranteed to be positive definite. This creates a more complicated situation for the 

iterative search, e.g., Revelt and Train (1998) found that calculating the Hessian from 

formulas for the second derivatives resulted in computationally slower estimation than using 

the BHHH or other approximate-Hessian procedures. To address this problem, Brownstone 

et. al. (2000) implemented specialized estimation code using the Bunch, Gay, and Welsch 

(1993) optimization software. These methods are more robust, and generally converge in 

many fewer iterations than the more standard numerical procedures (see Bunch, 1988). 

Although the number of iterations makes little practical difference when estimating MNL 

models, this is not longer true when using computationally intensive simulation approaches 

for calculating choice probabilities and gradients. 

Different types of mixed logit models have been used in empirical work; they differ in the 

type of structure that is placed on the model, or, more precisely, in the specification off. 

Train (1995) and Ben-Akiva and Bolduc (1996) specify an error-components structure: Ui = 

Wxi + µ'Zi + £i whereµ is a random vector with zero mean that does not vary over 

alternatives and has density g(µ!Q) with parameters Q; Zj is a vector of observed data related 

to alternative i; and £i is iid extreme value. This is a mixed logit with a particular structure 

for 11, namely, lli=µ'Zj. The terms in µ'Zi are interpreted as error components that induce 

heteroskedasticity and correlation over alternatives in the unobserved portion of utility: 

E([µ'Zi +ci]'[µ':l_j +Ej]) = Zi'Y(µ):l_j. Even if the elements ofµ are uncorrelated such that V(µ) 

is diagonal, the unobserved portion of utility is still correlated over alternatives. 
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In this specification, the choice probabilities are simulated by drawing values ofµ from its 

distribution and calculating 'lli=µ'xi. If as the number of error components (i.e., the 

dimension ofµ) is smaller than the number of alternatives (the dimension of 11), placing an 

error-components structure on a mixed lo git reduces the dimension of integration and hence 

simulation that is required for calculating the choice probabilities. 

Different patterns of correlation, and hence different substitution patterns, are obtained 

through appropriate specification of Zj and g. For example, an analog to nested logit is 

obtained by specifying Zj as a vector of dummy variables -- one for each nest taking the 

value of 1 if i is in the nest and zero otherwise -- with V(µ) being diagonal (thereby 

providing an independent error component associated with each nest, such that there is 

correlation in unobserved utility within each nest but not across nests). Restricting V(µ)=crI 

is analogous to restricting the log-sum coefficients in a nested logit model to be the same for 

all nests. Importantly, McFadden and Train (1998) have shown that any random utility 

model can be approximated by a mixed logit with an error-components structure and 

appropriate choice of the Zj
1
S and g. 

Most recent empirical work with mixed logits has been motivated by a random-parameters, 

or random-coefficients, specification (Bhat, 1998a and b; Mehndiratti, 1996; Revelt and 

Train, 1998; Train 1998). The difference between a random-parameters and an error­

components specification is entirely interpretation. In the random-parameters specification, 

the utility from alternative i is Ui = b'xi + Ei where coefficients bare random with mean p 
and deviationsµ. Then Ui = ptxi + [µ'xi +Ei], which is an error-components structure with z 

= x. Elements of x that do not enter z can be considered variables whose coefficients do not 

vary in the population. And elements of z that do not enter x can be considered variables 

whose coefficients vary in the population but with zero means. In different contexts one or 

the other interpretation will seem more natural. 

McFadden and Train (1998) also give Lagrange Multiplier tests for the presence of 

significant random error components in conditional logit models. These tests work by 

constructing artificial variables: 
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(2.6) 

and ½n is the conditional logit choice probability. The conditional logit model is then re­

estimated including these artificial variables, and the null hypothesis of no random 

coefficients on attributes xis rejected if the coefficients of the artificial variables are 

significantly different from zero. The actual test for the joint significance of the z variables 

can be carried out using either a Wald or Likelihood Ratio test statistic. 

These Lagrange Multiplier tests can be easily carried out in any software package that 

estimates the conditional logit model. Our experience with these tests shows that they are 

easy to calculate and appear to be quite powerful omnibus tests. However, they are not as 

good for identifying which error components to include in a more general mixed logit 

specification. These Lagrange Multiplier tests also provide an alternative to standard Nested 

Lo git specification tests that require estimating the model on a subset of the alternatives. In 

practice this frequently results in using only a small portion of the data, and this will lead to 

poor power properties. The Lagrange Multiplier tests are computed over the full set of 

alternatives and observations. 

2.2 Low-dispersion sequences 

Computation of mixed logit choice probabilities in equation (2.3) typically requires 

Monte Carlo integration as in equation (2.4). Similar issues also arise in computing 

choice probabilities for multinomial probit models. The basic ingredient in this 

computation is the generation of "pseudo-random sequences" that are intended to mimic 

independent draws from a uniform distribution on the unit interval. Although these 

pseudo-random sequences cannot be distinguished from draws from a uniform 

distribution, they are not spread uniformly over the unit interval. Bhat (2000c) proposes 

replacing these pseudo-random sequences with sequences constructed from number 

theory to be more uniformly spread over the unit interval. 
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Figure 1 1000 Draws on the Unit Square (from Bhat (2000c)) 
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These sequences, called low-dispersion sequences by mathematicians, yield much more 

accurate approximations in Monte Carlo integration relative to standard pseudo-random 

sequences. The reason for the superior performance of these sequences is shown in 

Figure 1. Even with 1000 draws, the pseudo-random sequences leave noticeable holes in 

the unit square, while the Halton sequence used by Bhat gives very uniform coverage. 

Bhat (2000c) gives results from a Monte Carlo study of simulated maximum mixed logit 

models to compare the performance of the Halton sequence and the standard pseudo­

random sequence. For four and five dimension integrals (as used in Brownstone et. al., 

2000) the Halton sequence methods required 125 draws to achieve the same accuracy as 

2000 draws with the standard pseudo-random number sequences. As a result, the 

computation time required to estimate the mixed logit model using Halton sequences was 

10% of the time required for the standard methods. Train (1999) and Revelt and Train 

(1999) have also reported similar large reductions in computation time using Halton 

sequences for mixed logit estimation. 

These results clearly demonstrate the promise of these new numerical methods for 

estimating mixed logit models. Moreover, using these new methods to estimate 

multinomial probit models should result in similar improvements in computational speed 

and accuracy. 

3 Bayesian Models 
Although Bayesian methods are attracting increasing attention (Malakoff, 1999), there 

have been very few Bayesian discrete choice models in transportation. Applied 

researchers in other disciplines are adopting Bayesian techniques because they provide a 

principled approach for incorporating non-sample prior information, and they avoid 

asymptotic approximations. These advantages apply to discrete choice models used in 

transportation research, so this section will argue that transportation researchers should 

adopt Bayesian techniques. 
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There are many examples in transportation research where researchers have useful prior 

information. Mode choice modelers would all agree that the coefficients on travel time 

and price should be negative, and many would agree that the implied value of travel time 

should lie between zero and 150% of the respondent's wage. It is quite difficult to 

impose even simple non-negativity constraints on standard discrete choice model 

estimators, and if these constraints are imposed then non-standard inference procedures 

must be used (see Andrews, 1999). As will be shown later in this section, Bayesian 

methods incorporate prior information in a much simpler fashion. 

A practical reason for slow adoption of Bayesian techniques has been their computational 

difficulty. Until the last decade numerically evaluating the complex integrals in realistic 

discrete choice models has been a daunting task. However the same advances in 

numerical algorithms and computing hardware that has enabled application of flexible 

discrete choice models in Section 2 have also enabled Bayesians to handle very complex 

models. 

3.1 Bayesian versus classical inference 

This section is designed to introduce Bayesian methods and compare them to classical 

methods currently used in applied discrete choice modeling. A good introduction to 

modem Bayesian analysis is Carlin and Louis' (1996) textbook. More details on the 

computational aspects of Bayesian analysis are in Chen, Shao, and Ibrahim (2000). 

Geweke (1999) reviews Bayesian methodology as applied to econometric models, and he 

also describes current software for carrying out Bayesian analysis. 

The key difference between Bayesian and classical statistics is that Bayesians treat 

parameters as random variables. Bayesians are therefore led to summarize their prior 

knowledge about parameters 0 by a prior distribution, n(e). The sampling distribution, 

or likelihood function, is given by J( x I 0). After observing some data, the information 

about 0 is given by the posterior distribution: 
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(BI x)- J(x I 0)n-(0¼' 
p - / f J(x I 0)n-(0)d(0) 

(3.1) 

Note that all inference is based on this posterior distribution. In many circumstances 

(under quadratic loss) the optimal Bayes estimator is the mean of the posterior 

distribution, and Bayesian confidence bands are typically given by the smallest region of 

the posterior distribution with the specified coverage probability. Bayesian confidence 

regions are interpreted as fixed regions containing the random parameter 0 with the 

specified coverage probability ( called Highest Posterior Density regions). This is very 

different from the classical confidence region, which is a region with random endpoints 

that contain the true value 0 with the specified probability over independent repeated 

realizations of the data. Classical inference therefore depends on the distribution of 

unobserved realizations of the data, whereas Bayesian inference conditions on the 

observed data. Bayesian inference is also exact and does not rely on asymptotic 

approximations. 

The Bayesian approach also requires the a priori specification of a prior distribution for 

all of the model parameters. In cases where this prior is summarizing the results of 

previous empirical research, specifying the prior distribution is a useful exercise for 

quantifying previous knowledge. There are many circumstances where the prior 

distribution cannot be fully based on previous empirical work, and the resulting 

specification of prior distributions based on the investigator's subjective beliefs is the 

most controversial part of Bayesian methodology. Poirier (1988) argues that the 

subjective Bayesian approach is the only approach consistent with the usual rational actor 

model adopted by economists and transportation researchers to explain consumers' 

choices under uncertainty. More importantly, the requirement to specify a prior 

distribution enforces intellectual honesty on Bayesian practitioners. All empirical work is 

guided by prior knowledge and the subjective reasons for excluding some variables and 

observations are usually only implicit in the classical framework. Bayesians are therefore 

forced to carry out sensitivity analysis across other reasonable prior distributions to 

convince others that their empirical results are not just reflections of their prior beliefs. 
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The simplicity of the formula defining the posterior distribution hides some difficult 

computational problems. Computing the posterior distribution typically requires 

integrating over 8, and this can be difficult for the number of parameters frequently 

encountered in applied transportation work. Until recently Bayesians solved this problem 

by working with conjugate families. These are a family of prior distributions linked to a 

family of likelihood functions where the posterior distribution is in the same family as the 

prior distribution. For example, the Beta family is a conjugate prior for the binomial with 

fixed number of trials. Koop and Poirier (1993) have developed and applied a conjugate 

prior for the conditional (and multinomial) logit model, but there do not appear to be 

tractable conjugate priors for other GEV discrete choice models. Poirier (1996) shows 

how the prior family he developed for the conditional logit model can be extended to the 

Nested Logit model. 

Poirier's analysis of the Nested Logit model highlights the ease with which Bayesians 

can cope with model uncertainty. For many applications of Nested Logit there are 

competing correlation structures ( commonly associated with "trees"). These competing 

models cannot be nested in a larger Nested Logit model, and applied researchers 

frequently choose a "correct" model with little guidance from the data. The Bayesian 

approach to this problem does not require the choice of a correct model. Inference can be 

carried out unconditional on model choice. Suppose there are M competing models 

indexed by m with likelihood J,,, (x I 8) and prior density p 
111 

( 8). Let rc,
11 

be the prior 

probability that model m is correct. If we define the marginal data density for model m 

by: 

J,Jx) = f J,Jx I e)pm (e)d e (3.2) 

then the posterior probability that model m is correct is given by: 
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(3.3) 

These posterior probabilities might suggest that there is an obvious correct model, but in 

any case the unconditional posterior distribution for 0 is then given by: 

M 

p(01 x) = ~)r1p1 (01 x) (3.4) 
J=l 

In the common case where there is uncertainty about the correct model, then averaging 

over models as in equation (3.4) will almost always yield better results than arbitrary 

choice of a "correct" model. 

Since transportation researchers or econometricians do not commonly use Bayesian 

analysis, it is useful to illustrate the key ideas with a simple concrete example. I will take 

a highly simplified version of the travel time measurement problem discussed in more 

detail in Section 4 of this paper. Suppose we are trying to measure the minutes required 

( ~ to travel on a segment of a highway on a particular day and time. There are loop 

detectors under a few points along this segment, but there are 2 competing algorithms for 

converting the loop detector signals into speeds and travel times. Method 1 's algorithm 

applied to this case can be summarized by a normally distributed prior distribution for 0 

with mean of 6 minutes and variance equal to 1. Method 2 similarly yields a normally 

distributed prior distribution for 0 with mean of 10 minutes and variance equal to 4. To 

resolve these incompatible prior estimates, we conduct a small floating car experiment 

that involves driving 10 cars down the highway. The drivers of these cars use 

stopwatches to record their travel times, and we know from past experience with these 

drivers that the standard deviation of their measurements are equal to 1 and are normally 

distributed. 
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The likelihood function for the n= IO floating car measurements is given by a N(0, a2) 
distribution, and the prior distribution for method i is given by a N(g, v/) distribution. 

Simple algebra shows that resulting posterior distribution is given by a: 

a nv. X nv:- . . . . . 
N a2 g 2 + 2 ' 2 , a2 ' 2 d1stnbut1on. Note that smce the pnor and 

( 

2 2- ? ) 

+nv; a +nv; +nv; 

posterior distributions are both members of the Normal family, the Normal distribution is 

a conjugate prior for itself. The mean of the posterior distribution (which is the optimal 

Bayes point estimate under a squared error loss function) is given by a weighted average 

of the prior mean (µ;) and the maximum likelihood estimate (x). As the sample size (n) 

and/or the prior variance (v/) increases, the posterior mean approaches the maximum 

likelihood estimate. This implies that asymptotically the Bayes estimator is equal to the 

maximum likelihood estimator. Unlike standard asymptotic theory, however, Bayes 

inference is not approximate and gives exact finite sample results. Although I have 

illustrated these properties for this particular example, they apply to all Bayesian models. 

If the sample mean (x) of the floating car measurements is equal to 8, then Figure 2 

shows the prior and posterior distributions for this example. The posterior distribution 

for method 1 is N(7.8, .09) and the posterior distribution for method 2 is N(8.05, .10). 

Although there is very little overlap between the prior distributions in this example, the 

posterior distributions are very close. 

Figure 2 suggests that these data do not allow us to discriminate between the different 

methods for computing speeds from loop detector data. If we start out with equal prior 

probabilities that the two models are correct, then the posterior calculation in equation 

(3 .3) gives a posterior probability of Method 1 being correct of .58. It is clear that more 

data would be required to discriminate between these methods, but if we are only 

interested in estimating 0 from the floating car data it doesn't matter which prior is 

chosen. If we did want to collect more data, then we could just use the posterior 

distributions in Figure 2 as the prior distributions. All of the relevant information from 

the first experiment is contained in the posterior distributions. 
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Figure 2 

1.4 -,-----------------------, 

,/<-~-:~\::\. 

11 \\\ 
0.4-~/.>/ \:::-.... .. 
02 // \". . .,.,'_ •.. ·· ·,,·· .... 

o--- ~--

1.2 -

1 

0.8 

0.6 

--Prior 1 
-·-·-·-·-·-· Posterior 1 
--Prior2 
················ Posterior 2 

4 5 6 7 8 9 10 11 12 

3.2 Bayesian discrete choice models 

This section will concentrate on the multinomial pro bit model ( equation 2.1 with the 

errors 'llin +Ein following a multivariate normal distribution). Koop and Poirier (1993) and 

Poirier (1996) have developed Bayesian methods for the conditional and nested logit 

models, but I believe that most Bayesian applications will use multinomial probit because 

of the computational advantages relative to classical multinomial pro bit analysis and the 

greater flexibility of the multinomial pro bit model. If the latent utilities are observed, 

then the multinomial pro bit model just becomes a system of linear regression equations 

which can easily be analyzed using standard conjugate prior distributions. When the 

latent utilities are not observed, the Bayesian analyst faces the same problem as the 

classical statistician - computing the choice probabilities in high dimensional problems. 

As computers have become more powerful and readily available, Bayesians have used 

simulation methods to calculate posterior distributions in complex problems with many 

parameters. In fact, many of the methods used to simulate likelihood functions and 

choice probabilities for multinomial pro bit and mixed logit models were developed by 

Bayesians. Classical statisticians need simulation to help maximize complex likelihood 

functions, while Bayesians need simulation to calculate complex posterior distributions. 
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As long as there is some way to simulate draws from a posterior distribution, Bayesian 

inference can be carried out as accurately as necessary. The most useful class of these 

simulation algorithms are called Markov Chain Monte Carlo methods. These methods, 

which include the Gibbs sampler described below, have the property that the successive 

draws come from a Markov chain whose stationary distribution is the joint posterior 

distribution. 

McCulloch and Rossi (1994) and Geweke, et. al. (1997) use the Gibbs sampler (Gelfand 

and Smith, 1990) and data augmentation (Tanner and Wong, 1987) to carry out Bayesian 

inference for the multinomial probit model. Albert and Chib (1993) used similar methods 

for binary and ordered choice models. To provide a description of their algorithm in 

generic notation, let U, 0, and Y denote vectors of latent utilities, model parameters 

(including the slope parameters ~ and the covariance parameters in the error distribution), 

and observed choice data (Yif = 1 if Uif = maxk U;k and O otherwise). Let p(0,U I Y) 

denote the joint posterior density function for 0 and U conditional on Y. Suppose there is 

a partition of the parameter vector 0 into B subvectors, 0 = (e(Il , ... , 0cs)), such that the 

conditional posterior densities p(~n I 0Ul' j * i, U, Y) and p(U I 0, Y) are of sufficiently 

simple form that it is practical to draw random subvectors 0ul and U from these 

conditional densities. The Gibbs algorithm starts with an initial value (ecol, u<0l ) , and 

then draws in tum each of the subvectors U, ~ 1),···, e<Bl from the appropriate conditional 

density, conditioned on the most recent values of the remaining parameters. After each 

draw, the corresponding initial value subvector is replaced by the new subvector, until 

after a complete iteration an updated vector (e<1l ,u<1l) is obtained. After the mth iteration 

we obtain the draw (e<ml, u<ml ). Under regularity conditions (see Roberts and Smith, 

1993) the sample of (0, U) draws converges in distribution to the joint posterior 

distribution as m grows larger. Posterior inference on 0 can be carried out using the 

corresponding draws from the Gibbs sampler. In particular, these draws can be used to 

carry out exact inference on the ratios of elements of 0 as required in value of time 

estimation. 
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The Gibbs sampling algorithm works well for multinomial probit since the conditioning 

required to implement the sampler is easy to do with the underlying joint normality of the 

latent utilities and normal prior distribution for 0. Note that the latent variables U are 

added to the problem in the data augmentation step. This makes the conditioning on Yin 

p(t{i) I 0w,i :;t:: i, U, Y) superfluous, so this step just draws from the conditional 

distribution of the utility index parameters e Draws of the latent Ufrom p(U j 0,Y) are 

done by drawing from the conditional distributions of each component of U conditioned 

on the remaining components of U, (1 and Y. Choice probabilities can be recovered by 

numerically integrating over the draws of U from the Gibbs sampler draws. These choice 

probabilities can either be computed for fixed values of 0or averaged over the posterior 

distribution of 8 

Geweke et. al. ( 1997) carried out a Monte Carlo study comparing this Bayesian method 

(using the posterior mean as the point estimator of 0) with classical simulated maximum 

likelihood and simulated method of moments using the GHK probability simulator. They 

found that the Bayesian Gibbs sampler method was more reliable (i.e. did not suffer from 

failure to converge), more accurate (especially for models with high error corelations), 

and required approximately the same computation time. Note that the Bayesian approach 

to multinomial probit does not require numerical optimization. The only way it can fail is 

if the Gibbs sampler doesn't converge to a stable equilibrium. 

Allen by and Rossi ( 1999) have developed a Bayesian version of the mixed pro bit model. 

Although mixed logit is easier to compute in a classical setting, it is much easier to 

implement Gibbs sampling for the mixed probit model. Given the same correlation 

structure, these models are very similar. Using the same notation as in Section 2, Allenby 

and Rossi specify: 

p(TJ;, /3, 0 Ix) oc J(x IT/;, f3)rc(TJ; I 0 )n(e)rc(/3). (3.5) 
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Here J(x I 77;, /3) is the likelihood for an independent probit model, 11; is the random 

effect for observation i, 0 are the parameters of the distribution of 77; over the sample, 

and 0 and /3 are independent. This is an example of a hierarchical Bayes model which 

have become increasingly popular in Bayesian analysis of linear panel data models. 

Unlike the classical mixed probit model which only estimates the population parameters 

/3 and 0, this Bayesian formulation permits inference for the individual random effects 

terms as well. These individual effects can be important in marketing applications 

applications. Revelt and Train (1999) have specified similar models using mixed logit 

and non-Bayesian methods. Revelt and Train point out that there are circumstances 

where the computational burden of their method will be less than Allenby and Rossi's 

Bayesian methods, but their inferences are only asymptotically valid while the Bayesian 

inferences are exact. 

One important advantage of Bayesian analysis of flexible discrete choice models can be 

clarified by considering the all too frequent case where at least some of the covariance 

parameters are poorly identified. This means that the likelihood function will be almost 

flat along the dimensions corresponding to these parameters, and classical methods will 

therefore have problems converging to the optimum. As long as proper prior 

distributions are used, the Gibbs sampler will have no trouble converging, but it is very 

likely that the resulting posterior distribution for the poorly identified parameters will 

have the same shape as the prior distribution for these parameters. However, it is still 

possible to carry out informative Bayesian inference on other parameters of interest. 

More generally, comparison of the information conveyed in the prior and likelihood 

distributions is an excellent way to quantify the relative importance of these two inputs 

into Bayesian inference. 

4 Measurement Errors 
Discrete choice applications in transportation are plagued by serious measurement errors. 

It is very difficult to directly observe key variables for unchosen alternatives, so it is 

common practice to impute travel times and costs from network models. Unfortunately 
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this practice yields inconsistent parameter estimates and overstates the precision of these 

estimates. The standard approaches to measurement error in linear models are 

instrumental variables and joint modeling of the measurement error and behavioral 

processes. Unfortunately both of these approaches are very difficult to implement for the 

complex discrete choice models described in this chapter. This section describes a 

relatively new method which has been applied to discrete choice models with 

measurement error (Brownstone, 1998). 

Rubin's (1987) multiple imputation methodology can be motivated as a method for 

consistent inference with imputed values for missing or erroneous observations (which 

are treated as having missing values for the correct data). If the imputed values are 

somehow produced to match the first two moments of the correct unobserved values, then 

standard estimation methods that treat the imputed values as if they are correct will yield 

consistent parameter estimates. Unfortunately the standard errors produced by this 

approach will be inconsistent and downward biased because they ignore the errors 

introduced by the imputation process. Rubin proposed solving this problem by 

independently drawing multiple imputed values. The component of variance due to the 

imputation error is then estimated by the variability of the estimates across the different 

imputed data sets. Typically drawing these multiple imputed values is the hard part of 

this methodology, so I will first describe Rubin's methods for combining results from 

multiply imputed data. Although Rubin developed the theoretical properties of this 

methodology for Bayesian models, Rubin (1996 and 1987, Chapter 4) show that these 

results apply asymptotically to classical statistical models. 

Suppose we are interested in estimating an unknown parameter vector 0. If no data are 

~ 
missing or measured with error, then we would use the estimator 0 and its associated 

~ 
covariance estimator Q . If we have a model for predicting the missing ( or erroneous) 

values conditional on all observed data, then we can use this model to make independent 

simulated draws for the missing data. If m independent sets of missing data are drawn and 
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m corresponding parameter and covariance estimators, ej and Q j , are computed, then 

Rubin's Multiple imputation estimators are given by 

where 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Note that B is an estimate of the covariance among the m parameter estimates for each 

independent simulated draw for the missing data, and U is an estimate of the covariance of 

the estimated parameters given a particular draw. B can also be interpreted as a measure of 

the covariance caused by the nonresponse ( or measurement error) process. 

Rubin (1987) shows that for a fixed number of draws, m :2:: 2, 0 is a consistent estimator 
A A 

for 0 and L is a consistent estimator of the covariance of 0 . Of course B will be better 

estimated if the number of draws is large, and the factor (1 + m-1
) in equation (4) 

compensates for the effects of small m. Rubin (1987) shows that as m gets large, then the 

Wald test statistic for the null hypothesis that 0 = 0 ° , 

I 

(e-e0
) f- 1(0-0°), (4.5) 

is asymptotically distributed according to an F distribution with K (the number of elements 

in 0) and v degrees of freedom. The value of vis given by: 

v= (m - 1)(1 + r,/)2 and (4.6) 

rm= (1 + m-1
) Trace(BU1)/K. 

This suggests increasing m until vis large enough ( e.g. 100) so that the standard asymptotic 

Chi-squared distribution of Wald test statistics applies. Meng and Rubin (1992) show how 
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to perform likelihood ratio tests with multiply-imputed data. Their procedures are useful in 

high-dimensional problems where it may be impractical to compute and store the complete 

covariance matrices required for the Wald test statistic ( equation 4.5). 

The key to successful implementation of multiple imputation is to use a proper 

imputation procedure. The full definition of a proper imputation procedure is given in 

Rubin (1987, pp. 118-119). Loosely speaking, if the estimates computed with the true 
•• •• A 

values of the missing data ( 0 and Q) are treated as fixed, then 0 and U must be 

approximately unbiased estimators of 0 and Q . In addition B must be an approximately 

unbiased estimator of the variation in 0 caused by the non-response mechanism. The 

safest way to generate proper imputation procedures is to explicitly draw from the 

(Bayesian) posterior predictive distribution of the missing values under a specific model. 

There are other proper multiple imputation procedures that require no explicit Bayesian 

calculations, and one such is described below. Any proper imputation procedure must 

condition on all observed data, and different sets of imputed values must be drawn 

independently so that they reflect all sources of uncertainty in the response process. 

I will illustrate Rubin's multiple imputation methodology using an example from 

Brownstone et. al. (1999). We use new data from the San Diego congestion pricing 

demonstration project (referred to as FasTrak, see Kazimi et. al., 1999). This project 

allows solo drivers to pay to use an eight-mile stretch of reversible high occupancy 

vehicle (HOV) lanes along Interstate Route 15 (I-15). The combination of free HOV use 

and priced solo driver use is generally referred to as high occupancy toll (HOT) lanes. In 

this demonstration project, HOT lane users must travel the entire eight-mile length before 

exiting. The per-trip fee for solo drivers is posted on changeable message signs upstream 

from the entrance to the lanes, and may be adjusted every six minutes to maintain free­

flowing traffic conditions in the HOT lanes. Solo drivers who subscribe to the FasTrak 

program are issued windshield-mounted transponders used for automatic vehicle 

identification. Each time they use the lanes, their accounts are automatically debited the 

per-trip fee. This represents a dynamic form of voluntary congestion pricing, where solo 
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drivers can choose to pay to reduce their travel time, and the payment is generally related 

to the level of congestion. Carpoolers can still use the HOT lanes with no charge. 

We are interested in modeling commuter's mode choice (solo drive, carpool, or FasTrak), 

but there is substantial measurement error in the time saved by using the HOT lanes. 

HOT lane users, and especially solo drivers paying to use the carpool lanes, tend to report 

unrealistically high values of time savings. While it is certainly possible that their mode 

choice decisions are based on their perceptions rather than the objective time savings, any 

useful policy model needs to be sensitive to actual time savings. Objective measurements 

of time savings are available from two types of data on speeds. First, floating car 

observations were obtained by driving cars down the corridor at frequent intervals and 

recording the actual travel times. Due to the high costs of collecting floating car data, 

they are only available for 5 consecutive days in the middle of our two-month survey 

period. The second type of data on travel times, point speeds derived from magnetic loop 

detectors placed along the corridor for general traffic counting purposes, are available 

during the entire data collection period, but Figure 3 shows that these data are subject to 

large errors. The loop detector data generally understate the actual time savings by 50%. 

Since our mode choice model requires accurate time savings data for the entire two­

month sample period, we used the loop detector data, toll (which is related to congestion 

and time savings in this experiment), and time of day to predict the missing floating car 

data. Table 4.1 shows the best fitting linear regression model for predicting floating car 

HOT lane time savings. To avoid unreasonable predictions we first transform both time 

savings measures to keep them bounded between zero and 35 minutes, which is the 

maximum observed loop detector time savings. The exact transformation for both time 

savings variables is given by the following transformed logit: 

(4.7) 
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Figure 3: Distribution of HOT Lane Time Savings 
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We tried a number of different specifications including higher order terms in loop 

detector time savings and toll variables, but none of them significantly improved the fit of 

the model. We also experimented with lagged values, but the cubic polynomial in time 

effectively removes the autocorrelation in the time savings measures. Since the purpose 

of this model is accurate prediction, we are looking for the most parsimonious model 

with the best fit. Although the variables involving the tolls are not individually 

significant, they are jointly significantly different from zero at the one percent level. If 

they are excluded from the model, then the R2 drops slightly to .89. However, excluding 

the loop detector data reduces the R 2 to . 82 and increases the root MSE of the residuals to 

.46. 
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Table 4.1: Imputation Model for Floating Car HOT Lane Time Savings 

Dependent Variable: Logit ofFloating Car Time R2 = 0.90 

Savings Root MSE = 0.36 

Independent Variables: Coef. Std. Err. t-Stat. 

Logit of Loop Detector Time Savings x Minutes 0.0029 0.00031 9.3 

Past 5 :00 A.M. 

Minutes Past 5:00 A.M. 0.222 0.0149 14.8 

(Minutes Past 5:00 A.M.)2 -0.00138 0.000121 -11.4 

(Minutes Past 5:00 A.M.)3 2.73E-06 2.91E-07 9.38 

Toll -0.229 0.188 -1.22 

Toll x Minutes Past 5:00 A.M. 0.00222 0.00126 1.77 

Constant -11.4 0.52 -22.1 

To draw one set of imputed values for the missing floating car data, first draw one set of 

slope and residual variance parameters from the asymptotic distribution of the linear 

regression estimators from Table 4.1. The slope parameters are drawn from the joint 

normal distribution centered at the parameter estimates with covariance given by the 

usual least squares formula (s 2(Xxt1 ). The residual variance, a;, is drawn by dividing 

the residual sum of squares by a draw from an independent xJ distribution, where dis 

the residual degrees of freedom. An imputed residual vector is then drawn from 

independent normal distributions with mean zero and variance equal to a; . The imputed 

values are then computed by adding this imputed residual to the predicted value from the 

regression using the imputed slope parameters. Additional sets of imputed values are 

drawn the same way beginning with independent draws of the slope and residual variance 

parameters. Observations where floating car data are observed are fixed at these 

observed values across all imputations. This imputation method, which Schenker and 

Welsh (1988) call the "normal imputation" procedure, is equivalent to drawing from the 

Bayesian predictive posterior distribution from a standard linear regression model with 

uninformative priors. 
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We used the multiply imputed time savings data to fit a multinomial logit mode choice 

model. The final estimates were calculated from equations 4.1 - 4.4. Relative to the 

downward biased standard errors calculated by treating the imputed values as correct, 

multiple imputation standard errors from equation 4.2 were 30 - 50% larger. Of course, 

this bias in the standard errors would be much larger if the imputation model was less 

accurate. 

The model specification includes interaction terms with the time savings variable, so the 

implied value of time saved by taking the HOT lane varies over the sample. Table 4.2 

shows the distribution of this value of time for the model estimated on the loop detector 

data and the multiply imputed model using the corrected time savings data. There are 

substantial differences in the lower part of the distribution, and the mean and median are 

about one third lower for the corrected estimates. 

Table 4.2: Implied Value of Time Saved from Mode Choice Model 
Value of Time $/hour Corrected Loo Data 

95' Percentile 108.70 105.60 
90th Percentile 72.12 73.63 
7 Su, Percentile 31.30 35.27 
50th Percentile 18.71 23.37 
25th Percentile 10.30 16.55 
10th Percentile -20.72 14.43 
5th Percentile -83.02 14.08 

Mean.__ __ 2_5_.6.::...3 __ -=3-=2.:..::.6....c.4 

The multiple imputation approach is computationally quite simple. All of the 

calculations in Brownstone et. al. (1999) were done using the STATA system. Perhaps 

the largest advantage of multiple imputations is that it allows the imputations to be made 

once and then used for a variety of analyses. This allows agencies or researchers who 

collect data to represent the uncertainty in their data by including multiply imputed 

values for key variables. The U.S. Federal Reserve Board now provides multiply 

imputed income and wealth variables in the public release of its Survey of Consumer 

Finances, and the U.S. Bureau of Labor Statistics is experimenting with multiply 

imputing income and durable expenditures in its Consumer Expenditure Survey. Note 
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that these imputations can take advantage of confidential information (such as precise 

location) which are not normally released in public use data sets. 

5 Choice-Base Sampling 
Many travel demand data are collected by stratifying on the mode choice variable. These 

"choice-based samples" are particularly useful when some of the modes have small 

market shares since the sample scheme allows "on-board" surveying for those choosing 

rare modes. Maximizing a random-sample likelihood function with a choice-based 

sample will generally yield inconsistent parameter estimates. McFadden (see proof in 

Manski and Lerman, 1977) shows that for the conditional logit model with a full set of 

mode-specific constants only the parameters associated with these mode-specific 

constants are inconsistent. A relatively simple estimator that yields consistent estimates 

under choice-based sampling was developed by Manski and Lerman ( 1977). Their 

Weighted Exogenous Sample Maximum Likelihood Estimator (WESMLE) is the 

maximand of the weighted likelihood function: 

(5.1) 

where L11 is the log likelihood function for the nth observation and the sampling weight, m
11 

, 

is the inverse of the probability that the nth observation (individual) would be chosen from a 

completely random sample of the population. Of course, if the sampling scheme were 

completely random, then all of the sampling weights would be equal and the WESMLE 

would simply be the usual maximum likelihood estimator. For a simple choice-based 

sample, the WESMLE weights are just given by the ratio of the population mode share 

divided by the sample mode share. This is just the inverse of the sampling probability 

multiplied by the sample size divided by population size to make the sum of the weights 

equal the sample size. 

Manski and Lerman ( 1977) show that the WESMLE is consistent and asymptotically 

normal, but not fully efficient (see Imbens, 1992 for fully efficient alternative estimators). 
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Manski and Lerman's proof actually shows that the WESMLE's properties hold for any 

likelihood function (subject to regularity conditions) as long as the sampling weights are 

known with certainty. DuMouchel and Duncan's (1983) regression estimator for non­

random samples is just equation ( 5 .1) with the likelihood function given by the standard 

normal regression model. The asymptotic covariance of the WESMLE is given by: 

'I' --E(a'"l, L,(e,x,x(;£)0') and (5.2) 

A =E( (oco,,Ln(0,xn½e xaco,,L/1(0,xn½e,)). 

This covariance matrix can be consistently estimated by replacing the expectations in 

equation (5.2) with sample moments evaluated at the WESMLE estimates. 

A major advantage of the WESMLE is that it can be computed easily by modifying 

existing maximum likelihood programs. The WESMLE for both the linear regression 

model and the conditional logit model can be computed by appropriately weighting the 

variables and applying standard maximum likelihood programs. Unfortunately, this 

procedure yields downward biased standard error estimates, but the consistent estimates 

given by equation (5.2) are straightforward to compute. This downward bias can be 

substantial in common applications. The incorrect standard errors for the models in 

Section 6 are typically downward biased by 50 percent relative to the correct standard 

errors in equation (5.2).1 

Note that if the weights are small for a rare mode with most of the variation in key 

variables, then it will be difficult to get accurate estimates with the Manski-Lerman 

estimator. Cosslett ( 1981) noted that the WESMLE is inefficient, and proposed an 

1 A STAT A program for computing the WESMLE and the correct standard errors for the 
conditional logit model is available from the author. 
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efficient alternative. Unfortunately, Cosslett's estimator is very difficult to compute, and 

it has only been applied by McFadden et. al. (1985). More recently, Imbens (1992) has 

developed an efficient weighted generalized method of moments estimator for choice­

based samples. Imbens adds the restriction that the weighted mode shares must equal the 

(known) population shares in addition to the moment conditions equivalent to the first 

order conditions for unweighted maximum likelihood estimation. Although Imben's 

estimator is simpler to compute than Cosslett's estimator, it cannot be computed by 

simply weighing the data as in the WESMLE. Wooldridge (1999) shows how these 

results carry over to other non-random sampling schemes frequently encountered in 

transportation surveys, and Lancaster (1997) analyzes choice-based sampling from a 

Bayesian perspective. 

Applied researchers have not paid much attention to improved choice-based sample 

estimators because most use the conditional logit model. McFadden showed that using 

unweighted maximum likelihood with choice-based samples only causes inconsistency in 

the alternative-specific constants ( although this does require a full set of alternative­

specific constants!). As more flexible discrete choice models are used in applied work, 

researchers will need to pay more attention to efficient estimation with choice-base and 

other non-random samples. 

6 Dynamic Discrete Choice Models 
As panel data have become more widely utilized in transportation (see Golob, et. al., 

1997, and Raimond and Hensher, 1997), researchers have been confronted with the need 

to model dynamic discrete choice data. Heckman (1981) presented a general framework 

for modeling, and Chamberlain (1984, especially Section 3) provided links to the more­

established methods for dynamic linear panel data models. This section will concentrate 

on methods for modeling the autocorelation in the unobserved utilities resulting from 

observing repeated choices from the same individual or household over time. I will also 

restrict attention to multinomial discrete choice settings since these are ubiquitous in 

transportation. 
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Following advances in simulation-based inference approaches (McFadden, 1989, Pakes 

and Pollard, 1989, Keane, 1994) there have been a number of applications of the 

multinomial multiperiod probit model. These applications include decision to work 

(Keane, 1994), brand choice (Elrod and Keane, 1995, and McCulloch and Rossi, 1994), 

and residential location (Hajivassiliou et. al., 1996). These models take the general form: 

(6.1) 

where t denotes time. In some stated preference applications, t indexes successive choice 

experiments given to the same respondent. The subscript on p denotes that there may be 

random coefficients in the model. Both the random coefficients and the error terms are 

assumed to follow multivariate normal distributions. If we just restrict attention to the 

error terms, then allowing free correlations across time and alternatives will yield a large 

number of parameters that will be hard to identify with real data. Therefore most 

applications with more than two time points use a simple first-order autoregressive 

process to model correlation across time. 

The mixed logit model can also be used to model dynamic discrete choice. For the same 

reasons mentioned in Section 2.1, mixed logit can have substantial computational 

advantages over multinomial probit when there are many alternatives and relatively few 

error components. A fairly general mixed logit specification is given by: 

(6.2) 

where £itn are independent and identically distributed according to a standard Weibull 

distribution, btn = p bci-I)n + Ytn where Yin are independent and identically distributed 

according to a N(0, cr2
) distribution, and the starting conditions are such that E(bon) = p and 

Var(bon) =u. This is a random coefficients model where the coefficients evolve according 

to a first-order autoregressive process. Brownstone et. al. (2000) estimated the special case 

given by b1n = bon and cr2 
= 0 for two repetitions of a stated preference alternative-fuel 

vehicle choice experiment. This model corresponds to each individual having their own 

preference parameters that remain fixed across repeated choice settings. This special case is 

very easy to implement since it just requires fixing the draw of the random coefficient for 
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different choices made by the same individual. Brownstone et. al. (2000) did not find any 

significant difference between this model and an independent choice model, but Hensher 

( 1999) reports significant differences using similar autocorrelation structures for repeated 

stated preference data. 

7 Inf ere nee for Discrete Choice 
While some of the methods proposed in this paper are new, all discrete choice modelers 

know that the estimated coefficients are not individually useful. Because the scale of the 

error terms are not identified, the scale of the individual coefficients is also not identified. 

Therefore we typically look at ratios of the coefficients (usually identifying willingness to 

pay or value of time in the model), or use the coefficients to carry out demand 

simulations. Even though these are the quantities of interest for policy analysis, it is very 

rare that any confidence region is given. Judging from reading many applied papers, the 

implied assertion is that if the individual coefficients have high t-statistics, then any 

nonlinear combination of them must also have hight-statistics. 

Of course this is obviously false. Even if the asymptotic normal approximation to the 

joint distribution of the parameter estimates is accurate, there is no reason why the ratios 

of any two of these coefficients would even have a mean or a variance. If the coefficient 

estimates are uncorelated, then the ratios will typically have a Cauchy distribution (which 

has no finite moments). This fact suggests that standard delta-method approximations 

( see Greene, 1997, pages 127 and 916) will not yield reliable inferences, although the 

resulting standard error estimates are certainly better than nothing! 

A more reliable and general method is parametric bootstrapping. This requires drawing 

from the estimated asymptotic distribution of the parameter estimates, and computing the 

nonlinear function for each independent draw. If this process is repeated many times, any 

feature of the sampling distribution of the nonlinear function can be accurately estimated. 

Since the moments of these distributions may not exist, confidence regions should be 

estimated directly using percentiles of the sampling distribution. These calculations can 
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be carried out with minimal programming in most econometric software packages 

(including STATA and LIMDEP). 

Of course, Bayesians don't need to carry out any additional calculations to generate 

confidence regions for nonlinear functions of choice model parameters. Modem 

Bayesian inference requires many draws from the posterior distribution, and these draws 

can easily be used to produce the posterior distribution of any nonlinear function of the 

underlying parameters. 

Since it is not very difficult to produce confidence bands for value of time estimates, it is 

likely that they are not being computed because researchers believe that the resulting 

confidence bands will be very wide. This view is supported by a brief review of 

empirical value of time studies. Based on his review, Small (1992) suggests that 50 

percent of gross wage rate is a reasonable value of time estimate. On the higher end of 

previous studies, Cambridge Systematics ( 1977) estimate that value of time for 

commuters in Los Angeles is 72 per cent of gross hourly wage. These previous studies 

are based upon mode choice models that consider differences between transit and 

automobile travel, and to the extent that differences between crowded transit and private 

automobiles are not captured, the results will be biased. In more recent work, Calfee and 

Winston (1998) attempt to avoid this problem by using stated preference data that only 

considers the tradeoff between travel by automobile in slower, free lanes and travel by 

automobile in faster, priced lanes. Their results indicate that commuters place a lower 

value on time saving than previously estimated (roughly $3.50 to $5.00 per hour or 15 to 

25 percent of hourly wage). Calfee and Winston rely upon stated preference data because 

they lack revealed preference data for the choices involved with congestion pricing. 

Hensher (1999) shows that value of time estimates from complex stated preference data 

are sensitive to the specification of unobserved effects. 

Brownstone et. al. (1999) used revealed preference data from a new congestion pricing 

experiment in San Diego (see Section 4). Their mean value of time estimate in Table 4.2 

is about 50% of gross wage, which is consistent with Small's findings. However, the 
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standard error of this estimate is 150% of gross wage, which means that all known 

estimates are within one standard error of the "consensus" value. While this is not a 

pleasant result, it focuses attention on improving our basic data and models. 

8 Conclusion 
Although there have been significant advances in traditional discrete choice methodology 

(see Section 2), this paper argues that it is time to consider different approaches. In 

particular, the problems of model selection and measurement error are ubiquitous in 

applied transportation demand analysis. These problems are much easier to handle using 

a Bayesian paradigm reviewed in the third section of this paper. Although the fourth 

section of this paper described the multiple imputations methodology for measurement 

error in a classical framework, it is also fundamentally a Bayesian methodology. Major 

advances in Bayesian computation have allowed Bayesian analysis of very complex 

multinomial discrete choice models, and these same computational advances have also 

been instrumental in classical discrete choice modeling. It is now time apply these 

methods to transportation demand analysis. 
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