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It is increasingly clear that microbial plant symbionts can influence interactions

between their plant hosts and other organisms. However, such effects remain

poorly understood, particularly under ecologically realistic conditions where

plants simultaneously interact with diverse mutualists and antagonists.

Here, we examine how the effects of a plant virus on indirect plant defences

against its insect vector are influenced by co-occurrence of other microbial

plant symbionts. Using a multi-factorial design, we manipulated colonization

of soya bean using three different microbes: a pathogenic plant virus

(bean pod mottle virus (BPMV)), a nodule-forming beneficial rhizobacterium

(Bradyrhizobium japonicum) and a plant growth-promoting rhizobacterium

(Delftia acidovorans). We then assessed recruitment of parasitoids (Pediobious
foveolatus (Eulophidae)) and parasitism rates following feeding by the BPMV

vector Epilachna varivestis (Coccinellidae). BPMV infection suppressed parasi-

toid recruitment, prolonged parasitoid foraging time and reduced parasitism

rates in semi-natural foraging assays. However, simultaneous colonization

of BPMV-infected hosts by both rhizobacteria restored parasitoid recruitment

and rates of parasitism to levels similar to uninfected controls. Co-colonization

by the two rhizobacteria also enhanced parasitoid recruitment in the absence

of BPMV infection. These results illustrate the potential of plant-associated

microbes to influence indirect plant defences, with implications for disease

transmission and herbivory, but also highlight the potential complexity of

such interactions.
1. Introduction
Plant odours are important sources of ecologically relevant information for other

organisms, including insect herbivores and their natural enemies [1–3]. Recent

work has made it clear that microbial plant symbionts, including both pathogens

[4,5] and mutualists [6,7], can modify plant volatile emission patterns, along

with other plant traits that influence plant–insect interactions. These microbial

influences on volatile-mediated interactions may have potentially important

ecological implications, including for the spread of plant diseases by herbivorous

insect vectors [6,8–10]. However, much of the work that has explored such influ-

ences was conducted under controlled experimental conditions, with a narrow

focus on the effects of individual microorganisms on a limited suite of herbivore

or natural enemy behaviours [11]. Consequently, we have an incomplete under-

standing of volatile-mediated interactions in more realistic ecological contexts,

where plants simultaneously associate with multiple microbial colonizers

having diverse lifestyles and potentially conflicting interests [10].

Among plant-associated microbes, insect-vectored viruses are the best

studied with respect to their effects on plant physiology and the modification
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of plant-produced volatiles. In the case of vector-borne

viruses, these effects often influence plant–vector interactions

in ways that appear conducive to disease transmission [12].

For example, positive effects of virus infection on vector attrac-

tion to the odours of infected hosts have now been reported in

many plant pathosystems [13,14], while counterexamples

in which vectors use odour cues to discriminate against

infected plants are rare or non-existent [15]. The presence of

such patterns suggests that natural selection can favour viral

genotypes whose effects on plant volatile emissions, and

other host plant traits, influence the frequency and nature

of plant–vector interactions in ways that are conducive to

virus transmission [9,16]. To date, however, virus effects on

host–vector interactions have typically been examined under

highly controlled experimental conditions designed to isolate

the effects of the virus on the host plant. Consequently,

we know little about how virus effects on plant–vector

interactions may be influenced by other ecological factors,

including the presence of other microbial plant symbionts,

which also have the potential to influence plant volatile

emissions and other relevant traits, and whose interests may

diverge from those of viral pathogens.

Common, non-viral plant symbionts with significant

potential to modify host–plant chemistry include nitrogen-

fixing rhizobia, which have coevolved with leguminous hosts

[10,17,18], and plant growth-promoting rhizobacteria (PGPR)

[19,20]. These belowground symbionts have previously

been shown to influence plant defence pathways and plant

phenotypes, with consequences for multi-trophic interactions

[17,21,22]. For example, rhizobia colonization of lima beans

reduced production of damage-induced volatiles via the octa-

decanoid, mevalonate and non-mevalonate pathways, but

increased production of compounds produced by the shikimic

acid pathway, causing changes in plant volatile emissions that

reduced the attractiveness of lima bean plants to a specialist

insect herbivore [17]. Studies on the PGPR Pseudomonas
fluorescens show that these rhizobacteria can also influence

herbivore-induced plant volatile emissions and the recruit-

ment of parasitoid wasps, with positive or negative effects

depending on the defence pathway induced by the attacking

herbivore ( jasmonic acid (JA) versus salicylic acid (SA)) [6,8].

The effects of individual rhizobacteria can also be influenced

by the presence of other soil-borne microorganisms [23].

In such multiple-species scenarios, positive effects for the host

plant may be more likely to arise from interactions between

functionally distinct symbionts, which are less likely to be in

competition with one another and may have complementary

effects (e.g. on nutrient availability to the host plant) [23].

Such effects have been described for plant symbiosis with nitro-

gen-fixing rhizobacteria and arbuscular mycorrhizal fungi,

which enhance nitrogen and phosphorous availability, respect-

ively [23–25]. Soil-borne rhizobacteria also have the potential

for both positive and negative interactions with biotrophic

pathogens such as plant viruses [26,27]. The resulting effects

of such interactions on host plant traits, including volatile

emissions, may have implications for the behaviour of other

organisms, including insect herbivores and their natural

enemies, but these are currently not well understood.

To address the lack of information on plant-mediated

interactions among viruses and other plant-symbiotic micro-

organisms [10] we documented effects of three different

microbial colonizers, including the systemic plant virus

bean pod mottle virus (BPMV), the nitrogen-fixing Bradyrhizobium
japonicum and the PGPR Delftia acidovorans, on interactions

among soya bean plants, a specialist beetle herbivore that

serves as a vector of BPMV (Epilachna varivestis (Coccinelli-

dae)), and a parasitoid natural enemy of the beetle

(Pediobious foveolatus (Eulophidae)). We further documented

the outcomes of co-colonization by these microbial players

to gain insight into the relative strength of microbial effects

on a shared plant resource. Because BPMV is transmitted to

new plants only by the mobile adult stage of the beetle

vector, we hypothesized that BPMV would induce changes

in odour phenotypes that suppress the recruitment of the

parasitoid, which attacks E. varivestis larvae. By contrast,

because the success of rhizobacterial colonizers is enhanced

when plants grow larger and produce greater root mass

and higher levels of assimilated carbon, we hypothesized

that both bacterial root colonizers would tend to enhance

indirect plant defences. In the light of prior evidence of

both additive and interactive beneficial effects on plant

growth owing to co-colonization with PGPR and rhizobia

[23,28], we further hypothesized that colonization by both

bacterial species would have the strongest influence on

induced plant defences and parasitoid recruitment.
2. Material and methods
(a) Bacteria, viruses and culture conditions
Our studies included all possible combinations of single, dual and

triple colonization events (electronic supplementary material, table

S1.1). Bacteria of each species were isolated from commercial

inocula (BrettYoung) under sterile conditions, sub-cultured, and

stored at 2808C as 30% glycerol stocks (see the electronic sup-

plementary material, S1.1 for details). BPMV (Comoviridae) is an

emerging viral pathogen of legumes, primarily soya beans and

snap beans [29]. BPMV-infected leaf tissue was harvested and

lyophilized, then stored at 2208C.

(b) Generation of plants for experiments and factorial
design

Soya bean seeds (Glycine max cv. Williams 82) were sterilized

for 5 min in a 10% sodium hypochlorite solution, washed with

ultrapure water and germinated in a growth medium (Premier

Pro-mix without mycorrhiza, Griffin Supplies) that had been

autoclaved at 1208C for 40 min. Three-day-old seedlings were trans-

planted to individual 500 ml sterilized pots containing the same

growth medium, then inoculated with rhizobacteria and infected

with BPMV one week later, according to the factorial treatment

design and inoculation methods described in the electronic sup-

plementary material, S1.1 and table S1.1. Starting from the V1

stage, plants received 50 ml of a diluted, modified Hoagland’s nutri-

ent solution three times per week (see the electronic supplementary

material, S1.2 for details). Plants inoculated with B. japonicum (alone

or in combination with D. acidovorans) received the same nutrient

solution but without nitrogen fertilizer, as nodule growth is strongly

inhibited by the presence of nitrates in the soil [30]; this nutrient

scheme thus introduces a potential confounding factor inherent to

the study system (see the electronic supplementary material, S1.2

and the discussion section for information on the potential impacts

of nutrient supplementation in the context of this study).

(c) Insects
Colonies of the parasitoid P. foveolatus and its beetle host (and

BPMV vector) E. varivestis were established from insects initially

provided by the New Jersey Department of Agriculture’s Philip
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Alampi Beneficial Insect Laboratory (Thomas Dorsey). After emer-

ging from beetle mummies (electronic supplementary material,

figures S2.1 and S2.2), adult P. foveolatus were kept in rearing

cages in an incubator at 258C with a L 16 : D 8 photoperiod and

provisioned with honey and water (electronic supplementary

material, figure S2.2 and video S3). Epilachna varivestis were

maintained on uninfected Phaseolus vulgaris plants, under the

same conditions as the parasitoids, but in separate incubators.

(d) Evaluation of microbial effects on odour-based
foraging by Pediobious foveolatus

Pediobious foveolatus orientation preferences were evaluated via

Y-tube olfactometer assays in a greenhouse at 238C–258C and

70% relative humidity. Plants and insects were moved to the green-

house 24 h before each trial for acclimatization. For damage

treatments, three fourth-instar beetle larvae were confined in clip

cages and allowed to feed for 24 h prior to the bioassay. Larvae

were removed prior to assays, and plants were placed inside

glass domes with ports for air input and output. Charcoal-filtered,

humidified air was pushed into the domes at a rate of 1.5 l min21

and pulled into each arm of the Y-tube at 1.0 l min21. The Y-tube

was oriented vertically inside an opaque box to obscure visual

cues (electronic supplementary material, figure S2.3). Experiments

were conducted between 11.00 and 17.00, corresponding to the

peak of volatile release by damaged soya bean plants. Prelimi-

nary trials confirmed the attraction of wasps to plant odours

versus empty control domes (electronic supplementary material,

figure S2.4). We then tested the attraction of female wasps (n ¼
100 per treatment combination) to each of the following pairs of

treatments: (i) D. acidovorans (Da) versus B. japonicum (Bj); (ii) con-

trol versus Da; (iii) control versus B. japonicum þ D. acidovorans
(Bj þ Da); and (iv) control versus Bj. These bacterial treatment com-

parisons were conducted with uninfected (virus free) plants for the

first round, then with BPMV-infected plants for the second round.

A third set of comparisons, developed based on the results of the

first two sets, compared Bj þ Da uninfected versus Bj þ Da infected

and control uninfected versus control infected (see the electronic

supplementary material, S1.3 for details).

(e) Evaluation of microbial effects on Pediobious
foveolatus parasitism rates

Based on the results of the olfactometer bioassays, we examined

P. foveolatus parasitism of larvae feeding on soya bean plants with

select rhizobacteria and BPMV treatments, including: (i) Bj þ Da

versus control; (ii) Da versus control; (iii) Bj versus control; and

(iv) Bj þ Da versus Bj. These choice tests were conducted in two

rounds (for uninfected and BPMV-infected plants) as described

for the odour-based foraging experiment. Additionally, we tested

the following mixed BPMV treatments: (v) Bj þ Da uninfected

versus Bj þ Da infected and (vi) control uninfected versus control

infected. These bioassays employed semi-natural set-up in a green-

house under the same conditions as the Y-tube assays. Female

wasps were released inside a fine-mesh tent (60 � 60 � 60 cm)

containing two plants on which E. varivestis larvae were feeding

(see the electronic supplementary material, S1.4 and figure S2.6

for details). A total of 120 larvae were tested for each of the treat-

ment comparisons in a dual choice assay over a period of 10

days, using new wasps, larvae and plants for each test.

( f ) Microbial effects on herbivore-induced volatile
emissions of soya bean

Plant volatiles were collected in a growth chamber equipped

with a push-pull volatile sampling system capable of simul-

taneous collection from 16 plants. This system enabled
replication of each treatment two times within collection

iterations (n ¼ 5 total replications per treatment). However, pre-

tests in this environment revealed that larvae reacted adversely

to conditions inside the collection domes (reduced feeding),

while adults behaved normally. Therefore, herbivore damage

treatments for volatile collections were imposed using adults

rather than larvae (implications of this difference are discussed

below). Each plant was subjected to herbivory by three adult bee-

tles over 24 h before collection and also during the collection

period, using clip cages to control the leaf area removed. Stems

of plants in vegetative stage 4 (three to four weeks old) [31]

passed through an opening in a Teflon base supporting a 5 l

glass chamber with ports for air input and output. Volatiles

were collected for 7 h (11.00–18.00) through adsorption to

traps containing 40 mg of SuperQw (Alltech) (see the electronic

supplementary material, S1.5 and figure S2.5 for details).

(g) Microbial effects on plant biomass, nodulation and
bean pod mottle virus symptoms

Using two separate sets of undamaged plants, we assessed the

effect of co-inoculation and BPMV infection on plant biomass

and nodulation. Stage V4 plants in the first set were harvested

to measure total shoot biomass (n ¼ 20 plants per treatment).

Roots from plants in the second set (n ¼ 10–14 per treatment)

were thoroughly washed, and nodules were harvested and

placed separately in paper envelopes, then dried at 508C for

48 h. The total dry biomass of the nodules was measured for

each plant (nodules are only present in plants inoculated with

B. japonicum, but control and Da-inoculated plants were checked

for possible cross-contamination). BPMV symptom severity was

also visually assessed for the second set of plants (n ¼ 10–34

per treatment) using a 1–5 scale, where 1 ¼ no symptoms and

5 ¼ severe mottling, extensive stunting, strong leaf deformation

and blistering.

(h) Statistical analyses
To analyse behavioural data, plant biomass, nodulation and BPMV

symptoms, we used Bayesian generalized linear mixed models

(GLMM) with Markov chain Monte Carlo (MCMC) estimation

using the R package MCMCglmm [32] (see the electronic sup-

plementary material, S1.6 and R code). We specified the

multinomial family in both behavioural assays. Time to choose

between the two arms was analysed using a Gaussian distribution

in the GLMM. It was not possible to experimentally test all biologi-

cally relevant comparisons owing to logistical constraints.

Therefore, we ensured that parasitoid attraction to plants with

each microbial treatment was directly compared to the appropriate

control treatment under the same conditions, then compared the

proportions of wasps choosing plants with one microbial treatment

(versus control) to the proportion choosing a second microbial

treatment (versus control) to make inferences about the attractive-

ness of plants with microbial treatments relative to each other. We

also used the proportion of parasitism in each treatment versus the

same control to indirectly compare the parasitism rates across treat-

ments. Plant biomass and nodule biomass were analysed using a

Gaussian distribution, while BPMV symptoms were evaluated

using the categorical family in the GLMM. From each model, we

extracted the posterior mean (b), the 95% highest posterior density

(HPD) intervals (credible intervals (CIs) are reported instead of

confidence intervals), the p-value for the posterior distribution

and the deviance information criteria value (DIC) for model com-

parison. Posterior means, which we used as our point estimates,

were used to compare the treatment effect size across treatments.

To evaluate main effects and interactions among rhizobacteria

and virus treatments with respect to the overall volatile blend we per-

formed a permutational analysis of variance (PERMANOVA) using
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the Euclidean dissimilarity matrix with 999 permutations in the R

package vegan v. 2.5.1 [33]. As a follow-up, we used a random

forest (RF) algorithm for variable selection to detect the most impor-

tant compounds that account for significant differences among

treatments in the PERMANOVA. We used out-of-bag (OOB) error

rates as the importance score for variable selection implemented as

backward elimination in the package varSelRF v. 0.7.5 [34] (ntree¼

3000 bootstrap replicates, variable drop fraction ¼ 0.2). Performance

of the RF models was evaluated by the misclassification error rate.

Additionally, we used empirical Bayes moderated t statistics in the

R package limma [35] to identify differentially expressed

compounds between the experimental treatments.
l/rspb
Proc.R.Soc.B
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3. Results
(a) Microbial effects on odour-based foraging by

Pediobious foveolatus
Preliminary tests in the Y-tube olfactometer (electronic sup-

plementary material, figure S2.4 and table S1.2) confirmed

that P. foveolatus prefer volatiles of herbivore-damaged plants

compared to those from undamaged plants ( pMCMC ¼

2.47� 1023) or from empty chambers ( pMCMC¼ 2.06� 1024).

In odour-based foraging assays employing only uninfected

(BPMV-free) plants, parasitoid attraction to damaged plants

was slightly enhanced when roots were colonized by Bj

alone (b ¼ 0.993, CI ¼ [0.473, 1.55], pMCMC ¼ 2.27 � 1023)

and strongly enhanced by Bj þ Da (b ¼ 2.19, CI ¼ [1.28,

3.22], pMCMC ¼ 4.12 � 1024). Inoculation with Da did not

have an effect on parasitoid attraction (b ¼ 2.20, CI ¼

[20.27, 0.69], pMCMC ¼ 0.38 � 1024) (figure 1a; electronic

supplementary material, table S1.2). A GLMM comparing

treatments across all trials, showed that the proportion

of wasps choosing Bj þ Da treatments over controls was

much larger than the proportion choosing Da over controls

(b ¼ 1.87, CI ¼ [1.05, 2.64], pMCMC ¼ 2.06 � 1024) and

slightly larger than the proportion choosing Bj over controls

(b ¼ 1.1, CI ¼ [0.3, 1.93], pMCMC ¼ 6.39 � 1023) (electronic

supplementary material, table S1.2). When all plants in

pairwise comparisons were infected with BPMV (figure 1b),

Bj þ Da colonization on roots again strongly enhanced

parasitoid attraction (b ¼ 1.52, CI ¼ [0.05, 3.21], pMCMC ¼

2.97 � 1022), while Bj alone had only a slight positive

effect on parasitoid attraction (b ¼ 0.68, CI ¼ [20.01, 1.47],

pMCMC ¼ 5.3 � 1022). A GLMM showed that the proportion

of wasps choosing Bj þ Da treatments versus controls was

slightly larger than the proportion choosing Da (b ¼ 1.09,

CI ¼ [0.006, 2.26], pMCMC ¼ 4.27 � 1022), but not signifi-

cantly different from the proportion choosing Bj (b ¼ 0.53,

CI ¼ [20.70, 1.83], pMCMC ¼ 0.373) (electronic supplemen-

tary material, table S1.2). In a direct comparison of plants

with mixed infection status (figure 1c), uninfected controls

were more attractive than BPMV-infected controls (b ¼

0.631, CI ¼ [0.20, 1.08], pMCMC ¼ 8.04 � 1023), while

uninfected plants with Bj þ Da colonization on roots were

strongly preferred over BPMV-infected Bj þ Da-colonized

plants (b ¼ 1.34, CI ¼ [0.67, 2.04], pMCMC ¼ 4.33 � 1023).

Using a mixed effect model to test the interaction of rhizo-

bacteria-BPMV in the wasp responses during the foraging

bioassays, we confirmed that dual inoculation (Bjþ Da)

had a stronger effect (b ¼ 2.15, CI ¼ [1.41, 2.91], pMCMC¼

1.03 � 1024, electronic supplementary material, table S1.3)

than single inoculation on the attraction of the parasitoid (Bj:
b ¼ 1.01, CI ¼ [0.42, 1.64], pMCMC¼ 1.2 � 1023; Da: b ¼

0.20, CI¼ [20.37, 0.76], pMCMC¼ 0.46; electronic supplemen-

tary material, table S1.3). Although there is a significant

interaction effect between Bjþ Da and BPMV infection (b ¼

1.10, CI¼ [0.50, 1.78], pMCMC¼ 4.12 � 1024, electronic

supplementary material, table S1.3), we found that dual-inocu-

lated BPMV-infected plants tend to be less attractive than Bjþ
Da plants without virus (Bjþ Da 2 BPMV: b ¼ 1.103; Bjþ
Da: b ¼ 2.15, electronic supplementary material, table S1.3).

Figure 1d summarizes the mean time to choose for wasps in

bioassays using only uninfected plants (figure 1a) and only

BPMV-infected plants (figure 1b). Wasps took longer to

respond to the odours of BPMV-infected plants than to those

of uninfected plants (b ¼ 1.945, CI ¼ [1.83, 2.06], pMCMC ¼

1.03 � 1024, figure 1d; electronic supplementary material,

table S1.4); however, this delay was reduced in the presence

of both rhizobacteria (Bj þ Da) (b ¼ 20.79, CI ¼ [20.95,

20.63], pMCMC ¼ 1.03 � 1024, figure 1d; electronic sup-

plementary material, table S1.4). Furthermore, wasps also

took less time to choose between plants colonized by both Bj

and Da and bacteria-free controls even in the absence of the

virus (b¼ 20.51, CI¼ [20.62, 20.40], pMCMC ¼ 1.03 � 1024,

figure 1d; electronic supplementary material, table S1.4). By con-

trast, we did not find strong evidence that the presence of Da

influenced the time of response for BPMV-infected plants

(b ¼ 20.077, CI¼ [20.37, 0.21], pMCMC ¼ 0.61, figure 1d;

electronic supplementary material, table S1.4).

(b) Microbial effects on Pediobious foveolatus parasitism
rates

In foraging assays allowing parasitoid contact with larval hosts

feeding on uninfected (BPMV-free) plants (figure 2a), root

colonization by Bj þ Da strongly increased parasitism rates

(b ¼ 3.11, CI ¼ [1.83, 4.53], pMCMC ¼ 1.03 � 1024, electronic

supplementary material, table S1.2) versus controls, while colo-

nization by Bj alone had a smaller effect on parasitism rates

(b ¼ 2.39, CI ¼ [0.88, 3.88], pMCMC ¼ 8.25 � 1024, electronic

supplementary material, table S1.2). Parasitism rates on unin-

fected Bj þ Da colonized plants were greater than those on

plants colonized by Bj alone (b ¼ 2.14, CI ¼ [0.86, 3.45],

pMCMC ¼ 1.65 � 1023, electronic supplementary material,

table S1.2) (figure 2a), and further GLMM demonstrated that

the proportion of larvae parasitized on Bj þ Da plants over

controls was higher than the proportion parasitized on Da

plants over controls (b ¼ 2.19, CI ¼ [1.36, 3.1], pMCMC ¼

1.03 � 1024, electronic supplementary material, table S1.2).

Plants colonized by Da alone did not have greater parasitism

rates relative to controls (b ¼ 20.39, CI ¼ [21.65, 0.825],

pMCMC ¼ 0.52, electronic supplementary material, table

S1.2) (figure 2a) and had reduced parasitism rates relative to

plants colonized by Bj alone (b ¼ 1.94, CI ¼ [1.05, 2.81],

pMCMC ¼ 1.03 � 1024, electronic supplementary material,

table S1.2). In assays with BPMV-infected plants (figure 2b),

we still observed strong positive effects of Bj þ Da on parasit-

ism rates over controls (b ¼ 2.52, CI ¼ [1.29, 3.76], pMCMC ¼

1.03 � 1024, electronic supplementary material, table S1.2),

as well as over plants colonized by Bj alone (b ¼ 2.7, CI ¼

[1.42, 4.09], pMCMC ¼ 2.06 � 1024, electronic supplementary

material, table S1.2).

In assays comparing uninfected and BPMV-infected plants

(figure 2c), parasitism rates were higher on uninfected plants

regardless of the bacterial treatment (electronic supplementary
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Figure 1. Pediobious foveolatus preferences for odours of E. varivestis-damaged soya beans under different rhizobacteria and virus treatments. Preferences of
P. foveolatus were evaluated in a Y-tube olfactometer that presented two different odour sources simultaneously. (a) Percentages of individual wasps making
a choice for each arm of the olfactometer for each treatment comparison in trials with uninfected (virus-free) plants. (b) Similar data for comparisons with
BPMV-infected plants. (c) Similar data for comparisons between infected and uninfected plants. (d ) Boxplots depicting the time to choose for wasps in each
comparison. Wasps took longer to respond in BPMV-infected plants than in uninfected plants ( pMCMC ¼ 1.03 � 1024). Bj, B. japonicum; Da, D. acidovorans;
Bj þ Da, B. japonicum þ D. acidovorans. (Online version in colour.)
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material, table S1.2). A GLMM of the proportion of

larvae parasitized within each direct comparison also suggests

that BPMV infection reduces parasitism rates in most cases

(b ¼ 0.81, CI¼ [0.26, 1.34], pMCMC¼ 3.92 � 1023, electronic

supplementary material, table S1.2). However, the proportion

of larvae parasitized on uninfected Bj þ Da plants versus

controls did not differ from the proportion parasitized on

BPMV-infected Bj þ Da plants versus controls (b ¼ 0.181,

CI¼ [20.68, 1.08], pMCMC¼ 0.69, electronic supplemen-

tary material, table S1.2). Additionally, a mixed effect model

found that the interaction between BjDa and BPMV infection

was not significant (b ¼ 0.63, CI ¼ [20.56, 2.02], pMCMC¼

0.337, electronic supplementary material, table S1.5). This
indicates that benefits of Bj þ Da colonization relative to

bacteria-free controls were maintained even when BPMV

infection was present.

(c) Microbial effects on herbivore-induced volatile
emissions of soya bean

PERMANOVA, using the 19 emitted compounds as variables,

revealed a significant main effect of virus infection on the vola-

tile blend (pseudo-F1,39 ¼ 5.91, p ¼ 0.008; electronic

supplementary material, table S1.6). A heatmap showing log2

fold changes in volatile emissions for all microbial treatments

relative to the mean of uninfected controls reveals that BPMV
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Figure 2. Parasitism rates on larval hosts residing on soya beans with different rhizobacteria and virus treatments. Dual choice comparisons of different
rhizobacteria � virus treatments were selected based on observed preferences in odour-based assays and presented to wasps in a semi-natural foraging arena.
Bars represent the percentage of parasitized larvae for each treatment across all tests performed for a given comparison ( percentages for each comparison
may not add to 100% because wasps could oviposit on larvae feeding on both plants) (n ¼ 120 larvae per comparison). (a) Comparisons involving uninfected
(virus-free) plants. (b) Comparisons involving BPMV-infected plants. (c) Comparisons between uninfected and BPMV-infected plants (with selected rhizobacteria
treatments). Bj, B. japonicum; Da, D. acidovorans; Bj þ Da, B. japonicum þ D. acidovorans. (Online version in colour.)
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infection suppresses the release of most compounds (figure 3).

We found eight instances of a threefold or greater reduction in

mean volatile production relative to control uninfected plants,

with all of these instances (100%) being for BPMV-infected

plant treatments (figure 3). RF analysis identified (Z )-3,7-

dimethylocta-1,3,6-triene and (3E)-3,7-dimethylocta-1,3,6-

triene as the best predictors of infection status (OOB error

rate ¼ 32.27%) (compounds G and F in figure 3). Both of

these compounds were significantly reduced in BPMV-

infected plants (t-test BPMV-infected versus uninfected:

(Z )-3,7-dimethylocta-1,3,6-triene t1,19 ¼ 23.33, p ¼ 9.0�1024;

(3E)-3,7-dimethylocta-1,3,6-triene t1,19 ¼ 23.54, p ¼
4.0�1024; figure 3).

Single rhizobacterium inoculation did not significantly alter

volatile blend (Bj: pseudo-F1,39¼ 0.18, p ¼ 0.664; Da: pseudo-

F1,39¼ 2.09, p ¼ 0.142; electronic supplementary material,

table S1.6). However, dual inoculation did have an effect in

uninfected plants (pseudo-F1,39¼ 4.11, p ¼ 0.035; electronic

supplementary material, table S1.6), and produced a similar,

though marginally non-significant, trend in combination with

BPMV infection (pseudo-F1,39¼ 3.13, p ¼ 0.073; electronic sup-

plementary material, table S1.6). In the heatmap matrix of log2

fold changes in mean volatile emissions, there were 13 instances

of a threefold or greater increase in volatile emissions relative to

uninfected controls, with all of these instances (100%) being

for Bj þ Da uninfected treatments, while none were Bj þ Da

BPMV-infected treatments. RF analysis identified a-farnesene,

(Z)-3-Hexen-1-yl acetate and an unidentified sesquiterpene
(compounds N, D and Q in figure 3) as the best predictors of

Bj þ Da colonization (OOB error rate¼ 15.83%). Emission of

(Z)-3-Hexen-1-yl acetate was significantly increased in Bj þ
Da uninfected plants compared to control, Bj, and Da uninfected

plants (control: t1,19¼ 3.08, p ¼ 2.0�1023; Bj: t1,19¼ 2.18, p ¼
3.0�1022; Da: t1,19¼ 3.28, p ¼ 1.0�1023). Emission of a-farne-

sene was significantly increased in Bj þ Da uninfected plants

compared to Da uninfected plants (t1,19¼ 2.98, p ¼ 3.0�1023).

(d) Microbial effects on plant biomass, nodulation and
bean pod mottle virus symptoms

Co-inoculation of soya bean plants with D. acidovorans (Da)

had no significant effect on nodulation by B. japonicum (Bj)

(pMCMC¼ 0.62, electronic supplementary material,

table S1.7). However, BPMV infection significantly reduced

nodulation for both Bj and Bj þ Da treatments even after

adjusting for shoot biomass ( pMCMC ¼ 4.7 � 1022, elec-

tronic supplementary material, table S1.7; figure 4a). BPMV-

infected plants had significantly less biomass than uninfected

plants ( pMCMC ¼ 2.06 � 1024, electronic supplementary

material, table S1.8; figure 4b). Across uninfected treatments,

the effect of dual bacteria inoculation on shoot biomass,

versus control, was stronger (b ¼ 2.01, CI ¼ [1.82, 2.19],

pMCMC ¼ 1.03 � 1024, electronic supplementary material,

table S1.8) than single inoculations with Bj (b ¼ 0.58, CI ¼

[0.40, 0.77], pMCMC ¼ 1.03 � 1024, electronic supplementary

material, table S1.8) or Da (b ¼ 0.009, CI ¼ [20.18, 0.19],
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Figure 3. Heatmap depicting soya bean volatile signatures associated with
rhizobacteria and virus treatments. Analysis of the entire blend by two-
way PERMANOVA with 9999 permutations showed a significant effect of
virus treatment ( pseudo-F1,39 ¼ 5.91, p ¼ 8.0 � 1023) and dual rhizobac-
teria colonization ( pseudo-F1,39 ¼ 4.11, p ¼ 3.5 � 1022) on volatile blend
composition. The heatmap depicts log2 fold change in emissions of each com-
pound from microbe-colonized plants relative to the mean value for
uninfected microbe-free control plants. All plants received damage from E.
varivestis. Letters indicate the following compounds: A. (E)-3-Hexen-1-ol;
B. (Z)-2-methyl-butyl aldoxime; C. (E)-2-methyl butyl aldoxime; D. (Z)-3-
Hexen-1-yl acetate; E. 2-ethyl-1-hexanol; F. (3E)-3,7-dimethylocta-1,3,6-
triene; G. (Z)-3,7-dimethylocta-1,3,6-triene; H. 3-hexen-1-yl butyrate;
I. Methyl salicylate; J. Indole; K. (E)-b-farnesene; L. Germacrene D; M. a-ber-
gamotene; N. (E,E or E,Z)-a-farnesene; O. 3,7,11-trimethyldodeca-2,6,10-
triene-1-ol; P. Unidentified sesquiterpene 1; Q. Unidentified sesquiterpene 2;
R. (3E,7E)-4,8,12-Trimethyltrideca-1,3,7,11-tetraene; S. Benzophenone. Bj, B.
japonicum; Da, D. acidovorans; Bj þ Da, B. japonicum þ D. acidovorans.
(Online version in colour.)
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pMCMC ¼ 0.91, electronic supplementary material, table

S1.8). BPMV infection reduced shoot biomass (b ¼ 20.42,

CI ¼ [20.61, 20.24], pMCMC ¼ 2.06 � 1024, electronic sup-

plementary material, table S1.8), but only the interaction

with Bj þ Da was significant (b ¼ 20.71, CI ¼ [20.99, 0.47],

pMCMC ¼ 1.03 � 1024, electronic supplementary material,

table S1.8). BPMV-infected plants inoculated with Bj þ Da

exhibited less pronounced viral symptoms than control, Bj

or Da plants (b ¼ 21.31, CI ¼ [0.93, 47.9], pMCMC ¼ 2.23 �
1022, electronic supplementary material, table S1.9; figure 4c).
4. Discussion
Consistent with our initial hypothesis, we found that BPMV

disrupts the recruitment of parasitoid natural enemies of its

vector, E. varivestis, to infected plants. Pediobius foveolatus
wasps exhibited reduced attraction to BPMV-infected plants

in volatile-based foraging assays (figure 1c) and were less effi-

cient at locating and parasitizing E. varivestis larvae on BPMV-

infected plants under semi-natural conditions (figure 2c).

Wasps also took significantly longer to choose among rhizo-

bacterial treatments when plants were infected with BPMV

(figure 1d ), and overall parasitism rates declined when the

only hosts available were larvae feeding on BPMV-infected

plants (figure 2b,c). Also consistent with our predictions,

these viral effects were mitigated by the presence of plant

mutualistic microbial symbionts, and particularly by the com-

bined presence of D. acidovorans (Da) and B. japonicum (Bj),

which elevated plant volatile emissions and restored parasitoid

attraction and parasitism rates on BPMV-infected plants to
levels similar to those seen in the absence of the virus

(figures 1a, 2a and 3).

Together with positive effects of BPMV infection on soya

bean palatability and quality for E. varivestis, which have also

been documented elsewhere [36,37], the effects on indirect

defences and parasitoid recruitment observed in the current

study may fit with a broader strategy on the part of the virus

to enhance feeding and virion uptake by the vector and thereby

encourage the successful completion of larval development,

which would produce mobile adult vectors capable of spread-

ing the pathogen to new hosts [16]. It can be challenging to

definitively distinguish virus adaptations for ‘manipulating’

plant chemistry to enhance vector transmission from merely

fortuitous by-products of pathology; however, we have pre-

viously speculated that pathogen effects on host–vector

interactions will tend to be broadly conducive to transmission

because effects that disfavour transmission are likely to face

strong negative selection [4,12]. In keeping with this expec-

tation, similar effects on host phenotypes and vector survival

are evident in other viral pathosystems [12,13].

Consistent with our hypothesis that functionally distinct

rhizobacteria would elicit the strongest positive effects on

indirect plant defences, we found that co-colonization of

BPMV-infected plant roots with a combination of B. japonicum
and D. acidovorans counteracted BPMV-induced suppression of

indirect defence more strongly than either bacterial species

alone. Indeed, dual colonization restored parasitoid attraction

to, and parasitism rates on, BPMV-infected plants to levels

near those observed for uninfected, dual colonized plants

(figure 2b; electronic supplementary material, table S1.2).

This recovery of the host plant’s indirect defence phenotype is

noteworthy, given that BPMV effectively suppresses volatiles

and parasitoid recruitment when plants are single-colonized

by either rhizobacterial species (figures 2b and 3). GLMM of

parasitism proportions revealed that larvae-infested Bjþ Da

plants experienced higher parasitism rates than all other treat-

ments under BPMV-infected or uninfected conditions

(electronic supplementary material, table S1.2). Furthermore,

using a factorial approach, we showed that these effects

are enhanced when D. acidovorans is co-inoculated with

B. japonicum, largely compensating for negative effects of

BPMV on indirect defence (figures 1, 2 and 4), as well as

on plant health (figure 4). Although root colonization by

B. japonicum enhanced parasitoid attraction and parasitism on

its own, its benefits for BPMV-infected plants were marginally

significant in the absence of D. acidovorans (figures 1 and 2;

electronic supplementary material, table S1.2), while single colo-

nization by D. acidovorans had no significant effects on parasitoid

foraging (figures 1 and 2; electronic supplementary material,

tables S1.2 and S1.3).

The specific mechanisms underlying effects elicited by

multiple microbial root colonizers are not well understood, in

part owing to a lack of immune-pathway mutants for model

legumes as well as logistical challenges associated with manip-

ulating plant microbiomes [20,38–40]. There are several

potential mechanisms by which such effects might be pro-

duced, including PGPR facilitation of additional colonization

sites for rhizobia, PGPR production of plant hormones, direct

effects of PGPR colonization on ethylene levels, and PGPR

stimulation of flavonoid production by roots [39]. The failure

to observe strong effects of D. acidovorans in isolation is consist-

ent with the latter explanation, as in this scenario the benefits of

D. acidovorans for the host occur indirectly via the induced
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release of flavonoids into the rhizosphere that enhance the

recruitment of B. japonicum. In this case, D. acidovorans would

function as a ‘helper’ rhizobacteria [39,41] to improve the

performance of B. japonicum. A similar effect was reported

in a recent study involving the application of Delftia in co-

inoculation with Sinorhizobium meliloti, which found that

Medicago truncatula roots produced significantly higher levels

of several flavone signalling molecules (which enhance

rhizobial expression of nodulation genes) under co-infection

relative to microbe-free or single inoculation treatments [38].

The operation of a similar mechanism in our system might

explain why we observed some positive effects of B. japonicum
on indirect defence when inoculated singly (and even in the

absence of nitrogen supplementation), but stronger positive

effects (overriding the BPMV-induced phenotype) during

co-inoculation with D. acidovorans.

It should also be noted that we provided supplemental

nitrogen (in the form of potassium nitrate and ammonium

nitrate) to plants without B. japonicum treatments but did not

supplement those with B. japonicum, as the presence of nitrate

inhibits root colonization by this microbe [30,42]. Therefore,

we cannot exclude nitrogen supplementation as a potential

driver of differences in parasitoid recruitment and volatile

emissions between treatments receiving B. japonicum and

those without this treatment, although we did verify that B.
japonicum colonization compensated for the lack of nitrate in

the soil and that plants with and without nitrate treatments

had similar growth and nitrogen levels (figure 4b) [21]. A
previous study in soya bean also found that plants given differ-

ent nitrogen treatments had similar shoot biomass, emitted the

same range of herbivore-induced volatile organic compounds,

and elicited similar attraction of parasitoids [43]. It remains

possible, however, that some of the observed effects of B. japo-
nicum might be partially attributable to subtle differences in

plant nitrogen sources. Such effects have so far received little

attention in the context of indirect plant defence [21,44],

although some previous work has raised the possibility that

differences in the form of nitrogen supplied by rhizobia

(versus fertilizer) might influence plant–herbivore interactions

(e.g. [21]).

Our analyses of soya bean volatile emissions provide

additional support for our initial hypotheses, as BPMV effects

on volatile profiles are consistent with a suppression of indirect

plant defences against the beetle vector (figures 1 and 2), while

we also observed slightly enhanced positive effects of the two

rhizobia species on the production of compounds known to

attract natural enemies (figure 3) [1,45,46]. In the absence of

the virus, dual colonization had strong effects on damage-

induced volatile emissions; for example, three compounds,

(Z)-3-Hexen-1-yl acetate, 3-hexen-1-yl butyrate and 3,7,11-

trimethyldodeca-2,6,10-triene-1-ol (compounds D, H and

O in figure 3), were emitted in higher amounts from uninfected,

dual colonized plants relative to all other treatments (figure 3).

In treatments with BPMV infected plants, dual rhizobacteria

colonization produced a similar trend, though this effect was

marginally non-significant (figure 3). Meanwhile, we did not
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observe effects of inoculation with either individual rhizobia

species on volatiles (figure 3). In particular, inoculation with

Bj did not elicit differences in volatile emissions relative to bac-

teria-free controls that would explain the enhanced attraction of

wasps to Bj treated plants in our previous assays (figures 1 and

2), although there was a positive fold-change in the amount of

individual volatiles induced by B. japonicum. The more preva-

lent effects of dual colonization on volatiles may in part

reflect additive or interactive effects of the two rhizobia species,

similar to those observed in our behavioural and parasitism

assays (figures 1–3). However, methodological differences

between the behavioural and volatile-collection experiments

may also have contributed to disparities between our volatile

data and the parasitoid’s behavioural responses. Plants in our

behavioural assays were damaged with beetle larvae; however,

as noted above, we experienced challenges in using larvae to

induce damage treatments within the volatile sampling

chambers and therefore used adult beetles instead. As simul-

taneous attack by both adult and larval stages occurs

frequently in the field, we reasoned that damage by adults

should be a reliable indicator of host presence for the wasps,

and the resulting data are indeed broadly consistent with pat-

terns observed in our behavioural experiments (e.g. with

respect to the negative effects of virus infection and the positive

effects of dual rhizobia colonization on indirect defences).

However, differences in patterns of volatile induction by

larval and adult feeding have been reported for at least one

other coleopteran herbivore [47], and such differences might

contribute to our failure to observe a statistically significant

effect of single or dual rhizobia colonization in BPMV-infected

plants that would explain the observed effects of these treate-

ments on parasitoid behavioural preferences and parasitism

rates (figures 1–3).

In overview, our results highlight the importance of develop-

ing and testing hypotheses regarding microbial effects on host

phenotypes in complex systems that incorporate plant inter-

actions with multiple organisms having different colonization

strategies and lifestyles. They also suggest that understanding

beneficial and antagonistic interactions among mutualistic and

pathogenic plant symbionts may have important implications
for predicting and managing disease transmission in natural

and agricultural plant communities. In our system, co-

colonization by D. acidovorans and B. japonicum produced the

greatest beneficial effects on plant growth promotion and plant

indirect defences against the chewing herbivore E. varivestis by

promoting the attraction and parasitism of its natural enemy,

P. foveolatus, even in the presence of virus infection. Together

with our behavioural data, our analyses of plant volatile

emissions demonstrate that microbes with different life-

styles and host associations can have significant effects on

plant phenotypes that mediate indirect defences and thereby

affect tri-trophic interactions among the host plant, insect herbi-

vores and their natural enemies, with potentially important

ecological implications, including for disease transmission by

insect vectors. Future work in this and other model systems

should focus on identifying the mechanisms underlying plant-

mediation of positive and negative microbial interactions

through transcriptomic and metabolomic approaches in the lab-

oratory, with complementary field experiments to verify the

robustness of observed effects under more complex scenarios.
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