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ABSTRACT OF THE THESIS

Integrated Encrypted Model Predictive Control Systems for Cyber-Resilient Operation of

Nonlinear Processes

by

Yash Ashit Kadakia

Master of Science in Chemical Engineering

University of California, Los Angeles, 2024

Professor Panagiotis D. Christofides, Chair

In industrial environments, the collection of vast amounts of operational and instrumentation

data serves critical purposes such as monitoring, control, preventative maintenance, fault detec-

tion, and troubleshooting. Networked control systems have revolutionized traditional methodolo-

gies, offering seamless data transfer capabilities while minimizing wiring and maintenance issues.

Their ease of implementation and scalability make them applicable across a wide spectrum of oper-

ations, from small-scale setups to large industrial complexes. However, the efficient functioning of

industrial process control systems in real-time heavily relies on the accuracy of recorded data and

the dependability of networked communication channels. Any compromise in the integrity or con-
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fidentiality of this data due to unauthorized access or manipulation by malicious entities can result

in severe consequences, impacting operational safety and economic performance. As intelligent

cyber-attacks have the potential to access system information, it is necessary to develop networked

control systems that maintain the confidentiality of industrial data, and have cyber-attack detection

and resilient operation strategies to address cybersecurity issues beyond fault diagnosis, and is the

focus of this thesis.

Large-scale industrial processes encounter numerous control and operational challenges, such

as nonlinearity, high dimensionality, complex interacting process dynamics, inherent state and in-

put delays, and limited sensor measurements. To address these challenges effectively, a compre-

hensive mathematical model representing plant dynamics is essential, with appropriate integra-

tions to tackle specific challenges. For example, model predictive control systems can handle

multivariable interactions and input/state constraints, state predictors can address input delays,

time-lag models are employed to account for state delays, and observers are integrated to estimate

unavailable data accurately. Additionally, distributed and decentralized control structures offer im-

proved computational efficiency compared to centralized frameworks, particularly advantageous

for large-scale processes. Real-time adaptation to fluctuating economics is another crucial aspect

for maintaining competitiveness in the market. Balancing these challenges with the need to en-

hance cybersecurity and ensure the confidentiality of system data necessitates the development of

innovative control frameworks.

Motivated by the above, this thesis introduces novel control architectures featuring encrypted

communication tailored for various nonlinear processes. Encryption techniques are integrated into

centralized, decentralized, and distributed model predictive control (MPC) systems. Additionally,
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this thesis introduces two-layer and two-tier encrypted control frameworks that combine linear and

nonlinear control strategies. Within these frameworks, linear control systems perform control input

computations in an encrypted space, eliminating the need for decryption and ensuring the preser-

vation of data confidentiality. Incorporating machine-learning-based and logic-based cyberattack

detectors with reconfiguration mechanisms further fortifies these encrypted control frameworks

for cyber-resilient operation. System-specific integrations in the control system address complex-

ities like limited feedback, input and state delays, and the dynamic nature of process economics.

Numerical simulations of nonlinear chemical process examples and Aspen Plus simulations of

large-scale chemical process networks demonstrate the effectiveness of the proposed frameworks.

The results highlight their ability to improve operational safety, cyber-security, computational effi-

ciency, and overall closed-loop and economic performance in nonlinear processes.
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Chapter 1

Introduction

1.1 Motivation

The advent of Industry 4.0 is characterized by widespread sensor deployment, expanded wireless

communication capabilities, and more accessible computing power, marking a significant leap in

industrial technology. Over the past decade, there has been an exponential growth in data collec-

tion and computing capabilities, enabling the development of advanced analytics and intelligent

systems [22, 42, 73]. Production facilities now accumulate vast amounts of operational and in-

strumentation data crucial for monitoring, control, and troubleshooting purposes. Some potential

troubleshooting applications of this data include maintenance, fault detection, and building of data-

based models, particularly with the computational power available [72, 88]. This digital revolution

opens doors to explore more robust systems aimed at enhancing operational stability, confiden-

tiality of data collected, process safety, production quality, computational speed, economic perfor-
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mance, and cybersecurity across various industrial domains. In the subsequent sections, we delve

into some key challenges within the realm of process control that serve as the driving force behind

the research endeavors presented in this thesis.

Industrial data serves as a cornerstone for numerous applications across diverse industries.

However, safeguarding confidentiality and ensuring secure access to this data are of utmost im-

portance, particularly in highly competitive markets. The transmission of raw data exposes it

to vulnerabilities, including unauthorized access and manipulation by external parties. To coun-

teract these risks, robust measures must be implemented that uphold confidentiality and restrict

access to authorized personnel, even during data transmission over networks. Moreover, the ap-

proach adopted should be universally applicable across different industries, minimizing the need

for industry-specific measures to ensure data confidentiality. A promising solution is utilizing

an encrypted control system [30, 46]. This approach offers a versatile and effective solution for

enhancing data security and confidentiality. It can be easily implemented across various systems

without necessitating system-specific modifications, thereby addressing the fundamental challenge

of secure data transmission in networked systems.

To implement encryption, most cryptosystems require data to be encrypted in the form of pos-

itive integers. However, sensor data is typically in floating point format. Converting this floating

point data to positive integers necessitates a mapping procedure. This procedure involves quantiza-

tion, where a quantization parameter is selected to perform the necessary operations [19]. However,

this mapping process introduces errors between the actual value and its encrypted counterpart due

to the discrepancy between the real number and its closest rational approximation during map-

ping. Consequently, to mitigate this issue, the control system must be designed to accommodate a
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certain level of robustness concerning potential encryption process errors. Additionally, the map-

ping procedure should be robust to minimize errors by appropriately adjusting quantization-related

parameters.

Various encryption methods, including symmetric encryption, fully homomorphic encryp-

tion, and partially homomorphic encryption, serve to secure data. Symmetric encryption, like

AES (Advanced Encryption Standard), is a non-homomorphic technique that prohibits mathemat-

ical operations within encrypted data [70]. In contrast, fully homomorphic encryption, as seen

in schemes like BGV (Brakerski-Gentry-Vaikuntanathan), allows addition and multiplication op-

erations within encrypted data [32]. Meanwhile, partially homomorphic encryption enables ad-

dition or multiplication operations within encrypted data. For example, the Paillier cryptosystem

supports addition operations in an encrypted environment [67]. However, a key limitation of en-

cryption methods is their inability to perform nonlinear mathematical operations within encrypted

data, restricting them to linear additive and multiplicative operations. Nonlinear computations ne-

cessitate decryption before processing, underscoring the importance of a cyber-secure decryption

environment. The vulnerability of the decryption environment to cyber threats poses challenges for

ensuring cyber-resilient operation. Special control structures with multi-tier control are required to

address these challenges effectively.

Many industrial applications encounter significant control challenges due to the scale and

intricacy of their processes. Conventional methods for analyzing and controlling dynamical sys-

tems often rely on the assumption of centrality, wherein a single controller processes all available

system information for relevant calculations. However, numerous industrial systems, including

chemical production plants, power distribution grids, urban traffic networks, and cyber-physical
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facilities like data centers, are categorized as large-scale systems. In these contexts, the centrality

assumption becomes untenable due to the absence of a centralized information hub and limitations

in centralized computing capabilities. Factors such as the system’s high dimensionality, uncertain-

ties, and communication delays in the network, along with the geographical dispersion of com-

ponents, compounded by the rapid advancements in microprocessor technologies, necessitate a

transition from centralized control to decentralized decision-making and distributed computations

[10, 15]. Among various advanced control techniques suitable for large-scale systems, model pre-

dictive control (MPC) stands out for its capacity to manage multi-variable control problems with

constraints. However, centralized MPC is ill-suited for large-scale networked systems due to scal-

ability issues and the challenges associated with maintaining global models [10]. Consequently,

the development of decentralized and distributed MPC algorithms has naturally evolved to tackle

these obstacles [7, 15]. These approaches involve breaking down the original optimization prob-

lem from the centralized controller into several smaller optimization problems, each addressed by

separate decentralized or distributed local controllers. As a result, decentralized and distributed

control structures offer a practical means of disentangling large-scale processes and reducing the

computational burden of centralized control problems. This is achieved by deploying multiple

MPCs that collaborate iteratively to achieve a common control objective applicable to the entire

system [14, 51].

Addressing time delays poses another challenge in establishing controlling processes. These

delays stem from various sources, including the computation of control inputs, communication lags

during signal transfer, material transportation dynamics within the process network, and control ac-

tuator dynamics. Advancements in networked communication have streamlined connectivity and
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data transfer in cyber-physical systems and have minimized communication delays. However, de-

lays arising from control actuator dynamics remain a challenge. These delays cannot be mitigated

solely by reducing control input computation times or enhancing material transport and networked

communication speed. Therefore, it is crucial to employ appropriate control strategies, such as in-

tegrating predictors within the controller design, to address these issues effectively [79]. Another

common challenge involves the acquisition of sensor measurements for all states in large processes,

which can be cost-prohibitive and impractical due to installation complexities. Consequently, ex-

tensive research has been devoted to state estimation techniques, enabling real-time prediction of

unmeasured states through deterministic and stochastic methods. Notably, the extended Kalman

Filter (EKF) and extended Luenberger observer (ELO) are widely utilized for nonlinear processes

[48, 89].

Improving the economic performance, efficiency, and adaptability to fluctuating economics in

real-time has long been a central research focus in dynamic process optimization. Studies in chem-

ical process control indicate that many industrial processes can enhance profitability by adopting

time-varying operations over static steady-state methods [6, 29]. This trend has given rise to eco-

nomic model predictive control (EMPC), enabling the dynamic optimization of economic cost

functions while ensuring stability constraints are met. The impact of fluctuating energy costs,

commodity prices, currency values, interest rates, logistics expenses, and market dynamics is sub-

stantial across global industries. By integrating real-world economic variations, EMPC systems

can yield superior results, highlighting the critical role of dynamic optimization techniques in

maintaining competitiveness amid unpredictable conditions.
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1.2 Background

Numerous real-life instances underscore the criticality of cybersecurity in networked cyber-physical

systems and SCADA environments. In 2010, the Stuxnet worm targeted SCADA systems in Ira-

nian nuclear facilities, causing centrifuges to burn out [47]. Similarly, in 2015, hackers compro-

mised SCADA systems, leading to widespread power outages in the Ukrainian power grid [45].

More recently, in May 2021, the Colonial Pipeline suffered a ransomware attack, resulting in

disruptions to fuel supply and significant economic impact [78, 82]. Ongoing research focuses

on integrating encryption into linear model predictive control systems [18, 20]. Additionally, a

comprehensive study explored the design of encrypted model predictive control for nonlinear pro-

cesses and the impact of quantization on system performance [81]. However, the implementation

of encrypted model predictive control in nonlinear processes with plant/model mismatch remains

unexplored. Further investigation is needed to understand the effects of quantization and compare

the time required for quantization-related operations with encryption-decryption.

To implement encrypted model predictive control systems in nonlinear processes, it is es-

sential that nonlinear computations occur in plaintext after decryption. Current research generally

assumes a cyber-secure decryption environment [39, 40, 81], which may not always be guaranteed.

In a cyber-vulnerable environment, decrypted data can be manipulated during a cyberattack. Thus,

there is a need for a control architecture that ensures cyber-resilient operation even in non-secure

decryption settings. Additionally, exploring the integration of encrypted control with machine

learning-based cyberattack detection is crucial. Moreover, developing encrypted control architec-

tures that integrate linear and nonlinear control systems using different encryption methods could
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bolster cybersecurity and merit further investigation.

Chemical process operations heavily rely on automated control systems, necessitating the de-

velopment of model predictive control (MPC) to address multivariable interactions and input/state

constraints. However, advancements in sensor technology and network-based communication in-

troduce complexities by increasing the number of decision variables, state variables, and mea-

surement data. This escalation in complexity can lead to longer computation times when us-

ing centralized MPC, especially for large-scale systems like power distribution grids, mechani-

cal systems, chemical processes, supply chains, and urban traffic networks. Simply relying on

faster computers with large memory is insufficient to address these challenges [7]. In response,

distributed model predictive control systems have emerged, employing multiple controllers with

inter-controller communication to cooperatively calculate control actions and achieve plant objec-

tives [15, 74, 80]. Decentralized control architectures have also been proposed, where controllers

independently compute control inputs without inter-controller communication [33, 56, 76]. How-

ever, despite their potential, the application of these approaches to nonlinear process systems with

encrypted communication remains largely unexplored. Ensuring data confidentiality in large-scale

systems while enhancing computation efficiency is crucial, and exploring the application of de-

centralized or distributed MPCs with encrypted communication in realistic scenarios involving

nonlinear processes with state and input delays or limited state measurements is essential. Ad-

dressing these challenges will require additional provisions and can serve as a promising area for

future exploration. Moreover, conducting a comprehensive comparison with quantitative metrics

regarding the closed-loop performance and computational burden of encrypted centralized, decen-

tralized, and distributed MPC systems can offer valuable insights for selecting the most suitable
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control system.

Nonlinear model predictive control frameworks have been proposed, including two-tier con-

trol architectures where linear and nonlinear controllers are integrated into a single control system,

with linear controllers computing control inputs in an encrypted space [41]. In such applications,

encrypted control systems operate independently in a decentralized manner. However, these strate-

gies can also be combined in a sequential framework, where a nonlinear controller computes oper-

ating points in plaintext, encrypts them, and passes them to another control layer, which tracks the

set-points by computing control inputs in an encrypted space. Moreover, encrypted control frame-

works can be designed to perform dynamic economic optimization and account for fluctuating

economics in real-time to maximize the economic performance of nonlinear processes. Such mul-

tipurpose control systems that enhance both economic performance and cybersecurity are essential

to maintain competitiveness and cybersecurity. Additionally, cyberattack detection and reconfigu-

ration schemes must be integrated to ensure cyber-resilient operation in case of cyberattacks. While

previous research has included detection [2, 26, 60, 64], integrating these methods with reconfig-

uration mechanisms into the new control systems as described above can lead to cyber-resilient

operation.

1.3 Thesis objectives and structure

This thesis presents new control architectures that use encrypted communication to tackle the chal-

lenges faced by modern control systems, including operational safety, cybersecurity, and large-

scale process control. The thesis provides theoretical analyses of these control architectures and
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demonstrates their applications in nonlinear chemical process examples. The objectives of this

thesis can be summarized as follows:

1. To present a centralized encrypted Lyapunov-based MPC for a nonlinear chemical process

network, and analyze the effect of quantization on closed-loop performance and computation

burden.

2. To integrate nonlinear and linear control systems in an encrypted two-tier control framework

with machine-learning-based detection algorithms for enhanced cybersecurity.

3. To develop an encrypted decentralized model predictive control scheme for nonlinear time-

delay systems with rigorous theoretical analysis on their closed-loop stability properties.

4. To create encrypted distributed model predictive control systems with extended Luenberger

observer-based state estimations for nonlinear processes when only partial state measure-

ments are available.

5. To formulate an encrypted two-layer control framework to maximize economic performance

while addressing fluctuating real-world economic with cyberattack resilient operation.

The remainder of this thesis is organized as follows: Chapter 2 focuses on developing and apply-

ing Encrypted Lyapunov-based Model Predictive Control (LMPC) in a non-linear chemical pro-

cess network for ethylbenzene production. The network, governed by a non-linear dynamic model,

comprises two continuously stirred tank reactors that are connected in series and is simulated using

Aspen Plus Dynamics. For enhancing system cybersecurity, the Paillier Cryptosystem is employed

for encryption-decryption operations in the communication channels between the sensor-controller
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and controller-actuator, establishing a secure network infrastructure. Cryptosystems generally re-

quire integer inputs, necessitating a quantization parameter d, for quantization of real-valued sig-

nals. We utilize the quantization parameter to quantize process measurements and control inputs

before encryption. Through closed-loop simulations under the encrypted LMPC scheme, where

the LMPC uses a first-principles non-linear dynamical model, we examine the effect of the quan-

tization parameter on the performance of the controller and the overall encryption to control input

calculation time. We illustrate that the impact of quantization can outweigh those of plant/model

mismatch, showcasing this phenomenon through the implementation of a first-principles-based

LMPC on an Aspen Plus Dynamics process model. Based on the findings, we propose a strat-

egy to mitigate the quantization effect on controller performance while maintaining a manageable

computational burden on the control input calculation time.

Chapter 3 presents an encrypted two-tier control architecture integrated with a machine learn-

ing (ML) based cyberattack detector to enhance the operational safety, cyber-security, and perfor-

mance of nonlinear processes. The upper tier of this architecture employs an encrypted nonlinear

Lyapunov-based model predictive controller (LMPC) to enhance closed-loop performance, while

the lower tier utilizes an encrypted set of linear controllers to stabilize the process. Encrypted

signals from the sensors are decrypted at the upper tier for plain text control input computation,

while the lower tier computes control inputs in an encrypted space, due to its exclusive use of

linear operations. While this design enhances closed-loop performance, it exposes the upper tier

to potential cyberattacks. To mitigate this risk, an ML-based detector is developed in the form of a

feed-forward neural network, utilizing sensor-derived data for attack detection. Upon attack detec-

tion, the control system logic deactivates the performance-enhancing upper tier and relies solely
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on the cybersecure lower tier for system stabilization. The chapter also includes a comprehensive

stability analysis of the two-tier control structure, establishing error bounds related to quantiza-

tion and sample-and-hold controller implementations. The proposed control framework can be

extended to any nonlinear process that is controlled by a combination of linear and nonlinear con-

trollers to enhance the system cybersecurity. Guidelines such as quantization parameter selection,

cyberattack detector development, and sampling time criteria are included to facilitate practical

implementation. Simulation results of a nonlinear chemical process network demonstrated the

robustness of the encrypted control architecture and cyberattack detector, as well as its ability to

detect previously unseen attack patterns.

Chapter 4 focuses on enhancing the operational safety, cybersecurity, computational effi-

ciency, and closed-loop performance of large-scale nonlinear time-delay systems. This is achieved

by employing a decentralized model predictive controller (MPC) with encrypted networked com-

munication. Within this decentralized setup, the nonlinear process is partitioned into multiple sub-

systems, each controlled by a distinct Lyapunov-based MPC. These controllers take into account

the interactions between subsystems by utilizing full state feedback, while computing the control

inputs only corresponding to their respective subsystem. To address the performance degradation

associated with input delays, we integrate a predictor with each LMPC to compute the states after

the input delay period. The LMPC model is initialized with these predicted states. To cope with

state delays, the LMPC model is formulated using differential difference equations (DDEs) that

describe the state-delays in the system. Further, to enhance cybersecurity, all signals transmitted

to and received from each subsystem are encrypted. A stability analysis is carried out for the

encrypted decentralized MPC when it is utilized in a time-delay system. Bounds are set up for
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the errors arising from encryption, state-delays, and sample-and-hold implementation of the con-

troller. Guidelines are established to implement this proposed control structure in any nonlinear

time-delay system. The simulation results, conducted on a nonlinear chemical process network,

illustrate the effective closed-loop performance of the decentralized MPCs alongside the predictor

with encrypted communication when dealing with input and state delays in a large-scale process.

Chapter 5.1 and Chapter 5.2 explore the design of encrypted distributed MPC systems for

nonlinear processes. Firstly, a distributed model predictive controller (DMPC) is utilized to par-

tition the process into multiple subsystems, each controlled by a distinct Lyapunov-based MPC

(LMPC). To consider the interactions among different subsystems, each controller receives and

shares control inputs computed for its subsystem. As full state feedback is unavailable, we in-

tegrate an extended Luenberger observer with each LMPC, initializing the LMPC model with

complete state estimate information provided by the observer. Furthermore, to enhance cyber-

security, wireless signals received and transmitted by the controllers are encrypted. Guidelines

are established to implement this proposed control structure in any large-scale nonlinear chem-

ical process network. Simulation results, conducted on a specific nonlinear chemical process

network, demonstrate the effective closed-loop performance of the encrypted DMPC with state

estimation, utilizing partial state feedback with sensor noise. This is followed by a comprehensive

comparison of the closed-loop performance, control input computational time, and suitability of

encrypted centralized, decentralized, and distributed MPC frameworks. Secondly, an encrypted

iterative DMPC with encrypted communication links between sensors, actuators, and control in-

put computing units is presented. Through a comprehensive stability analysis of the encrypted

iterative DMPC, bounds are established on errors arising from encrypted communication links,
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disturbances, and the sample-and-hold implementation of controllers. Practical aspects such as

reducing data encryption time by appropriate key length choices, sampling interval criterion, and

quantization parameter selection are discussed. Simulation results of the proposed control scheme

applied to a nonlinear chemical process, showcase its effective closed-loop performance in the

presence of sensor noise and process disturbances. Specifically, a non-Gaussian noise distribution

is obtained from an industrial data set and added to the state measurements to justify the practical

effectiveness of the proposed approach.

Chapter 6 proposes a two-layer framework to maximize economic performance through dy-

namic process economics optimization while addressing fluctuating real-world economics and en-

hancing cyberattack resilience via encryption in the feedback control layer for nonlinear processes.

The upper layer employs a Lyapunov-based economic model predictive control scheme, receiving

updated economic information for each operating period, while the lower layer utilizes an en-

crypted linear feedback control system. Encrypted state information is decrypted in the upper

layer to determine the economically optimal dynamic operating trajectory through nonlinear opti-

mization. Conversely, the lower layer securely tracks this trajectory in an encrypted space without

decryption. To mitigate the cyber vulnerability of the upper layer, we integrate a cyberattack de-

tector that utilizes sensor-derived data for attack detection. We quantify the errors emanating from

quantization, disturbances, and sample-and-hold controller implementation. Simulation results of

a nonlinear chemical process highlight the robustness and economic benefits of the new control

architecture.

Chapter 7 summarizes the main results of the thesis.
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Chapter 2

Encrypted Model Predictive Control of a

Nonlinear Chemical Process Network

2.1 Introduction

With the rapid advancement of technology and the increasing integration of devices, net-

worked cyber-physical systems, particularly those utilizing SCADA (Supervisory Control and

Data Acquisition) technology, have become integral components of critical infrastructure across

industries such as energy, water, transportation, and manufacturing. These systems enable efficient

monitoring, control, and automation of complex processes, enhancing productivity and operational

efficiency. However, the increased connectivity and integration of SCADA systems with corporate

networks and the Internet have exposed them to potential cyber threats. A breach or compromise

in these systems can have severe consequences, including disruption of essential services, phys-

ical damage, financial losses, and even threats to public safety. Recent advances in cyberattack

techniques and the growing sophistication of threat actors have further highlighted the criticality
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of implementing robust cybersecurity measures.

Various real-world examples underscore the importance of cybersecurity in networked cyber-

physical systems and SCADA environments. For instance, the Stuxnet worm, discovered in 2010,

specifically targeted SCADA systems in Iranian nuclear facilities. Stuxnet infiltrated Iranian PLCs

(Programmable Logic Controllers), gathering data about industrial systems and causing the fast-

spinning centrifuges to burnout [47]. Another notable incident is the Ukrainian power grid cyber-

attack in 2015, where hackers successfully compromised SCADA systems, leading to widespread

power outages affecting thousands of people. In a recent incident in May 2021, the Colonial

Pipeline, a major fuel pipeline operator in the United States, fell victim to a ransomware attack.

The attackers infiltrated Colonial Pipeline’s network through the DarkSide ransomware. They en-

crypted the company’s systems and demanded a ransom payment in exchange for the decryption

keys. As a result, Colonial Pipeline shut down its operations, leading to disruptions in fuel supply

and causing a significant economic impact.

Despite significant advancements in addressing cybersecurity challenges within the informa-

tion technology (IT) domain, the operational technology (OT) domain is still catching up in terms

of progress. IT primarily focuses on the software component of systems, encompassing network

infrastructure and data management. In contrast, OT ensures the smooth operation of critical in-

frastructure, including power grids, smart meters, and distribution systems. Notably, cyberattacks

targeting OT systems tend to have more severe and far-reaching consequences compared to those in

IT. These attacks can lead to outcomes such as shutdowns, outages, leakages, and even explosions.

Consequently, standards development organizations like the National Institute of Standards and

Technology (NIST) [9] have devised essential cybersecurity research roadmaps. These roadmaps
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serve as frameworks designed to identify and mitigate the impact of cyber-attacks, thereby exerting

a notable influence on the security protocols adopted across various industries.

While significant research efforts continue to focus on diverse domains, such as the creation

of machine learning-based cyber-attack detectors [1, 36, 66, 84], the design of backup controllers

in a two-tier safety-performance control architecture [13], the recovery of process states following

a cyber-attack [87], and the development of cyberattack-resilient controllers [24, 25], one crit-

ical and fundamental research issue remains unresolved: the establishment of universally imple-

mentable secure data transmission lines in any cyber-physical networked system, without requiring

controller modifications, installation of backup control systems, development of system-specific

detection mechanisms, or tailor-made solutions for individual platforms. A promising solution

to address this issue is utilizing an encrypted control system. This approach offers a versatile

and effective solution for enhancing data security and confidentiality. It can be easily implemented

across various systems without necessitating system-specific modifications, thereby addressing the

fundamental challenge of secure data transmission in networked systems.

Regarding encrypted control, extensive research has been conducted in the field of linear con-

trol systems, with control computations performed in a fully encrypted space. The fundamental

concept behind such systems is multiplicative homomorphism, which enables multiplication op-

erations to be executed in an encrypted medium using complex cryptosystems like the ElGamal

[27]. However, such operations in an encrypted space can be computationally demanding and

not applicable to systems governed by complicated non-linear dynamics where non-linear con-

trollers may be needed, limiting their widespread adoption. Alternatively, a more viable approach

could involve using encryption to secure data transmission lines. The data collected by the sensors
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can be encrypted, subsequently transferred, and decrypted at the controller, which can be isolated

and fortified against potential security breaches. Therefore, within the context of this research,

we consider that the edge computer, responsible for executing controller computations within a

SCADA architecture, operates within a completely secure cyber-physical setting due to encryption

of the sensor-to-controller and controller-to-actuator signals. Specifically, in our formulation, the

controller can compute the control action in plaintext, eliminating the need for convoluted cal-

culations in an encrypted space. Subsequently, the control action can undergo encryption before

transmission to the actuator, where the encrypted control action is decrypted and executed. This

method avoids computationally demanding operations in an encrypted space and is effectively im-

plementable in systems employing advanced process control schemes for non-linear systems, such

as model predictive control (MPC).

Since its inception, the chemical industry has extensively adopted model predictive control

due to its effectiveness in achieving closed-loop stability, optimizing key performance metrics, its

capability to handle multiple inputs and outputs, and accommodate constraints on system states

and inputs. These benefits arise from employing a mathematical model of the system to predict

future behavior and optimize control inputs accordingly. However, implementing MPC necessi-

tates decryption at the controller to obtain the essential information required for prediction and

optimization. In an industrial setting, an edge computer, accessible remotely by the sensors and

actuators through the network, can perform non-linear MPC computations. The objective is to uti-

lize encryption techniques to establish secure connections between the sensors-edge computer and

edge computer-actuators. The referenced work [81] provides a comprehensive exploration of the

design of an encrypted model predictive control framework, as well as the influence of quantization
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on system performance. Building upon that foundation, in this work, we go a step further by imple-

menting the encrypted Lyapunov-based model predictive control (LMPC) scheme in a large-scale

chemical process network used for ethylbenzene production, using an Aspen Plus Dynamics based

process model in conjunction with a first-principles based LMPC to showcase that the influence

of quantization can surpass the impact of plant/model mismatch. Moreover, the study conducts a

comprehensive and innovative investigation to assess how encryption-decryption affects the com-

putation time required for computing the control action. By thoroughly examining the impact of

the quantization parameter selected for encryption on the computation time, this research aims to

provide new perspectives and deeper insights into the practical implications of data encryption.

To our knowledge, prior investigations have not explored the implications of an encrypted MPC

scheme in the aforementioned domains.

To apply the encrypted LMPC, we develop two distinct non-linear dynamical models: one uti-

lizing Aspen Plus Dynamics V12 and the other based on first-principles modeling fundamentals.

In Section 2.4, we conduct closed-loop simulations for the Aspen Plus Dynamics model, employ-

ing the first-principles model-based encrypted LMPC for various quantization parameters. Further,

we investigate the impact of these parameters on controller performance and put forth a proposal

to mitigate quantization errors and their effects on controller performance. Additionally, in Sec-

tion 2.5, we explore the influence of encryption-decryption on the total control input calculation

time. Expanding on the previous recommendation, we provide clear guidance on implementing the

encrypted LMPC approach. This implementation ensures a feasible computation time for control

action computation (with encryption) while establishing secure communication pathways between

the sensor-controller and controller-actuator components, without compromising the performance
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of the controller.

2.2 Preliminaries

2.2.1 Notation

The Euclidean norm of a vector is denoted by the symbol ∥·∥. The notation xT represents the

transpose of the vector x. The standard Lie derivative LfV (x) is defined as the partial derivative

of the function V (x) with respect to x multiplied by the vector field f(x), LfV (x) := ∂V (x)
∂x

f(x).

The sets R, Z, and N refer to the sets of real numbers, integers, and natural numbers, respectively.

Additionally, ZM and Z∗
M represent the additive and multiplicative groups of integers modulo M ,

respectively.

The set subtraction operation is denoted by “\”, meaning that A\B represents the set of

elements in A that are not in B. A function f(·) is said to be of class C1 if it is continuously

differentiable in its domain. A continuous function α : [0, a) → [0,∞) is considered to be in the

class K if it is strictly increasing and only evaluates to zero at zero. The function gcd(i, j) denotes

the greatest common divisor, which returns the largest positive integer that divides both i and j

without leaving a remainder. On the other hand, lcm(i, j) represents the least common multiple of

the integers i and j.
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2.2.2 Class of Systems

In this work, we primarily focus on a specific category of systems known as nonlinear continuous-

time systems with multiple input and multiple outputs (MIMO). These systems represent a set

of first-order ordinary differential equations (ODEs) that exhibit nonlinear behavior. The general

representation of these systems is:

ẋ = F (x, u) = f(x) + g(x)u (2.1)

The system is described by a state vector x = [x1, x2, . . . , xn] ∈ Rn and a control input vec-

tor u ∈ Rm. The inputs applied to the system are subject to certain bounds, defined by the set

U ⊂ Rm, where U := {u ∈ U |umin,i ≤ ui ≤ umax,i,∀; i = 1, 2, · · · ,m}. The values umin,i and

umax,i represent the minimum and maximum limits for each manipulated input, respectively. The

functions f(·) and g(·) are assumed to be sufficiently smooth vector and matrix functions, respec-

tively. For the sake of simplicity and without sacrificing the general applicability, we make the

assumption that f(0) = 0, thereby considering the origin as a steady state of the nonlinear system

described by the Eq. (2.1). For convenience, we set the initial time to zero throughout the paper

(t0 = 0). In addition, we introduce some notation: the space of continuous functions that map the

interval [a, b] to Rn is denoted by C([a, b],Rn). We also define the set S(∆) as the collection of

piece-wise constant functions with a period of ∆.
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2.2.3 Achieving Stability through Lyapunov-based Feedback Control

We assume the existence of a feedback controller denoted as u = Φ(x) ∈ U to achieve exponential

stability at the origin within the system described by the Eq. (2.1). This exponential stability is

characterized by the presence of a continuously differentiable control Lyapunov function denoted

as V (x), satisfying the following inequalities for all x within an open neighborhood D around the

origin [85, 86]:

c1|x|2 ≤ V (x) ≤ c2|x|2, (2.2a)

∂V (x)

∂x
F (x,Φ(x)) ≤ −c3|x|2, (2.2b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x| (2.2c)

where c1, c2, c3 and c4 are positive constants. The method presented in the referenced work, [49]

offers an approach to construct a stabilizing controller that satisfies the desired criteria. For the

nonlinear system of Eq. (2.1), the closed loop stability region is characterized as a level set of the

Lyapunov function V . This stability region Ωρ is defined as Ωρ := {x ∈ D|V (x) ≤ ρ}, where

ρ > 0.

2.2.4 Paillier cryptosystem

In this research article, we utilize the Paillier cryptosystem [67] to apply encryption and decryp-

tion to process measurements (represented as x) and control inputs (represented as u). The Paillier

cryptosystem is a partially homomorphic encryption scheme that enables performing addition oper-

ations within the encrypted message space. However, the primary rationale for utilizing the Paillier
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cryptosystem in this paper is its computational efficiency compared to other cryptosystems, such

as ElGamal or AES, rather than its partial homomorphic property. Like most cryptosystems, the

Paillier cryptosystem operates by encrypting plaintext data presented in the form of non-negative

integers. The encryption process commences with the generation of public and private keys. The

public key is used to encrypt integer messages and produce ciphertexts. Conversely, the private key

decrypts the ciphertexts and recovers the original integer messages. The generation of the public

and private keys in the Paillier cryptosystem follows a specific set of steps:

1. Select two large random prime integers (p and q) satisfying the condition gcd(pq, (p−1)(q−

1)) = 1.

2. Calculate the product of these integers, denoted by M = pq.

3. Select a random integer g such that, g ∈ Z∗
M2 where Z∗

M2 is the multiplicative group of

integers modulo M2.

4. Calculate λ = lcm(q − 1, p− 1).

5. Define L(x) = (x− 1)/M .

6. Check the existence of the following modular multiplicative inverse:

u = (L(gλ modM2))−1 mod M .

7. If the inverse does not exist, return to step 3 and select an alternative value for g. In the event

that the inverse does exist, we obtain the public key (M, g) and the private key (λ, u).

After obtaining the keys, we distribute the public key to the intended recipients that perform the

encryption process. Similarly, we share the private key exclusively with the authorized recipients
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responsible for decrypting the data. The process of encryption-decryption consists of the following

steps:

EM(m, r) = c = gmrM mod M2 (2.3)

where r ∈ ZM is a random integer and c is the ciphertext obtained after encryption of m. The

decryption process of the ciphertext c ∈ ZM2 , is performed as follows:

DM(c) = m = L(cλ mod M2)u mod M (2.4)

2.2.5 Quantization

In order to utilize the Paillier cryptosystem, it is necessary to represent the input data to be en-

crypted as natural numbers. However, it’s important to note that the signal measurements provided

before encryption are typically in the form of floating-point numbers. Consequently, a mapping

procedure becomes essential to convert these floating-point numbers into elements within the set

ZM . This procedure involves quantization, where a quantization parameter denoted by d is chosen

to perform the quantization operations [19].

To achieve this objective, we adopt signed fixed-point numbers in binary representation. The

quantization parameters l1 and d refer to the total number of bits and the number of fractional bits,

respectively. Using these quantization parameters, we construct a set denoted as Ql1,d. This set

encompasses rational numbers ranging from −2l1−d−1 to 2l1−d−1− 2−d, with each rational number

separated by a resolution of 2−d. A rational number q belonging to the set Ql1,d can be expressed

as follows: q ∈ Ql1,d, where ∃β ∈ {0, 1}l1 and q = −2l1−d−1βl1 +
∑l1−1

i=1 2i−d−1βi. To map a real
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number data point a to the set, Ql1,d we employ the function gl1,d given by the equation:

gl1,d : R → Ql1,d

gl1,d(a) := arg min
q∈Ql1,d

|a− q|
(2.5)

This function allows us to determine the closest quantized rational number to a given real number

data point. Following this quantization step, the quantized data is mapped to a set of integers

using bijective mapping denoted as fl2,d [19]. This mapping ensures that the quantized data is

transformed into a subset of the message space ZM . The bijective mapping can be defined as:

fl2,d : Ql1,d → Z2l2

fl2,d(q) := 2dq mod 2l2
(2.6)

The encryption process involves encrypting integer plaintext messages using the set, Z2l2 and the

resulting ciphertexts can be decrypted back into the same set Z2l2 . Once the controller and actuator

receive the encrypted signals, the ciphertexts undergo decryption to extract integer plaintext mes-

sages that represent quantized states and inputs, respectively. Consequently, it becomes essential

to remap these decrypted plaintext messages back to the set Ql1,d. The inverse mapping, denoted

as f−1
l2,d

, is defined as follows:

f−1
l2,d

: Z2l2 → Ql1,d
(2.7)

f−1
l2,d

(m) :=
1

2d


m− 2l2 if m ≥ 2l2−1

m otherwise
(2.8)

To demonstrate encryption and decryption, we can refer to Figure 2.1. For this example, the chosen
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quantization parameter, total number of bits, and bijective mapping parameter are: d = 3, l1 = 18,

and l2 = 30. Let’s consider the rational number a = −1.31752 which is the input data to be

encrypted to illustrate the encryption-decryption process and the effect of quantization.

m

<phe.paillier.EncryptedNumber 
object at 0x7f1d2ac99300>

m

Figure 2.1: Illustration of encryption-decryption applied to a floating-point real number.

2.3 Design of the Encrypted MPC

In the envisioned closed-loop architecture of the encrypted MPC, as depicted in Figure 2.2, the

sensor signals x(t) are subjected to encryption before being sent to the model predictive controller

(MPC). After obtaining the encrypted data, it undergoes decryption, resulting in quantized states

x̂(t). These quantized states serve as the initial values for the plant model within the MPC at time t.

The MPC subsequently computes optimized inputs u(t), which are encrypted prior to transmission
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to the actuator. After the actuator receives the encrypted signals as input, the encrypted input is

decrypted, leading to a quantized input, û(t) that is applied to the process.

Figure 2.2: Illustration of the data transfer process in an encrypted MPC system.

The above closed-loop design introduces two sources of errors. Firstly, a quantization error in

the sensor-MPC communication link, resulting from the mapping of the state data from R to Ql1,d.

Additionally, the MPC-actuator communication link introduces an input quantization error caused

by the conversion of input data from the set of real numbers R to Ql1,d. These quantization errors

are bounded and can be characterized by the mapping equation of Eq. (2.5), ensuring that:

|x(t)− x̂(t)| ≤ 2−d−1 (2.9a)

|u(t)− û(t)| ≤ 2−d−1 (2.9b)

where d is the quantization parameter used for mapping in Eq. (2.5). Firstly, taking into account the

impact of quantization-induced input errors, the dynamical model of the MPC employs a nonlinear
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system, represented by Eq. (2.1), which can be expressed as follows:

ẋ = F (x, û) = f(x) + g(x)û

= f(x) + g(x)(u+ e)

(2.10)

where e = û(t)− u(t) and

|e| ≤ 2−d−1 (2.11)

Secondly, an error in the control input, u = Φ(x) ∈ U , will emanate as the MPC receives x̂ instead

of the actual state x. This error will be bounded by the underlying equation, where L1 > 0:

|Φ(x̂)− Φ(x)| ≤ L1|x̂− x| ≤ L12
−d−1 (2.12)

Reference [81] discusses and establishes the stability of the proposed control loop with encrypted

data transfer, providing assurance for the closed-loop system stability even in the presence of

encryption, under certain conditions.

Remark 2.1. The error in the quantization operation occurs when the target value to be quantized

is not found exactly in the set Ql1,d, which consists of quantized values with a certain resolution

determined by the quantization parameter, denoted as d. The resolution between elements in this

set is given by 2−d. To determine the upper bound of the error, let’s focus on a specific value,

denoted as x1, that needs to be quantized. We assume that x1 falls within the range of y1 and

y1 + 2−d, where y1 and y1 + 2−d represent quantized values in the set Ql1,d. The quantization

process involves comparing the distance between x1 and y1 with the distance between x1 and

y1 + 2−d. If the distance between x1 and y1 is smaller than the distance between x1 and y1 + 2−d,
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then x1 is mapped to y1. Otherwise, it is mapped to y1 + 2−d. The error in quantization is then

bounded by half the resolution, which is equal to |y1 + 2−d − y1|/2 = 2−d−1. This implies that the

maximum difference between the quantized value x̂1, and the actual value x1, is 2−d−1.

2.3.1 Encrypted Lyapunov-based MPC

This section presents a formulation of feedback MPC for the closed-loop design of the nonlinear

system described by Eq. (2.1), considering secure sensor-controller and controller-actuator com-

munication links. Control actions will be applied to the nonlinear system using a sample-and-hold

approach with a sampling period of ∆ [35, 59]. The proposed MPC formulation is outlined as

follows:

J = min
u∈S(∆)

∫ tk+N

tk

L2(x̃(t), u(t))dt (2.13a)

s.t. ˙̃x(t) = F (x̃(t), u(t)) = f(x̃) + g(x̃)u (2.13b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (2.13c)

x̃(tk) = x̂(tk) (2.13d)

V̇ (x̂(tk), u) ≤ V̇ (x̂(tk),Φ(x̂(tk)), if x̂(tk) ∈ Ωρ̂\Ωρmin
(2.13e)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N), if x̂(tk) ∈ Ωρmin
(2.13f)

Within the framework of the Lyapunov-based MPC, referred to as LMPC, the predicted state tra-

jectory is represented as x̃, the sampling time is denoted by ∆, and the prediction horizon encom-

passes a number of sampling periods indicated by N . The LMPC algorithm computes the optimal

input sequence u∗(t|tk) for the entire prediction horizon t ∈ [tk, tk+N). The first input of this se-
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quence is subsequently transmitted to the actuator for application to the system within the interval

t ∈ [tk, tk+1).

In the encrypted LMPC design, the MPC uses quantized states x̂ for predicting the state tra-

jectory, Eq. (2.13a) integrates the cost function over the entire prediction horizon, and computes

the optimized control inputs for the entire prediction horizon. However, the actuator only applies

the control inputs corresponding to the first prediction horizon and repeats this process at each sam-

pling instance. Eq. (2.13b) represents the dynamic system model used by the LMPC. Eq. (2.13c)

represents the constraints imposed on the control inputs. The constraint in Eq. (2.13d) initializes

the plant model described in Eq. (2.13b) with quantized states. If the state x(tk) at time tk lies

within the set Ωρ̂ \ Ωρmin
, where ρmin represents a level set of V in proximity to the origin, the

Lyapunov constraint outlined in Eq. (2.13e) steers the closed-loop state x(tk) of the nonlinear sys-

tem presented in Eq. (2.10) towards the origin. Once the closed-loop state x(tk) enters the region

Ωρmin
, the constraint specified in Eq. (2.13f) ensures that this state remains within Ωρmin

throughout

the entire prediction horizon.

2.4 Application to a chemical process operating at an unstable

steady-state using Aspen Plus simulator

In this section, we demonstrate the application of the proposed encrypted LMPC to a large-scale

chemical process. To begin, we construct two dynamic models for a chemical process. We develop

the first dynamic model using Aspen Plus Dynamics V12, while the second model is based on first-

principles modeling fundamentals. Aspen Plus Dynamics is a high-fidelity software that can be
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used for detailed dynamic simulation of chemical processes in an operating region around a stable

or unstable steady-state, which is not possible in steady-state simulation software for chemical

processes, and hence, can be considered as the closest representation of the actual process dynamic

behavior. Furthermore, first-principles based MPC computations can be done on a computer in

SCADA systems using Python. As a first-principles model can be derived for most processes even

in the absence of data and be simulated readily with available solvers, the Aspen Plus Dynamics

model and first-principles based Python code can be considered as a “standard metric” to quantify

and analyze specific aspects of MPC. In this work, we use a distinct model to simulate the chemical

process from the model incorporated into the LMPC to demonstrate the impact of quantization and

compare it with plant/model mismatch. We design both models without any input or state delays.

Subsequently, closed-loop simulations are performed in the Aspen Plus Dynamics model using the

first-principles model-based LMPC. Finally, we replace the LMPC with an encrypted LMPC, and

closed-loop simulations are conducted and discussed.

2.4.1 Process Description

The process considered is the production of Ethylbenzene (EB) from Ethylene (E) and Benzene (B)

as reactive raw materials. The main reaction, labeled as “primary,” is a second-order, exothermic,

and irreversible reaction that occurs alongside two additional side reactions. This reaction scheme

is illustrated in Eq. (2.14) and takes place in two non-isothermal, well-mixed continuous stirred
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tank reactors (CSTR). The chemical reactions involved are as follows:

C2H4 + C6H6 C8H10 (primary) (2.14a)

C2H4 + C8H10 C10H14 (2.14b)

C6H6 + C10H14 2 C8H10 (2.14c)

The state variables are the concentration of Ethylene, Benzene, Ethylbenzene, Di-Ethylbenzene

and the reactor temperature, for each CSTRi, i = (1, 2), respectively in deviation terms that is:

xT = [CE1 −CE1s , CB1 −CB1s , CEB1 −CEB1s , CDEB1 −CDEB1s , T1−T1s, CE2 −CE2s , CB2 −

CB2s , CEB2 − CEB2s , CDEB2 − CDEB2s , T2 − T2s]

The subscript “s” denotes the steady-state value. The rate of heat removal for each reactor [Q1 −

Q1s, Q2 − Q2s] are the manipulated inputs to our process, which are bounded by the closed sets

[−104 kW, 2 x 103 kW] and, [−1.5 x 104 kW, 5 x 103 kW] respectively.

The control objective is to maintain the operation of both the CSTRs at their unstable steady-

state under the encrypted LMPC using the quantized states and inputs in computation and actua-

tion. Since the rate of heat removal for each CSTR is the manipulated input, the reactor temperature

state variables are directly affected by it. However, the manipulated inputs do not directly influence

the concentration states. Instead, they follow open-loop trajectories, gradually converging to their

respective steady-state values as the reactor temperatures approach their steady-state values.

To identify the stability condition of the operating steady-state, we conducted an open-loop

simulation in Aspen Plus Dynamics. We initiated the simulation using the steady-state values as

initial conditions, and the control inputs were held constant at their respective steady-state values
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(0 in deviation form) throughout the simulation. After running the simulation for 10 hours of

process time, the system states converged to a distinct stable steady-state, providing clear evidence

that the selected operating condition is an unstable steady-state. The main reason behind choosing

this unstable steady-state as the operating condition was its ability to yield the highest amount of

ethylbenzene, our desired product, at steady-state, at the outlet of the second CSTR.

2.4.2 Dynamic Model in Aspen Plus Dynamics

We develop the process model for this system using Aspen Plus and Aspen Plus Dynamics V12.

These are high-fidelity simulators used for complex chemical process modeling. The two CSTRs

are connected in series, such that the output of the first reactor affects the second reactor but not vice

versa. Initially, the process model is created in Aspen Plus, a steady-state simulation is performed

and validated by examining material and energy balances. Subsequently, dynamic simulations of

the process are conducted in Aspen Plus Dynamics, enabling a thorough analysis and control of

its dynamic behavior. The construction of both the steady-state and dynamic models follows the

following procedure in detail:

1. Inlet stream configuration: We enter the inlet stream components, concentrations, and tem-

peratures into Aspen Plus and supply it to each reactor through Hexane solutions with flow

rates F1 and F2. Using Hexane ensures the inlet flows remain in the liquid phase at the

feeding temperature. CE, CB, CEB, and CDEB represent the concentrations of Ethylene,

Benzene, Ethylbenzene, and Di-Ethylbenzene in the inlet stream, respectively. Ti, ρi, Vi, are

the temperature, liquid density and volume of CSTRi, i = 1, 2. CP represents the mass-
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specific heat capacity of the liquid mixture, and is assumed to remain constant throughout

the process in both reactors. Table 2.1 specifies the process parameters used. The subscript

“o” denotes the state in the inlet stream, and “s” indicates the steady-state conditions.

2. Pressure drop selection: Valves play a crucial role in establishing a dynamic model for Aspen

Plus Dynamics, as they serve as connectors between components and regulate fluid flow by

controlling pressure drop across the system. A suitable pressure drop specifies the flow

direction, ensuring a smooth simulation run. In our model, valves v1, v2, v3, and v4 are

assigned pressure drops of 5, 5, 2, and 14 bars, respectively.

3. Reaction and Reactor specification: We define the reaction parameters and stoichiometry in

Aspen Plus. All reactions mentioned in Eq. (2.14) are selected in the kinetic specifications

of both the CSTRs. We set the initial pressure of each CSTR to 15 bar and equip them

with a heating/cooling jacket to provide or remove heat at a rate denoted by Qi, where, i

represents the reactor number. The initial temperatures of the first and second CSTR are

350K and 400K, respectively. These settings ensure that the reactants and products remain

in the liquid phase throughout the process. After completing the reaction specification for

both reactors, we carry out a steady-state simulation.

4. Reactor Geometry: Before exporting the steady-state model from Aspen Plus to Aspen Plus

Dynamics, it is necessary to define the reactor geometry. In our model, the vessels are of the

vertical type with flat heads, and each CSTR has a length of ten meters.

5. Pressure Verification: To ensure the accuracy of the dynamic model, perform a pressure
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check using the integrated Aspen Plus pressure checker. This step verifies that no errors arise

during the dynamic process. Once the steady-state model successfully passes the pressure

check, we export it to Aspen Plus Dynamics for further analysis and simulation.

6. Dynamic model initialization: Level controllers are added to each reactor to maintain them

at the desired capacity. We perform a steady-state simulation to determine the steady-state

values of the dynamic model. The values obtained are listed in Table 2.1. Further, we

specify the initial values of the states in both reactors for the dynamic simulation. Through

an initialization run, we ensure the values entered are thermo-kinetically consistent with the

model specifications.

7. Manipulated Input Configuration: For external control of the manipulated variables Q1 and

Q2 (heat duty of reactor 1 and 2, respectively) during the dynamic simulation, the heating

type of the reactors is switched to constant heat duty. With these adjustments, the dynamical

process model is now fully established. Figure 2.3 depicts the corresponding model flow

sheet.

Figure 2.3: Aspen Plus Dynamics model flow sheet
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Table 2.1: Parameter values, steady-state values, and model configuration of the Aspen Model

T1o = T2o = 350K T1s = 321.15K
V1 = V2 = 60m3 T2s = 442.99K
F1 = 43.2m3/h F2 = 47.87m3/h
CEo1 = 4.43 kmol/m3 CE1s = 4.33 kmol/m3

CBo1 = 5.54 kmol/m3 CB1s = 5.55 kmol/m3

CEo2 = 4.02 kmol/m3 CE2s = 0.196 kmol/m3

CBo2 = 5.02 kmol/m3 CB2s = 1.31 kmol/m3

CEB1s = 0.53 kmol/m3 CEB2s = 4.22 kmol/m3

CDEB1s = 8.76× 10−4 kmol/m3 CDEB2s = 0.0078 kmol/m3

k1 = 1.528× 106m3 kmol−1 s−1 E1 = 71 160 kJ/kmol
k2 = 2.778× 104m3 kmol−1 s−1 E2 = 83 680 kJ/kmol
k3 = 0.4167m3 kmol−1 s−1 E3 = 62 760 kJ/kmol
ρ1 = 639.153 kg/m3 ρ2 = 607.504 kg/m3

∆H1 = −1.04× 105 kJ/kmol ∆H2 = −1.02× 105 kJ/kmol
∆H3 = −5.5× 102 kJ/kmol Cp = 2.411 kJ kg−1K−1

Q1s = −1074.63 kW Q2s = −6768.83 kW
Cp = 2.411 kJ kg−1K−1 R = 8.314 kJ kmol−1K−1

Heat transfer option Dynamics
Temperature approach 77.33K
Heat capacity of coolant 4.2 kJ kg−1K−1

Medium holdup 1000 kg
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2.4.3 First Principles Model Development

By applying the concepts of mass and energy balances, the first-principles model for the CSTRs

is developed. Specifically, the dynamic model of the first CSTR is represented by the following

ODEs:

dCE1

dt
=

(F1CEo1 − Fout1CE1)

V1

− r1,1 − r1,2 (2.15a)

dCB1

dt
=

(F1CBo1 − Fout1CB1)

V1

− r1,1 − r1,3 (2.15b)

dCEB1

dt
=

−Fout1CEB1

V1

+ r1,1 − r1,2 + 2r1,3 (2.15c)

dCDEB1

dt
=

−Fout1CDEB1

V1

+ r1,2 − r1,3 (2.15d)

dT1

dt
=

(T1oF1 − T1Fout1)

V1

+
3∑

j=1

−∆Hj

ρ1Cp

r1,j +
Q1

ρ1CpV1

(2.15e)

where Fout1 = F1. The dynamic model of the second CSTR is represented by the following ODEs:

dCE2

dt
=

(F2CEo2 + Fout1CE1 − Fout2CE2)

V2

− r2,1 − r2,2 (2.16a)

dCB2

dt
=

(F2CBo2 + Fout1CB1 − Fout2CB2)

V2

− r2,1 − r2,3 (2.16b)

dCEB2

dt
=

Fout1CEB1 − Fout2CEB2

V2

+ r2,1 − r2,2 + 2r2,3 (2.16c)

dCDEB2

dt
=

Fout1CDEB1 − Fout2CDEB2

V2

+ r2,2 − r2,3 (2.16d)

dT2

dt
=

(T2oF2 − T1Fout1 − T2Fout2)

V2

+
3∑

j=1

−∆Hj

ρ2Cp

r2,j +
Q2

ρ2CpV2

(2.16e)
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where Fout2 = F1 + F2 and the reaction rates are calculated by the following expressions:

ri,1 = k1e
−E1
RTi CEi

CBi
(2.17a)

ri,2 = k2e
−E2
RTi CEi

CEBi
i = 1, 2 (reactor index) (2.17b)

ri,3 = k3e
−E3
RTi CDEBi

CBi
(2.17c)

Remark 2.2. When constructing a dynamic model based on first-principles fundamentals involving

multiple ordinary differential equations (ODEs), there may be multiple potential steady states. It

is crucial to design the dynamic model in a manner that ensures convergence to the desired steady

state. It should be noted that the steady states obtained from the first-principles model may differ

from those obtained using the Aspen model. Therefore, our approach involves expressing the first-

principles dynamic model equations in the form ẋ = F (x, u)−F (xs, us) = f(x)−f(xs)+g(x)u−

g(xs)us. Here, xs and us correspond to the steady-state values of the state variables and control

inputs, respectively. These values are determined by the Aspen model through simulation. Writing

the equations in this form guarantees that the first-principles model will converge to the desired

steady states obtained from the Aspen model, particularly when dealing with multiple distinct

steady states.

2.4.4 Linking the Dynamic Models

To establish a seamless data transfer between the Aspen model (Aspen Plus Dynamics V12) and the

first-principles model-based LMPC (Python code), we program a script in Aspen Plus Dynamics.

This script reads the calculated control inputs, exported as text files by the Python code responsible
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for computing the control inputs. Additionally, it facilitates the export of the state variable values

from Aspen Plus Dynamics as text files read by the Python code. This data exchange occurs at

each sampling time, establishing a robust data transfer link between the Aspen model and the

first-principles-based LMPC.

Remark 2.3. As discussed in Section 2.4.1, the MPC model (first-principles based) used for pre-

dicting future states and optimizing control inputs differs from the Aspen dynamic model, where we

apply the controller. To address this model mismatch, we analyze the combined and relative effects

of quantization errors, which arise from encryption-decryption and can further amplify the model

mismatch error. Our analysis reveals that the quantization error is bounded by half the resolution

(resolution/2). For instance, when the quantization parameter chosen is d = 1, the resolution is

0.5, and the upper bound of the error between the actual and quantized values is resolution/2 or

0.25. Hence, for higher quantization parameters, the impact of quantization error on the overall

model mismatch error is negligible. It is important to note that quantization introduces a bounded

error in the states, thereby limiting the extent of the model mismatch error.

2.4.5 Implementing the encrypted LMPC

Before implementing encryption-decryption in a process, it is crucial to carefully choose the val-

ues: d1, l1, and l2. After closely examining the maximum and minimum permissible values of the

states and inputs, we determine the number of integer bits, l1−d1. The largest value in the set Ql1,d

is obtained using the formula 2l1−d1−1 − 2−d1 , while the smallest value is −2l1−d1−1. The quanti-

zation parameter d1 should be selected based on factors such as desired accuracy and the range of

state and input values. Additionally, a value for l2 should be selected such that l2 is greater than l1.
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These steps complete the hyperparameter selection process.

After following the aforementioned steps, we determine that, for the example discussed in

this section, l1 − d is calculated to be 15. The values of l1 and d need to be selected accordingly.

In the set Ql1,d, rational numbers are separated by a resolution of 2−d, meaning that a higher value

of d leads to lower quantization errors. For simulation purposes, we vary the values of d from 1

to 8, resulting in l1 ranging from 16 to 23. It is important to ensure that l2 > l1 for the bijec-

tive mapping, so we choose l2 = 30. After determining all the quantization related parameters,

we proceed to quantize the states and inputs. Subsequently, we encrypt them using the Paillier

Encryption algorithm. The implementation of Paillier Encryption is carried out using the “phe”

module in Python, specifically PythonPaillier [21]. The first-principles model, described by equa-

tions Eq. (2.15) and Eq. (2.16), serves as the process model in the LMPC framework. To solve the

optimization problem, we utilize the Python module of the IPOPT software [83].

Remark 2.4. IPOPT, Interior Point OPTimizer, is a software tool designed specifically for solv-

ing nonlinear optimization problems. It employs an iterative method known as the interior point

method, which focuses on finding the optimal solution by gradually moving towards the interior

of the feasible region. To solve the optimization problem, IPOPT employs a series of iterations.

In each iteration, it updates a sequence of points that satisfy the given constraints and improve

the value of the objective function. This process involves calculating descent directions based on

the gradient and Hessian of both the objective function and the constraints. IPOPT considers

both the feasibility and optimality of the solution, striving to find a point that not only satisfies

the constraints but also optimizes the objective function. Throughout the iterations, IPOPT uti-
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lizes a barrier function to handle inequality constraints and a penalty function to handle equality

constraints. It also incorporates a line search procedure to determine the appropriate step length

and employs backtracking techniques to ensure convergence towards the optimal solution. In our

study, the nature of the MPC formulation leads to a non-convex optimization problem. This sig-

nifies that the optimum achieved through the IPOPT optimizer is a local optimum, rather than a

global one. The optimization process begins with a designated starting input trajectory based on

predicted values for the extended horizon (beyond the first input trajectory calculation) from the

prior iteration. Furthermore, the optimizer is guided by a prescribed tolerance error and an upper

limit on the number of iterations. The optimizer will persist in its pursuit of an improved solution

until either of these conditions is met. If the optimizer is unable to calculate an optimal solution,

the computed solution from the backup controller (P-controller) will be substituted for that specific

sampling instance.

To implement encryption in a practical setting, it is crucial to ensure that the sampling time,

∆ exceeds the combined maximum of the encryption-decryption time required for all the states

and control inputs, as well as the maximum time needed for computing the control action at each

sampling instance for all the considered quantization parameters, denoted as d. This requirement

can be expressed by the following equation:

∆ > max (Enc-Dec time) +max (MPC computation time)

∀ d = {1, 2, 3, 4, 5, 6, 7, 8}
(2.18)

During the implementation of the encrypted MPC design in SCADA systems, where en-

crypted sensor measurements and control actions are transmitted through the network, the time
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spent on signal transmission is generally not substantial due to the rapid and efficient nature of

networked communication. However, this efficiency comes at the risk of susceptibility to cyberat-

tacks. To mitigate this potential vulnerability, this study encrypts these communication channels

and assesses the repercussions of encryption. Consequently, the formula provided above does not

incorporate the factor of signal transmission time as well as issues with asynchronous, delayed

measurements that have been studied in past works [54, 55]. The sampling time, ∆ is carefully

selected as 30 seconds, considering the aforementioned condition to ensure proper implementa-

tion. The integration step hc is chosen as (10−2 x ∆) to evaluate the cost function of the LMPC

through the first-principles model. The positive definite matrix P in the control Lyapunov function

V = xTPx for this system is taken as P = diag[200 500 2500 10 0.25 1000 1000 500 1 0.5]

based on extensive simulations. A prediction horizon of N = 6 is employed in the LMPC frame-

work. To ensure stability in the LMPC, we set the criterion ρmin = 2 to determine when the

states have reached stability. Additionally, a contractive constraint of the form V̇ ≤ −kV is uti-

lized for Eq. (2.13f), where the value of k is chosen as 0.15. The weight matrices Q1 and Q2

in the LMPC cost function are chosen as Q1 = diag[5 5 650 5 2.5 25 25 100 2 6] and

Q2 = diag[5 x 10−6 1.25 x 10−5], respectively. The cost function is defined as L2(x(t), u(t)) =

xTQ1x+ uTQ2u.

2.4.6 Utilizing MPC over Traditional Control

In this section, we substantiate the utilization of model predictive control (MPC) by conducting a

comparative analysis between the MPC and the simpler p-control strategy. P-control allows control

actions to be computed directly in encrypted states, eliminating the requirement for decryption at
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the controller through complex multiplicative homomorphic algorithms such as the ElGamal cryp-

tosystem. The MPC strategy is a more advanced control method that uses a mathematical model

of the system to predict future behavior and optimize control actions accordingly. It requires de-

cryption at the controller to obtain the necessary information for prediction and multi-constrained,

non-linear optimization, which cannot be performed in an encrypted space.
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Figure 2.4: Temperature state and input profiles of P-control (red solid line) and MPC (green
dashed line) strategies employed using the Aspen dynamic model.

Figure 2.4 showcases its enhanced performance, with lower undershoot and faster settling
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time observed for the temperature of CSTR 1. Further, the temperature of CSTR 2 exhibits a

significant reduction in overshoot by almost 50% and converges over 1 hour before the p-control,

within a settling limit of 0.25K. Moreover, the evaluation of the normalized sum of the controller

cost function (L2(x(t), u(t))) over the closed-loop simulation, reinforces the advantage of MPC

over p-control, by the respective values of 0.86 and 1. These findings underscore the necessity of

adopting MPC, as it offers reduced overshoot, undershoot, faster settling time of state variables,

and enhanced cost efficiency.

Remark 2.5. As mentioned earlier in Section 2.2.4, the Paillier cryptosystem is a partially homo-

morphic encryption scheme that does not support multiplication operations in an encrypted space.

Therefore, in the above section, we mention using the ElGamal Cryptosystem, which supports

multiplicative homomorphism. Although the Paillier cryptosystem supports addition operations in

encrypted space, we do not utilize this property in our study. The Paillier cryptosystem is primarily

selected for encryption due to its lower computational complexity compared to the ElGamal cryp-

tosystem. This choice reduces the time and computational effort required for encryption-decryption

processes.

2.4.7 Simulation results of the Encrypted LMPC

We apply the encrypted LMPC to the Aspen dynamic model, initialized from the point:

x0 = [−1.11 kmol/m3 − 1.16 kmol/m3 − 0.3 kmol/m3 − 8.76 x 10−6kmol/m3 28.85K

0.49 kmol/m3 0.56 kmol/m3 − 1.85 kmol/m3 − 7.77 x 10−6kmol/m3 − 43K]

We then observe the closed-loop simulation results for d = 1, 4, 8. A process time of 4 hours

allows both the states and control inputs to reach their respective steady-state values. Figures 2.5
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to 2.7 display the temperature state and input profiles.
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Figure 2.5: Temperature state and input profiles of the LMPC with encryption (red solid line) and
without encryption (green dashed line) for the Aspen dynamic model, with d = 1.

Remark 2.6. As indicated in Section 2.4.1, the concentration states in the reactors exhibit open-

loop trajectories as the reactor temperature converges to its steady-state value. Consequently, the

presence or absence of encryption does not significantly affect these states since the manipulated

input, i.e., the heat removed from the reactors, has no direct influence on the concentration states.

Therefore, in this section, we focus solely on displaying the temperature states and control inputs,
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Figure 2.6: Temperature state and input profiles of the LMPC with encryption (red solid line) and
without encryption (green dashed line) for the Aspen dynamic model, with d = 4.

as encryption noticeably influences them.

For a quantization parameter of d = 1, it is evident that the state T1 − T1s does not precisely

converge to its steady-state value, instead exhibiting small oscillations around it throughout the

4-hour process time. Also, the state T2 − T2s demonstrates nearly double the overshoot with

encryption and oscillates around the steady-state values, similar to the previous state. Further,

quantized control inputs Q1 − Q1s and Q2 − Q2s experience significant oscillations under the
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Figure 2.7: Temperature state and input profiles of the LMPC with encryption (red solid line) and
without encryption (green dashed line) for the Aspen dynamic model, with d = 8.

encrypted MPC, rendering it incapable of effectively stabilizing the closed-loop system within a

small neighborhood Ωρmin
around the origin. Although, it does stabilize the system within the

larger neighborhood Ωρ̂. This behavior can be attributed to the quantization error resulting from

the quantization of the state measurements. Thus, we establish that errors due to quantization can

be more significant than plant/model mismatch errors as the MPC without encryption and with a

higher quantization parameter, d = 8, is stabilized within the small neighborhood Ωρmin
around the
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origin. As indicated in Remark 2.7, the quantization error associated with the quantized control

input can be deemed negligible. However, the quantization error emanating from the quantized

states is significant given the range in which they lie during closed-loop simulation. For d = 1,

the quantized states are separated by a resolution of 2−1 or 0.5, leading to a high quantization

error. When running simulations with the quantization parameter d = 4, we no longer observe

oscillatory motions in the temperature states, and the magnitude of oscillations for the quantized

inputs is much smaller compared to the case where d = 1. Furthermore, the amplitude of overshoot

observed in the state variable T2 − T2s remains nearly unchanged when encryption is applied, and

the system also reaches the steady-state more rapidly.

It is important to note that as the quantization parameter increases, resulting in a lower reso-

lution, the states and inputs converge more quickly and exhibit reduced oscillations. Therefore, a

higher quantization parameter improves the convergence behavior and decreases fluctuations in the

state and control input profiles. Specifically, when d = 8, the closed-loop trajectories of the tem-

perature states and control inputs become nearly identical between the cases with encryption and

without encryption. In other words, the impact of encryption on the system’s behavior diminishes

significantly as the quantization parameter increases, ultimately resulting in almost indistinguish-

able closed-loop trajectories for both scenarios.

Remark 2.7. The total quantization error can be attributed to the state quantization rather than

the control input quantization, since the magnitudes of the quantized control inputs generally fall

within the order of magnitude three. For the case d = 1, representing the lowest quantization, the

maximum permissible error in the control input calculated by the MPC (before encryption) and
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applied by the actuator (after decryption) is 0.25, corresponding to half of the resolution. This

error is considered negligible compared to the overall control input. As a result, the error arising

from the quantization of control inputs is insignificant, particularly for the specific example con-

sidered. However, it is crucial to acknowledge that if the control inputs have smaller magnitudes,

the error resulting from the quantized control inputs would significantly impact the controller’s

performance.

2.5 Effect of the quantization parameter d and Encryption-

Decryption on the total computational time

This section discusses the impact of the quantization parameter, d, and encryption-decryption on

the total control input calculation time. For an encrypted MPC, the total control input calculation

time comprises two main components: the time required by the MPC to calculate the control action

and the total time spent on encrypting-decrypting the state variables and control inputs.

2.5.1 Effect of the quantization parameter d on computational time

Table 2.2 provides an overview of the computation time required for the complete encryption-

decryption process, considering a range of quantization parameters, d = [1, 8]. The table also offers

a detailed breakdown of the time required for each sub-process involved. Analyzing Table 2.2, it

becomes apparent that the computational time for the entire encryption-decryption process shows

consistent values across the quantization parameters within the range d = [1, 8].

However, as discussed in Section 2.4, a higher quantization parameter proves more advanta-
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Table 2.2: Time required to encrypt-decrypt the 10 states and 2 inputs at a single sampling instance

d gl1,d Time fl2,d Time Enc. Time Dec. Time f−1
l2,d

Time Total Time
1 4.8× 10−4 s 2.6× 10−4 s 2.49 s 0.72 s 2.9× 10−4 s 3.204 s
2 4.5× 10−4 s 2.9× 10−4 s 2.48 s 0.71 s 3.1× 10−4 s 3.190 s
3 4.7× 10−4 s 2.7× 10−4 s 2.48 s 0.7 s 2.8× 10−4 s 3.179 s
4 4.8× 10−4 s 2.9× 10−4 s 2.48 s 0.71 s 2.8× 10−4 s 3.182 s
5 5.3× 10−4 s 2.7× 10−4 s 2.5 s 0.71 s 2.8× 10−4 s 3.214 s
6 5× 10−4 s 2.9× 10−4 s 2.47 s 0.71 s 3.2× 10−4 s 3.182 s
7 5.1× 10−4 s 3× 10−4 s 2.49 s 0.71 s 3.3× 10−4 s 3.194 s
8 5.4× 10−4 s 2.9× 10−4 s 2.5 s 0.73 s 3.1× 10−4 s 3.225 s

geous for the LMPC. Specifically, for d = 8, the trajectories of the temperature states and control

inputs closely resemble those without encryption. In contrast, for d = 1, there is a noticeable

difference between the cases with and without encryption.

Furthermore, this table also reveals that the majority of the computational time is allocated to

the encryption step, followed by the decryption step. Mapping the inputs to quantized states (gl1,d),

bijective mapping (fl2,d), and inverse mapping (f−1
l2,d

) contribute only a negligible fraction of the

total time at each sampling instance. Although the computational time remains consistent across

quantization parameters, the number of search operations at each sampling instance increases lin-

early with the quantization parameter. This observation is presented in Table 2.3. Additionally, the

time and number of operations required to generate the set Ql1,d grow exponentially by increasing

the quantization parameter, d. However, it is vital to note that this step is performed only once at the

beginning of the process and is not repeated at each sampling instance. Consequently, selecting a

higher quantization parameter remains favorable, as the operational time for encryption-decryption

at each sampling instance remains unchanged, and a higher quantization parameter yields signifi-

cantly improved results.
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Table 2.3: Operations required for gl1,d, generating Ql1,d, and time required to generate Ql1,d

d Operations for gl1,d Operations to generate Ql1,d Time to generate Ql1,d

1 192 65534 0.02 s
2 204 131070 0.04 s
3 216 262142 0.07 s
4 228 524286 0.15 s
5 240 1048574 0.29 s
6 252 2097150 0.55 s
7 264 4194302 1.11 s
8 276 8388606 2.27 s

Remark 2.8. An alternative approach to mitigate the initial high computational time, especially

when a higher quantization parameter d is selected, is to pre-generate the set Ql1,d before com-

mencing the process operation with encryption-decryption on the hardware. By generating this set

prior to the first sampling instance, we can avoid the need for additional time allocation during

the actual control process. As mentioned in, Section 2.5 as the quantization parameter increases,

the time required to generate Ql1,d grows exponentially. Therefore, pre-generating the set is par-

ticularly beneficial in reducing computational overhead during the initial sampling instance when

dealing with larger quantization parameters. This approach allows for the utilization of higher

quantization parameters without being hindered by the drawback of increased computational time

in the first sampling instance.

2.5.2 Effect of Encryption-decryption on the total computational time

The Figure 2.8 shows that encryption-decryption takes approximately 45-65% of the total time re-

quired to calculate the control inputs for an encrypted LMPC, which is the sum of the time needed

for MPC control action computation and encryption-decryption (of the 10 states and 2 control in-

puts). Moreover, this result is consistent over the quantization parameters d = {1, 2, 3, 4, 5, 6, 7, 8}.

50



This substantiates the fact that the decision regarding the choice of a quantization parameter does

not necessarily result in a substantial alteration of the ratio between the time devoted to encryption-

decryption and the total duration of MPC computation.

As previously discussed in Section 2.4.5, it is essential to select a sampling time, ∆, that

exceeds the combined maximum duration of the encryption-decryption process and the MPC com-

putation time for any given sampling instance. This criterion applies to all considered quantization

parameters. For the example examined in this study, the minimum required sampling time was

determined to be 9 s. Consequently, a sampling time of 30 s was selected, which exceeded the

minimum requirement.

Remark 2.9. Maintaining system stability and ensuring effective control requires avoiding ex-

cessively large sampling times, particularly in cases where the system operates at an unstable

steady-state and has bounded control inputs. Going beyond a certain threshold in sampling time

can impede the ability of the controller to successfully regulate the system. To validate this concept,

we conducted an experiment on the example discussed in Section 2.4. We applied LMPC control

without encryption and increased the sampling time for the process in 30-second increments. The

results showed that the controller achieved the desired steady-state for a sampling time up to 2.5

minutes. However, extending the sampling time to 3 minutes prevented the controller from achiev-

ing the desired outcome. This observation emphasizes the significance of selecting an appropriate

sampling time that ensures effective control action and system stability.

Remark 2.10. In order to maintain manageable encryption-decryption times within an encrypted

control system network, it is essential to choose computationally efficient cryptosystems, such as
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Figure 2.8: Ratio of the total time spent for encryption-decryption to the sum of the total time
required for MPC computation and encryption-decryption at each sampling instance.

the Paillier Cryptosystem. Cryptosystems like ElGamal and AES impose higher computational

requirements on process control hardware, resulting in longer encryption and decryption times.

52



Consequently, this leads to the need for longer sampling times. Further, in practical applications,

it may be feasible to reduce the prediction horizon of the MPC for encrypted control as long as it

does not significantly impact the performance of the controller. These adjustments enable shorter

sampling times while still meeting encryption requirements.

Remark 2.11. When dealing with large-scale processes with hundreds or thousands of measure-

ments, it would be advisable to employ a distributed SCADA architecture across multiple locations

or nodes within the network. Furthermore, encryption of state measurements at the sensor can be

performed in parallel rather than in series. When we report the encryption time in this paper, it is

the total time needed for encrypting each sensor signal and control input in series, not in parallel.

This could be done in a parallel manner across multiple devices for larger systems to reduce the

effective computational time needed.

Remark 2.12. To deal with asynchronous or delayed signals in an encrypted setting, the signals

would be encrypted prior to transmission and decrypted upon receipt, with the actuator designed to

apply control inputs in a sample-and-hold manner, whereby the preceding control input trajectory

continues to be implemented until the recalculated input trajectory is received. Since quantization

with encryption has consistent computational duration, an appropriate sampling time would be

chosen based on its knowledge and time needed to compute the control input, as demonstrated

in Eq. (2.18). However, because the formula given to decide the sampling time does not take

into account time spent for signal communication or signal delays, which are very specific to the

process setting, sensors used, and communication channels established, the time spent between

asynchronous measurements or for signal delays could be known or approximated to select an
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appropriate sampling time.

2.6 Conclusions

In this chapter, we developed and applied an Encrypted Lyapunov-based model predictive control

(LMPC) Scheme to a large-scale chemical process network involved in the production of ethyl-

benzene. By employing the encrypted LMPC, we conducted closed-loop simulations for different

quantization parameters and identified errors resulting from quantization. We illustrated that the

effect of quantization could be more profound than plant/model mismatch when a low quantization

parameter is chosen. To mitigate the impact of quantization, we proposed using a higher quantiza-

tion parameter, specifically d = 8. Furthermore, through a comprehensive analysis of the duration

of encryption-decryption at each sampling instance, we observed that the computational burden

on the control input calculation time remained consistent across all tested quantization parameters.

This finding supports the recommendation of employing a higher quantization parameter, as it not

only minimizes the impact of quantization errors but also ensures secure communication between

the sensor-controller and controller-actuator, thus enhancing system cybersecurity without com-

promising the performance of the controller. The current research necessitates MPC computations

to be executed within a fully secure cyber-physical environment, aimed to thwart cyberattackers

from compromising the decrypted plaintext input signals and control inputs computed by the MPC

prior to encryption. An avenue for future research could involve adapting the encrypted MPC ar-

chitecture to operate within a less secure context. Additionally, another promising area for future

investigation could entail implementing encrypted MPC while incorporating data reconciliation
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mechanisms amidst a cyberattack scenario. Notably, the works referenced [58, 75] in this context

have explored such aspects within non-encrypted settings.
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Chapter 3

Integrating machine learning detection and

encrypted control for enhanced

cybersecurity of nonlinear processes

3.1 Introduction

The swift advancements in technology and the increasing integration of devices have made inter-

connected cyber-physical systems essential elements of vital infrastructure in various sectors like

energy, water, transportation, and manufacturing. In particular, systems that employ SCADA (Su-

pervisory Control and Data Acquisition) technology play a crucial role in overseeing, directing,

and automating intricate operations, thereby boosting efficiency and productivity. Nonetheless, the

expanded interlinking and fusion of SCADA systems with the internet and corporate networks have

made them susceptible to potential cyber threats. A breach or compromise within these systems

could lead to grave outcomes, including disruption of essential services, physical harm, financial
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setbacks, and even jeopardizing public safety. Current advancements in cyberattack methodologies

underscore the importance of instituting robust cybersecurity measures.

While notable strides have been made in tackling cybersecurity issues within the domain of

information technology (IT), the operational technology (OT) domain is currently lagging behind

in terms of advancements. IT predominantly concentrates on the software aspect of systems, cov-

ering areas like network architecture and data administration. On the other hand, OT is responsible

for maintaining the seamless functioning of essential infrastructure, such as power grids, intelligent

meters, and distribution networks. Cyberattacks on OT infrastructure can result in consequences

such as operational shutdowns, service disruptions, data leaks, and potentially catastrophic explo-

sions. As an illustration, consider the case of the Stuxnet malware, which was uncovered in 2010.

This particular malicious software was designed with a specific focus on infiltrating SCADA sys-

tems. Stuxnet managed to breach programmable logic controllers (PLCs) within Iranian nuclear

facilities, collecting valuable information about the industrial system and ultimately causing the

high-speed centrifuges to burnout [47]. Another noteworthy incident involves the cyberattack on

the Ukrainian power grid in 2015. During this event, hackers infiltrated SCADA systems to re-

motely shutdown substations, resulting in power failures. A more recent occurrence took place in

2021, concerning the Colonial Pipeline, a major operator of fuel pipelines in the United States. This

company fell victim to a ransomware attack, orchestrated by hackers who gained entry through the

use of the DarkSide ransomware. The attackers proceeded to encrypt the networked communica-

tion of the pipeline, demanding a ransom payment in return for the decryption keys. Consequently,

Colonial Pipeline had to cease its operations, resulting in interruptions to fuel distribution and

causing notable financial loss. These examples underscore the imperative for robust cybersecurity
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protocols in OT infrastructures.

Extensive research efforts continue to focus on various domains, such as the design of backup

controllers in a two-tier safety-performance control architecture [13], the creation of machine

learning-based cyberattack detectors [1, 36, 66, 84], the recovery of process states following a cy-

berattack [87], the development of cyberattack-resilient controllers [24, 25], and encrypted control

[81]. However, this research aims to integrate some of these approaches, particularly machine-

learning based cyberattack detection in a two-tier encrypted control architecture, to create a robust

and cyber-secure control scheme applicable to nonlinear processes.

Networked communication lines are vulnerable to cyberattacks when data is transmitted in

its regular plaintext form. To address this, encryption emerges as a solution, effectively safeguard-

ing data during its transfer. Within control systems, data serves as the foundation for computing

control inputs. While encryption offers enhanced security, it also introduces limitations, allowing

only linear computations—a drawback that can hamper the utilization of advanced controllers like

model predictive control (MPC) in complex systems characterized by nonlinear dynamics.

MPC ensures closed-loop stability (confinement of system states within a level set of the con-

trol Lyapunov function), optimizes critical performance metrics, handles multi-input multi-output

scenarios, and manages constraints on system states and inputs. These advantages stem from the

deployment of a mathematical model to predict future behavior and consequently optimize control

inputs by minimizing a cost function. However, for the application of MPC, decryption becomes

necessary to provide the required measurements for prediction and optimization at the end of the

controller. While a linear control law provides the ability to calculate control inputs in an encrypted

space, eliminating the need for decryption and ensuring a more secure approach, the advantages of
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nonlinear model predictive control cannot be ignored. Moreover, a delicate balance exists between

improving system cybersecurity and enhancing closed-loop performance. Thoughtful assessments

are necessary, taking into account the improvement achieved with the nonlinear controller, the

level of cybersecurity in the process setting, and, most crucially, the adherence to the necessary

physical safety standards for the process. Similarly, the selection of a nonlinear controller, even

with the aim of improving closed-loop control performance, might not be justified if it increases

the vulnerability of the system to cyberthreats.

To reconcile the benefits of both paradigms, we propose an encrypted two-tier control archi-

tecture coupled with ML-based cyberattack detection. In this setup, the lower tier is composed

of an encrypted linear control scheme capable of calculating control inputs within an encrypted

space, eliminating the requirement for decryption in the network. This self-contained lower tier is

capable of independently stabilizing the system. Conversely, the upper tier comprises an encrypted

nonlinear controller (e.g., MPC) that receives encrypted signals which are decrypted to plaintext

upon arrival to compute control inputs. The computed plaintext control inputs are subsequently

encrypted before transmission to the actuator. It is crucial to emphasize that the plaintext data re-

ceived by the MPC and the computed plaintext control inputs are both susceptible to cyberattacks

in the networked upper tier.

However, with ML-based cyberattack detection integrated in the encrypted control architec-

ture, when a cyberattack is detected, the compromised upper tier is deactivated, and exclusively

the secure and stabilizing lower tier is utilized to regain system stability. This approach enables us

to amalgamate the strengths of cyber-secure encrypted linear control and advanced nonlinear con-

trol, to create a cyber-secure, advanced nonlinear control scheme that fortifies the system against

59



cyberattacks. Beyond ML-based cyberattack detection, alternative detection strategies can be con-

sidered. These include a reachable set-based detection scheme as explored in the work of [63],

where a set is created that includes all possible states that a system can reach or achieve under

specific control inputs and initial conditions. Deviations from these expected states could indicate

a potential cyberattack. However, this method is restricted to linear systems. Another approach in-

volves employing a controller switching technique, wherein controller-observer parameter switch-

ing occurs between nominal system parameters and attack-sensitive system parameters to facilitate

attack detection [61, 62]. However, this method may fail to detect intelligent cyberattacks which

are designed to avoid detection by conventional metrics such as residual errors. However, this

study only focuses on intelligent cyberattacks, which are discussed in Section 3.4.

In the previous work of [81], it was assumed that the computing unit responsible for decrypt-

ing states and computing control inputs is cybersecure. However, in this current study, we have

developed a more robust control framework. Even if the computing unit is not secure and comes

under a cyberattack, our control system logic deactivates the upper-tier controller and solely re-

lies on the encrypted lower-tier controller to stabilize the system. This lower-tier control is linear

and operates within an encrypted space and does not share access to public and private keys with

the computing unit, unlike the upper-tier controller, which is nonlinear. Consequently, even in

scenarios where the environment for computing control inputs is not considered cybersecure, our

proposed control framework can be used to enhance cybersecurity. As an alternative to a secure

encrypted lower tier, a locally secure tier with backup sensors could potentially be employed [13].

However, employing an encrypted lower tier ensures a continuous and seamless flow of encrypted

network communication, which can solely be accessed by authorized personnel equipped with the
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required private keys necessary for decryption. Consequently, this approach eliminates the neces-

sity for secure local communication that is isolated from the network, which poses challenges in

terms of access. This distinctive aspect underscores the novelty and significance of this research.

The subsequent sections of this paper are structured as follows: in Section 3.2, we present the

notation, describe the class of systems employed, explain the cryptosystem applied for encryption,

and the implications of quantization; In Section 3.3 we elaborate on the architecture design of the

encrypted two-tier control, outline the formulation of both the encrypted lower tier and upper tier,

followed by a stability analysis to identify sources of errors in the control framework and set bounds

to it; In Section 3.4 we describe the various launched cyberattacks and the machine-learning-based

cyberattack detector; in Section 3.5, we showcase the application of the proposed control scheme

on a nonlinear chemical process network, explain the important points to be considered while

implementing the control framework in nonlinear systems, and put forth the computational load

arising from the incorporation of ML-based detection within the encrypted control scheme.

3.2 Preliminaries

3.2.1 Notation

The symbol ∥·∥ represents the Euclidean norm of a vector. The transpose of the vector x is denoted

by x⊤. R, Z, and N denote the sets of real numbers, integers, and natural numbers, respectively.

Moreover, the notations ZM and Z∗
M are used to represent the additive and multiplicative groups of

integers modulo M , correspondingly. The operation of subtracting sets is indicated by the symbol

“\”, such that A\B denotes the set of elements present in A but not in B. A function denoted
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as f(·) is categorized as belonging to class C1 if it possesses continuous differentiability within

its domain. A function α : [0, a) → [0,∞) is categorized within the class K when it is strictly

increasing and α(0) = 0. The term lcm(i, j) indicates the least common multiple of the integers

i and j. The term gcd(i, j) indicates the greatest common divisor, which identifies the highest

positive integer that divides i and j without any remainder.

3.2.2 Class of Systems

The focus of this research is on nonlinear continuous-time systems featuring multiple inputs and

multiple outputs (MIMO), characterized by a collection of nonlinear first-order ordinary differen-

tial equations (ODEs) of the form,

ẋ = F (x, ut1, ut2) = f(x) + g1(x)ut1 + g2(x)ut2 (3.1)

The system is described by a state vector x = [x1, x2, . . . , xn] ∈ Rn, a lower-tier control input

vector ut1 ∈ Rm1 and an upper-tier control input vector ut2 ∈ Rm2 . The system inputs, denoted

as ut1 and ut2, are bounded by their respective sets U1 ⊂ Rm1 and, U2 ⊂ Rm2 , where U1 :=

{ut1 ∈ U1|ut1min,i
≤ ut1i ≤ ut1max,i

,∀; i = 1, 2, · · · ,m1} and U2 := {ut2 ∈ U2|ut2min,i
≤ ut2i ≤

ut2max,i
,∀; i = 1, 2, · · · ,m2}. The quantities ut1min,i

and ut1max,i
correspond to the lowest and

highest thresholds for each controlled input in the lower tier, respectively. Similarly, the values

ut2min,i
and ut2max,i

pertain to the minimum and maximum values allowed for each controlled input

in the upper tier. The functions f(·), g1(·), and g2(·) are assumed to be sufficiently smooth vector

functions, respectively. For the purpose of simplicity without loss of generality, we introduce the

62



assumption that f(0) = 0, effectively treating the origin as a steady state of Eq. (3.1). For the

sake of convenience, we establish the initial time as zero (t0 = 0). Furthermore, the domain of

continuous functions that map the interval [a, b] to Rn is designated as C([a, b],Rn). Additionally,

we define the set S(∆) as the assortment of piece-wise constant functions characterized by a period

of ∆.

3.2.3 Paillier cryptosystem

In this research, we employ the Paillier cryptosystem [67] to implement encryption and decryption

procedures on state measurements of the process (denoted as x) as well as control inputs (repre-

sented as ut1 and ut2). More importantly, we leverage the semi-homomorphic property of additive

homomorphism within the Paillier cryptosystem to conduct linear additive operations within an

encrypted space in the lower tier. Similar to numerous other encryption methods, the Paillier cryp-

tosystem’s functionality centers on the encryption of plaintext data in the format of natural num-

bers. The encryption procedure is initiated with the creation of public and private keys. Within the

Paillier cryptosystem, integer messages are encrypted to ciphertexts by utilizing the public key dur-

ing the encryption process. In contrast, the private key facilitates the decryption of ciphertexts, to

recover the initial integer messages. The public and private keys are generated as per the following

steps:

1. Choose two large prime integers (p and q) randomly, ensuring they meet the requirement

gcd(pq, (p− 1)(q − 1)) = 1.

2. Compute the outcome of multiplying these integers, indicated as M = pq.
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3. Choose an arbitrary integer g in a manner that g ∈ ZM2 , with ZM2 denoting the multiplicative

group of integers modulo M2.

4. Compute λ = lcm(q − 1, p− 1).

5. Specify L̄(x) = (x− 1)/M .

6. Verify whether the subsequent modular multiplicative inverse is present:

u = (L̄(gλ modM2))−1 mod M .

7. Should the inverse not exist, revisit step 3 and opt for an alternate value of g. If the inverse

exists, we acquire the public key (M, g) and the private key (λ, u).

Upon acquiring the keys, the public key is disseminated to the intended recipients responsible for

carrying out the encryption procedure. Similarly, the private key is shared with the authorized

recipients responsible for decrypting the data. Encryption is performed as follows:

EM(m, r) = c = gmrM mod M2 (3.2)

where r is a randomly selected integer from the set ZM , and c represents the ciphertext achieved

through the encryption of m. The decryption procedure for the ciphertext c ∈ ZM2 is executed in

the subsequent manner:

DM(c) = m = L̄(cλ mod M2)u mod M (3.3)
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3.2.4 Quantization

To utilize the Paillier cryptosystem, it becomes imperative to represent the data to be encrypted as

natural numbers, a subset designated as ZM . However, the signal measurements before encryption

are available in the form of floating-point numbers. Consequently, we use the process of quantiza-

tion to map these floating-point numbers into elements of the set ZM . To construct this mapping,

we use signed fixed-point numbers represented in binary form. The parameters of quantization,

namely l1 and d, signify the total count of bits (integer and fractional) and the number of fractional

bits, respectively. Employing these quantization parameters, we create a set denoted as Ql1,d. This

set encompasses rational numbers spanning from −2l1−d−1 to 2l1−d−1 − 2−d, with each rational

number separated by a step of 2−d. A rational number q that resides within the Ql1,d set can be

articulated as q ∈ Ql1,d, where, ∃β ∈ {0, 1}l1 and q = −2l1−d−1βl1 +
∑l1−1

i=1 2i−d−1βi. In order to

map a real number data point a onto the Ql1,d set, we employ the function gl1,d, illustrated by the

equation,

gl1,d : R → Ql1,d

gl1,d(a) := arg min
q∈Ql1,d

|a− q|
(3.4)

to acquire the nearest quantized rational number to a specific real number data point. After this,

the quantized data is converted into a collection of integers via a one-to-one (bijective) mapping

referred to as fl2,d, as described in the work of [19]. This mapping guarantees that the quantized

data undergoes a transformation that places it within a subset of the message space ZM . The
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one-to-one mapping can be defined as follows:

fl2,d : Ql1,d → Z2l2

fl2,d(q) := 2dq mod 2l2
(3.5)

The encryption process involves encrypting integer plaintext messages using the set Z2l2 , and the

resulting ciphertexts can be decrypted back into the same set Z2l2 . Once the upper-tier controller

and actuator receive the encrypted signals, the ciphertexts undergo decryption to extract integer

plaintext messages that represent quantized states and inputs, respectively. Consequently, it be-

comes essential to remap these decrypted plaintext messages back to the set Ql1,d. The inverse

mapping, denoted as f−1
l2,d

, is defined as follows:

f−1
l2,d

: Z2l2 → Ql1,d
(3.6)

f−1
l2,d

(m) :=
1

2d


m− 2l2 if m ≥ 2l2−1

m otherwise
(3.7)

To illustrate the process of encryption and decryption, we can refer to the example shown in

Figure 2.1. For this specific instance, the selected quantization parameters are as follows: d = 3,

l1 = 18, and l2 = 30. Let us consider the rational number a = −1.31752. The impact of

quantization is demonstrated in Figure 2.1, where the quantization error, |a − q| = 0.05748, is

evident.
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3.3 Design of the encrypted two-tier control architecture

In the closed-loop framework of the encrypted two-tier control architecture, illustrated in Fig-

ure 3.1, the signals, x1(t) and x2(t) are transmitted from the sensors to the lower and upper tier,

respectively, for the purpose of computing control inputs. The lower and upper tier correspond

to the encrypted network tiers 1 and 2 respectively, in Figure 3.1. These signals x1(t) and x2(t)

undergo encryption using public keys 1 and 2 respectively before they are transmitted to the lower

tier consisting of a set of encrypted proportional-integral (PI) controllers and the upper tier com-

prising a model predictive controller (MPC), respectively. These two tiers operate independently

for control input computations, utilizing distinct public and private keys for signal encryption and

decryption. Further, both tiers manipulate a distinct set of control inputs, eliminating any concerns

related to balancing control signals among actuators. Once the lower tier receives the encrypted

data, denoted as c1, it performs control input calculations within an encrypted space, without de-

cryption, employing additive homomorphic operations. The encrypted control input c′1 is then

transmitted to the actuator, where it undergoes decryption using private key 1 to yield the quan-

tized control input û1(t). Concurrently, the upper tier decrypts the ciphertext c2 and employs the

quantized states x̂2(t) to determine the control input. These quantized states are used to initialize

the process model within the MPC at the time t. Following this, the MPC calculates the optimized

control inputs u2(t), which undergo encryption before being transmitted to the actuator. Upon re-

ceipt of the encrypted control input c′2, the actuator decrypts it using private key 2, leading to the

quantized input û2(t), which is then applied to the process. The presented architecture introduces

two potential points within the upper tier where cyberattacks could be initiated: one by manipu-
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lating the decrypted state values received by the MPC, and the other by manipulating the control

inputs computed by the MPC before encryption. To counteract this vulnerability, an ML-based

detector is incorporated at the process site. It intercepts sensor signals prior to their encryption

and transmission to the network, thereby ensuring its security. Its role is to detect cyberattacks and

subsequently reconfigure the control system in the event of cyberattack detection. This reconfigu-

ration involves deactivating the compromised upper tier and relying solely on the secure, encrypted

lower tier to restore the desired closed-loop behavior.
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Figure 3.1: Illustration of a two-tier encrypted control scheme.

Remark 3.1. The encrypted data, in the form of ciphertexts, could potentially be subject to ma-

nipulation by an attacker. However, due to the encryption, the attacker gains no information about

the process states or the system stability. Any attempts to manipulate the encrypted data would
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lead to significant deviations from actual values. The manipulated encrypted data after decryption

could yield infeasible values for certain states, and some control inputs could fall outside the actu-

ation bounds. Such alterations have the potential to destabilize the system, and they can be easily

identified by imposing constraints on the control Lyapunov function, eliminating the need for ad-

vanced detection techniques. However, in this research, we focus on intelligent cyberattacks that

do not force the system out of its stability region. These attacks require the attacker to possess some

knowledge about the system and its states, information that can only be obtained through decryp-

tion of the states and computation of control inputs before encryption. Therefore, our discussion is

centered around these scenarios. Further details regarding the types of cyberattacks launched are

provided in Section 3.4. Additionally, as a proactive measure, a backup control system can be inte-

grated into this design, operating in isolation from any network, to address potential cyberattacks

aimed at manipulating encrypted data.

The presented design of the closed-loop system introduces two types of errors. Initially, there

is a quantization error due to the mapping of state data from R to Ql1,d within the sensor-controller

communication link. Furthermore, the controller-actuator communication link contributes a con-

trol input quantization error as the control input is mapped from a set of real numbers R to Ql1,d.

Both of these quantization errors are constrained and can be characterized via the mapping equa-

tion specified in Eq. (3.4), thereby ensuring that:

|xj(t)− x̂j(t)| ≤ 2−d−1 (3.8a)

|uk(t)− ûk(t)| ≤ 2−d−1 (3.8b)
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where d is the quantization parameter used for mapping in Eq. (3.4), while j and k represent the

j th state and kth control input, respectively. Taking into account the impact of quantization-induced

input errors, the dynamical model under two-tier control architecture employing the nonlinear

system of Eq. (3.1) can be expressed as follows:

ẋ = F (x, ût1, ût2) = f(x) + g1(x)ût1 + g2(x)ût2

= f(x) + g1(x)(ut1 + et1) + g2(x)(ut2 + et2)

(3.9)

where et1 = ût1(t)− ut1(t), et2 = ût2(t)− ut2(t) and

|eti| ≤ 2−d−1 where i = {1, 2} (3.10)

Also, an additional error will be present in the applied control input, as the controller receives x̂

instead of the true state x. This error will be confined by the underlying equation, using the local

Lipschitz property, where L1 > 0:

|Φ(x̂)− Φ(x)| ≤ L1|x̂− x| ≤ L12
−d−1 (3.11)

Remark 3.2. Quantization error arises when the desired value to be quantized is not exactly found

within the Ql1,d set, which comprises quantized values defined by the quantization parameter d.

The interval between elements in this set is 2−d. To ascertain the upper limit of this error, let

us consider the quantization of a value, x1. We assume that x1 falls within the range of y1 and

y1 +2−d, where y1 and y1 +2−d signify quantized values within Ql1,d. The quantization procedure

involves evaluating the absolute difference between x1 and y1 in comparison to that between x1 and
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y1 + 2−d. When the distance between x1 and y1 is less than the distance between x1 and y1 + 2−d,

x1 is matched with y1. Alternatively, it is matched with y1 + 2−d. Subsequently, the quantization

error is confined within half of the resolution, |y1+2−d−y1|
2

= 2−d−1. This implies that the maximum

difference between the quantized value x̂1 and the actual value x1 is 2−d−1. Thus, selecting a larger

quantization parameter, d → ∞, results in a negligible error due to quantization.

3.3.1 Lower-tier encrypted control system

Within the encrypted two-tier control framework, we assume the existence of a feedback controller

in the lower tier, represented as ut1 = Φ(x) ∈ U1, that can attain exponential stability at the origin

of the nominal closed-loop system of Eq. (3.1), with ut2 ≡ 0. This signifies the presence of a C1

control Lyapunov function V (x) for which the subsequent inequalities are valid across all x ∈ Rn

within an open region D surrounding the origin:

c1|x|2 ≤ V (x) ≤ c2|x|2, (3.12a)

∂V (x)

∂x
F (x,Φ(x), 0) ≤ −c3|x|2, (3.12b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x| (3.12c)

where c1, c2, c3 and c4 are positive constants. For the nonlinear system described by Eq. (3.1), the

region of closed-loop stability can be defined as a level set of the control Lyapunov function V .

This stability domain, labeled as Ωρ, is defined by Ωρ := {x ∈ D|V (x) ≤ ρ}, where ρ > 0.

Hence, originating from any initial condition within Ωρ, the applied control input, Φ(x) guarantees

that the system state trajectory, under closed-loop conditions, remains confined within Ωρ.
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To perform computations in an encrypted space, classical controllers using linear mathemat-

ical operations are used to compute control inputs. Specifically, a set of proportional-integral

controllers are used. The formula is given as:

u(tk) = Kci

(
ei(tk) +

1

τi

∫ tk

0

ei(τ)dτ

)
, ei(tk) = ysp(tk)− yi(tk) (3.13)

Using the recursive rule to approximate the integral term, the overall controller equation is refor-

mulated using only linear mathematical operations:

ut1i(tk) = Kciei(tk) + Itk

= Kciei(tk) +K ′
ci
ei(tk) + Itk−1

(3.14)

where tk and tk−1 represent the sampling instances k and k − 1, respectively. ut1i represents the

ith control input in the lower tier, ysp(tk) and yi(tk) represent the set point and state measurement

at time tk, respectively. Kci and K ′
ci

represent the gains of the proportional and integral terms,

respectively. Itk represents the integral control action at time tk. At k = 0, It0 is assumed to be 0.

3.3.2 Upper-tier encrypted model predictive control system

This section formulates the feedback LMPC used in the upper tier of the closed-loop design for

the nonlinear system described by Eq. (3.1). Although the LMPC does not compute the control

inputs for the lower tier, it estimates their values using the lower tier control law, ut1(t) = Φ(x̃(t)).

This estimation results in a more accurate prediction of the future states of the system, by account-

ing in the lower-tier control inputs. These predicted state values are used to calculate the LMPC

cost function. Accordingly, the upper-tier control inputs that minimize the cost function are com-
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puted. Control actions are applied to the nonlinear system using a sample-and-hold approach with

a sampling period of ∆ [35, 59]. The proposed MPC is formulated in the subsequent manner:

J = min
ut2∈S(∆)

∫ tk+N

tk

L(x̃(t),Φ(x̃(t)), ut2(t))dt (3.15a)

s.t. ˙̃x(t) = F (x̃(t),Φ(x̃(t)), ut2(t)) (3.15b)

ut2(t) ∈ U2, ∀ t ∈ [tk, tk+N) (3.15c)

x̃(tk) = x̂(tk) (3.15d)

V̇ (x̂(tk),Φ(x̂(tk)), ut2(tk)) ≤ V̇ (x̂(tk),Φ(x̂(tk)), 0), if x̂(tk) ∈ Ωρ̂\Ωρmin
(3.15e)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N), if x̂(tk) ∈ Ωρmin
(3.15f)

The predicted state trajectory of the LMPC process model is represented as x̃. The quantized

states, x̂, serve as the initial conditions for the LMPC process model to predict the state trajectories.

The number of sampling periods within the prediction horizon is represented as N . The LMPC

algorithm computes the optimal input sequence u∗
t2(t|tk) for the entire prediction horizon t ∈

[tk, tk+N) but transmits only the first input of this sequence to the actuator for application to the

system within the interval t ∈ [tk, tk+1). The rationale behind predicting state trajectories for

extended durations compared to the control input application period by the actuator is to optimize

the existing control inputs. This optimization aims to minimize the control cost function not only

within the current sampling period but also over the prediction horizon, thereby enhancing overall

performance.

The encrypted LMPC method employs a sequence of specific actions: it uses quantized states

x̂ to predict the trajectory of the system states as per Eq. (3.15b), which is used to integrate the

73



cost function of Eq. (3.15a) to calculate optimized control inputs for the entire prediction horizon.

The actuator applies only the control inputs of the first sampling period, and this process is iterated

at each sampling period. Eq. (3.15c) represents the constraints imposed on the control inputs. The

constraint in Eq. (3.15d) uses the quantized states (after decryption) to initialize the plant model

described in Eq. (3.15b). If the state x(tk) at time tk lies within the set Ωρ̂ \Ωρmin
, where ρmin rep-

resents a level set of V in proximity to the origin, the Lyapunov constraint outlined in Eq. (3.15e)

ensures that the time-derivative of the control Lyapunov function of the closed-loop system under

the two-tier control scheme is less than or equal to the time-derivative of the control Lyapunov

function when the system is controlled by only the lower tier. When the closed-loop state x(tk)

enters Ωρmin
, the constraint detailed in Eq. (3.15f) ensures that this state remains within Ωρmin

.

3.3.3 Lower-tier stability under encryption

Given the occurrence of quantization errors in the links between sensors and controllers, as well

as controllers and actuators, it becomes imperative to delineate a region of closed-loop stability,

denoted as Ωρ̂, which is encompassed within the broader Ωρ (specifically, ρ̂ < ρ). The subsequent

theorem establishes that the encrypted lower-tier controller Φ(x̂) ∈ U1 can achieve exponential

stability at the origin for the nonlinear system introduced in Eq. (3.9).

Theorem 3.1. Let us consider the nonlinear system introduced in Eq. (3.9), which can be repre-

sented as ẋ = F (x, ût1, 0) when exclusively under lower-tier encrypted control. The initial state is

x0 ∈ Ωρ̂, and the stabilizing control law is denoted as ut1 = Φ(x) ∈ U1. Consequently, the equi-

librium point of the closed-loop system derived from Eq. (3.9) through encrypted control becomes

practically stable for all x0 ∈ Ωρ̂. In this context, the closed-loop state x(t) remains within Ωρ for

74



all instances, and the ensuing inequalities remain valid:

V̇ ≤ −c5|x|2 ∀|x| ≥ c4(L1 + 1)2−d−1

c3θ
= µ (3.16a)

lim sup
t→∞

|x| ≤ b (3.16b)

where d is the quantization parameter, c3, c4, L1 > 0, b is a positive constant (which can be ex-

pressed as a class K function of µ), 0 < θ < 1 and c5 = (1− θ)c3.

Proof. Based on the nonlinear system of Eq. (3.9), the time-derivative of V can be written as:

V̇ =
∂V

∂x
F (x, ût1, 0)

=
∂V

∂x
F (x, ut1 + e1, 0)

=
∂V

∂x
F (x,Φ(x̂) + e1, 0)

=
∂V

∂x
F (x,Φ(x̂) + e1, 0)−

∂V

∂x
F (x,Φ(x), 0) +

∂V

∂x
F (x,Φ(x), 0)

(3.17)

Based on Eq. (3.12b), it follows that

V̇ ≤ ∂V

∂x
F (x,Φ(x̂) + e1, 0)−

∂V

∂x
F (x,Φ(x), 0)− c3|x|2

=
∂V

∂x

(
f(x) + g1(x)(Φ(x̂) + e1)

)
− ∂V

∂x

(
f(x) + g1(x)(Φ(x))

)
− c3|x|2

=
∂V

∂x

(
f(x) + g1(x)(Φ(x̂) + e1)− f(x)− g1(x)(Φ(x)

)
− c3|x|2

=
∂V

∂x

(
g1(x)(Φ(x̂)− Φ(x))

)
+

∂V

∂x
g1(x)e1 − c3|x|2

(3.18)
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Applying the inequalities of Eq. (3.12c), Eq. (3.10) and Eq. (3.11), it follows that

V̇ ≤ c4|x|L12
−d−1 + c4|x|2−d−1 − c3|x|2

= −c3|x|2 + c4|x|(L1 + 1)2−d−1

= −(1− θ)c3|x|2 − θc3|x|2 + c4|x|(L1 + 1)2−d−1

(3.19)

Therefore, if the condition of Eq. (3.16a) on |x| is satisfied i.e., |x| ≥ c4(L1+1)2−d−1

c3θ
= µ, it follows

that
V̇ ≤ −(1− θ)c3|x|2 ≤ 0

≤ −c5|x|2 ≤ 0

(3.20)

where c5 = (1 − θ)c3. Thus, based on Eq. (3.20), we have that V̇ is negative for all x ∈ Ωρ̂ that

satisfy the condition of Eq. (3.16a).

Given that Ωρ̂ is a level set of V and its derivative, V̇ , is negative for all x ∈ Ωρ̂, it can be

inferred that the state of the closed-loop system, denoted as x(t), remains within Ωρ̂ throughout all

time. Moreover, referencing Theorem 4.18 in [44], it can be deduced that:

lim sup
t→∞

|x(t)| ≤ b (3.21)

Hence, as the quantization parameter d → ∞, following the definition of µ from Eq. (3.16a), µ →

0 and, therefore, the ultimate bound approaches zero, proving that larger values of the quantization

parameter d results in a smaller error between the state and input trajectories of the encrypted

control system and the non-encrypted control system. This proves that the closed-loop states of

the nonlinear system of Eq. (3.9) are ultimately bounded under the stabilizing controller ut1 =
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Φ(x̂) ∈ U1 for sufficiently large d.

3.3.4 Two-tier stability under encryption

Theorem 3.2. Taking into consideration the two-tier encrypted control architecture for the system

of Eq. (3.9), we examine its behavior within the context of the closed-loop encrypted LMPC design

detailed in Eq. (3.15) for the upper tier. This design relies on a stabilizing lower-tier controller de-

noted as ut1 = Φ(x̂) ∈ U1, which adheres to the inequalities outlined in Eq. (3.12). Furthermore,

we assume that the initial state x0 resides within the region Ωρ̂. For the purpose of our analysis,

we introduce ∆ > 0, ϵw > 0, and parameters ρ̂ > ρmin > ρs that fulfill the following conditions.

− c3
c2
ρs + L

′

xMF∆+ L
′

uδ ≤ −ϵw

ρmin = max{V (x(t+∆))|V (x(t)) ≤ ρs}
(3.22)

Then, the closed-loop state x(t) remains bounded in Ωρ̂ and is ultimately bounded in Ωρmin
.

Proof. Consider the state x(tk) ∈ Ωρ̂ \ Ωρs . The time-derivative of V under the control inputs

calculated by the LMPC of Eq. (3.15) for the nonlinear system of Eq. (3.9) at tk can be written as:

V̇ =
∂V (x(t))

∂x
F
(
x(t),Φ(x(tk)) + et1, ut2(tk) + et2

)
V̇ =

∂V (x(tk))

∂x
F
(
x(tk),Φ(x(tk)), ut2(tk)

)
+

∂V (x(t))

∂x
F
(
x(t),Φ(x(tk)) + et1, ut2(tk) + et2

)
− ∂V (x(tk))

∂x
F
(
x(tk),Φ(x(tk)), ut2(tk)

)
(3.23)

for all t ∈ [tk, tk+1]. Here, et1 and et2 represent the error in the control inputs of the lower and

upper tiers, respectively, due to quantization. Based on Eqs. (3.18) and (3.19), the error et1 can

77



be bounded by (L1 + 1)2−d−1. Similarly, the error et2 can be bounded by η2−d−1. Based on the

inequality of Eq. (3.12b), it follows from Eq. (3.23) that:

V̇ ≤ −c3|x(tk)|2 +
∂V (x(t))

∂x
F
(
x(t),Φ(x(tk)) + et1, ut2(tk) + et2

)
− ∂V (x(tk))

∂x
F
(
x(tk),Φ(x(tk)), ut2(tk)

) (3.24)

In the encrypted LMPC, the constraint of Eq. (3.15e) ensures that, if x(tk) ∈ Ωρ̂ \ Ωρmin
, then

the closed-loop state is driven towards the origin at tk+1 (to a lower level set of V ). Based on the

fact that the errors |et1| and |et2| are bounded, using the Lipschitz condition and the inequality of

Eq. (3.12a), it follows from Eq. (3.24) that:

V̇ ≤ −c3
c2
ρs + L

′

x|x(t)− x(tk)|+ L
′

u1(L1 + 1)2−d−1 + L
′

u2η2
−d−1 (3.25)

where L
′
x, L

′
u1, L

′
u2 > 0. Due to the continuity of x(t) ∀ t ∈ [tk, tk+1), we can write that |x(t) −

x(tk)| ≤ MF∆ ∀ t ∈ [tk, tk+1). Using this bound, it follows from Eq. (3.25) that:

V̇ ≤ −c3
c2
ρs + L

′

xMF∆+ L
′

uδ (3.26)

where L
′
u =

(
L

′
u1(L1 + 1) + L

′
u2η
)

is a positive constant. δ = 2−d−1 is also a positive constant,

dependent on the quantization parameter d selected. As evident, the magnitude of the error due to

quantization, represented by the last term of Eq. (3.26), will be smaller as d → ∞. Hence, selecting

a higher quantization parameter is advisable whenever possible. Thus, if −c3
c2
ρs+L

′
xMF∆+L

′
uδ ≤

−ϵw, then V̇ ≤ −ϵw for any x(tk) ∈ Ωρ̂ \Ωρs . This establishes that, if the conditions of Eq. (3.22)

are met, the state of the closed-loop system is always bounded in Ωρ̂, and it ultimately converges
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to Ωρs ⊆ Ωρmin
and remains there.

3.4 Cyberattack types and machine learning-based detection

The upper-tier control system, where encrypted sensor signals are decrypted upon receipt and

further transmitted to the MPC in decrypted form, could be susceptible to cyberattacks. Similarly,

the control inputs computed by the MPC prior to encryption might also face vulnerability to cyber

threats. These signals, transmitted in plaintext, could potentially be manipulated by an attacker if

the control room responsible for decryption and encryption lacks full cyber-physical security.

In contrast, the lower tier receives encrypted signals and calculates control inputs within an

encrypted space, transmitting them without decryption within the lower networked-tier. This ap-

proach ensures complete security, even if the control room receiving and transmitting the encrypted

signals is not entirely secure, as the data remains encrypted throughout the networked communi-

cation within the lower tier. Also, as depicted in Figure 3.1, where the encrypted network tiers 1

and 2 correspond to the lower and upper tiers, respectively, the lower tier does not necessitate shar-

ing access to its public and private keys with the control room, in contrast to the upper tier. This

distinction contributes to the enhanced cybersecurity of the lower tier, even in situations where the

security of the control room might be compromised. Upon detecting a cyberattack, the upper-tier

control system is disabled, while only the lower-tier control system remains operational. The latter

is capable of stabilizing the system at its steady state.
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3.4.1 Types of Cyberattacks

Given the adaptability of intelligent cyberattacks to process and control system behaviors, it is

assumed that these attacks possess the potency to access information regarding the stability region

of the two-tier controlled process. The scope of cyberattacks in the encrypted two-tier control

architecture typically encompasses manipulation of signal data, where data received by the MPC

and the control inputs computed by it could potentially be subjected to tampering. This study

addresses attacks directed at both the sensor signals received by the MPC and the control inputs

computed by it.

In regular operational scenarios, decrypted sensor signals accurately reflect the true state data.

However, if this data is tampered with, it can lead to control actions driving the process away from

its steady state. Likewise, manipulation of control inputs can deviate process states by withholding

the necessary control action. Intelligent cyberattacks are designed in a manner such that, when

launched on sensor signals, the controller is capable of calculating an appropriate control action,

within the actuation bounds, using the attacked state. Similarly, when launched on control inputs,

the manipulated data avoids falling beyond actuation limits, thereby evading detection by conven-

tional mechanisms. To address these challenges, advanced machine learning algorithms utilizing

neural networks are used for cyberattack detection. Some commonly launched attacks are consid-

ered below.

Min-Max cyberattack

Min-Max cyberattacks are specifically crafted to maximize destabilizing impact within the shortest

timeframe while evading detection. To maintain their concealment from conventional detection

80



methods, min-max attacks target the lower value of the following two conditions:

1. A window around equilibrium: This condition centers around a window encompassing the

equilibrium point of the affected state(s), representing a range of realistic physical opera-

tional conditions.

2. Extreme state values: The second condition revolves around state values situated farthest

from the equilibrium point, whether they are minimum or maximum values. The intention is

to ensure that the system remains within the closed-loop stability region Ωρ.

By introducing attacks based on the aforementioned conditions, it is guaranteed that the state

measurements received by the controller after manipulation remain inside the stability region de-

lineated by the configured operational window. Furthermore, these attacks circumvent setting off

any conventional detection alarms rooted in boundary values.

The formulation of the min-max attack is expressed in the following manner:

x̄(ti) = min

{
argmax

x∈Rn
{V (x(ti))≤ρ}, argmax

x∈Rn
{x(ti) ∈ χ}

}
,∀i ∈ [io, io + La] (3.27a)

ūt2(ti) = min

{
arg max

ut2∈Rm2
{V (x(ti))≤ρ}, arg max

ut2∈Rm2
{ut2(ti) ∈ U2}

}
,∀i ∈ [io, io + La]

(3.27b)

where ρ defines the region of the Lyapunov function V (x) that characterizes the stability bound-

aries of the closed-loop system under the two-tier control architecture. The notation χ = {xl ≤

x ≤ xu} represents the desired operating range for the system states, where x represents the com-

promised sensor signals to be received by the MPC after decryption at each time step. The value io

marks the time when the attack is introduced, and La denotes the duration of the attack in terms of
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sampling periods. Similarly, the symbol ut2(ti) signifies the control input that has been tampered

with before encryption. The symbols x̄(ti) and ūt2(ti) correspond to the altered or manipulated

values of the sensor signal and control input of the upper tier, respectively.

Replay cyberattack

In a replay attack, the attacker initially captures portions of the system output aligned with a reg-

ular operational state marked by substantial oscillations. Subsequently, the attacker intervenes to

intercept and restore the present process state measurements to the previously recorded values.

Replay attacks can be represented using the subsequent equations:

x̄(ti) = x(tk), ∀k ∈ [ko, ko + La], ∀i ∈ [io, io + La] (3.28a)

ūt2(ti) = ut2(tk), ∀k ∈ [ko, ko + La], ∀i ∈ [io, io + La] (3.28b)

where x(tk) and ut2(tk) are the true plant measurement and control input, respectively. La denotes

the extent of the attack as measured in terms of sampling intervals. x̄(ti) and ūt2(ti) denote the

sequence of replay attacks initiated at time tio by duplicating prior plant measurements and control

inputs recorded commencing from time tko . As the previous plant outputs are derived from authen-

tic closed-loop measurements and obtained via secure sensors, these state values are hypothesized

to fall within the stability region and operating bounds. Consequently, by reproducing these val-

ues and reintroducing them into the controller, conventional detectors are unlikely to detect the

anomaly.
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False-data-injection cyberattack

False-data-injection (FDI) cyberattacks involve the insertion of fabricated information into authen-

tic data. This intrusion does not necessitate familiarity with previous event data or system specifics.

Introducing deceptive data such that V (x) ≤ ρ might not lead to system destabilization, but could

merely modify its operational state based on the process dynamics, rendering them challenging to

identify through conventional alarm threshold approaches. FDI attacks are represented as follows:

x̄(ti) = x(ti) + ν, ∀i ∈ [io, io + La] (3.29a)

ūt2(ti) = ut2(ti) + ν, ∀i ∈ [io, io + La] (3.29b)

where x(ti) and ut2(ti) are the true plant measurement and control input, respectively. ν represents

the false data injected. La represents the length of the attack in terms of sampling periods. x̄(ti)

and ūt2(ti) are the FDI attacks introduced from time tio up to time tio+La .

Sinusoidal cyberattack

Sinusoidal attack constitutes a form of cyberattack involving the introduction of a sinusoidal signal

into authentic data. Due to the inherent periodic oscillations in a sinusoidal function, these attacks

can be challenging to identify, as they lack the potential to destabilize the system while inducing

substantial fluctuations. Moreover, their periodic pattern can evade standard detection mechanisms.
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Their representation can be expressed as follows:

x̄(ti) = x(ti) + a sin(2πkti), ∀i ∈ [io, io + La] (3.30a)

ūt2(ti) = ut2(ti) + a sin(2πkti), ∀i ∈ [io, io + La] (3.30b)

where x(ti) and ut2(ti) are the true plant measurement and control input, respectively. k and a are

constants. La represents the length of the attack in terms of sampling periods. x̄(ti) and ūt2(ti) are

the sinusoidal attacks introduced from time tio up to time tio+La .

Surge cyberattack

Surge cyberattack is a stealthy cyberattack that cannot be detected by conventional methods such

as cumulative sum (CUMSUM). Surge attacks share similarities with min-max attacks in their

initial behavior of maximizing disruptive impact over a brief interval before diminishing to a lower

level. In our scenario, the initial duration of the surge, measured in sampling periods, is denoted

as Ls and is chosen to be between 2 and 5 inclusive. This choice helps distinguish surge attacks

from min-max attacks, as the surge exhibits distinct characteristics during its latter phase. After the

sampling duration, Ls, a bounded noise is introduced to the genuine data, resembling the approach
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used in a false-data-injection attack. Their representation can be expressed as follows:

x̄(ti) = min

{
argmax

x∈Rn
{V (x(ti))≤ρ}, argmax

x∈Rn
{x(ti) ∈ χ}

}
,∀i ∈ [io, io + Ls] (3.31a)

x̄(ti) = x(ti) + η(ti), ∀i ∈ (Ls, io + La] (3.31b)

ūt2(ti) = min

{
arg max

ut2∈Rm2
{V (x(ti))≤ρ}, arg max

ut2∈Rm2
{ut2(ti) ∈ U2}

}
,

∀i ∈ [io, io + Ls] (3.31c)

ūt2(ti) = ut2(ti) + η(ti), ∀i ∈ (Ls, io + La] (3.31d)

where x(ti) and ut2(ti) are the true plant measurement and control input of the upper tier, re-

spectively. The initial surge corresponds to Eqs. (3.31a) and (3.31c), while the subsequent noise

addition is represented by Eqs. (3.31b) and (3.31d). ηl ≤ η(ti) ≤ ηu is the bounded noise added

to the data following the initial surge. La represents the length of the attack in terms of sampling

periods. x̄(ti) and ūt2(ti) are the surge attacks introduced from time tio up to time tio+La .

Geometric cyberattack

Geometric cyberattacks adhere to a strategy that gradually erodes the stability of the closed-loop

system. It initiates with a gradual decay, which then accelerates exponentially as time progresses.

This attack type attains its highest impact as the attack duration concludes. The initial move of the

attacker involves introducing a constant value, labeled as β, to the genuine data (ensuring β remains

considerably lower than the threshold value set within a min-max attack). In each subsequent time

step, this initial deviation is magnified by a factor of (1 + α), where α falls within the range

(0, 1), until it reaches the maximum allowable attack magnitude. The two parameters, α and β,
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are prudently selected while accounting for the stability region, operational boundaries, and attack

duration. Geometric attacks can be formulated as follows:

x̄(ti) = x(ti) + β × (1 + α)i−io , ∀i ∈ [io, io + La] (3.32a)

ūt2(ti) = ut2(ti) + β × (1 + α)i−io , ∀i ∈ [io, io + La] (3.32b)

where the parameters α and β define the speed and magnitude of the geometric attack. x(ti)

and ut2(ti) are the true plant measurement and control input of the upper tier, respectively. La

represents the length of the attack in terms of sampling periods. x̄(ti) and ūt2(ti) are the geometric

attacks introduced from time tio up to time tio+La .

3.4.2 Machine-Learning-based cyberattack detection

Utilizing a data-driven approach to construct the cyberattack detector offers numerous advantages.

Firstly, given the potential access of attackers to process-behavior information, traditional first-

principles model-based detection methods relying on predetermined statistical thresholds and false

alarm biases become inadequate. Secondly, in real-world scenarios, the structure and parameters

of the plant model are susceptible to alterations due to evolving operational conditions. In this

context, adopting a data-centric approach for training the cyberattack detection mechanism proves

resilient against both dynamic process changes and intricately crafted attacks.

In the realm of well-established machine learning approaches, neural networks (NN) have

showcased their effectiveness in both supervised and unsupervised classification scenarios. In this

particular study, we focus on a supervised classification task employing a two-class classification
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framework to determine whether a cyberattack has impacted the upper-tier control system.

When attacks involve data manipulation, they can manifest in various forms or patterns.

Building a model to classify attack types can lead to increased computational demands and model

intricacy. Since our primary aim is to ascertain whether the upper-tier control has been subjected

to an attack or not, we opt for a binary classification model. This approach simplifies the task and

facilitates the identification of attack occurrences. Furthermore, to evaluate the effectiveness of the

detector against attack patterns it has not encountered during training and validation, we introduce

additional attack scenarios in the testing set that differ from those it has been exposed to previously.

The adopted neural network involves a sequence of nonlinear transformations, where neurons

in the first hidden layer are computed from input data. Subsequent hidden neurons are derived

from their preceding layer, culminating in the output being computed from neurons in the final

hidden layer. These transformations occur in the form of activation functions involving biases and

the weighted sum of inputs (or neurons from the previous layer). The fundamental structure of

the utilized neural network model is depicted in Figure 3.2, where each input corresponds to the

feature-wise normalized control Lyapunov function computed from state measurements across a

sequence of sampling instances. The control Lyapunov function captures the dynamics of all states

of the system, making it an effective one-dimensional input feature for attack detection. While

training the model, to make it generic, and to prevent overfitting, we adopted the standard practice

of normalizing the training, testing, and validation datasets. Hence, while supplying the control

Lyapunov function data during operation, this is normalized with respect to the mean and standard

deviation of the training dataset, which is calculated prior to implementation of the detector in the

process. This approach aids in aligning the data distributions and mitigates the influence of varying

87



scales across features, thereby facilitating model training and enhancing model performance. The

resulting output vector denotes the predicted class label, distinguishing between “cyberattack” and

“no attack”. The mathematical representation of the feed-forward neural network with two hidden

layers can be formulated as:

θ
(1)
j = g1

(
NT∑
i=1

w
(1)
ij V̂ (x(ti)) + b

(1)
j

)
(3.33a)

θ
(2)
j = g2

(
h1∑
i=1

w
(2)
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Figure 3.2: Feed-forward neural network structure of the proposed ML-based cyberattack detector.

hidden layer, and the output layer, respectively. h1 and h2 stand for the neuron counts in the first

and second hidden layers, while H signifies the number of class labels, equal to the number of
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neurons in the output layer. Within the input layer, the normalized control Lyapunov function

of the complete state measurements at time ti, denoted as V̂ (x(ti)), serves as the input variable.

The index i = 1, .., NT , with NT being the duration of the time-varying trajectory for each input

sample. The connections between neurons i and j in successive layers are weighted by w
(k)
ij , where

k = 1, 2, 3. Additionally, the bias applied to the j th neuron in the kth layer is represented as b(k)j .

Each layer receives input from its preceding layer and processes the input with optimized weights,

biases, and nonlinear activation functions, represented by gk. Within the output layer, the vector

ypred provides the probabilities for each class label concerning the analyzed sample. Notably, the

neuron with the highest probability signifies the predicted class label.

The process of calculating training and testing accuracies entails computing the proportion of

accurately classified samples relative to the total number of samples present within their respec-

tive training and testing datasets. In the development of a neural network model for cyberattack

detection, closed-loop values of the control Lyapunov function are gathered over a fixed duration

(NT samples), encompassing various randomly initialized initial conditions. This is done both

within and beyond the stability region Ωρ, ensuring coverage of a wide spectrum of allowable con-

ditions. Given that V (x) captures the dynamic characteristics of all states, it serves as an effective

one-dimensional input feature for the attack detection problem. To improve training accuracy, an

equivalent number of samples from each class are assembled. Each sample corresponds to a dis-

tinct set of initial conditions for the closed-loop system simulation. Further details of the model

such as number of input neurons, activation functions, training, validation and testing accuracies

are reported in Section 3.5.3.
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Remark 3.3. To distinguish between dynamics in the control Lyapunov function caused by process

fluctuations and cyberattacks, Gaussian-distributed noise is introduced into sensor signal mea-

surements of the training and testing datasets. This accounts for both sensor noise and process

disturbances, aiding the model to discern cyberattacks from fluctuations. In addition, a sliding

window alarm is implemented, whereby the upper tier is deactivated only if the model identifies

a cyberattack in three out of four consecutive sampling instances. This mechanism prevents ac-

cidental deactivation of the upper tier due to inherent process disturbances and ensures that, if

inadvertently a cyberattack is detected at a single sampling instance due to process disturbances,

the upper tier remains active. Such strategies are pivotal for the accurate differentiation of cyber-

attacks from process fluctuations.

3.5 Application to a chemical process

This section showcases the practical application of the suggested encrypted two-tier control frame-

work in the context of a large-scale chemical process. We develop a nonlinear dynamical model

based on first-principles modeling fundamentals. Subsequently, we employ it as the basis for

constructing a first-principles-based encrypted LMPC. Alongside this, a set of encrypted PI con-

trollers, capable of computing control input in an encrypted space, is formulated, and the con-

trol architecture is augmented with an ML-based cyberattack detector. Subsequently, we perform

closed-loop simulations using the first-principles-based process model. Throughout these simu-

lations, various cyberattacks are initiated, leading to the examination of multiple detection and

control scenarios.
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3.5.1 Process description and model development

The process considered is the synthesis of ethylbenzene (EB) through the conversion of ethylene

(E) and benzene (B). The primary reaction, termed as “primary”, is characterized as a second-order,

exothermic, and irreversible reaction, in conjunction with two supplementary side reactions. These

reactions occur within two non-isothermal, well-mixed continuous stirred tank reactors (CSTRs).

The chemical reactions taking place are articulated as follows:

C2H4 + C6H6 → C8H10 (primary) (3.34a)

C2H4 + C8H10 → C10H14 (3.34b)

C6H6 + C10H14 → 2C8H10 (3.34c)

The state variables are the concentration of ethylene, benzene, ethylbenzene, di-ethylbenzene, and

the reactor temperature for each CSTRi, i = (1, 2), in deviation terms, that is:

x⊤ = [CE1 −CE1s , CB1 −CB1s , CEB1 −CEB1s , CDEB1 −CDEB1s , T1−T1s, CE2 −CE2s , CB2 −

CB2s , CEB2 − CEB2s , CDEB2 − CDEB2s , T2 − T2s]. The subscript “s” denotes the steady-state

value. The rate of heat removal for the two reactors [Q1 − Q1s, Q2 − Q2s] are the control inputs

manipulated by the lower tier using encrypted PI controllers, which are bounded by the closed sets,

[−104 kW, 2×103 kW] and [−1.5×104 kW, 5×103 kW] respectively. The inlet feed concentra-

tions for each reactor, [CEo1 − CEo1s , CBo1 − CBo1s , CEo2 − CEo2s , CBo2 − CBo2s ], are the control

inputs manipulated by the upper tier using an encrypted MPC, which are bounded by the closed

sets [−2.5 kmol/m3, 2.5 kmol/m3], [−2.5 kmol/m3, 2.5 kmol/m3], [−3 kmol/m3, 3 kmol/m3],

and [−3 kmol/m3, 3 kmol/m3], respectively. The control objective is to maintain the operation
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of both CSTRs at their unstable equilibrium state through the utilization of the encrypted two-tier

control scheme, employing quantized states and inputs for computation and actuation. Through

the application of mass and energy balance principles, the foundational model for the CSTRs is

constructed. An illustrative visualization of this model is presented in Figure 3.3. In particular, the

dynamic representation of the initial CSTR is captured by the subsequent set of ordinary differen-

tial equations (ODEs):

dCE1

dt
=

F1CEo1 − Fout1CE1

V1

− r1,1 − r1,2 (3.35a)

dCB1

dt
=

F1CBo1 − Fout1CB1

V1

− r1,1 − r1,3 (3.35b)

dCEB1

dt
=

−Fout1CEB1

V1

+ r1,1 − r1,2 + 2r1,3 (3.35c)

dCDEB1

dt
=

−Fout1CDEB1

V1

+ r1,2 − r1,3 (3.35d)

dT1

dt
=

T1oF1 − T1Fout1

V1

+
3∑

j=1

−∆Hj

ρ1Cp

r1,j +
Q1

ρ1CpV1

(3.35e)

The dynamic model of the second CSTR is represented by the following ODEs:

dCE2

dt
=

F2CEo2 + Fout1CE1 − Fout2CE2

V2

− r2,1 − r2,2 (3.36a)

dCB2

dt
=

F2CBo2 + Fout1CB1 − Fout2CB2

V2

− r2,1 − r2,3 (3.36b)

dCEB2

dt
=

Fout1CEB1 − Fout2CEB2

V2

+ r2,1 − r2,2 + 2r2,3 (3.36c)

dCDEB2

dt
=

Fout1CDEB1 − Fout2CDEB2

V2

+ r2,2 − r2,3 (3.36d)

dT2

dt
=

T2oF2 + T1Fout1 − T2Fout2

V2

+
3∑

j=1

−∆Hj

ρ2Cp

r2,j +
Q2

ρ2CpV2

(3.36e)
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where the reaction rates are calculated by the following expressions:

ri,1 = k1e
−E1
RTi CEi

CBi
(3.37a)

ri,2 = k2e
−E2
RTi CEi

CEBi
i = 1, 2 (reactor index) (3.37b)

ri,3 = k3e
−E3
RTi CDEBi

CBi
(3.37c)

Parameter values and steady-state values of the first-principles-based dynamic model are men-

tioned in Table 2.1.
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Figure 3.3: Process schematic featuring two CSTRs connected in series.

3.5.2 Implementing encryption in the two-tier control architecture

Prior to integrating encryption-decryption into a process, the selection of parameters, namely d, l1,

and l2 is performed. An evaluation of the extreme feasible states and inputs guides the derivation of

the integer bit count, denoted as l1 − d. The upper limit in the Ql1,d set is obtained via the formula
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2l1−d−1 − 2−d, whereas the lower limit is −2l1−d−1. The choice of the quantization parameter d

rests on the desired accuracy and range of state and input values. Additionally, l2 is chosen to

exceed l1. In alignment with this methodology, for the CSTR studied in this section, l1 − d is

calculated to be 16, from which l1 and d are then fixed. Within the set Ql1,d, rational numbers

are separated by a resolution of 2−d, indicating that higher d values result in lower quantization

errors. For simulation purposes, we opt for d = 8 as it yields nearly identical closed-loop state

trajectories in comparison to the unencrypted case [39, 81]. These cited works also illustrate how

the choice of the quantization parameter impacts closed-loop performance and stability across

different values of d. For d = 8, we obtain l1 = 24 and, since it is imperative that l2 > l1 for the

subsequent bijective mapping, l2 is selected as 30. With the quantization parameters defined, the

next step entails the quantization of states and inputs, followed by their encryption via the Paillier

Encryption algorithm. The implementation of the Paillier Encryption procedure is done through

Python’s “phe” module, PythonPaillier [21].

Remark 3.4. As mentioned earlier, the implementation of encryption requires quantization of real-

number valued signals to a fixed dataset denoted as Ql1,d. The selection of quantization parameter

d = 8 is justified by its enhanced control performance in comparison to lower values of d. The

time needed for encryption computation can be divided into five distinct components, the time spent

for: quantization of real data (gl1,d), bijective mapping (fl2,d), encryption, decryption, and inverse

mapping (f−1
l2,d

). [39] underscored that the encryption phase, followed by decryption, accounts for

the majority of the time spent. Moreover, the time remains unaffected by the chosen quantization

parameter. The three remaining mathematical operations contribute only a minimal portion of
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the total time spent on encryption-decryption. While the time taken for these operations does

increase with quantization, the increment is insignificant compared to the total time spent, and

the advantage of improved control performance using a higher quantization parameter greatly

outweighs the slight increase in time. Hence, a quantization parameter of d = 8 is adopted across

all cases where encryption is implemented in this study.

Implementation of the encrypted lower-tier control system

In the lower tier, control input computations are confined to linear mathematical operations, en-

suring their execution within an encrypted space that guarantees cyber-security. The selection of

lower-tier controlled inputs, which possess the capability to stabilize the entire system, is a pivotal

task that requires adherence to a well-defined procedure. The procedure includes linearization of

the nonlinear dynamical model about its operating steady-state, yielding a 10-dimensional state

space model mirroring the number of states, governed by two control inputs—the heat removal

rate for each CSTR. A, B, C, and D matrices were created for the state-space model ẋ = Ax+Bu

and y = Cx+Du, where y are the observed measurements from the system. Subsequently, lever-

aging the Cohen-Coon tuning method, the control input gains are calibrated and further refined

through multiple simulations conducted on the nonlinear dynamical model. Subsequently, the in-

tegral terms are omitted, substituting only proportional terms, u = Kx in the state-space model,

resulting in ẋ = Ax + BKx. The eigenvalues of (A + BK) are then computed and verified to ex-

hibit negative real components. This ensures asymptotic stability for the controllers when applied

to the linearized model over the operating steady state. The inclusion of the integral term serves

to eradicate offsets, thereby contributing to the refinement of closed-loop performance. Although
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excluded in the eigenvalue computations, the integral terms were meticulously adjusted through a

series of simulations using the nonlinear dynamical model. Next, via extensive simulations of the

nonlinear system under the lower-tier controller, the controller is verified to adhere to the criteria

outlined in Eq. (3.12), confirming that it can exponentially stabilize the system within the two-tier

encrypted control framework.

Implementation of the encrypted LMPC in the upper-tier control system

The first-principles model, expressed by Eq. (3.35), serves as the foundational process model

within the LMPC framework. For solving the constrained nonlinear, non-convex optimization

problem, we leverage the Python module of the IPOPT software [83]. Consequently, the resultant

solution is a local optimum, not a global one. This is a limitation due to the nature of the opti-

mization that a global optimum cannot be found for such a problem [11]. The process of solving

this optimization problem involves defining constraints for the LMPC. IPOPT constructs a feasi-

bility region and employs an iterative methodology to progressively navigate towards the optimal

solution by traversing the interior of the feasibility region. This approach incorporates two key pa-

rameters: the maximum number of iterations and a validation error. These parameters function as

the stopping criteria within the optimization problem. If either of these conditions is met, IPOPT

employs the final computed value as the solution for the given instance. Conversely, if neither of

these criteria is satisfied, IPOPT reports the suboptimal values calculated in the last iteration, but

the LMPC utilizes the control input calculated by the backup controller.

To assess the cost function of the LMPC over the prediction horizon, the integration step hc is

determined as 10−2×∆ using the first-principles model. The positive definite matrix P in the con-
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trol Lyapunov function V = x⊤Px is selected as diag [250 500 500 1000 0.3 250 250 500 1000

0.6], drawing from extensive simulations. The LMPC framework employs a prediction horizon of

N = 2. The stability criterion is defined as ρ = 100. Additionally, the criterion ρmin = 1 is the

smaller level set of the Lyapunov function where the state is desired to be trapped. The weight ma-

trices Q1 and Q2 in the LMPC cost function are chosen as Q1 = diag [2000 2000 5000 5 5 2000

2000 5000 2 2] and Q2 = diag [1 1 6 8], respectively. The cost function is defined as

L(x, ut2) = x⊤Q1x+ u⊤
t2Q2ut2.

Sampling time criteria with encryption

To implement encryption within a practical context, it is essential to ensure that the sampling time,

∆, surpasses the combined maximum duration required for encryption and decryption of all states

and control inputs. Furthermore, it should accommodate the maximum time necessary for com-

puting control actions at each sampling instance across the considered quantization parameter (d).

This condition holds true for both the upper- and lower-tier control systems within an encrypted

two-tier control framework. Mathematically,

∆i > max (Encryption-decryption time)i +max (Control input computation time)i (3.38)

where i = {1, 2}, with i = 1 and i = 2 representing the lower and upper control tier, respectively.

In the discussed example, the sampling time ∆ is chosen as 30 seconds. This decision is made

while taking into account the previously mentioned requirement to implement the encryption pro-

cess. Eq. (3.38) does not include the communication time required for signal transmission. This
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is because the two-tier encrypted control architecture, discussed within the context of SCADA

systems, relies on networked communication, which is extremely efficient and rapid. However,

networked communication also exposes the system to cyberattacks, which is a vulnerability that

we aim to mitigate in this research by introducing encryption to these communication channels.

Remark 3.5. In the context of the discussed two-tier encrypted control architecture, the lower and

upper tiers operate independently, maintaining distinct public keys for encryption and private keys

for decryption. Consequently, they possess the flexibility to adopt different sampling times. For

the CSTR example studied in this work, both tiers maintain identical sampling times. If certain

control inputs necessitate shorter sampling periods and more frequent actuation, it is advisable to

allocate them to the lower tier. The lower tier is a set of linear controllers and, hence, can compute

control inputs more rapidly than an advanced nonlinear control scheme such as MPC employed

in the upper tier. Also, as the lower tier does not perform encryption and decryption within the

networked communication channels, it has less stringent sampling time constraints. Furthermore,

strategies employing two-tier control to address challenges posed by delayed and asynchronous

signals have been demonstrated in prior studies of [50, 54]. For systems incorporating delayed

and asynchronous signals, these signals can be transmitted to the upper tier while applying con-

trol inputs through a sample-and-hold procedure. However, the primary motivation behind the

adoption of the two-tier design in this research is the cyber-vulnerability of the upper tier due to

the need to compute nonlinear control inputs without the safeguard of an encrypted computational

environment.
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3.5.3 Cyberattack detector training and testing

In the upper-tier control system, the cyberattacks take the form of data manipulation. The objective

involves crafting a detector capable of recognizing cyberattacks based on familiar data manipula-

tion patterns as well as those it has not encountered previously. To accomplish this, a feed-forward

neural network (FNN) is used to identify cyberattacks. The FNN is trained with min-max, replay,

sinusoidal, and false-data-injection attacks. The FNN underwent testing with the aforementioned

attacks, along with the inclusion of surge and geometric attacks. The outcome of the FNN is cate-

gorized into two classes: “cyberattack” and “no attack”. Each data point in the dataset represents

a 1×40 array of V (x) values. To instill variability, we employed a spectrum of initial conditions,

mirroring a range of process scenarios. The activation of an attack was randomly timed between

io ∈ [5, 35] to create diverse durations and occurrences during system operation. Throughout the

training phase, a randomized approach was adopted, wherein an attack would be simulated on a

single state measurement for each CSTR at random intervals. In the testing phase, a similar ran-

dom approach was followed, wherein cyberattacks were introduced on either one or multiple state

measurements or control inputs.

To build the training and validation set, we conducted extensive closed-loop simulations,

resulting in a dataset comprising 6000 data points. Each class (“cyberattack” and “no attack”)

contained 3000 data points. For the cyberattack class, 750 data points per attack type were in-

cluded in the training. The dataset was divided into an 80:20 ratio for training and validation

purposes. Employing feature-wise normalization prevented overfitting and enhanced results. For

the testing phase, a separate set of 1200 data points was generated – 600 for each class and 100
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data points for each cyberattack type. To account for real-world process fluctuations and avoid

mistaking minor variations as cyberattacks, bounded Gaussian white noise was incorporated into

each sensor measurement, for all the data points. By bounding the noise, the tail ends of the

Gaussian distributed noise are eliminated before being applied. The cited work of [77] proposes

methods to deal with tail-ends in Gaussian-distributed noise. The sensor noises were constrained

within the following bounds: |ωi| ≤ 0.1, ∀i = {1, 2, 3, 6, 7, 8}; |ωi| ≤ 0.0003, ∀i = {4, 9};

|ωi| ≤ 0.35, ∀i = {5, 10}; these Gaussian noise distributions have zero mean and standard devi-

ations |σi| ≤ 0.03, ∀i = {1, 2, 3, 6, 7, 8}; |σi| ≤ 0.0001, ∀i = {4, 9}; |σi| ≤ 0.1, ∀i = {5, 10}.

In this context, the subscripts are associated with different system states. Subscripts 1, 2, 3, 4,

and 5 denote the concentrations of ethylene, benzene, ethylbenzene, di-ethyl benzene, and reactor

temperature for CSTR 1, respectively. Similarly, subscripts 6, 7, 8, 9, and 10 correspond to the

concentrations of ethylene, benzene, ethylbenzene, di-ethyl benzene, and reactor temperature for

CSTR 2, respectively.

The design of the feed-forward neural network structure followed a systematic approach. It

comprised 40 input neurons, each corresponding to normalized control Lyapunov function values

derived from the previous 40 sampling instances. The FNN was designed with two hidden layers,

while the output neurons were set to 2, aligning with the binary classification task at hand. Fix-

ing the number of neurons in the hidden layers, selecting the optimizer, and specifying activation

functions before the hidden layers was established through a meticulous grid search process. The

number of epochs was fixed to 100 during the grid search. The objective was to identify the opti-

mal combination of hyperparameters that yielded the lowest validation loss. Based on the results,

the configuration of the neural network architecture included 60 neurons in the first hidden layer
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and 25 neurons in the second hidden layer. To mitigate the risk of overfitting, a dropout ratio of

0.2 was applied after each hidden layer. The activation functions employed were as follows: hy-

perbolic tangent after the input layer, rectified linear unit (ReLU) after the first hidden layer, and

softmax after the second hidden layer. Upon tuning with these hyperparameters, the model under-

went 1000 epochs of training using the Adam optimizer with the objective to minimize the sparse

categorical cross-entropy loss. Throughout the training, emphasis was placed on conserving the

model configuration that exhibited the lowest validation loss. This meticulous approach facilitated

the development of an effective and well-optimized neural network model for subsequent testing

and evaluation. The training, validation, and testing accuracies for the model are 99.87%, 99.92%,

and 99.83%, respectively.

Remark 3.6. As outlined in Section 3.5.3, the cyberattack is introduced randomly within the sam-

pling instances ranging from [5, 35], covering a span of 40 instances from which data is gathered

for the control Lyapunov function for a single data point. Attacks launched after sampling instance

30 pose a relatively higher challenge for cyberattack detection algorithms. Within the following

sampling instances, these attacks may not induce substantial deviations in the process dynamics.

This is due to the model being trained with noisy data to prevent ordinary process fluctuations from

being misidentified as cyberattacks. However, as the attacks persist and gradually push the system

away from the desired stability region Ωρmin
(but still within Ωρ), their detectability becomes more

feasible. Hence, while the accuracies might not reach 100%, practical implementation within a

system reveals the potential to achieve cyberattack detection with near-perfect accuracy and very

slightly extended response times.
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Remark 3.7. Di-ethyl benzene is an unintended byproduct that emerges within the reaction scheme

elucidated in Eq. (3.34). It exists in minimal quantities within both CSTRs and is not a direct con-

trol input. Consequently, in the process of randomly initiating cyberattacks on the state values

received by the MPC for training, validation, and testing datasets, no cyberattacks are launched

on the state values of di-ethyl benzene. This omission stems from the recognition that cyberattacks

on state values of di-ethyl benzene would exert no discernible influence on the overall process dy-

namics. For this reason, cyberattacks are exclusively aimed at the eight other state values received

by the MPC, as well as all four control inputs computed by the MPC in the upper-tier control sys-

tem. Given its trace presence, visual depictions of its concentration are not included in this section.

However, di-ethyl benzene is considered as a system state for the purpose of process modeling and

MPC calculations. Consequently, all results presented account for its presence within the system.

3.5.4 Two-tier control architecture without cyberattack detection and re-

configuration mechanisms

In this section, we illustrate the two-tier control architecture without incorporating any detection

and control reconfiguration mechanism. Figure 3.4 visually illustrates all six discussed cyberat-

tacks. The cyberattacks are launched at time t = 0.5 hr. The true state measurements of the

concentration of ethylene in CSTR 1 of the process network, depicted by the solid green line,

stand in contrast to the manipulated state values received by the MPC during a cyberattack. The

altered values, indicated by the dashed red line, emerge due to the manipulation of the true state

values received by the MPC during the cyberattack. Evidently, the actual state values and the re-

ceived values by the MPC diverge in opposite directions as the actuation is executed based on the
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received values, rather than the authentic state values.
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Figure 3.4: True state value of CE1 −CE1s (green solid line) and state value of CE1 −CE1s received
by the MPC (red dashed line) for all the cyberattacks discussed.

To portray the overall impact of a cyberattack on the system in the absence of a detection

mechanism, a geometric cyberattack is executed on two state measurements of the upper tier at

time t = 0.5 hr. The attack targets the state values associated with the concentration of ethylene

in CSTR 1 and the concentration of benzene in CSTR 2 that are received by the MPC. As evident
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from Figures 3.5 and 3.6, the cyberattack does not destabilize the system beyond the stability re-

gion Ωρ. The final value of the control Lyapunov function V (x) at t = 2hr is 33.65 which is within

the stability limit, ρ = 100. Nevertheless, it does lead to a continued reduction in the concentration

of ethyl benzene in CSTR 2—the desired product—resulting in economic loss. The lower tier,

responsible for controlling the heat inputs to both CSTRs and is fully safeguarded against cyber-

attacks, prevents attacks on the upper tier from completely destabilizing the system. However, the

integration of a machine learning-based cyberattack detection mechanism can deactivate the upper

tier, thereby ensuring system stabilization within the desired stability region Ωρmin
. Furthermore,

conventional detection mechanisms based on fail-safe boundary conditions, like identifying an at-

tack when the value of the control Lyapunov function surpasses ρ = 100, would prove inadequate

in detecting an intelligent cyberattack.

3.5.5 Simulation results of the encrypted two-tier control architecture with

cyberattack detection and re-configuration mechanisms

In this section, we employ the encrypted two-tier control architecture, featuring a machine learning-

based cyberattack detector and a reconfiguration mechanism to disable the upper tier upon cyberat-

tack detection. Two distinct scenarios are presented: one where the system operates at an unstable

steady-state and the other where the system is converging to an unstable steady-state while remain-

ing within the stability region Ωρ. The objective of intelligent cyberattacks is to inflict harm on

the process yield without causing the system to exit the stability region. As a result, we do not

delve into cyberattacks launched when the system states are outside Ωρ, as conventional detection

mechanisms are sufficient for addressing such cases.
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Figure 3.5: True state values (green solid line) and state value received by the MPC (red dashed
line) for CSTR 1 without detection and reconfiguration mechanisms when a geometric cyberattack
is launched at t = 0.5 hr.

In both scenarios under consideration, the cyberattack is initiated at t = 0.383 hours or 23

minutes of process time. As mentioned, the upper-tier control inputs are the inlet concentration of

ethylene and benzene for each CSTR and the lower-tier control inputs are the heat removal rates

for each CSTR. Figures 3.7 to 3.9 depict the first scenario, where the control inputs computed by

the MPC before encryption are manipulated via a surge attack when the system is operating at its

unstable steady-state. Figures 3.10 to 3.12 depict the second scenario, where the state values of

the system received by the MPC after decryption are manipulated via a geometric attack when the

system is converging to its unstable steady state. In all the figures in Section 3.5.5, the operating

control scheme is illustrated through different colored lines. The red line depicts the system under
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Figure 3.6: True state values (green solid line) and state value received by the MPC (red dashed
line) for CSTR 2 without detection and reconfiguration mechanisms when a geometric cyberattack
is launched at t = 0.5 hr.

the two-tier encrypted control scheme, the red line marked with stars depicts the system under

the two-tier encrypted control scheme during a cyberattack, and the green line depicts the system

under solely the lower-tier control scheme after the cyberattack has been detected, and the system

has been reconfigured. It is worth noting that the ML-based cyberattack detector was not trained

on the geometric and surge attack patterns. Yet, the detector demonstrated its ability to promptly

identify these attacks.

In Figures 3.7 to 3.9, during the initial 23 minutes of the process time, flat trajectories are

observed for all the states and control inputs as the system is operating at its unstable steady-

state under the two-tier encrypted control scheme without any cyberattack. At t = 23min, a
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Figure 3.7: State profiles of CSTR 1 under encrypted two-tier control (red line), encrypted two-tier
control under cyberattack (red line with stars), and encrypted lower tier post-reconfiguration (green
line), when a surge attack is launched on the upper-tier control inputs at t = 23min.

surge cyberattack is launched on all four control inputs of the upper tier by manipulating the MPC

control inputs before they are encrypted. This manipulation deviates the system from its desired

stability region, Ωρmin
, without complete destabilization. The cyberattack detector begins detecting

the attack status at each sampling instance after 20 minutes, requiring data from the preceding

40 sampling instances (equivalent to 20 minutes of process time). The detector identifies the

cyberattack for the first time at 25 minutes, 2 minutes after the attack was initiated on the upper tier

control inputs. After three consecutive detections at 25, 25.5, and 26 minutes, the upper tier control

is disabled at 26 minutes. Subsequently, only the secure, encrypted lower-tier control scheme is

employed to guide the system back to its desired stability region, Ωρmin
.
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Figure 3.8: State profiles of CSTR 2 under encrypted two-tier control (red line), encrypted two-tier
control under cyberattack (red line with stars), and encrypted lower tier post-reconfiguration (green
line), when a surge attack is launched on the upper-tier control inputs at t = 23min.

For Figures 3.10 to 3.12, during the initial 23 minutes of the process time, the state trajectories

exhibit swift convergence towards their steady-states as they operate under the two-tier encrypted

control scheme without any cyberattack. At t = 23min, a geometric cyberattack is initiated, tar-

geting all 6 concentration states of the upper tier. This attack involves manipulating the decrypted

state values received by the MPC in their plaintext form, and it deviates the system states from

their prior converging trajectory towards their steady-states. The cyberattack detection mechanism

commences after 20 minutes of the process, necessitating data from the preceding 40 sampling

instances (equivalent to 20 minutes). The cyberattack detector first identifies the cyberattack at

the 26 minutes, 3 minutes after the cyberattack was initiated. After three consecutive detection
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Figure 3.9: Control input profiles under encrypted two-tier control (red line), encrypted two-tier
control under cyberattack (red line with stars), and encrypted lower tier post-reconfiguration (green
line), when a surge attack is launched on the upper-tier control inputs at t = 23min.

instances at 26, 26.5, and 27 minutes, the upper-tier control scheme is disabled at 27 minutes. Sub-

sequently, only the secure, encrypted lower-tier control scheme is employed to guide the system

back to its desired stability region, Ωρmin
. Also, in this scenario, when the cyberattack is launched,

the system is in the process of converging towards its steady state; it has not yet reached its fi-

nal equilibrium. Importantly, the cyberattack detector remains active and can effectively identify
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Figure 3.10: State profiles of CSTR 1 under encrypted two-tier control (red line), encrypted two-
tier control under cyberattack (red line with stars), and encrypted lower tier post-reconfiguration
(green line), when a geometric attack is launched on the upper-tier states at t = 23min.

attacks even during this transitional phase, as illustrated inFigures 3.10 to 3.12.

Remark 3.8. The presence of quantization introduces some irregularities in the curves of certain

control inputs and states. For example, in Figure 3.9, noticeable bumps can be observed in the

control input response corresponding to the rate of heat removal in CSTR 1. These bumps stem

from the fact that the quantization error value is multiplied by the gains of the controller within an

encrypted framework. As a result, these multiplicative effects generate bumps in the trajectories

of control inputs. However, in the case of the rate of heat removal for CSTR 2, this phenomenon

is not as apparent in the same figure. This is attributed to the significantly larger magnitude of

the control input for CSTR 2. Similarly, this irregularity is not observed in the inlet concentration
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Figure 3.11: State profiles of CSTR 2 under encrypted two-tier control (red line), encrypted two-
tier control under cyberattack (red line with stars), and encrypted lower tier post-reconfiguration
(green line), when a geometric attack is launched on the upper-tier states at t = 23min.

control inputs for the CSTRs, as these control inputs are quantized after the plain text computa-

tion by the MPC. This approach prevents the multiplication of quantized terms, thus mitigating the

generation of bumps due to control input quantization. Although the quantization effects are less

conspicuous in the case of inlet concentration control inputs, their discontinuous behavior result-

ing from quantized terms still exists. This effect is mitigated by selecting a higher quantization

parameter. As a solution, a quantization parameter of d = 8 has been opted for all the simula-

tions that are being presented. This choice of a higher quantization parameter helps alleviate the

observed irregularities.
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Figure 3.12: Control input profiles under encrypted two-tier control (red line), encrypted two-tier
control under cyberattack (red line with stars), and encrypted lower tier post-reconfiguration (green
line), when a geometric attack is launched on the upper-tier states at t = 23min.

3.5.6 Computational time of ML-based detection compared to encryption-

decryption

This subsection delves into the computational load implications of incorporating machine-learning-

based cyberattack detection within the encrypted control framework. A comparative analysis
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was conducted between the time dedicated to cyberattack detection and the time allocated to the

encryption-decryption of upper-tier states and control inputs. The lower tier is fully secure as

it maintains encrypted communication throughout the network (sensor–controller–actuator), thus

rendering detection algorithms unnecessary for it. Due to the independent operation of the lower

tier in relation to the upper tier, along with the redundancy of cyberattack detection for the lower

tier, the time taken for encryption in it is excluded from this analysis.

Figure 3.13 depicts the ratio of the time taken for cyberattack detection to the time required

for encryption-decryption operations for 25 minutes of process time, corresponding to 50 consec-

utive sampling instances. It is evident from Figure 3.13 that the ML-based cyberattack detection

consumes, on average, less than 1% of the time required for encryption-decryption. Consequently,

the integration of this detection mechanism does not impose a significant computational burden

on the overall time complexity of the system. Instead, it introduces a crucial cybersecurity aspect,

especially in situations where the encrypted upper tier might not be entirely cyber-secure due to

the context in which plaintext data encryption or decryption occurs within the control architecture.

Remark 3.9. In this chapter, the lower tier of the two-tier encrypted control architecture functions

as a secure, stabilizing feature in continuous operation throughout the process. When a cyberattack

is detected, only the upper-tier is deactivated, while the lower tier continues to stabilize the system

without any interruptions. Alternatively, in a different framework than the one proposed in this

research, the lower tier controller can serve as a backup controller within the architecture if it is

desired for the MPC to exclusively compute all control inputs. In such a scenario, when an attack is

detected, control would be transitioned from the upper tier to the lower tier, which remains inactive
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Figure 3.13: Ratio of the time for ML-based Cyberattack detection to encryption-decryption for
50 consecutive sampling periods.

during normal process operation when no cyberattack is detected. Thus, at any time only one tier

would be functional. Nevertheless, as previously stated, in this study, both the lower and upper

tiers remain operational in the absence of any cyberattack. In the event of a detected cyberattack,

the upper tier is deactivated, while the lower tier continues its role in stabilizing the system.

3.6 Conclusions

In this chapter, we presented an encrypted two-tier control architecture incorporating an ML-

based cyberattack detector to enhance the operational safety, cybersecurity, and closed-loop per-

formance of nonlinear process systems. The lower-tier control system comprises a set of en-

crypted proportional-integral controllers, while the upper-tier control system employs an encrypted

Lyapunov-based model predictive controller. This architecture enhances system cybersecurity,

even in settings where control input computations may not be cybersecure. By integrating both
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linear and nonlinear controllers with encryption, the developed two-tier control architecture can be

adapted to large-scale nonlinear processes. Further, we have provided insights into the framework

and formulation of the encrypted lower- and upper-tier control systems. Through a comprehensive

stability analysis, we have identified potential sources of error and established bounds to ensure

closed-loop system stability. Additionally, we have delved into the development of an ML-based

cyberattack detector, addressed critical aspects such as quantization parameter selection, sampling

time criteria, and computational load assessment. These issues are essential for the practical im-

plementation of the proposed control system across nonlinear processes. To validate the efficacy of

our control framework, we subjected it to previously unseen cyberattack patterns within a nonlinear

chemical process network utilized in ethylbenzene production. We carried out a detailed simula-

tion study that exposed the implementation and performance of the two-tier control architecture

and the usefulness of the cyberattack detector. In summary, our work advances control system

cybersecurity by integrating ML-based cyberattack detection into encrypted control systems with

both linear and nonlinear controllers.
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Chapter 4

Encrypted Decentralized Model Predictive

Control of Nonlinear Processes with Delays

4.1 Introduction

Numerous large-scale industrial systems, such as power distribution grids, mechanical systems,

chemical processes, and urban traffic networks, present a significant challenge as the system to be

controlled is too large, resulting in a complex control problem to be solved. This challenge cannot

be simply solved by using faster computers with larger memory. In response, decentralized control

strategies have been proposed to address high dimensionality, constraints related to information

structure, and inherent system delays in such systems [7]. In a decentralized setup, the overall

system is divided into independent sub-systems that may be coupled with each other, but controlled

by separate controllers, which together constitute a decentralized control structure. This provides

a practical solution for reducing the computational complexity of a centralized control problem for

a large-scale process.
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Alongside dealing with large-scale processes, it is crucial to address the various sources of

time delays that can impact control systems. These sources include the computation of control

inputs for large-scale systems, communication lags during signal transfer, the inherent dynamics

of material transportation within the process system, and control actuator dynamics. Using a de-

centralized control structure reduces a large, complex control problem into smaller sub-problems

which are solved independently and simultaneously in different computing units. This reduces

the delays due to control input computation. Advances in networked communication have sim-

plified the interlinking, connectivity, and data transfer in cyber-physical systems and has made

time-delays from communication negligible. However, delays due to control actuator dynamics

in process networks cannot be compensated by smaller control input computation times or rapid

transport of material in processes or rapid networked communication and, hence, need appropriate

control strategies such as integrating a predictor within the controller design [79]. Similarly, state

delays in process networks cannot be completely eliminated by optimizing process layouts, and,

hence, need to be accounted in the controller design.

Networked communication might make data transfer seamless and rapid. However, they are

prone to cyberthreats. A breach or compromise within these systems could result in severe con-

sequences, such as the disruption of critical services, physical harm, financial loss, and are also

a threat to public safety. Recent developments in cyberattack techniques underscore the need to

establish robust cybersecurity [31]. Addressing cybersecurity concerns within industrial control

systems primarily falls under the domain of operational technology (OT). Significant progress has

been made in enhancing cybersecurity in the information technology (IT) sector, which focuses

on the software aspects of systems, encompassing areas such as network architecture and data
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management. However, the field of cybersecurity within OT is currently trailing behind [16]. Vari-

ous real-world examples underscore the importance of cybersecurity in networked cyber–physical

systems and SCADA (Supervisory Control and Data Acquisition) environments. For instance,

the cyberattack on SCADA controls responsible for managing the power grid in Ukraine in 2015

led to widespread power outages [45]. Similarly, in the DarkSide ransomware attack on Colonial

Pipeline in 2021, hackers encrypted its networked communication and demanded a ransom for the

decryption keys. Consequently, Colonial Pipeline had to halt operations, causing disruptions in

fuel distribution and financial losses [82].

Extensive research has been conducted in areas such as developing machine learning-based

cyberattack detectors [2, 26], using reachable set-based detection schemes [63], employing linear

encrypted controllers [18, 20], analyzing the safety of process equipment when the system is under

a cyberattack [65], control switching techniques for attack detection [62], process state recovery

post cyberattack [87], and creating cyberattack-resilient controllers [68]. However, to the best of

our knowledge, the development of cybersecure decentralized controllers for large-scale nonlinear

processes with input and state delays remains an unexplored area, prompting our proposal for a

novel control structure to address this challenge.

Specifically, we propose a decentralized control structure consisting of a set of Lyapunov-

based MPCs, integrated with a predictor, utilizing encrypted networked communication. MPC

is an advanced control strategy that achieves superior performance compared to traditional con-

trollers via constraints, and optimizes critical performance metrics in multi-input multi-output sys-

tems. These advantages are derived from the utilization of a nonlinear mathematical model to

predict future system behavior, and optimizing control inputs by minimizing a cost function with
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constraints. For large-scale systems, the control problem to be solved by a centralized MPC would

be too complex. In contrast, a decentralized MPC divides this intricate problem into smaller, inde-

pendent segments, concurrently solved in different edge computing units. In this configuration, we

assume the presence of secure edge computers responsible for computing control inputs. Integrat-

ing a predictor within this setup serves to offset performance degradation due to input delays. To

mitigate the influence of state-delays resulting from material transportation in systems, the process

model employed by the LMPCs in the decentralized framework is based on differential difference

equations. These equations account for the inherent state-delays present in the system. Further, the

incorporation of encryption within the networked communication channels enhances cybersecurity

as each edge computing unit receives and transmits encrypted signals.

The remainder of the paper is organized as follows: Section 4.2 presents preliminaries on

notation, the general class of nonlinear systems considered, the system stabilizability assumptions,

the cryptosystem used for employing encryption, and the effect of quantization. The encrypted

decentralized MPC design, formulation of the MPCs, and stability analysis of the control scheme

are presented in Section 4.3. In Section 4.4, closed-loop simulations of a nonlinear chemical

process network with input and state delays under the encrypted decentralized LMPC system with

and without predictor feedback are presented and discussed.
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4.2 Preliminaries

4.2.1 Notation

The symbol ∥·∥ represents the Euclidean norm of a vector. x⊤ denotes the transpose of a vector

x. R, Z, and N represent the sets of real numbers, integers, and natural numbers, respectively. ZM

denotes the additive groups of integers modulo M . Set subtraction is indicated by the symbol “\”,

where A\B represents the set of elements that are in set A but not in set B. A function, f(·), falls

under the class C1 if it is continuously differentiable within its defined domain. The term lcm(i, j)

denotes the least common multiple of the integers i and j, while gcd(i, j) signifies the greatest

common divisor, that divides i and j without any remainder.

4.2.2 Class of systems

This research focuses on multi-input multi-output (MIMO) nonlinear time-delay systems, charac-

terized by a set of differential difference equations (DDEs), alternatively known as delay differen-

tial equations. These equations are formulated in the following manner:

ẋ = F (x, u) = f(x(t), x(t− d1), u(t− d2)) (4.1)

The state vector is denoted by x ∈ Rn, while u ∈ Rm represents the control input vector bounded

by the set, U ⊂ Rm. d1 > 0 and d2 > 0 are the state and input delays, respectively. The vector f(·)

is a locally Lipschitz vector function of its arguments with f(0, 0, 0) = 0, rendering the origin as

a steady state of Eq. (4.1). Without loss of generality, we assume the initial time as zero (t0 = 0).

Additionally, we define the set S(∆) as the set of piece-wise constant functions characterized by a
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period of ∆. We consider j = 1, . . . , Nsys sub-systems, with each subsystem j consisting of states

xj which are regulated only by inputs uj but potentially impacted by states in other subsystems

due to coupling between subsystems. The continuous-time nonlinear dynamics of subsystem j is

described as follows:

ẋj = Fj(x, uj), xj(t0) = xj0 , ∀j = 1, . . . , Nsys (4.2)

where Nsys denotes the number of subsystems, xj ∈ Rnj and uj ∈ Rmj are the state vector and

control inputs for subsystem j, respectively. x = [x⊤
1 . . . x⊤

Nsys
]⊤ ∈ Rn is the state vector for the

entire system, with n =
∑Nsys

j=1 nj . u = [u⊤
1 . . . u⊤

Nsys
]⊤ ∈ Rm is the control input vector for the

entire system, with m =
∑Nsys

j=1 mj . The control input vector constraints are uj ∈ Uj := {umin,ji ≤

uji ≤ umax,ji ∀i = 1, 2, . . . ,mj} ∈ Rmj , ∀j = 1, . . . , Nsys. Hence, the set U that constrains the

control input vector for the entire system is formed by the union of sets Uj , where j = 1, . . . , Nsys.

The system of Eq. (4.1) can be expressed as a perturbed form of the system without delays in the

following manner:

ẋ = F (x, u, ξ) = f(x(t), x(t) + ξ1(t), u(t) + ξ2(t)) (4.3a)

ξ1 = x(t− d1)− x(t) (4.3b)

ξ2 = u(t− d2)− u(t) (4.3c)

where ξ⊤ := [ξ⊤1 , ξ
⊤
2 ] ∈ D × U ∈ Rn+m is the bounded perturbation vector, and D is the open

neighborhood around the origin.
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Remark 4.1. In this research, we employ differential difference equations to characterize non-

linear time-delay systems. Differential difference equations (DDEs) fundamentally differ from

ordinary differential equations (ODEs). One key distinction is that a dynamic system with an

arbitrarily small delay is considered an infinite-dimensional system, even though the state vector

would have finite dimension. Existing literature offers various approaches to describe nonlinear

time-delay systems, such as first-order plus dead time and second-order plus dead time models.

However, these methods are specific and assume certain linear model structures. Hence, we have

opted to utilize nonlinear differential difference equations with constant delays in this study to

ensure a more comprehensive analysis. Nevertheless, it is worth noting that other studies have

utilized functional differential equations to describe nonlinear time-delay systems [34], and our

findings can potentially be extended to encompass such model structures as well.

4.2.3 Stability assumptions

Based on how the overall large-scale system is partitioned, there may exist interacting dynam-

ics between the subsystems, as the states of one subsystem may impact the states of other sub-

systems. Accounting for these interactions, we assume the existence of stabilizing control laws

uj = Φj(x) ∈ Uj , which regulate the individual subsystems j = 1, . . . , Nsys, such that the origin

of the overall system of Eq. (4.1) with d1 ≡ 0 and d2 ≡ 0 is rendered exponentially stable. This

signifies the presence of a C1 control Lyapunov function V (x) for which the following inequalities

hold for all x ∈ Rn within an open region D surrounding the origin:

c1|x|2 ≤ V (x) ≤ c2|x|2, (4.4a)
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∂V (x)

∂x
f(x, x,Φ(x)) ≤ −c3|x|2, (4.4b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x| (4.4c)

where c1, c2, c3 and c4 are positive constants. Φ(x) = [Φ1(x)
⊤ . . .ΦNsys(x)

⊤]⊤ is the vector con-

catenating the stabilizing feedback control laws for all Nsys subsystems. For the nonlinear system

described by Eq. (4.1), the region of closed-loop stability can be defined as a level set, Ωρ, of

the control Lyapunov function V , such that Ωρ := {x ∈ D|V (x) ≤ ρ}, where ρ > 0. Hence,

originating from any initial condition within Ωρ, the control input, Φ(x), guarantees that the state

trajectory of the closed-loop system remains within Ωρ.

4.2.4 Paillier cryptosystem

In this research, we employ the Paillier cryptosystem [67] to encrypt signals, specifically state

measurements (x) and control inputs (u), transmitted to and from the controllers. Although we

do not make use of the semi-homomorphic property of additive homomorphism within the Paillier

cryptosystem, we employ it so that traditional controllers, such as proportional-integral controllers,

which conduct computations in an encrypted space, can be integrated into the overall control ar-

chitecture if required. The encryption procedure is initiated by generating the public and private

key. The public key is used to encrypt integer messages into ciphertexts, and the private key is em-

ployed to decrypt ciphertexts and retrieve the original integer messages. The process of generating

the public and private key can be outlined as follows:

1. Choose two large prime integers (p and q) randomly, ensuring, gcd(pq, (p− 1)(q − 1)) = 1.
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2. Compute, M = pq.

3. Choose an arbitrary integer ḡ such that ḡ ∈ ZM2 ,which is the multiplicative group of integers

modulo M2.

4. Compute λ = lcm(q − 1, p− 1).

5. Specify L̄(x) = (x− 1)/M .

6. Verify the existence of the subsequent modular multiplicative inverse:

u = (L̄(ḡλ modM2))−1 mod M .

7. If the inverse does not exist, revisit step 3 and select an alternate value of ḡ. If the inverse

exists, (M, ḡ) is the public key and (λ, u) is the private key.

Once the keys are acquired, the public and private keys are distributed to authorized recipients for

encryption and decryption, respectively. The encryption process is as follows:

EM(m, r) = c = ḡmrM mod M2 (4.5)

where r is a randomly selected integer from the set ZM , and c represents the ciphertext achieved

through the encryption of m. The decryption procedure is as follows:

DM(c) = m = L̄(cλ mod M2)u mod M (4.6)

The aforementioned procedure can be demonstrated in a numerical example as follows:

Key generation steps:

124



1. Select 2 prime numbers p = 13, and q = 17.

2. M = p× q = 13× 17 = 221.

3. Chose, ḡ = 8 which can be any integer between 1 and M2.

4. Calculate λ = lcm(q − 1, p− 1) = lcm(16, 12) = 48.

5. Verify the existence of u = 172.

6. The public key is (M, ḡ) = (221, 8).

7. The private key is (λ, u) = (48, 172).

Encryption:

1. The message to be encrypted is m = 3.

2. A random number r = 1 is chosen such that 0 < r < M .

3. The ciphertext is: c = ḡmrM mod M2 = 831221 mod 2212 = 512.

Decryption:

1. The ciphertext to be decrypted is c = 512.

2. The message is m = L̄(cλ mod M2)u mod M = L̄(51248 mod 2212)172 mod 221 = 3.

4.2.5 Quantization

To use the Paillier cryptosystem, data to be encrypted must be in the form of natural numbers in

ZM . However, the signal values before encryption are in floating-point. Consequently, we employ
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quantization, mapping the floating-point numbers into ZM [19]. Using a signed fixed-point binary

representation, we create a set, Ql1,d, with parameters l1 and d. These parameters define the total

bit count (integer and fractional) and the fractional bits, respectively. The Ql1,d set encompasses

rational numbers from −2l1−d−1 to 2l1−d−1 − 2−d, separated by 2−d. A rational number q in Ql1,d

can be expressed as q ∈ Ql1,d, where ∃β ∈ {0, 1}l1 , and q = −2l1−d−1βl1 +
∑l1−1

i=1 2i−d−1βi. To

map a real number data point a to the Ql1,d set, we use the function gl1,d, defined by the equation,

gl1,d : R → Ql1,d

gl1,d(a) := arg min
q∈Ql1,d

|a− q|
(4.7)

Next, the quantized data is transformed into a set of integers through a one-to-one (bijective)

mapping known as fl2,d, as outlined in [19]. The following mapping ensures that the quantized

data is transformed into a subset of the message space ZM :

fl2,d : Ql1,d → Z2l2

fl2,d(q) := 2dq mod 2l2
(4.8)

During the encryption process, integer plaintext messages from the set Z2l2 are converted to ci-

phertexts, which can be decrypted back into the same set Z2l2 . To recover the original data from

the set Ql1,d, an inverse mapping, denoted as f−1
l2,d

, is defined as follows:

f−1
l2,d

: Z2l2 → Ql1,d
(4.9)

126



f−1
l2,d

(m) :=
1

2d


m− 2l2 if m ≥ 2l2−1

m otherwise
(4.10)

4.3 Development of the encrypted decentralized control archi-

tecture

In this section, we describe the design of the encrypted decentralized control architecture, establish

bounds on the errors in the encrypted decentralized control structure through a stability analysis,

and formulate the predictor feedback-based decentralized LMPC.

4.3.1 Design of the encrypted decentralized control architecture

In the encrypted decentralized control architecture, depicted in Figure 4.1, at time tk, where k

represents the sampling instance, signals x(tk) from sensors are encrypted to ciphertext c using

the public key and transmitted to each control subsystem, within its respective edge computing

unit. Within each unit, the encrypted signals are decrypted using the private key, and the quantized

states x̂(tk) are used to initialize the predictor in the j th control subsystem, where j ranges from 1

to Nsys. The predictor computes the states after the input delay period, x̂(tk + d2). This is used

to initialize the nonlinear process model of the j th MPC. Subsequently, the j th MPC computes

the optimized control input trajectory along the whole prediction horizon and encrypts the control

input uj(tk + d2). At the actuator, the ciphertext ć is decrypted to the quantized input û(tk + d2).

However, due to the input delay, d2, the control input applied to the process by the actuator is

û(tk), which was calculated at time tk − d2. Since the data received and transmitted by the edge
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computers through the network remains encrypted, cybersecurity is ensured in the presence of

secure edge computers.

Decryption
(private key)
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Figure 4.1: Illustration of the encrypted decentralized control structure.

The closed-loop design of Figure 4.1 introduces two sources of error: one from state quanti-

zation in the sensor–controller link and another from control input quantization in the controller–

actuator link. These errors are bounded by:

|x(tk)− x̂(tk)| ≤ 2−d−1 (4.11a)

|u(tk)− û(tk)| ≤ 2−d−1 (4.11b)

The derivation of the upper bounds of the quantization error in Eq. (4.11) has been explained

in Remark 4.3. An additional error arises in the applied control input as the predictor, ϕ(x, u),

128



receives x̂ instead of the true state x to predict the states after the input delay period. Using the

local Lipschitz property, this error will be confined by the underlying equation, where L′
1 > 0:

|ϕ(x̂, u)− ϕ(x, u)| ≤ L′
1|x̂− x| ≤ L′

12
−d−1 (4.12)

Remark 4.2. In this work, a decentralized MPC, without inter-controller communication, is pro-

posed to reduce the computational time and complexity of a centralized control problem. For possi-

bly superior performance, some level of communication between controllers in different subsystems

may be necessary to account for coupling effects between subsystems in large-scale processes. To

establish this, a distributed control architecture could be used. However, encrypting-decrypting

control input trajectories multiple times within a single sampling period could significantly in-

crease the communication overhead due to encryption. To avoid this, a secure Ethernet crossover

cable connection could be established between different computing units in a single control room

responsible for computing all the control inputs of a particular process. This would avoid the need

for encrypting-decrypting control inputs as their transmission would be secure, and encryption

could still be used for signals transmitted to and from the control room.

Remark 4.3. Quantization error arises when the value to be quantized is not found exactly in the

set Ql1,d. The elements in this set are separated by 2−d. Let us assume the value to be quantized

is a, which lies between b and b + 2−d. If the absolute difference between a and b is less than

that between a and b + 2−d, a is mapped to b, while, otherwise, a is mapped to b + 2−d. Thus,

the maximum potential difference between the actual value and the quantized value is half of the

resolution or 2−d−1. Further, this bound implies that a higher value of d would result in a smaller
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error due to quantization.

4.3.2 Decentralized LMPC

To reduce the computational time and complexity of a centralized control problem, we formulate

a decentralized LMPC system as follows:

Jj = min
udj

∈S(∆)

∫ tk+N

tk

Lj(x̃j(t), udj(t)) dt (4.13a)

s.t. ˙̃xj(t) = Fj(x̃(t), udj(t)) (4.13b)

udj(t) ∈ Uj, ∀ t ∈ [tk, tk+N) (4.13c)

x̃(tk) = x̂(tk) (4.13d)

V̇ (x̂(tk), udj(tk)) ≤ V̇ (x̂(tk),Φj(x̂(tk))),

if x̂(tk) ∈ Ωρ\Ωρmin
(4.13e)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N),

if x̂(tk) ∈ Ωρmin
(4.13f)

Each LMPC has access to full-state feedback measurements but only takes into account the dynam-

ics of its respective subsystem. Consequently, we develop separate first-principles-based models

for each subsystem j where j = 1, . . . , Nsys, to predict the states xj and compute the control in-

put udj to be applied by the corresponding actuators within the j th subsystem. x̃j represents the

predicted state trajectory of the process model of the j th LMPC. The quantized states, x̂, serve as

the initial conditions for the LMPC process model to predict the state trajectory as per Eq. (4.13b),
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which is used to integrate the cost function of Eq. (4.13a) to calculate optimized control inputs,

u∗
dj
(t|tk), for the entire prediction horizon. However, the LMPC transmits only the first input of

this sequence to the actuator for application to the system within the interval t ∈ [tk, tk+1) and

repeats this process at each sampling period. k is the sampling instance, and N represents the

number of sampling periods within the prediction horizon. Eq. (4.13c) represents the constraints

imposed on the control inputs, and Eq. (4.13d) uses the quantized states to initialize the plant model

described in Eq. (4.13b). The Lyapunov constraint in Eq. (4.13e) ensures that, if the state x(tk) at

time tk lies within the set Ωρ \ Ωρmin
, where ρmin represents a level set of V in proximity to the

origin, the time-derivative of the control Lyapunov function of the closed-loop subsystem j under

the j th LMPC is less than or equal to the time-derivative of the control Lyapunov function when

the subsystem is controlled by the stabilizing controller Φj(x). When the closed-loop state x(tk)

enters Ωρmin
, the constraint of Eq. (4.13f) ensures that this state remains within Ωρmin

.

4.3.3 Robustness of the encrypted decentralized LMPC to time-delay sys-

tems

In this subsection, we will focus on the closed-loop stability analysis of the perturbed nonlinear

system of Eq. (4.3), taking into consideration sufficiently small state delays only (i.e., d2 ≡ 0

and d1 > 0). However, the stabilization of the perturbed system of Eq. (4.3) in the presence of

both state and input delays will be achieved using an encrypted decentralized LMPC with predictor

feedback in Section 4.3.4. We first establish stability of the closed-loop system under the encrypted

stabilizing controller Φ̂(x̂), followed by extending our analysis to stability of the system under the

encrypted decentralized LMPC system introduced in the previous section.
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Theorem 4.1. Considering the system of Eq. (4.3) under the encrypted stabilizing controller Φ̂(x̂),

we examine the stability of the time-delay system without any input delay (i.e., d2 ≡ 0 and d1 > 0).

The stabilizing controller Φ(x), without encryption and delays, adheres to the inequalities outlined

in Eq. (4.4). Furthermore, we assume that the initial state x0 resides within the region Ωρ̂ where

ρ̂ < ρ. Given a sufficiently large time T > 0, where T is the time needed for x(t) to enter Ωρmin
,

we can determine positive real numbers L′
x, L

′
ξ, L

′
q,MF ,Md1 , and et = (L1 + 1)2−d−1, for which

there exist ∆, d1, d, and ϵw > 0, such that the following conditions are satisfied:

L′
xMF∆+ L′

ξMd1d1 + L′
q|et| −

c3
c2
ρs ≤ −ϵw

ρmin = max{V (x(t+∆))|V (x(t)) ≤ ρs}
(4.14)

where ρ̂ > ρmin > ρs. Then, the closed-loop state x(t) under the encrypted stabilizing controller

remains bounded in Ωρ̂ and is ultimately bounded in Ωρmin
for t ≥ T .

Proof. This proof is divided into four parts. First, we will establish bounds on the error due to

quantization in the time-delay system under the encrypted stabilizing controller, keeping the input

delay, d2 ≡ 0. Then, we will establish bounds for the error due to state delays, followed by limiting

the error due to the control input being applied in a sample-and-hold manner. Lastly, based on these

bounds, we can determine the positive constants L′
x, L

′
ξ, L

′
q,MF ,Md1 , and et = (L1 + 1)2−d−1,

for which there exist ∆, d1, d, and ϵw > 0, such that the state of the closed-loop system from

any initial condition x0 ∈ Ωρ̂\Ωρs converges within Ωρmin
within time T . Under the encrypted

stabilizing controller, the control input u(t) can be written as u(t) = Φ̂(x̂(tk)). Substituting this in

the nonlinear system of Eq. (4.3) without any input delay (i.e. d2 ≡ 0), the time-derivative of the
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control Lyapunov function can be written as:

V̇ =
∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t), Φ̂(x̂(tk))) (4.15)

Based on the error bounds resulting from quantization, as derived in Eq. (4.11), Φ̂(x̂(tk)) ≤

Φ(x̂(tk)) + 2−d−1,

V̇ ≤ ∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t),Φ(x̂(tk)) + 2−d−1)

≤ ∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t),Φ(x(tk)) + Φ(x̂(tk))− Φ(x(tk)) + 2−d−1)

(4.16)

Using the Lipschitz property, Φ(x̂(tk)) − Φ(x(tk)) ≤ L1|x̂ − x| ≤ L12
−d−1. Substituting this in

Eq. (4.16):

V̇ ≤ ∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t),Φ(x(tk)) + (L1 + 1)2−d−1)

≤ ∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t),Φ(x(tk)) + et)

(4.17)

where et = (L1 + 1)2−d−1 represents the error due to quantization. Using the constraints outlined

in Eq. (4.4), Eq. (4.17) can be re-written as:

V̇ ≤ ∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t),Φ(x(tk)) + et)−

∂V (x(tk))

∂x
f(x(tk), x(tk),Φ(x(tk)))

+
∂V (x(tk))

∂x
f(x(tk), x(tk),Φ(x(tk)))

≤ ∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t),Φ(x(tk)) + et)−

∂V (x(tk))

∂x
f(x(tk), x(tk),Φ(x(tk)))

− c3|x(tk)|2
(4.18)

Based on Eq. (4.18), we can define the following: g(x, ξ1, et) = f(x, x+ξ1,Φ(x)+et). In addition,

there exist positive constants, L′
x, L′

ξ, and L′
q such that the following Lipschitz inequality holds for
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all x, x′ ∈ Ωρ̂:

∣∣∣∣∂V (x)

∂x
g(x, ξ1, et)−

∂V (x′)

∂x
g(x′, 0, 0)

∣∣∣∣ ≤ L′
x|x− x′|+ L′

ξ|ξ1|+ L′
q|et| (4.19)

Thus, Eq. (4.18) can be re-written as:

V̇ ≤ ∂V (x(t))

∂x
g(x(t), ξ1(t), et)−

∂V (x(tk))

∂x
g(x(tk), 0, 0)− c3|x(tk)|2

≤ L′
x|x(t)− x(tk)|+ L′

ξ|ξ1(t)|+ L′
q|et| − c3|x(tk)|2

(4.20)

The upper bound of the perturbation term ξ1 due to state delays can be represented as:

|ξ1(t)| = |x(t− d1)− x(t)| ≤ d1Md1
(4.21)

where Md1 = maxs∈[−d1,0] |x(t + s)|, ∀t ∈ [0, T ]. Substituting the bound on |ξ1(t)| derived from

Eq. (4.21), we obtain:

V̇ ≤ L′
x|x(t)− x(tk)|+ L′

ξd1Md1 + L′
q|et| − c3|x(tk)|2 (4.22)

Due to the continuity of x(t) ∀ t ∈ [tk, tk + ∆), we can write that |x(t) − x(tk)| ≤ MF∆,∀t ∈

[tk, tk +∆). Using this bound and the inequalities of Eq. (4.4), it follows from Eq. (4.22):

V̇ ≤ L′
xMF∆+ L′

ξd1Md1 + L′
q|et| −

c3
c2
ρs (4.23)

In the above equation, the first term represents the error due to sample-and-hold implementation

of the control input, the second term represents the error due to state delays, and the third term

134



represents the error due to quantization. All these errors are bounded and can be made sufficiently

small by constraining the sampling time and state delay to be sufficiently small, and using a higher

quantization parameter d for encryption. Therefore, their sum is also bounded and can be made

sufficiently small. This implies that, for the chosen time T , there exist positive real numbers

∆, d1, d, and ϵw, such that the following inequality holds:

L′
xMF∆+ L′

ξd1Md1 + L′
q|et| −

c3
c2
ρs ≤ −ϵw,∀t ∈ [0, T ]

which implies that V̇ ≤ −ϵw for any x(tk) ∈ Ωρ̂ \ Ωρs for all tk ∈ [0, T ]. This establishes that, if

the conditions of Eq. (4.14) are met, the closed-loop system state under the encrypted stabilizing

controller is always bounded in Ωρ̂ and converges to Ωρs ⊆ Ωρmin
within time T , and remains

there.

Below, we proceed with the stability proof of the closed-loop system under the encrypted

decentralized MPC.

Theorem 4.2. Considering the system of Eq. (4.3) under the encrypted decentralized LMPC of

Eq. (4.13), we examine the stability of the time-delay system without any input delay (i.e., d2 ≡ 0

and d1 > 0). We assume that the initial state x0 resides within the region Ωρ̂. Given a sufficiently

large time T > 0, where T is the time needed for x(t) to enter Ωρmin
, we extend the results ob-

tained in Theorem 4.1 to the encrypted decentralized LMPC of Eq. (4.13) maintaining our previous
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assumption that ρ̂ > ρmin > ρs. Then, if the following conditions are satisfied,

V̇ ≤ L′
xMF∆+ L′

ξd1Md1 + L′
q|et| −

c3
c2
ρs ≤ −ϵw

ρmin = max{V (x(t+∆))|V (x(t)) ≤ ρs}
(4.24)

the closed-loop state x(t) remains bounded in Ωρ̂ and is ultimately bounded in Ωρmin
for t ≥ T ,

under the proposed encrypted decentralized LMPC of Eq. (4.13).

Proof. Firstly, within this proof, we establish the recursive feasibility of the optimization prob-

lem within each decentralized LMPC. Subsequently, under the optimized control actions of the

encrypted decentralized LMPC of Eq. (4.13), we will prove the boundedness and convergence of

the closed-loop state of the nonlinear system within the set Ωρ̂, extending the results of Theorem

4.1. Initially, we consider x(t) ∈ Ωρ̂ \Ωρmin
. The input trajectories Φ̂j(x̂(tk)), j = 1, . . . , Nsys for

t ∈ [tk, tk+1) are feasible solutions to the optimization problem outlined in Eq. (4.13), as the input

constraint of Eq. (4.13c) and the Lyapunov constraint of Eq. (4.13e) are both satisfied. Then, we

consider x(t) ∈ Ωρmin
. The input trajectories Φ̂j(x̃(tk+i)), i = 0, 1, . . . , N−1, j = 1, . . . , Nsys for

t ∈ [tk, tk+N) satisfy the constraints on the inputs in Eq. (4.13c) and the Lyapunov-based constraint

of Eq. (4.13f). It has been proven in Theorem 4.1 that the states predicted by the LMPC process

model of Eq. (4.13b) can remain within Ωρmin
under the encrypted stabilizing controllers Φ̂j(x̃) for

time t ≥ T . Thus, the optimization problem of each decentralized LMPC would be feasible for all

x0 ∈ Ωρ̂ and can be solved by recursive feasibility for t ∈ [tk, tk+1), i.e.,

∂V (x(t))

∂xj

fj(x(t), x(t) + ξ1(t), ûdj(tk))

≤ ∂V (x(t))

∂xj

fj(x(t), x(t) + ξ1(t), Φ̂j(x̂(tk))), ∀j = 1, . . . , Nsys

(4.25)
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The control Lyapunov function for the overall system V (x) may take the form of a linear com-

bination of control Lyapunov functions for individual subsystems. In this representation, V (x) is

expressed as the sum of Vj(xj) for each subsystem, where Vj is assumed to be a function of xj

only. The time-derivative of the control Lyapunov function of the encrypted decentralized LMPC

can be expressed as follows:

V̇ =

Nsys∑
j=1

∂V (x(t))

∂xj

fj(x(t), x(t) + ξ1(t), ûdj(tk)) (4.26)

Based on the Lyapunov constraint, the following inequality holds:

V̇ =

Nsys∑
j=1

∂V (x(t))

∂xj

fj(x(t), x(t) + ξ1(t), ûdj(tk)) ≤

Nsys∑
j=1

∂V (x(t))

∂xj

fj(x(t), x(t) + ξ1(t), Φ̂j(x̂(tk)))

(4.27)

From Eq. (4.26) and Eq. (4.27), the time-derivative of the control Lyapunov function under the

encrypted decentralized LMPC satisfies the inequality,

∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t), ûd(tk)) ≤

∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t), Φ̂(x̂(tk))) (4.28)

However, from the results of Theorem 4.1 (Eq. (4.23)), it follows that the right-hand side of

Eq. (4.28) is bounded as follows:

∂V (x(t))

∂x
f(x(t), x(t) + ξ1(t), ûd(tk)) ≤ L′

xMF∆+ L′
ξd1Md1 + L′

q|et| −
c3
c2
ρs ≤ −ϵw (4.29)

Thus, for the chosen time T , there exist positive real numbers ∆, d1, d, and ϵw, such that the
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following inequality holds,

L′
xMF∆+ L′

ξd1Md1 + L′
q|et| −

c3
c2
ρs ≤ −ϵw ∀ t ∈ [0, T ]

which implies that V̇ ≤ −ϵw for any x(tk) ∈ Ωρ̂ \ Ωρs for all tk ∈ [0, T ]. This establishes that,

if the conditions of Eq. (4.24) are met, the closed-loop system state is always bounded in Ωρ̂, and

it converges to Ωρs ⊆ Ωρmin
within time T , and remains there. This completes the proof for the

stability of the system under the encrypted decentralized LMPC.

Remark 4.4. As discussed in Section 4.3.3, we employ the predictor feedback methodology out-

lined in Section 4.3.4 to achieve system stabilization in the presence of input delays. The stability

analysis does not consider the perturbation caused by input delays. However, a similar approach

to the one used to establish bounds on state delays, as demonstrated in Eq. (4.21), could be em-

ployed to account for the influence of input delays. Incorporating input delay perturbations into

the proof would establish a very stringent upper limit on the allowable value of d2, rendering the

proof valid only for relatively small input delays. As outlined in Eq. (4.3), the perturbation result-

ing from input delays can be expressed as ξ2(t) = u(t − d2) − u(t). Consequently, it becomes

evident that, as d2 approaches zero, ξ2(t) tends to zero as well. In the interest of maintaining a

more generalized analysis with established bounds applicable even to substantial input delays, we

have chosen to omit this consideration from the proof. Instead, we opt to address input delay chal-

lenges by employing a predictor, ensuring the validity of our analysis across a broader range of

scenarios.
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4.3.4 Predictor feedback decentralized LMPC methodology

This subsection formulates a predictor feedback-based decentralized LMPC for the nonlinear sys-

tem described in Eq. (4.1). A first-principles-based state predictor is integrated in the closed-loop

system to compensate for the effect of input delays. At time tk, where k is the sampling instance,

the predictor of the j th subsystem receives the quantized states x̂(tk). It uses the control input

trajectory udj(t) computed previously by the j th LMPC, and estimates the control inputs for the

other subsystems using the stabilizing control law, Φ(x), over tk to tk + d2, to predict the state

values of the entire system at tk + d2. Additionally, the LMPCs employ a DDE-based nonlinear

process model specific to their subsystem. Thus, the predictor also transmits values of the states

from time tk + d2− d1 to tk + d2, which are used by the DDE model to account for the state delays

in the system. Within a decentralized control framework, where inter-controller communication is

absent, the predictor of the j th subsystem only has access to the control inputs computed by the j th

LMPC. Thus, an estimate of the control inputs of the other subsystems can be made through the

stabilizing control law, utilizing state feedback. The inputs are assumed to be at their steady state

values from time 0 to d2. The j th LMPC is then initialized with the shifted timescale t̄k = tk + d2

to calculate the optimal control input trajectory, udj , from t̄k to t̄k+N . The LMPC formulation with
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the shifted time scale is described as follows:

Jj = min
udj

∈S(∆)

∫ t̄k+N

t̄k

Lj(x̃j(t), udj(t)) dt (4.30a)

s.t. ˙̃xj(t) = Fj(x̃(t), udj(t)) (4.30b)

udj(t) ∈ Uj, ∀ t ∈ [t̄k, t̄k+N) (4.30c)

x̃(t̄k) = x̂(t̄k) (4.30d)

V̇ (x̂(t̄k), udj(t̄k)) ≤ V̇ (x̂(t̄k),Φj(x̂(t̄k))),

if x̂(t̄k) ∈ Ωρ\Ωρmin
(4.30e)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [t̄k, t̄k+N),

if x̂(t̄k) ∈ Ωρmin
(4.30f)

Remark 4.5. As mentioned earlier in Section 4.3.3, we employ the predictor feedback methodology

outlined in Section 4.3.4 to achieve system stabilization in the presence of input delays. In the

absence of a predictor, nominal to modest input delays can lead to an oscillatory convergence of

the closed-loop system states around their respective steady states within Ωρ but outside Ωρmin
,

while larger input delays can cause the state to exit Ωρ. However, with a predictor feedback

methodology, the closed-loop states can be stabilized within Ωρmin
even under large input delays.

This is demonstrated in the example described in Section 4.4.

140



4.4 Application to a nonlinear chemical process network oper-

ating at an unstable steady state

This section demonstrates the proposed encrypted decentralized control architecture on a nonlinear

chemical process network with input and state delays, operating at an unstable steady state. A

nonlinear dynamical model based on first-principles modeling fundamentals is developed for the

state predictor and the LMPCs. This model is partitioned into Nsys subsystems to construct first-

principles-based process models of the decentralized LMPC of each subsystem. Guidelines are

established to implement the encrypted decentralized LMPC system in any nonlinear process with

delays. We then conduct closed-loop simulations, employing the decentralized LMPC with and

without the predictor feedback, and analyze the results.

4.4.1 Process description and model development

The process considered is the synthesis of ethylbenzene (EB) by reacting ethylene (E) and benzene

(B) within two non-isothermal, well-mixed continuous stirred tank reactors (CSTRs) as depicted

in Figure 4.2. The primary reaction, termed as “primary”, is characterized as a second-order,

exothermic, and irreversible reaction, in conjunction with two supplementary side reactions. The

chemical reactions taking place are articulated as follows:

C2H4 + C6H6 → C8H10 (primary) (4.31a)

C2H4 + C8H10 → C10H14 (4.31b)

C6H6 + C10H14 → 2C8H10 (4.31c)
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Details of the steady-state values and model parameter values can be obtained from [39]. The dy-

namic model of the initial CSTR is described by the following mass and energy balance equations:

ĊE1(t) =
F1CEo1(t− d2)− Fout1CE1(t)

V1

− r1,1 − r1,2 (4.32a)

ĊB1(t) =
F1CBo1(t− d2)− Fout1CB1(t)

V1

− r1,1 − r1,3 (4.32b)

ĊEB1(t) =
−Fout1CEB1(t)

V1

+ r1,1 − r1,2 + 2r1,3 (4.32c)

ĊDEB1(t) =
−Fout1CDEB1(t)

V1

+ r1,2 − r1,3 (4.32d)

Ṫ1(t) =
T1oF1 − T1(t)Fout1

V1

+
3∑

j=1

−∆Hj

ρ1Cp

r1,j +
Q1(t− d2)

ρ1CpV1

(4.32e)

The dynamic model of the second CSTR is represented by the following equations:

ĊE2(t) =
F2CEo2(t− d2) + Fout1CE1(t− d1)

V2

− Fout2CE2(t)

V2

− r2,1 − r2,2 (4.33a)

ĊB2(t) =
F2CBo2(t− d2) + Fout1CB1(t− d1)

V2

− Fout2CB2(t)

V2

− r2,1 − r2,3 (4.33b)

ĊEB2(t) =
Fout1CEB1(t− d1)− Fout2CEB2(t)

V2

+ r2,1 − r2,2 + 2r2,3 (4.33c)

ĊDEB2(t) =
Fout1CDEB1(t− d1)− Fout2CDEB2(t)

V2

+ r2,2 − r2,3 (4.33d)

Ṫ2(t) =
T2oF2 + T1(t− d1)Fout1 − T2(t)Fout2

V2

+
3∑

j=1

−∆Hj

ρ2Cp

r2,j +
Q2(t− d2)

ρ2CpV2

(4.33e)
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where the reaction rates are calculated by the following expressions:

ri,1 = k1e
−E1

RTi(t)CEi
(t)CBi

(t) (4.34a)

ri,2 = k2e
−E2

RTi(t)CEi
(t)CEBi

(t) (4.34b)

ri,3 = k3e
−E3

RTi(t)CDEBi
(t)CBi

(t) (4.34c)

and i = {1, 2} is the reactor index. The state variables are the concentration of ethylene, benzene,

ethylbenzene, di-ethylbenzene, and the reactor temperature for each CSTR in deviation terms,

that is: x⊤ = [CE1 − CE1s , CB1 − CB1s , CEB1 − CEB1s , CDEB1 − CDEB1s , T1 − T1s, CE2 −

CE2s , CB2 − CB2s , CEB2 − CEB2s , CDEB2 − CDEB2s , T2 − T2s]. The subscript “s” denotes the

steady-state value. The state delay, representing the time needed to transport the output of the

initial CSTR to the second CSTR, is set at d1 = 0.5min. The rate of heat removal for the two

reactors [Q1−Q1s, Q2−Q2s] and inlet feed concentrations for each reactor, [CEo1 −CEo1s , CBo1 −

CBo1s , CEo2 − CEo2s , CBo2 − CBo2s ], are the manipulated inputs with input delay d2 = 1min.

These inputs are bounded by the closed sets, [−104, 2 × 103] kW, [−1.5 × 104, 5 × 103] kW,

[−2.5, 2.5] kmol/m3, [−2.5, 2.5] kmol/m3, [−3, 3] kmol/m3, and [−3, 3] kmol/m3, respectively.

To determine the stability of the chosen steady-state, an open loop simulation was performed where

the control inputs were maintained at their steady state values, and the system states were initialized

at a point close to their operating steady-state within Ωρmin
. After a finite duration of process time,

the states exited the stability region, Ωρ, and converged to another steady state, implying that

the chosen steady-state is an unstable one. Furthermore, the rationale for choosing this steady-

state was its ability to provide a high steady-state concentration (4.22 kmol/m3) of the desired
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product, ethyl benzene, at reasonable operating conditions, at the outlet of reactor 2, making it the

economically optimal steady state to operate at.

F1, CEo1
(t− d2),

CBo1
(t− d2), T1o

Fout1 , CE1
(t),

CB1(t), CEB1(t),

CDEB1
(t), T1(t)

Q1(t− d2) Q2(t− d2)

Fout1 , CE1(t− d1),

CB1(t− d1),

CEB1
(t− d1),

CDEB1
(t− d1),

T1(t− d1)

F2, CEo2
(t− d2),

CBo2
(t− d2), T2o

Fout2 , CE2
(t), CB2

(t),

CEB2
(t), CDEB2

(t), T2(t)

Figure 4.2: Process schematic featuring two CSTRs connected in series.

We create two decentralized LMPCs in our design. The first LMPC (LMPC 1) utilizes the

first-principles-based model specific to subsystem 1, which corresponds to the dynamic model of

CSTR 1 (Eq. (4.32)), while the second LMPC (LMPC 2) employs a first-principles-based model

specific to subsystem 2, which corresponds to the dynamic model of CSTR 2 (Eq. (4.33)). LMPC

1 does not require complete state feedback, given that the dynamics of its subsystem are entirely

independent of subsystem 2. However, the evolution of the states within the second CSTR is

influenced by the states of the first CSTR. Thus, LMPC 1 receives x1 = [CE1 − CE1s , CB1 −

CB1s , CEB1 −CEB1s , CDEB1 −CDEB1s , T1−T1s]
⊤ and optimizes the control inputs u1 = [CEo1 −

CEo1s , CBo1 −CBo1s , Q1−Q1s]
⊤. LMPC 2 receives full state feedback x, and optimizes the control

inputs u2 = [CEo2 − CEo2s , CBo2 − CBo2s , Q2 − Q2s]
⊤. The control objective is to operate both
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CSTRs at their unstable equilibrium point through the encrypted decentralized control scheme,

employing quantized states and inputs for computation and actuation.

4.4.2 Encrypting the decentralized control architecture

Before implementing encryption–decryption into a process, the selection of parameters, namely d,

l1, and l2 is performed. Based on the extreme feasible states and inputs, the integer bit count l1 − d

is derived. The upper limit in the Ql1,d set is obtained via the formula 2l1−d−1 − 2−d, whereas the

lower limit is −2l1−d−1. The choice of the quantization parameter d, representing the fractional bit

count, rests on the desired accuracy and range of state and input values. Additionally, l2 is chosen

to exceed l1. Accordingly, for the example in this section, l1− d is calculated to be 16, from which

l1 and d are then fixed. Within the set Ql1,d, rational numbers are separated by a resolution of 2−d.

For simulation purposes, we use, d = 8. For d = 8, l1 = 24 and we select l2 = 30. The Paillier

Encryption procedure is implemented through Python’s “phe” module, PythonPaillier [21]. For

solving the constrained non-convex optimization problem in the LMPCs within the decentralized

control structure, we leverage the Python module of the IPOPT software [83].

While deciding the sampling time (∆) for an encrypted decentralized system, it is crucial to

ensure that it exceeds the total time required for encryption–decryption of the states and control

inputs, time required by the predictor to predict the states after the input delay, and the time needed

to compute the control inputs at each sampling instance for the considered quantization parameter

d, for any subsystem, as these computations would occur concurrently in different edge computing
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units. Mathematically,

∆ >max (Encryption-decryption time)j +max (Control input computation time)j

+max (State-prediction time)j

(4.35)

where j = {1, . . . , Nsys} represents the control subsystem. Considering the above criteria, the

sampling time ∆ is chosen as 30 seconds in the discussed example.

To calculate the cost function of the LMPCs over the prediction horizon, the integration step

hc = 10−2 × ∆ is chosen. The positive definite matrix P in the control Lyapunov function V =

x⊤Px is selected as diag [250 500 500 1000 2.5 250 250 500 1000 2.5], from extensive

simulations. The LMPCs employ a prediction horizon of N = 3 sampling periods. The stability

criterion is defined as ρ = 1000, while ρmin = 2 is the smaller level set of the Lyapunov function

where the state is desired to be confined. The weight matrices in the cost function of LMPCs

are chosen as Q1 = diag [2000 2000 5000 5 50], Q2 = diag [1000 1000 2500 5 135],

R1 = diag [1 1 5 × 10−6], and R2 = diag [20 15 2.5 × 10−4]. The cost function is defined as

Lj(xj, uj) = x⊤
j Qjxj + u⊤

j Rjuj where j = 1, 2 represents the LMPC j. As di-ethylbenzene, the

undesired product, is present in trace amounts in both CSTRs, its trajectories are not depicted.

4.4.3 Simulation results of the encrypted decentralized control architecture

The proposed encrypted decentralized control architecture is applied to a nonlinear chemical pro-

cess with state and input delays. Figures 4.3 to 4.5 and Figures 4.6 to 4.8 depict the results for the

encrypted decentralized LMPC system without and with predictor feedback, respectively.

In the absence of a predictor, the states and inputs of both CSTRs show considerable oscil-
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Figure 4.3: State profiles of CSTR 1 under the encrypted decentralized LMPC for state delay
d1 = 0.5min, and input delay d2 = 1min.

lations, as shown in Figures 4.3 to 4.5. Additionally, the temperatures of both CSTRs overshoot

their set-points. With the addition of the state predictor, the oscillations in both states and inputs are

negligible as observed in Figures 4.6 to 4.8. Furthermore, there is no overshoot of the temperature

in CSTR 1, and the overshoot in temperature is decreased for CSTR 2. Moreover, the inclusion of

the predictor enables us to achieve convergence of the states within the targeted stability region,

denoted as Ωρmin
. This was not attainable solely with the encrypted decentralized LMPC. While

the latter stabilizes the states within Ωρ, it falls short of achieving convergence within the desired

stability region after two hours of process time.

To measure the computational time for computing the control inputs in the decentralized
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Figure 4.4: State profiles of CSTR 2 under the encrypted decentralized LMPC for state delay
d1 = 0.5min, and input delay d2 = 1min.

MPC, we recorded the maximum time taken by the 2 MPCs at each sampling instance. On average,

the decentralized controllers spent 2.49 seconds on control input computation at every sampling

instance, whereas the centralized controller averaged 10.75 seconds. We ensured that the control

input computation time remained below the 30-second sampling interval for all sampling times.

These results demonstrate the computational efficiency of a decentralized MPC over a centralized

MPC. Furthermore, the normalized sum of the control cost function for the centralized and decen-

tralized MPCs without delays was recorded as 1 and 0.9798, respectively. The reason for a slightly

better performance under the decentralized MPC can be attributed to the fact that the process net-

work has a sequential flow sheet with 2 CSTRs in series, which makes the decentralized MPC a

148



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

−2

0

C
E

1
o
−

C
E

1
o
s

(k
m
ol
/m

3
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

−2

0
C
B

1
o
−
C
B

1
o
s

(k
m
ol
/m

3
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

−2.5

0.0

2.5

C
E

2
o
−

C
E

2
o
s

(k
m
ol
/m

3
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

−2

0

2

C
B

2
o
−
C
B

2
o
s

(k
m
ol
/m

3
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
−10000

−5000

0

Q
1
−

Q
1
s

(k
W
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (hours)

−10000

0

Q
2
−

Q
2
s

(k
W
)

Figure 4.5: Control input profiles under the encrypted decentralized LMPC for state delay d1 =
0.5min, and input delay d2 = 1min.

more suitable, well-conditioned choice than the centralized MPC with respect to the optimization

problem solution. These results validate the effectiveness of the proposed decentralized LMPC

framework in comparison to a centralized LMPC for this particular process network.

Remark 4.6. During the initial delay period, where control input information is not yet available,

we assume steady-state values for the control inputs. This assumption results in a sharp increase
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Figure 4.6: State profiles of CSTR 1 under the encrypted decentralized LMPC with predictor
feedback for state delay d1 = 0.5min, and input delay d2 = 1min.

that would not typically occur during continuous operation. To mitigate such abrupt changes in

control inputs, one approach is to introduce a constraint on the maximum allowable change in

applied control inputs between sampling instances. This constraint can help smooth the transition

between steady-state values and actual control inputs initially, and also reduce sudden spikes or

fluctuations in the system’s behavior for the remainder of the operation.

Remark 4.7. The encrypted decentralized LMPC explored in this study involved encrypting and

decrypting data as outlined in Figure 4.1, which can lead to errors due to quantization. [81]

demonstrated quantization effects in the context of a first-principles-based MPC. Additionally,

[39] highlighted the potential for quantization-induced errors to exceed model mismatch errors
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Figure 4.7: State profiles of CSTR 2 under the encrypted decentralized LMPC with predictor
feedback for state delay d1 = 0.5min, and input delay d2 = 1min.

when different models are employed in the MPC and in the controlled process. To minimize the

quantization error, both works recommended using a higher quantization parameter d. With d = 8,

both works reported almost identical closed-loop results with encryption compared to without

encryption. Thus, we have used the quantization parameter, d = 8 for all simulations in this work.

Remark 4.8. In this work, we have assumed the same value of the input delay for all the control

inputs applied to the nonlinear process. However, if the input delay values are different for certain

control inputs, in the proposed encrypted decentralized control structure, the subsystems can be

partitioned in a manner such that the control inputs manipulated by each subsystem have the same

input delay values. Thus, the predictor of a particular subsystem would predict the states up to the
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Figure 4.8: Control input profiles under the encrypted decentralized LMPC with predictor feedback
for state delay d1 = 0.5min, and input delay d2 = 1min.

corresponding input delay value of the control inputs manipulated by that subsystem.

Remark 4.9. Although the LMPC and predictor models used in this work are first-principles-

based, data-based models employing artificial neural networks can also be used in the predictor

and LMPC. [5] used machine-learning-based models for the predictor and LMPC while simulating

a first-principles-based process with state and input delays, showcasing the effectiveness of the
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predictor in the presence of plant/model mismatch.

4.5 Conclusion

In this chapter, we devised and applied an encrypted decentralized control architecture to a large-

scale nonlinear chemical process network with input and state delays. A stability analysis of the

encrypted decentralized MPC applied to a nonlinear system with state delays was conducted, yield-

ing bounds on the errors due to quantization, state delays, and sample-and-hold implementation

of the controller. Based on these bounds, the system can be stabilized within the desired stability

region. We established guidelines to implement this control structure in any nonlinear process,

such as selection of parameters l1, l2, and d for quantization, and the sampling time criterion.

The encrypted decentralized LMPC employs a DDE model to account for state delays in the pro-

cess. Closed-loop simulations are compared with and without the incorporation of a predictor into

the LMPC design, where the predictor predicts the state values after the input delay period. A

significant improvement in the closed-loop performance was observed with the integration of the

predictor, as the states and inputs converged to their steady state values with negligible oscillations.

Also, with the inclusion of the predictor, states converged within the desired stability region rep-

resented by the level set Ωρmin
. However, without the predictor, the states only stabilize within the

larger level set Ωρ and with oscillations. Thus, by employing the encrypted decentralized LMPC

with predictor feedback, we were able to reduce the computation time and complexity of the con-

trol problem, improve the closed-loop performance, and enhance the cybersecurity of the control

system.
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Chapter 5.1

Encrypted distributed model predictive

control with state estimation for nonlinear

processes

5.1.1 Introduction

Industrial control systems for large-scale processes have been subject to extensive research over

the past decades, with the primary objectives of enhancing operational safety, promoting environ-

mental sustainability, optimizing profitability, and economizing on utility costs. Nonetheless, the

evolution of technology has led to the integration and interlinking of industrial control systems

with corporate networks and the internet, to create cyber-physical systems that have streamlined

monitoring, control, and automation of complex processes, enhancing productivity and operational

efficiency. However, the increased connectivity and linking of these systems have made them vul-

nerable to cyberthreats, given their extensive reliance on networked communication. A breach or
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compromise in these systems can have severe consequences, including the disruption of essential

services, physical damage, financial losses, and are even a threat to public safety. As a result, the

past few years have witnessed a surge in research efforts directed towards enhancing the cyberse-

curity of industrial control systems.

Recent developments in cyberattack techniques underscore the need to establish robust cyber-

security [31]. Dealing with cybersecurity issues within industrial control systems is mainly within

the realm of operational technology (OT). While there have been notable advancements in improv-

ing cybersecurity in the information technology (IT) sector, which centers on the software elements

of systems, including aspects like network architecture and data management, cybersecurity within

the OT domain is currently trailing behind [16]. Numerous real-world examples highlight the need

of cybersecurity in networked cyber–physical systems and SCADA (Supervisory Control and Data

Acquisition) systems. These include the 2015 cyberattacks on SCADA controls responsible for

managing the power grid in Ukraine, leading to widespread power outages [45]. Likewise, in the

2021 DarkSide ransomware attack on Colonial Pipeline, cyberattackers encrypted its networked

communication and demanded a ransom for the decryption keys. As a result, Colonial Pipeline

was compelled to suspend its operations, resulting in interruptions to fuel distribution and financial

losses [82].

Traditional control systems, like proportional-integral-derivative (PID) control, have long

been used in chemical plants to control processes with a decentralized structure. In this setup,

each controller uses one process measurement and calculates actions to control that specific state

at its desired set point. However, PIDs do not consider how the controlled variable interacts with

other states, limiting their ability to optimize control inputs for a multi-input-multi-output (MIMO)
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system. To address this limitation, model predictive controllers (MPCs) have been applied to man-

age complex processes. MPCs employ models, derived from first principles, data, or mathematical

representations, to predict future states within a specified horizon. They then optimize control in-

puts using real-time sensor feedback while accounting for interactions among all the process states

and inputs. This approach not only elevates control precision but also mitigates utility expenses,

ultimately enhancing overall process performance.

However, acquiring sensor measurements for all states in large processes can incur signif-

icant costs. Furthermore, installing the necessary instrumentation and equipment to collect and

transmit measurements may not always be feasible, particularly in specific areas of the plant or

process. As a result, extensive research has been carried out on state estimation techniques, en-

abling real-time prediction of unmeasured states though deterministic and stochastic estimation

methods. Notably, the extended Kalman Filter (EKF) and extended Luenberger observer (ELO)

stand out as commonly used state estimators for nonlinear processes. The EKF utilizes a stochastic

approach, employing a linearized approximation from continuous time to a discrete-time system

to estimate the state. This method can account for system and measurement noise using proba-

bilistic approaches. Conversely, the ELO adopts a deterministic approach, using nonlinear model

dynamics to estimate states without explicitly addressing stochastic disturbances or measurement

noise. While the EKF can account for sensor noise better, the ELO handles nonlinearity by directly

incorporating it in the observer equations. More details on the advantages, drawbacks, and simi-

larities about various state estimation methods has been discussed in the works of [69] and [4]. To

attain the desired performance using these methods, a mathematical model for the specific system

is typically required to describe process dynamics within a defined operating range. Nevertheless,
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when integrated with MPC, the MPC model can be extended for use by the state estimator, and

vice versa, enabling a collaborative and effective solution.

Since MPCs employ nonlinear optimization for control input optimization in nonlinear pro-

cesses, in large-scale systems, where numerous control inputs must be calculated, the control prob-

lem can become too extensive and intricate to be solved within the given sampling time. As a

response, decentralized and distributed MPC strategies have been introduced to break down the

complex problem into smaller segments, handled by different computing units. In such arrange-

ments, the system to be controlled is partitioned into smaller subsystems, where the control input

of each subsystem is computed separately. Decentralized MPCs compute control inputs for their

respective subsystems without any knowledge of the control inputs being applied by other sub-

systems. This limits the controller from taking into account interactions among different process

subsystems and only considers interactions within its specific subsystem. In contrast, distributed

controllers share information about the control inputs computed for their subsystem, enabling other

controllers to optimize their control inputs accordingly. This collaborative approach improves the

handling of interdependencies among various process subsystems.

Significant research efforts have been devoted to various domains of cybersecurity, and pro-

cess control, including the development of machine learning-based cyberattack detectors [2, 26],

the implementation of nonlinear encrypted centralized MPCs [81], the utilization of sequential

and iterative DMPCs [52], and the application of nonlinear state estimators [43, 89]. However, to

the best of our knowledge, the development of distributed control systems that employ encrypted

networked communication for large-scale nonlinear processes with partial state feedback remains

an unexplored area, prompting our proposal for a novel control structure to address this challenge.
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Specifically, we propose a distributed control structure comprising a set of Lyapunov-based MPCs,

integrated with an extended Luenberger observer, utilizing encrypted networked communication.

In this configuration, we assume the presence of secure edge computers responsible for comput-

ing control inputs and receiving and transmitting encrypted signals. Integrating observer-based

state estimation within this setup serves to provide each LMPC with complete state information

in real-time. To address interactions within different subsystems in large processes and reduce the

complexity associated with centralized control problems, we employ a distributed MPC. Further,

the incorporation of encryption within the networked communication channels enhances cyberse-

curity as each edge computing unit receives and transmits encrypted wireless signals.

The remainder of this chapter is structured as follows: In Section 5.1.2, we provide an

overview of various aspects, including notation, the considered class of nonlinear systems, system

stabilizability assumptions, the formulation of the extended Luenberger observer, the employed en-

cryption cryptosystem, and the implications of quantization. Section 5.1.3 delves into the design

of the encrypted distributed MPC, outlining the formulation of sequential and iterative DMPCs

utilizing state estimates from the observer, and further detailing the extended Luenberger observer.

In Section 5.1.4, we present and discuss closed-loop simulations for a nonlinear chemical process

network with partial state feedback in the presence of sensor noise with the encrypted sequential

and iterative DMPCs. In Section 5.1.5, we conduct a comparative assessment of the encrypted

control strategies, encompassing centralized, decentralized, and distributed MPCs.
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5.1.2 Preliminaries

5.1.2.1 Notation

The symbol ∥·∥ represents the Euclidean norm of a vector. x⊤ denotes the transpose of a vector

x. R, Z, and N represent the sets of real numbers, integers, and natural numbers, respectively. ZM

denotes the additive groups of integers modulo M . Set subtraction is indicated by the symbol “\”,

where A\B represents the set of elements that are in set A but not in set B. A function, f(·), falls

under the class C1 if it is continuously differentiable within its defined domain. The term lcm(i, j)

denotes the least common multiple of the integers i and j, while gcd(i, j) signifies the greatest

common divisor, that divides i and j without any remainder.

5.1.2.2 Class of systems

This study is centered on multi-input multi-output (MIMO) systems, which are characterized by a

category of continuous-time nonlinear systems represented in state-space form as follows:

ẋ = F (x, u) = f(x) + g(x)u (5.1.1a)

y = h(x) + w (5.1.1b)

The state vector is denoted by x = [x1, . . . , xn] ∈ Rn, while u ∈ Rm represents the control input

vector bounded by the set, U ⊂ Rm. The output vector consisting of the state measurements that

are continuously sampled is y = [y1, . . . , yq] ∈ Rq, and w ∈ Rq is the measurement noise vector.

F (x, u) is a nonlinear function with respect to x and u, rendering the origin as a steady state of
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Eq. (5.1.1). Without loss of generality, we assume the initial time as zero (t0 = 0). The functions

f(·), g(·), and h(·) are matrices of dimension n× 1, n×m, and q × 1, respectively. Additionally,

we define the set S(∆) as the set of piece-wise constant functions characterized by a period of ∆.

We consider j = 1, . . . , Nsys sub-systems, where each subsystem j is regulated only by inputs uj

but potentially impacted by inputs of other subsystems due to coupling between subsystems. The

control input vector for the j th subsystem is uj ∈ Rmj . u = [u⊤
1 . . . u⊤

Nsys
]⊤ ∈ Rm is the control

input vector for the entire system, with m =
∑Nsys

j=1 mj . The control input vector constraints are

uj ∈ Uj := {umin,ji ≤ uji ≤ umax,ji ,∀i = 1, 2, . . . ,mj} ∈ Rmj , ∀j = 1, . . . , Nsys. Hence, the set

U that constrains the control input vector for the entire system is formed by the union of sets Uj ,

where j = 1, . . . , Nsys.

5.1.2.3 Extended Luenberger observer

The extended Luenberger observer (ELO) was introduced as a natural extension of the Luenberger

observer, originally developed based on a linear approximation of processes [23, 89]. The primary

objective of a state observer, such as the ELO, is to estimate the unmeasured internal states of a

given system. This estimation is achieved by leveraging the available measured states from the

process, in combination with the applied inputs. The formulation of the Extended Luenberger

observer for a nonlinear system is expressed through Eq. (5.1.2), presenting a means to capture

and estimate the system’s unmeasured internal states in the following manner:

˙̄x = F (x̄, u) +K(y − h(x̄)) (5.1.2)
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where x̄ ∈ Rn represents the estimated state vector, and the observer gain matrix is K ∈ Rn×q.

Eq. (5.1.2) comprises two key components: the initial term corresponds to the process model

dependent on the estimated states and applied control inputs, while the final term serves as the

output prediction error, functioning as a correction term.

The objective of the ELO is to minimize the estimation error, e = x − x̄, in which the time-

derivative of the error is determined by the following equation [23]:

ė = F (x̄+ e, u)− F (x̄, u)−K(h(x̄+ e)− h(x̄)) (5.1.3)

For the estimation error, e, to decay to zero, the time-derivative of the error (shown in Eq. (5.1.3))

must also decay to zero. Therefore, the observer gain matrix K must be designed accordingly. To

design K, Eq. (5.1.3) can be simplified to the following equation by linearizing the process model

at a fixed point:

ė = (A−KL)e (5.1.4)

where A = ∂F (x,u)
∂x

∣∣
x=x̄

and L = dh(x)
dx

∣∣
x=x̄

are linearized terms of the nonlinear system evaluated

at a specific reference point (in general, L = ∂h(x, u)/∂x|x=x̄), typically the operating steady state

of the system. Subsequently, the selection of the observer gain matrix K is conducted in a manner

that ensures that all the eigenvalues of the matrix A−KL have strictly negative real components.

5.1.2.4 Stability assumptions

Based on how the overall large-scale system is partitioned, there may exist interacting dynamics

between the subsystems, as the states and control inputs of one subsystem may impact the states
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and control inputs of other subsystems. Accounting for these interactions, we assume the existence

of an observer and feedback stabilizing control law u = Φ(x̄) for the overall system with uj =

Φj(x̄) ∈ Uj , which regulate the individual subsystems j = 1, . . . , Nsys, such that the origin of the

overall system of Eq. (5.1.1) is rendered exponentially stable. This signifies the presence of a C1

control Lyapunov function V (x) for which the following inequalities hold for all x, x̄ ∈ Rn within

an open region D surrounding the origin:

c1|x|2 ≤ V (x) ≤ c2|x|2, (5.1.5a)

∂V (x)

∂x
f(x,Φ(x̄)) ≤ −c3|x|2, (5.1.5b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x| (5.1.5c)

where c1, c2, c3, and c4 are positive constants. Φ(x̄) = [Φ1(x̄)
⊤, . . . ,ΦNsys(x̄)

⊤]⊤ is the vector

concatenating the stabilizing feedback control laws for all Nsys subsystems. For the nonlinear

system described by Eq. (5.1.1), the region of closed-loop stability can be defined as a level set,

Ωρ, of the control Lyapunov function V , such that Ωρ := {x ∈ D|V (x) ≤ ρ}, where ρ > 0.

Hence, originating from any initial condition within Ωρ, the control input, Φ(x̄), guarantees that

the state trajectory of the closed-loop system remains within Ωρ.

Remark 5.1.1. The assumption of an output feedback controller satisfying Eq. (5.1.5) involves two

key requirements. First, it mandates that the observer states remain bounded within the region Ωρ.

Second, it necessitates that the estimated error, denoted as e and defined as the difference between

x and x̄, converges to zero within a finite timeframe, regardless of the initial condition within Ωρ.
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To ensure the fulfillment of these prerequisites, a series of random closed-loop trajectories are

generated for the nonlinear system described in Eq. (5.1.1) under the observer and state feedback

controller, and it is ensured that all trajectories converge within Ωρ in a finite number of sampling

periods with e → 0. More details regarding the observer and controller tuning are presented in

Section 5.1.4.

5.1.2.5 Paillier cryptosystem

In this research, we employ the Paillier cryptosystem [67] to encrypt signals, specifically state

measurements (x) and control inputs (u), transmitted to and from the controllers. Although we

do not make use of the semi-homomorphic property of additive homomorphism within the Paillier

cryptosystem, we employ it so that traditional controllers, such as proportional-integral controllers,

which can conduct computations in an encrypted space, can be integrated into the overall control

architecture if required. The encryption procedure is initiated by generating the public and private

key. The public key is used to encrypt integer messages into ciphertexts, and the private key

is employed to decrypt ciphertexts and retrieve the original integer messages. The process of

generating the public and private key can be outlined as follows:

1. Choose two large prime integers (p and q) randomly, ensuring gcd(pq, (p− 1)(q − 1)) = 1.

2. Compute M = pq.

3. Choose an arbitrary integer ḡ such that ḡ ∈ ZM2 , which is the multiplicative group of integers

modulo M2.

4. Compute λ = lcm(q − 1, p− 1).
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5. Specify L̄(x) = (x− 1)/M .

6. Verify the existence of the subsequent modular multiplicative inverse,

u = (L̄(ḡλ modM2))−1 mod M .

7. If the inverse does not exist, revisit step 3 and select an alternate value of ḡ. If the inverse

exists, (M, ḡ) is the public key and (λ, u) is the private key.

Once the keys are acquired, the public and private keys are distributed to authorized recipients for

encryption and decryption, respectively. The encryption process is as follows:

EM(m, r) = c = ḡmrM mod M2 (5.1.6)

where r is a randomly selected integer from the set ZM , and c represents the ciphertext achieved

through the encryption of m. The decryption procedure is as follows:

DM(c) = m = L̄(cλ mod M2)u mod M (5.1.7)

Remark 5.1.2. The significance of encryption lies in safeguarding data privacy against potential

cyberattacks, particularly sophisticated attacks that might go undetected by traditional cybersecu-

rity measures. In scenarios where constant values are transmitted during steady-state operations,

conventional methods might result in the transmission of the same values after data transforma-

tions, mathematical operations or mapping of data to a certain set. However, in encryption, the

generation of a random number each time data is encrypted ensures that identical numbers, when

encrypted, yield distinct ciphertexts, bolstering cybersecurity measures significantly.
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Remark 5.1.3. Various encryption methods, such as symmetric encryption, fully homomorphic

encryption, and partially homomorphic encryption, can be employed to secure data. Symmetric

encryption, like AES (Advanced Encryption Standard), is a non-homomorphic encryption tech-

nique that does not allow mathematical operations within an encrypted space. In contrast, fully

homomorphic encryption, exemplified by schemes like BGV (Brakerski-Gentry-Vaikuntanathan),

permits both addition and multiplication operations within an encrypted environment. Meanwhile,

partially homomorphic encryption enables either multiplication or addition operations within the

encrypted domain. For instance, the Paillier cryptosystem allows addition operations in an en-

crypted space. While our work does not utilize the semi-homomorphic property of the Paillier

cryptosystem, it has been recently considered for integrating linear controllers like Proportional-

Integral (PI) control in large-scale systems alongside nonlinear controllers such as MPCs. This

integration allows for control input computations for the linear controller within an encrypted

space without decryption, as demonstrated in the work of [41].

5.1.2.6 Quantization

To use the Paillier cryptosystem, data to be encrypted must be in the form of natural numbers in

ZM . However, the signal values before encryption are in floating-point. Consequently, we employ

quantization, mapping the floating-point numbers into ZM [19]. Using a signed fixed-point binary

representation, we create a set, Ql1,d, with parameters l1 and d. These parameters define the total

bit count (integer and fractional) and the fractional bits, respectively. The Ql1,d set encompasses

rational numbers from −2l1−d−1 to 2l1−d−1 − 2−d, separated by 2−d. A rational number q in Ql1,d

can be expressed as q ∈ Ql1,d, where ∃β ∈ {0, 1}l1 , and q = −2l1−d−1βl1 +
∑l1−1

i=1 2i−d−1βi. To
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map a real number data point a to the Ql1,d set, we use the function gl1,d, defined by the equation,

gl1,d : R → Ql1,d

gl1,d(a) := arg min
q∈Ql1,d

|a− q|
(5.1.8)

Next, the quantized data is transformed into a set of integers through a one-to-one (bijective)

mapping known as fl2,d, as outlined in [19]. The following mapping ensures that the quantized

data is transformed into a subset of the message space ZM :

fl2,d : Ql1,d → Z2l2

fl2,d(q) := 2dq mod 2l2
(5.1.9)

During the encryption process, integer plaintext messages from the set Z2l2 are converted to ci-

phertexts, which can be decrypted back into the same set Z2l2 . To recover the original data from

the set Ql1,d, an inverse mapping, denoted as f−1
l2,d

, is defined as follows:

f−1
l2,d

: Z2l2 → Ql1,d
(5.1.10)

f−1
l2,d

(m) :=
1

2d


m− 2l2 if m ≥ 2l2−1

m otherwise
(5.1.11)
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5.1.3 Development of the encrypted distributed control archi-

tectures with state estimation

In this section, we describe the design and formulation of the encrypted distributed control archi-

tectures, both encrypted sequential and iterative distributed LMPCs with state estimation, provide

additional details on the extended Luenberger observer.

5.1.3.1 Design of the encrypted sequential distributed LMPC

The control architecture of the encrypted sequential distributed LMPC is depicted in Figure 5.1.1.

In a sequential distributed framework involving various LMPCs, communication is unidirectional.

Specifically, the optimal control trajectory derived from solving the optimization problem for one

LMPC is transmitted to another LMPC. This information is subsequently utilized by the receiving

LMPC to proceed with its own optimization problem. The control strategy adheres to the following

sequence of steps:

1. At time t = tk, where k represents the sampling instance, signals y(tk) from sensors are

encrypted to ciphertext c using the public key and transmitted to each control subsystem,

within its respective edge computing unit.

2. Within each unit, the encrypted signals are decrypted using the private key, and the quantized

states ŷ(tk) are used by the state estimator along with the control inputs computed at the

previous sampling instance u(tk−1) to estimate the current value of the states x̄(tk).

3. The LMPC of the N
th
sys subsystem evaluates the optimal control trajectory u∗

Nsys
using the
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estimated states x̄ at t = tk, and the stabilizing control law for the other Nsys − 1 subsys-

tems, encrypts the control action of the first sampling period u∗
Nsys

(tk) using the public key,

transmits the ciphertext to the corresponding actuator, and transmits the entire optimal tra-

jectory u∗
Nsys

(t|tk), t ∈ [tk, tk+N) to the Nsys − 1th LMPC through the Ethernet crossover

cable connection established between the different computing units.

4. The Nsys− 1
th LMPC receives the entire optimal trajectory of the N th

sys LMPC and evaluates

the optimal trajectory uNsys−1 using the estimated states x̄(tk) and the optimal input trajec-

tory of the N th
sys subsystem. It assumes the stabilizing control law for the remaining Nsys− 2

subsystems. It then encrypts the optimal trajectory for its respective subsystem over the

next sampling period using the public key and transmits the complete optimal trajectory of

subsystems Nsys and Nsys − 1 to the Nsys − 2
th LMPC.

5. This same process is repeated up to the 1st LMPC, which receives the optimal control input

trajectories of all the other subsystems and computes its own optimal trajectory using the

estimated states x̄(tk) and the optimal control input trajectories of all the other subsystems.

6. At the actuator, the ciphertext ć is decrypted to the quantized input û(tk) using the private

key, which is then applied to the process.

Formulation of the optimization problem, its constraints, and additional details of the encrypted

sequential LMPC is presented in Section 5.1.3.4.
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Figure 5.1.1: Illustration of the encrypted sequential distributed control structure.

5.1.3.2 Design of the encrypted iterative distributed LMPC

The control architecture of the encrypted iterative distributed LMPC is depicted in Figure 5.1.2. In

this framework, all controllers communicate with each other to cooperatively optimize the control

actions. The controllers solve their respective optimization problems independently within a par-

allel framework, and solutions for each control problem are exchanged at the end of each iteration.

The control strategy adheres to the subsequent sequence of steps:

1. At time t = tk, where k represents the sampling instance, signals y(tk) from sensors are

encrypted to ciphertext c using the public key and transmitted to each control subsystem,

within its respective edge computing unit.

2. Within each unit, the encrypted signals are decrypted using the private key, and the quantized
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states ŷ(tk) are used by the state estimator along with the control inputs computed at the

previous sampling instance u(tk−1) to estimate the current value of all the system states

x̄(tk).

3. At iteration z = 1, the k
th LMPC in the k

th subsystem evaluates optimal control input

trajectories u∗
k(t), using the estimated states x̄(tk), and assuming uj(t) = Φj(x̄(t)) where

j ∈ {1, . . . , Nsys}, j ̸= k. At the end of the first iteration, each subsystem transmits

its complete optimal control input trajectory to all Nsys subsystems through the Ethernet

crossover cable connection established between the different control subsystems.

4. At iteration z = 2, the k
th LMPC in the k

th subsystem re-evaluates optimal control input

trajectories u∗
k(t) using the estimated states x̄(tk), and the optimal control input trajectories

u∗
j(t) where j ∈ {1, . . . , Nsys}, j ̸= k. At the end of the second iteration, each subsystem

transmits its complete optimal control input trajectory to all Nsys subsystems. This process

is continued until a termination criterion is satisfied. The termination criterion can be either

that the number of iterations, denoted as z, must not exceed the maximum number of iter-

ations, denoted as zmax, or that the difference in the value of the cost function between two

consecutive iterations is smaller than a threshold value.

5. After the termination criterion is satisfied, each LMPC encrypts its control input correspond-

ing to the lowest cost function over the next sampling period (using the public key), and the

encrypted ciphertext is transmitted to the corresponding actuators of that particular subsys-

tem.
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6. At the actuator, the ciphertext ć is decrypted to the quantized input û(tk) using the private

key, which is then applied to the process.

Formulation of the optimization problem, its constraints, and additional details for the iterative

encrypted DMPC are presented in Section 5.1.3.5.
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Figure 5.1.2: Illustration of the encrypted iterative distributed control structure.

Remark 5.1.4. In the closed-loop block diagrams shown in Figure 5.1.1 and Figure 5.1.2, Ether-

net crossover cable connections facilitate communication between the computing units of different

subsystems. This setup assumes a secure edge computer(s) within a protected control room, where

encrypted signals from sensors at the process site are received and from where encrypted control

inputs are transmitted to the actuators. However, communication between subsystems responsible

for computing control inputs remains unencrypted. The rationale behind this decision is to mini-
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mize the communication overhead due to encryption–decryption in the control system. Complete

control input trajectories must be communicated multiple times within a single sampling period

in the case of iterative DMPC. Encrypting and decrypting these trajectories repeatedly within a

single sampling period may not be feasible, particularly for very large systems. Such repetition

could lead to increased communication overhead. Since the primary objective of a DMPC is to

distribute the optimization problem among separate computing units and solve each one effectively,

the assumption of having all responsible edge computing units in a secure room with secure cable

connections between them is reasonable. Alternatively, the option to encrypt and decrypt inputs

could be considered if the initial arrangement is not achievable. Further insights into the commu-

nication and computational implications associated with encryption and decryption are available

in [39].

The closed-loop design of Figure 5.1.1 and Figure 5.1.2 introduces two sources of error: one

from state quantization in the sensor–controller link and another from control input quantization in

the controller–actuator link. These errors are bounded by:

|y(tk)− ŷ(tk)| ≤ 2−d−1 (5.1.12a)

|u(tk)− û(tk)| ≤ 2−d−1 (5.1.12b)

The state estimator, as expressed in Eq. (5.1.2), can be written as a function ϕ(x̄, y, u). An ad-

ditional error arises in the applied control input, as the state estimator receives ŷ instead of the

true state y to estimate all the system states. Using the local Lipschitz property, this error will be

172



confined by the underlying equation, where L′
1 > 0:

|ϕ(x̄, ŷ, u)− ϕ(x̄, y, u)| ≤ L′
1|ŷ − y| ≤ L′

12
−d−1 (5.1.13)

Remark 5.1.5. A quantization error occurs when the value to be quantized does not precisely

match a member of the set Ql1,d. The elements in this set are spaced apart by 2−d, which represents

the resolution of the set. Let us assume the value to be quantized is denoted as a, and it falls within

the range of b to b + 2−d. If the absolute difference between a and b is smaller than the difference

between a and b+ 2−d, a is assigned to the value b. Otherwise, it is assigned to the value b+ 2−d.

Consequently, the maximum potential discrepancy between the actual and quantized values is half

of the resolution, which is equal to 2−d−1. This limitation also implies that a greater value of d

would lead to a reduced quantization error.

5.1.3.3 Extended Luenberger observer-based state estimation

An extended Luenberger observer (ELO) is employed to estimate all the states of the nonlinear

system, as detailed in Eq. (5.1.1). This estimation process relies on noisy partial state feedback

obtained from sensors after decryption. Consequently, each subsystem’s computing unit integrates

an ELO, initializing the LMPC model of each subsystem with a complete state estimate (through

the ELO) denoted as x̄. In the design of Eq. (5.1.2), the observer necessitates a process model of

the nonlinear system. Interestingly, the LMPC model can be extended and utilized within the ob-

server, or vice versa. This dual utilization presents an effective approach for large-scale processes,

reducing the number of required measured states through the ELO, and enhancing closed-loop
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performance and ensuring stability through the constraints of a Lyapunov-based MPC.

The typical sequence of actions executed by an ELO within the computing unit assigned to

compute control inputs for a particular subsystem is as follows:

1. At time t = tk, where k is the sampling instance, the ELO process model is initialized using

all the estimated states of the system at the previous sampling instance x̄(tk−1), and all the

control inputs computed at the previous sampling instance u(tk−1).

2. The ELO process model predicts the state at the next integration time step x̄(tk−1+hc), where

hc represents the integration time step. A correction term hc×K(ŷ(tk)−h(x̄(tk−1+hc))) is

added to the estimated state x̄(tk−1 + hc). Here, ŷ(tk) is the quantized measured state vector

after decryption at time t = tk.

3. The above step is reiterated ∆/hc times, with ∆ representing the sampling period, in order

to compute the final estimated state at tk, denoted as x̄(tk). It is important to note that the

control input u(tk−1) remains constant within a single sampling period, as it is applied in a

sample-and-hold manner and does not undergo any change during this interval.

During the initial sampling period, denoted as t0, we make the assumption that the control inputs

and the initial estimated states are set to their steady-state values. This assumption is necessary as

no prior data is accessible for this specific sampling instance.

Remark 5.1.6. The procedure outlined in Remark 5.1.1 involves linearizing the nonlinear system

described in Eq. (5.1.1) around its steady state. The observer gains are adjusted in such a way

that the matrix A−KL in Eq. (5.1.4) possesses eigenvalues with negative real components. How-

ever, since the observer is intended to be applied to a nonlinear system, further fine-tuning of the
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gains might be required. To achieve this, multiple simulations of the observer integrated within

the nonlinear system, along with the state feedback controller, are conducted. These simulations

encompass random initial conditions within the set Ωρ. During this process, the observer gains are

refined to ensure that the error e = x − x̄ tends to zero or a sufficiently small threshold, within a

finite number of iterations for each randomly initialized simulation. Each iteration corresponds to

a sampling period. Furthermore, with these newly fine-tuned observer gains, it is ensured that the

matrix A−KL continues to possess eigenvalues with negative real components. This adjustment

is particularly necessary for nonlinear systems because the assumptions and properties of a linear

system cannot be directly extrapolated to nonlinear systems.

5.1.3.4 Encrypted sequential distributed LMPC

In order to mitigate the computational time and complexity associated with a centralized con-

trol problem, especially in the context of large-scale systems featuring multiple states and control

inputs, we propose the establishment of a sequential distributed LMPC system, where the opti-
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mization problem for the j th LMPC is delineated as follows:

J = min
udj

∈S(∆)

∫ tk+N

tk

L(x̃(t),Φm(x̃(t)), udn(t)) dt,

where m = 1, . . . , j − 1 and n = j, . . . , Nsys (5.1.14a)

s.t. ˙̃x(t) = F (x̃(t),Φm(x̃(t)), udn(t)) (5.1.14b)

˙̄x(t) = F (x̄(t),Φm(x̄(t)), udn(t)) +K(ŷ(t)− h(x̄(t))) (5.1.14c)

udj(t) ∈ Uj, ∀ t ∈ [tk, tk+N) (5.1.14d)

x̃(tk) = x̄(tk) (5.1.14e)

V̇ (x̄(tk),Φm(x̄(tk)), udn(tk)) ≤ V̇ (x̄(tk),Φm(x̄(tk)),Φn(x̄(tk)))

if x̄(tk) ∈ Ωρ\Ωρmin
(5.1.14f)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N),

if x̄(tk) ∈ Ωρmin
(5.1.14g)

At time t = tk, where k represents the sampling instance, the ELO in the computing unit corre-

sponding to the j
th LMPC decrypts the ciphertext c to receive the quantized state measurements

ŷ(tk). The ELO uses these along with the computed control inputs at the previous sampling in-

stance, i.e., Φm(x̄(tk−1)) and udn(tk−1), where m = 1, . . . , j − 1 and n = j, . . . , Nsys, and the

estimated states at the previous sampling instance x̄(tk−1) to predict the states at the current sam-

pling instance, x̄(tk), through Eq. (5.1.14c). The j th LMPC then receives the complete state es-

timate x̄(tk) from the ELO, but only computes the control input of its subsystem, udj , which is

to be applied by the corresponding actuators. It assumes the stabilizing control law for control
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inputs of subsystems 1 to j − 1, and receives the optimal control input trajectories udn′ from the

remaining n′ subsystems where n′ = j +1, . . . , Nsys. x̃ represents the predicted state trajectory of

the process model of the j th LMPC. The estimated states, x̄, serve as the initial conditions for the

LMPC process model to predict the state trajectory as per Eq. (5.1.14b), which is used to integrate

the cost function of Eq. (5.1.14a) to calculate optimized control inputs, u∗
dj
(t), t ∈ [tk, tk+N), for

the entire prediction horizon. However, the LMPC transmits only the first input of this sequence,

u∗
dj
(tk) to the actuator for application to the system within the interval t ∈ [tk, tk+1) and transmits

the entire control input trajectory u∗
dj
(t) along with the received control input trajectory, u∗

dn′ where

n′ = j + 1, . . . , Nsys to the j − 1th LMPC. This process is repeated at each sampling period. N

represents the number of sampling periods within the prediction horizon. Eq. (5.1.14d) represents

the constraints imposed on the control inputs, and Eq. (5.1.14e) uses the quantized states to initial-

ize the plant model described in Eq. (5.1.14b). The Lyapunov constraint in Eq. (5.1.14f) ensures

that, if the state x̄(tk) at time tk lies within the set Ωρ \ Ωρmin
, where ρmin represents a level set of

V in proximity to the origin, the time-derivative of the control Lyapunov function of the closed-

loop subsystem j under the j th LMPC, and stabilizing control law for the other control inputs, is

less than or equal to the time-derivative of the control Lyapunov function when the subsystem is

controlled by the stabilizing controller Φ(x̄). When the closed-loop state x̄(tk) enters Ωρmin
, the

constraint of Eq. (5.1.14g) ensures that this state remains within Ωρmin
.

Remark 5.1.7. Within the proposed framework, a secure edge computer receives the encrypted

partial state feedback. This computer then decrypts the received encrypted partial state feedback

and employs the extended Luenberger observer within the same unit to compute all states, using the
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quantized partial state feedback values. Following this process, the LMPC utilizes the estimated

states received from the observer, all within the same computing unit. Since these operations occur

internally in the same unit, they are not encrypted. However, the control input computed by the

LMPC, to be sent to and applied by the actuator, is encrypted before transmission. This configura-

tion ensures that all wireless networked communications remain encrypted, thereby enhancing the

cybersecurity of the control system.

Remark 5.1.8. Although state constraints have not been explicitly utilized in our LMPC formu-

lations (only input constraints are considered), they can still be integrated if required for both the

LMPC and extended Luenberger observer. In the case of the ELO, one feasible approach could in-

volve utilizing the estimated states from the observer and subsequently applying a post-processing

technique (like modifying the observer gain and re-running the observer) to ensure adherence to

the defined constraints. Future research can be conducted to identify other methods to account for

state constraints within the observer.

5.1.3.5 Encrypted iterative distributed LMPC

An alternative approach to a sequential DMPC is the iterative DMPC, in which the controllers

responsible for computing control inputs for each subsystem of the overall process share their

control inputs at the end of each iteration until a termination criterion is met. The optimization

problem for the j th LMPC within the iterative distributed LMPC structure, for the first iteration,
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z = 1, is described as follows:

J = min
udj

∈S(∆)

∫ tk+N

tk

L(x̃(t),Φm(x̃(t)), udj(t)) dt,

where m = 1, . . . , Nsys and m ̸= j (5.1.15a)

s.t. ˙̃x(t) = F (x̃(t),Φm(x̃(t)), udj(t)) (5.1.15b)

˙̄x(t) = F (x̄(t), udm(t), udj(t)) +K(ŷ(t)− h(x̄(t))) (5.1.15c)

udj(t) ∈ Uj, ∀ t ∈ [tk, tk+N) (5.1.15d)

x̃(tk) = x̄(tk) (5.1.15e)

V̇ (x̄(tk),Φm(x̄(tk)), udj(tk)) ≤ V̇ (x̄(tk),Φm(x̄(tk)),Φj(x̄(tk))),

if x̄(tk) ∈ Ωρ\Ωρmin
(5.1.15f)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N),

if x̄(tk) ∈ Ωρmin
(5.1.15g)
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At the iteration z > 1 following the exchange of the optimized input trajectories u∗
dm
(t) with the

rest of the LMPCs, the optimization problem of j th LMPC is modified as follows:

J = min
udj

∈S(∆)

∫ tk+N

tk

L(x̃(t), udm(t), udj(t)) dt,

where m = 1, . . . , Nsys and m ̸= j (5.1.16a)

s.t. ˙̃x(t) = F (x̃(t), udm(t), udj(t)) (5.1.16b)

˙̄x(t) = F (x̄(t), udm(t), udj(t)) +K(ŷ(t)− h(x̄(t))) (5.1.16c)

udj(t) ∈ Uj, ∀ t ∈ [tk, tk+N) (5.1.16d)

x̃(tk) = x̄(tk) (5.1.16e)

V̇ (x̄(tk), udm(tk), udj(tk)) ≤ V̇ (x̄(tk),Φm(x̄(tk)),Φj(x̂(tk))),

if x̄(tk) ∈ Ωρ\Ωρmin
(5.1.16f)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N),

if x̄(tk) ∈ Ωρmin
(5.1.16g)

The j th LMPC receives the complete state estimate x̄(tk) from the ELO, but only computes the

control input of its specific subsystem, denoted as udj , which is to be applied by the corresponding

actuators. Initially, for the first iteration, z = 1, it assumes the stabilizing control law for control

inputs of m subsystems, where m = 1, . . . , Nsys, and m ̸= j. Subsequently, for iterations z > 1,

the j th LMPC transmits its computed control input at the previous iteration to all other LMPCs,

and receives the control inputs computed by all other LMPCs at the previous iteration over the

entire prediction horizon. The j th LMPC then recalculates the control inputs for its respective
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subsystem, assuming the received control input trajectories for the other subsystems. At the end

of the current iteration, it transmits the updated control input trajectory of its subsystem to the

other subsystems. This is repeated until a termination criterion is satisfied. The formulation of the

optimization problems presented in Eq. (5.1.15), and Eq. (5.1.16) is very similar to Eq. (5.1.14),

which was elaborated in detail in Section 5.1.3.4.

Remark 5.1.9. In the context of the stability analysis for the introduced encrypted distributed

LMPC architectures in this study, the bounds related to encryption-induced errors have been es-

tablished in Section 5.1.3.2. Additionally, each LMPC in the distributed structure incorporates a

constraint stipulating that the value of the time-derivative of the control Lyapunov function under

the LMPC should be more negative than that of the observer-based stabilizing control law. A com-

prehensive stability analysis has previously been conducted for a nonlinear centralized encrypted

system in [81]. Building on this foundation, a similar stability analysis can be carried out for the

encrypted distributed LMPC, incorporating an observer. It is important to note that, given our as-

sumption of an observer-based stabilizing control law, the stability analysis is simplified and does

not require elaborate demonstration; thus, it has been omitted.

5.1.4 Application to a nonlinear chemical process network op-

erating at an unstable steady state

This section demonstrates the proposed encrypted distributed control architectures, both sequential

and iterative distributed LMPCs with state estimation, on a nonlinear chemical process network

with noisy partial state feedback, operating at an unstable steady state. A nonlinear dynamical
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model based on first-principles modeling fundamentals is developed for the state estimator and the

LMPCs. Guidelines are established to implement the encrypted distributed LMPC systems in any

nonlinear process with partial state feedback. We then conduct closed-loop simulations, employing

the distributed LMPCs with state estimators, and analyze the results.

5.1.4.1 Process description and model development

The process considered is the synthesis of ethylbenzene (EB) by reacting ethylene (E) and benzene

(B) within two non-isothermal, well-mixed continuous stirred tank reactors (CSTRs) as depicted

in Figure 5.1.3. The primary reaction, termed as “primary”, is characterized as a second-order,

exothermic, and irreversible reaction, in conjunction with two supplementary side reactions. The

chemical reactions taking place are articulated as follows:

C2H4 + C6H6 → C8H10 (primary) (5.1.17a)

C2H4 + C8H10 → C10H14 (5.1.17b)

C6H6 + C10H14 → 2C8H10 (5.1.17c)

Details of the steady-state values and model parameter values can be obtained from [39]. The

dynamic model of the first CSTR is described by the following mass and energy balance equations:
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ĊE1 =
F1CEo1 − Fout1CE1

V1

− r1,1 − r1,2 (5.1.18a)

ĊB1 =
F1CBo1 − Fout1CB1

V1

r1,1 − r1,3 (5.1.18b)

ĊEB1 =
−Fout1CEB1

V1

+ r1,1 − r1,2 + 2r1,3 (5.1.18c)

ĊDEB1 =
−Fout1CDEB1

V1

+ r1,2 − r1,3 (5.1.18d)

Ṫ1 =
T1oF1 − T1Fout1

V1

+
3∑

j=1

−∆Hj

ρ1Cp

r1,j +
Q1

ρ1CpV1

(5.1.18e)

The dynamic model of the second CSTR is represented by the following equations:

ĊE2 =
F2CEo2 + Fout1CE1

V2

− Fout2CE2

V2

− r2,1 − r2,2 (5.1.19a)

ĊB2 =
F2CBo2 + Fout1CB1

V2

− Fout2CB2

V2

− r2,1 − r2,3 (5.1.19b)

ĊEB2 =
Fout1CEB1 − Fout2CEB2

V2

+ r2,1 − r2,2 + 2r2,3 (5.1.19c)

ĊDEB2 =
Fout1CDEB1 − Fout2CDEB2

V2

+ r2,2 − r2,3 (5.1.19d)

Ṫ2 =
T2oF2 + T1Fout1 − T2Fout2

V2

+
3∑

j=1

−∆Hj

ρ2Cp

r2,j +
Q2

ρ2CpV2

(5.1.19e)

where the reaction rates are calculated by the following expressions:

ri,1 = k1e
−E1
RTi CEi

CBi
(5.1.20a)

ri,2 = k2e
−E2
RTi CEi

CEBi
(5.1.20b)

ri,3 = k3e
−E3
RTi CDEBi

CBi
(5.1.20c)
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where i = {1, 2} is the reactor index. The state variables are the concentration of ethylene,

benzene, ethylbenzene, di-ethylbenzene, and the reactor temperature for each CSTR in deviation

terms, that is: x⊤ = [CE1 −CE1s , CB1 −CB1s , CEB1 −CEB1s , CDEB1 −CDEB1s , T1−T1s, CE2 −

CE2s , CB2 − CB2s , CEB2 − CEB2s , CDEB2 − CDEB2s , T2 − T2s]. The subscript “s” denotes the

steady-state value. The desired product, ethyl benzene, and the CSTR temperature are the mea-

sured states corresponding to y⊤ = [CEB1 − CEB1s , T1 − T1s, CEB2 − CEB2s , T2 − T2s]. The

measured states are visually represented in blue in Figure 5.1.3. In contrast, the remaining states

that are not measured are depicted in red within the same figure. Bounded white Gaussian noise

is added to the measured states of both CSTRs. The mean of the noise is zero for both states,

and the standard deviation is 0.003 kmol/m3 for the measured concentration of ethylbenzene and

0.15K for the measured CSTR temperature, in each CSTR. The noise is bounded by the closed

sets [-0.01, 0.01] kmol/m3 and [-0.5, 0.5] K for the measured ethylbenzene concentration and

temperature states, respectively.

The rate of heat removal for the two reactors [Q1 −Q1s, Q2 −Q2s] and inlet feed concentra-

tions for each reactor, [CEo1−CEo1s , CBo1−CBo1s , CEo2−CEo2s , CBo2−CBo2s ], are the manipulated

inputs of the nonlinear system. These inputs are bounded by the closed sets, [−104, 2× 103] kW,

[−1.5 × 104, 5 × 103] kW, [−2.5, 2.5] kmol/m3, [−2.5, 2.5] kmol/m3, [−3, 3] kmol/m3, and

[−3, 3] kmol/m3, respectively. To assess the stability of the selected equilibrium state, an open-

loop simulation was conducted. During this simulation, the control inputs remained fixed at their

equilibrium values, and the initial conditions of the system were set near the operating equilibrium

point, within the region Ωρmin
. After a finite period of time, the system’s states departed from

the stability region Ωρ, and eventually converged to an entirely different equilibrium state. This
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transition signifies the instability of the initial equilibrium. The rationale for choosing this particu-

lar state was its capability to achieve a significantly high steady-state concentration of the desired

product, ethyl benzene of 4.22 kmol/m3, at the outlet of reactor 2, under reasonable operating

conditions.

F1, CEo1
, CBo1

, T1o

Fout1 , CE1
, CB1

,

CEB1
, CDEB1

, T1

Q1 Q2

F2, CEo2
, CBo2

, T2o

Fout2 , CE2
, CB2

,

CEB2
, CDEB2

, T2

Figure 5.1.3: Process schematic featuring two CSTRs connected in series.

The overall control of the system was partitioned into two LMPCs. Both LMPCs utilized a

first-principles-based model, and received the estimated states x̄ from the ELO. Further, LMPC

1 optimizes the control inputs u1 = [CEo1 − CEo1s , CBo1 − CBo1s , Q1 − Q1s]
⊤, while LMPC 2

optimizes the control inputs u2 = [CEo2 −CEo2s , CBo2 −CBo2s , Q2 −Q2s]
⊤. Thus, the partitioning

of the overall systems is done such that LMPC 1 manipulates all the control inputs of CSTR 1,

while LMPC 2 manipulates all the control inputs of CSTR 2. In case of the sequential distributed

LMPC system, LMPC 2 assumes the control inputs for LMPC 1 as per the stabilizing control
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law, and accordingly computes the optimized control inputs for its subsystem, CSTR 2. It then

transmits the control input trajectory over the complete prediction horizon to LMPC 1, which uses

this information to compute the control inputs of its respective subsystem, CSTR 1. On the other

hand, in the iterative distributed LMPC system, in the first iteration, both LMPCs compute the

control inputs of their respective subsystems, assuming the stabilizing control law for the inputs

of the other subsystem. At the second iteration, both LMPCs, share the control input trajectory

over the prediction horizon, computed for their respective subsystems with each other. Based on

the information received about the control inputs of the other subsystem, both LMPCs recompute

the optimized control inputs of their respective subsystem. This exchange of information goes on

until a termination criterion is satisfied. In the example demonstrated in this section, we have used

a termination criterion of 2 iterations for the iterative distributed LMPC. The control objective is to

operate both CSTRs at their unstable equilibrium point through the encrypted distributed control

schemes, sequential and iterative, employing quantized partial state feedback with sensor noise for

computation of the required control inputs.

5.1.4.2 Encrypting the distributed control architectures

Prior to integrating encryption and decryption into a process, the process of parameter selection,

specifically involving the variables d, l1, and l2, takes place. By considering the extreme feasible

states and inputs, the integer bit count l1 − d is determined. The upper limit within the set Ql1,d

is calculated using the formula 2l1−d−1 − 2−d, while the lower limit is established as −2l1−d−1.

The selection of the quantization parameter d, which represents the fractional bit count, depends

on the desired level of precision and the range of state and input values. Additionally, l2 is chosen
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to be greater than l1. In the context of the example presented in this section, a value of 16 is

determined for l1−d, which in turn determines the values of l1 and d. Within the set Ql1,d, rational

numbers are spaced apart by a resolution of 2−d. For simulation purposes, we have opted for

a value of d = 8. With d = 8, l1 is set at 24, and l2 is selected as 30. The implementation

of the Paillier Encryption procedure is carried out using the Python “phe” module, specifically

PythonPaillier [21]. For solving the multi-constrained, non-convex optimization problem within

the LMPCs operating within the distributed control framework, we utilize the Python module from

the IPOPT software [83].

While deciding the sampling time (∆) for an encrypted distributed system with state estima-

tion, it is crucial to ensure that it exceeds the total time required for encryption–decryption of the

states and control inputs, time required by the state estimator to estimate the states, and the time

needed to compute all the control inputs at each sampling instance for the considered quantization

parameter d. Encryption–decryption and state estimation is performed in parallel between differ-

ent edge computing units. Hence, we select the maximum time from all the different subsystems

across all sampling instances. As control input information is exchanged, control input compu-

tation time is the total time needed to compute all the control inputs, and not just inputs for a

particular subsystem. Hence, we select the maximum time taken to compute all the control inputs

at any sampling instance. Mathematically,

∆ >max (encryption–decryption time)j +max (State-estimation time)j

+max (Control input computation time)
(5.1.21)

where j = {1, . . . , Nsys} represents the control subsystem. Details on how the control input com-

187



putation time is calculated for the sequential and iterative DMPCs is provided in the next section.

Considering the above criteria, the sampling time ∆ is chosen as 30 seconds in the discussed ex-

ample. In real-world scenarios, the state estimation computations in a process simulation (not the

actual process) could take place on the specific type of computer intended for the actual usage

of these calculations. The computational time across multiple sampling instances of the process

simulation can be recorded, and the maximum duration among these instances can be chosen as

the maximum state-estimation time. This same concept can be extended to obtain the maximum

encryption-decryption time. Additionally, to account for precautionary measures, this value could

be multiplied by a factor, such as 1.25.

To calculate the cost function of the LMPCs over the prediction horizon, an integration time

step, hc = 10−2 ×∆, is chosen. The positive definite matrix P in the control Lyapunov function

V = x⊤Px is selected as diag [200 200 400 1000 2.5 250 250 200 1000 0.5], from extensive

simulations. The LMPCs employ a prediction horizon of N = 2 sampling periods. The stability

criterion is defined as ρ = 1800, while ρmin = 2 is the smaller level set of the Lyapunov function

where the state is desired to be confined. The weight matrix in the cost function of LMPCs is

chosen as Q = diag [1000 1000 1500 5 8 1000 1000 3000 5 110], R = diag [2.1 1.95 1.5×

10−5 10 10 0.5× 10−4]. The cost function is defined as L(x, u) = x⊤Qx+ u⊤Ru.

5.1.4.3 Simulation results of the encrypted distributed control architectures

The proposed encrypted distributed control architecture is applied to a nonlinear chemical process,

and the control inputs are computed using partial state feedback with sensor noise. Figures 5.1.4

to 5.1.6 depict the results for the encrypted sequential distributed LMPC system with state estima-

188



tion from the first set of initial conditions, x0 = [−0.35 kmol/m3,−0.3 kmol/m3, 0.2 kmol/m3,

0 kmol/m3,−20K, 0.2 kmol/m3, 0.15 kmol/m3,−0.25 kmol/m3, 0 kmol/m3,−15K]⊤.

Figures 5.1.7 to 5.1.9 depict the results for the encrypted iterative distributed LMPC system from

the second set of initial conditions, x0 = [0.5 kmol/m3, 0.35 kmol/m3,−0.2 kmol/m3, 0 kmol/m3,

20K, 0.45 kmol/m3, 0.5 kmol/m3,−0.8 kmol/m3, 0 kmol/m3,−30K]⊤.
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Figure 5.1.4: True state profiles (blue solid line) and estimated state profiles (red dashed line) of
CSTR 1 under the encrypted sequential distributed LMPC framework for the first set of initial
conditions.

In Figures 5.1.4, 5.1.5, 5.1.7 and 5.1.8, the blue solid line represents the true state value, while

the red dashed line represents the state value estimated by the ELO. For both initial conditions, the
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Figure 5.1.5: True state profiles (blue solid line) and estimated state profiles (red dashed line) of
CSTR 2 under the encrypted sequential distributed LMPC framework for the first set of initial
conditions.

state estimator (ELO) provides the distributed LMPCs with fairly accurate state estimates, using

partial state feedback with sensor noise. Minor deviations between the estimated and predicted

states are noticeable in Figure 5.1.5. These deviations can be attributed to the observer receiving

partial state feedback with sensor noise. Additionally, errors stemming from quantization can

also play a role in this discrepancy. However, it is essential to note that both sources of error are

bounded, as previously indicated, resulting in the observed deviations being minor in nature. The

distributed LMPCs successfully stabilize the system within the desired closed-loop stability region
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Figure 5.1.6: Control input profiles under the encrypted sequential distributed LMPC framework
for the first set of initial conditions.

Ωρmin
in approximately 1.5 hours for the first set of initial conditions and 1 hour for the second set.

In the case of the first set of initial conditions, the normalized sum of the control cost function

is 1 for the encrypted sequential distributed LMPC and 0.9907 for the encrypted iterative dis-

tributed LMPC. For the second set of initial conditions, it is 1 for the encrypted sequential LMPC
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Figure 5.1.7: True state profiles (blue solid line) and estimated state profiles (red dashed line) of
CSTR 1 under the encrypted iterative distributed LMPC framework for the second set of initial
conditions.

and 0.9884 for the encrypted iterative LMPC. The iterative LMPC outperforms the sequential ap-

proach because, in the iterative framework, both LMPCs share and recalculate their control inputs,

while, in the sequential framework, LMPC 2 computes control inputs based on an assumption

of the stabilizing control law for LMPC 1. The following section provides a detailed compara-

tive analysis of the sequential and iterative DMPCs. Visual results are provided exclusively for

the encrypted sequential distributed LMPC demonstrating the performance under the first set of

initial conditions and for the encrypted iterative distributed LMPC under the second set of initial
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Figure 5.1.8: True state profiles (blue solid line) and estimated state profiles (red dashed line) of
CSTR 2 under the encrypted iterative distributed LMPC framework for the second set of initial
conditions.

conditions. Notably, when the alternative DMPC system was applied to both initial conditions,

the differences in the closed-loop state trajectories were not significant, as evidenced by the close

values of the normalized sum of the control cost functions in both scenarios.

Remark 5.1.10. The encrypted distributed LMPC systems explored in this study involved encrypt-

ing and decrypting data as outlined in Section 5.1.3, which can lead to errors due to quantization.

[81] demonstrated quantization effects in the context of a first-principles-based LMPC and pro-
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Figure 5.1.9: Control input profiles under the encrypted iterative distributed LMPC framework for
the second set of initial conditions.

cess model. Additionally, [39] highlighted the potential for quantization-induced errors to exceed

model mismatch errors when different models are employed in the LMPC and in the controlled

process. To minimize the quantization error, both works recommended using a higher quantization

parameter d. With d = 8, both works reported almost identical closed-loop results with encryption
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compared to without encryption. Thus, we have used the quantization parameter d = 8 for all

simulations in this work.

Remark 5.1.11. Although the LMPC and state estimation models used in this work are first-

principles-based, data-based models employing artificial neural networks can also be used in the

predictor and LMPC. [3] used machine-learning-based models for the ELO model and LMPC

while simulating a first-principles-based process with partial state feedback, showcasing the effec-

tiveness of the state estimator in the presence of plant/model mismatch.

5.1.5 Comparative analysis of encrypted centralized, decentral-

ized, and distributed LMPC architectures

In this section, we provide a concise overview of the encrypted centralized and decentralized con-

trol architectures, both of which incorporate state estimation. Following this, we offer an in-depth

comparative analysis that covers the encrypted centralized, decentralized, and distributed LMPCs.

5.1.5.1 Encrypted centralized MPC with state estimation

In Figure 5.1.10, the diagram illustrates the flow of information within an encrypted centralized

LMPC system that incorporates state estimation. At time t = tk, where k signifies the sampling

instance, the sensors encrypt the measurements denoted as y(tk) and transmit the resulting cipher-

text c to the computing unit responsible for computing all the control inputs. Upon arrival, the data

is decrypted, and the quantized states ŷ(tk) are utilized by the state estimator to estimate all states

of the system x̄(tk). These estimated states initialize the LMPC model, enabling it to compute the

195



Decryption
(private key)

𝑢"(𝑡𝑘)

𝑢(𝑡𝑘)

Plaintext local communication channels
Encrypted Network communication channels 

Control Room / Edge Computer(s) 
�́� 𝑐

Cyber-secure Actuators Encrypted Sensors

𝑦"(𝑡𝑘)State 
EstimatorLMPCEncryption

(public key)

Encryption
(public key)

Decryption
(private key)

Actuators Process Sensors
𝑦(𝑡𝑘)

�̅�(𝑡𝑘)

Figure 5.1.10: Illustration of the encrypted centralized control structure.

control inputs, u(tk). Subsequently, these control inputs are encrypted into the ciphertext ć and

transmitted to the actuators, where it is decrypted to the quantized control inputs û(tk) and applied

to the process. Thus, in this approach, only a single computing unit that receives and transmits

encrypted signals is utilized for all computations. Additional details and formulation of the LMPC

equations of the centralized LMPC can be obtained in [39].

5.1.5.2 Encrypted decentralized MPC with state estimation

In Figure 5.1.11, the diagram illustrates the flow of information within an encrypted decentralized

LMPC system with state estimation. Here, the overall system is divided into multiple subsys-

tems, with each subsystem independently computing its control inputs in separate computing units.

There is no information exchange of the control inputs between subsystems. At time t = tk, where

k is the sampling instance, the sensors encrypt the measurements represented as y(tk) and transmit

the resulting ciphertext c to all the computing units responsible for calculating the control inputs

of different subsystems. The ciphertext c is decrypted in each computing unit, and the quantized

states ŷ(tk) are used by the state estimator in each subsystem to estimate all states of the entire
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Figure 5.1.11: Illustration of the encrypted decentralized control structure.

system x̄(tk). All the state estimators shown in Figure 5.1.11 are identical, as each LMPC in the

decentralized control framework receives full state feedback to compute the control inputs of its

respective subsystem. The LMPC model in each subsystem is then initialized by these estimated

states, and is used to compute the control inputs of its respective subsystem only, uj(tk). Here

j represents the j th subsystem. Subsequently, all control inputs are encrypted and transmitted to

their respective actuators, where the ciphertext ć is decrypted to the quantized control inputs û(tk)

and applied to the process. Thus, multiple computing units (equal to the number of subsystems)

that receive and transmit encrypted signals are utilized for all computations, which are carried out

in an independent and isolated manner. Additional details and formulation of the LMPC equations

of the decentralized LMPC can be obtained in [14].
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5.1.5.3 Comparison of the encrypted centralized, decentralized, and dis-

tributed LMPCs with state estimation

In our analysis, we applied the same system as the example described in Section 5.1.4, using the

second set of initial conditions mentioned in the preceding section. Our objective was to compare

the computation time and performance of various control architectures in computing the control

inputs. Table 5.1.1 provides a summary of the total computation time required for computing

control inputs and the normalized sum of the control cost functions for the encrypted centralized,

decentralized, and distributed LMPCs.

Table 5.1.1: Computational time and performance of the encrypted centralized, decentralized,
sequential distributed, and iterative distributed LMPCs

Control architecture Average control input Normalized sum of
computation time the control cost function

Centralized MPC 15.28 s 1
Decentralized MPC 2.87 s 0.9751
Sequential DMPC 4.03 s 0.9817
Iterative DMPC 5.22 s 0.9703

To determine the computation time of the centralized framework, we calculated the time spent

by the LMPC in computing the control inputs for the system at each sampling instance. In the

case of the decentralized framework, we recorded the longer of the two LMPC computation times

at each sampling instance. For the sequential distributed LMPC, we summed the time spent by

both LMPCs at each sampling instance to obtain the total control input computation time for that

specific sampling instance. In case of the iterative distributed LMPC, we recorded the higher

value of the time spent by the two LMPCs at each iteration, and summed these values for the two

iterations to calculate the total time spent for computing control inputs, at a particular sampling
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instance. It was ensured that the control input computation time at any interval was not only smaller

than the sampling period of 30 seconds but also satisfied Eq. (5.1.21). Figure 5.1.12 displays

the computation times for all 4 cases at each sampling instance of process operation. Based on

the results from Table 5.1.1 and Figure 5.1.12, we can conclude that the decentralized LMPC

required the shortest computational time, while the iterative distributed LMPC exhibited the best

performance. In contrast, the centralized LMPC not only had the longest computational time

but also demonstrated inferior performance compared to the distributed and decentralized LMPC

systems.
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Figure 5.1.12: Control input computation time for the encrypted centralized, decentralized, se-
quential distributed, and iterative distributed LMPCs at every sampling instance.

The reason behind the slightly improved performance observed with the decentralized LMPC

can be attributed to the sequential flow sheet of the process network, featuring two CSTRs in se-
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ries. This characteristic renders decentralized LMPC a more suitable and well-conditioned choice

compared to centralized LMPC when addressing the optimization problem. Furthermore, the it-

erative distributed LMPC, which shares control input information with other subsystems during

each iteration, demonstrates superior performance compared to both the decentralized LMPC and

the sequential distributed LMPC. It is essential to note that this performance enhancement may

not be universally applicable to all nonlinear systems, but the enhanced computational efficiency

of decentralized and distributed frameworks over centralized ones can indeed be extended to other

large-scale systems.

In general, the advantages and disadvantages of all 4 control schemes can be summarized in

the following manner:

1. Centralized MPC: It offers the advantage of requiring only a single computing unit for all

computations, simplifying information flow and reducing costs, which makes it suitable for

small systems. All signals transmitted to and received from the remote edge computing unit

can be encrypted. However, it comes with a significantly higher computation time compared

to the decentralized and distributed MPCs, making it less viable for large processes with

numerous states and control inputs. It is, nevertheless, a suitable choice for small-scale

systems, where only a single computing unit is needed.

2. Decentralized MPC: This approach stands out with the shortest computation time among

the four systems, and can even outperform the closed-loop performance of the centralized

MPC in specific cases. Furthermore, a decentralized MPC framework does not require com-

munication between different computing units, making it particularly well-suited for large
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systems partitioned into many subsystems, where the coupling between subsystems is not

very significant. Also, all signals transmitted to and received from the different computing

units remain encrypted. However, its performance may deteriorate in cases where the overall

system is partitioned into highly coupled subsystems.

3. Sequential DMPC: While a decentralized MPC can perform better than the centralized

MPC in some cases, it calculates control inputs independently, without any information ex-

change among subsystems. The integration of information exchange between subsystems

can be achieved through the use of a sequential DMPC. In the example discussed, the over-

all system was only partitioned into two subsystems, and the control inputs were computed

in series for the two subsystems. However, this approach may be slower for very large sys-

tems partitioned into numerous subsystems, not making it a viable option in that case. The

major advantage of a sequential DMPC over an iterative DMPC lies in its reduced commu-

nication among subsystems, as information flows only in one direction (from higher to lower

subsystems). It is suitable for cases where communication between controllers is necessary,

implementing iterative DMPC is not feasible, and the number of subsystems is not exten-

sive. Further, it would be more suitable when Ethernet crossover communication cannot be

established between different computing units (if they are placed in different locations) be-

cause the communication load of a sequential DMPC is much less compared to an iterative

DMPC, and, hence, encrypted signals could be used for internal communication between

subsystems, as long as the overall system is not partitioned into numerous subsystems.

4. Iterative DMPC: This approach delivers the best overall performance, although it entails
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longer computation times compared to decentralized and sequential DMPCs. In the exam-

ple presented, we considered only two MPCs in the partition, but for systems with more

partitions, it can outperform the sequential DMPC in terms of computation time. However,

implementing this system requires multiple computing units compared to a single unit in a

centralized MPC. Moreover, these units must be located in the same room to establish se-

cure Ethernet crossover communication between them. On the other hand, a decentralized

MPC allows for computing units to be located in different locations. Also, the communica-

tion load between subsystems in an iterative DMPC is higher than a sequential DMPC, as

control input trajectories are shared with all other subsystems multiple times within a single

sampling instance. Therefore, it is most suitable for very large systems partitioned into nu-

merous subsystems, especially when these subsystems exhibit a substantial coupling effect

with one another, and in situations where secure internal communication channels between

different subsystems can be easily established.

To summarize, this section offered a general overview of the advantages, disadvantages, and

the suitability of various control architectures with encryption. The decision on which control

framework to practically implement should be based on several factors, such as the specific char-

acteristics (size, coupling effect, etc.) of the system to be controlled, the available resources, the

desired level of control performance, the budget allocated for computing hardware, and other per-

tinent considerations.
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5.1.6 Conclusion

In this chapter, we introduced and applied encrypted distributed control architectures, both sequen-

tial and iterative, with state estimation, to a large-scale nonlinear chemical process network utiliz-

ing partial state feedback with sensor noise. We established practical guidelines for implementing

this control structure in any nonlinear process by including the selection of key parameters such

as l1, l2, and d for quantization, and the criterion for setting the sampling time. Through closed-

loop simulations, we demonstrated that both the sequential and iterative distributed LMPCs, with

encrypted communication between the sensor–controller and controller–actuator links, could stabi-

lize the system within the desired stability region using the extended Luenberger observer for state

estimation, in a finite process simulation time. Furthermore, we conducted a comprehensive com-

parative analysis of various encrypted control strategies, including centralized, decentralized, and

distributed approaches with state estimation. The computational time, closed-loop performance,

and suitability of the different encrypted control architectures were discussed. In conclusion, our

findings indicate that the encrypted iterative distributed LMPC emerges as the most suitable choice

for enhancing the cybersecurity of large and complex systems, with highly coupled dynamics be-

tween states. This approach reduces the computational complexity associated with centralized

control, leverages controller communication to improve closed-loop performance, and maintains a

reasonable computation time, while enhancing the cybersecurity of the control system.
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Chapter 5.2

Encrypted distributed model predictive

control of nonlinear processes

5.2.1 Introduction

In recent years, networks have emerged as pivotal components within manufacturing systems, re-

placing traditional point-to-point communications across various levels. At the field level, net-

works have elevated connectivity among sensors, actuators, and controllers, enabling efficient

data transfer within the factory floor, while concurrently reducing wiring and minimizing potential

points of failure. At the supervisory and management level, networks have facilitated automated

plant-wide communication via SCADA (Supervisory Control and Data Acquisition) systems. This

has, in turn, expanded data storage capacities and visibility, enabling operational trend analysis

and improved decision-making for enhanced closed-loop performance, and has augmented inter-

connectivity of various parts of the plant.

However, these advantages come with a substantial reliance on networked communications,
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whether through the internet or wireless local area networks (LAN), which could be vulnerable to

cyber threats. Any compromise within these systems could lead to significant consequences, such

as critical service disruption, physical harm, financial loss, and potential threats to public safety.

Real-world cyberattack instances underscore the need of cybersecurity measures in networked

cyber-physical systems. For instance, the 2015 cyberattack on Ukraine’s power grid managed by

SCADA controls, led to widespread power outages [45]. Similarly, in 2021, hackers launched a

DarkSide ransomware attack on Colonial Pipeline by encrypting networked communication and

demanded a ransom for decryption keys. This incident forced Colonial Pipeline to halt operations,

leading to extensive disruptions in fuel distribution [82].

PID (Proportional-Integral-Derivative) controllers and PLCs (Programmable Logic Controllers)

have been extensively used and continue to be utilized for controlling system states in a decentral-

ized manner. Their decentralized operation reduces computational burden and interdependencies

between different controllers. However, in systems with highly coupled process states, where

the control inputs applied by one controller directly impacts the controlled states of another con-

troller, traditional controllers might not yield adequate closed-loop performance. To overcome this

constraint, complex processes have been effectively managed using model predictive controllers

(MPCs). MPCs utilize a mathematical model of the process, obtained from either first-principles

or data, to predict future closed-loop state evolution within a defined horizon. Subsequently, con-

trol inputs are optimized based on real-time sensor feedback, considering interactions between all

states and inputs. This methodology enhances control precision while minimizing utility costs.

For systems regulated by MPCs, at each sampling instance, a nonlinear optimization problem

has to be solved to compute optimal control input trajectories, which can be very complex for
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large-scale systems involving numerous states and control inputs. To cope with this, distributed

MPCs have been proposed [53]. Networked communication has facilitated distributed control

systems to be easily established within a SCADA control architecture by enhancing connectivity

and data transfer between different controllers without needing elaborate wired communication.

However, as mentioned earlier, this has also made the system more vulnerable to cyberattacks with

the evolution of technology. Considerable research efforts have been dedicated to areas such as

employing linear encrypted controllers [18, 20], developing machine learning-based cyberattack

detectors [2, 26], utilizing encrypted decentralized MPCs [37], and creating cyberattack-resilient

controllers [68].

Addressing the aforementioned challenges, this work focuses on an encrypted iterative dis-

tributed MPC comprising a set of Lyapunov-based MPCs, utilizing encrypted networked com-

munication for communication between sensors, actuators, and computing units responsible for

calculating the control inputs. Following the formulation of the proposed control system, a thor-

ough stability analysis is conducted to establish bounds, ensuring system stabilization within the

desired stability region. Closed-loop simulations of the encrypted distributed LMPC system im-

plemented in a nonlinear chemical process network are presented and compared with an encrypted

centralized LMPC.
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5.2.2 Preliminaries

5.2.2.1 Notation

The symbol ∥·∥ denotes the Euclidean norm of a vector, and x⊤ represents the transpose of a

vector x. The sets of real numbers, integers, and natural numbers are denoted by R, Z, and N,

respectively. The additive groups of integers modulo M are represented by ZM . The symbol “\”

denotes set subtraction, where A\B represents the set of elements in set A but not within set B. A

function, f(·), is classified as C1 when it is continuously differentiable in a defined domain. The

least common multiple of the integers i and j is denoted by lcm(i, j). The greatest common divisor

that divides i and j with no remainder is denoted by gcd(i, j).

5.2.2.2 Class of systems

In this research, we consider a general category of nonlinear systems regulated by multiple unique

sets of control inputs. Each distinct set of control inputs manages a particular subsystem of the pro-

cess. To simplify notations, we examine two subsystems—subsystem 1 and subsystem 2—each

governed solely by u1 and u2, respectively. However, this same analysis can be extended to any

nonlinear system controlled by Nsys subsystems regulated by Nsys unique sets of manipulated in-

puts. While partitioning a large-scale nonlinear process, manipulated inputs that have a strong,

direct effect on certain states should be grouped together and be manipulated by the same con-

troller. The work of [71] describes such methods in detail, and can be an area of future research.

The overall nonlinear system is characterized by a set of ordinary differential equations (ODEs),

207



formulated in the following manner:

ẋ = f(x(t), u1(t), u2(t), w(t))

y = x+ v

(5.2.1)

The state vector is denoted by x ∈ Rn, while y ∈ Rn is the vector of state measurements that are

sampled continuously. u1 ∈ Rm1 and u2 ∈ Rm2 represent the sets of control inputs, w ∈ Rw is

the disturbance vector, and v ∈ Rn is the noise vector. The control input constraints are defined

by u1 ∈ U1 := {umin
1i

≤ u1i ≤ umax
1i

, i = 1, . . . ,m1}, ⊂ Rm1 , and u2 ∈ U2 := {umin
2i

≤ u2i ≤

umax
2i

, i = 1, . . . ,m2}, ⊂ Rm2 . u = [u1 u2]
⊤ ∈ U is the bounded control input vector formed by

concatenating u1 and u2. The vector function f(·) is locally Lipschitz with respect to its arguments.

We consider f(0, 0, 0, 0) = 0, such that the steady state of Eq. (5.2.1) is the origin. Without loss

of generality, we set the initial time to zero (t0 = 0). S(∆) is defined as a collection of piece-wise

constant functions characterized by an interval of ∆.

5.2.2.3 Stability assumptions

Accounting for interactions between the partitioned subsystems of the nonlinear process, we as-

sume the existence of stabilizing control laws u1 = Φ1(x) ∈ U1, u2 = Φ2(x) ∈ U2 which regulate

subsystems 1 and 2, respectively, such that the system of Eq. (5.2.1) with w ≡ 0 and v ≡ 0 is

rendered exponentially stable, signifying the existence of a C1 control Lyapunov function V (x)

that satisfies the subsequent inequalities for all x ∈ Rn within D, which is an open region around

the origin:

c1|x|2 ≤ V (x) ≤ c2|x|2, (5.2.2a)
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∂V (x)

∂x
f(x,Φ1(x),Φ2(x), 0) ≤ −c3|x|2, (5.2.2b)∣∣∣∣∂V (x)

∂x

∣∣∣∣ ≤ c4|x|, (5.2.2c)

where ci, i = {1, 2, 3, 4} are positive constants. In the nonlinear system of Eq. (5.2.1), the closed-

loop stability region can be defined as Ωρ, which is a level set of the control Lyapunov function V .

In particular, Ωρ := {x ∈ D|V (x) ≤ ρ}, where ρ > 0. Thus, starting from any initial condition in

Ωρ, the control inputs Φ1(x) and Φ2(x) guarantee that the state trajectory of the closed-loop system

remains inside Ωρ. Further, based on the Lipschitz property of f(x, u1, u2, w) and the bounds on

u1, u2, and w, the subsequent inequalities hold for all x ∈ Ωρ, u1 ∈ U1, u2 ∈ U2 and w ∈ W with

positive constants MF and L′
w:

|f(x, u1, u2, w)| ≤ MF , (5.2.3a)∣∣∣∣∂V∂x f(x, u1, u2, w)−
∂V

∂x
f(x, u1, u2, 0)

∣∣∣∣ ≤ L′
w|w|. (5.2.3b)

5.2.2.4 Paillier cryptosystem

In this study, we utilize the Paillier cryptosystem [67] in order to encrypt all signals that are

transmitted through the networked communication established. While we do not leverage the

semi-homomorphic nature of the additive homomorphism within the Paillier cryptosystem, it is

incorporated to enable the integration of conventional controllers, like PI (proportional-integral)

controllers, that can calculate control inputs in an encrypted space, within the control architecture

if needed [41]. Prior to encryption, we generate the public key (for encryption) and the private key

(for decryption) and can be outlined as follows:

209



1. Choose two large prime integers (p and q) randomly, such that, gcd((p− 1)(q− 1), pq) = 1.

2. Define, M = pq.

3. Select a random integer ĝ ∈ ZM2 , where ZM2 is the multiplicative group of integers modulo

M2.

4. Compute λ = lcm(p− 1, q − 1).

5. Specify L̂(x) = (x− 1)/M .

6. Verify the existence of the subsequent modular multiplicative inverse:

u = (L̂(ĝλ modM2))−1 mod M .

7. If the inverse does not exist, revisit step 3 and select an alternate value of ĝ. If the inverse

exists, (M, ĝ) is the public key and (λ, u) is the private key.

Upon obtaining the keys, authorized recipients receive the public key for encryption and the private

key for decryption. Encryption is executed in the following manner:

EM(m, r) = c = ĝmrM mod M2 (5.2.4)

where r is an integer randomly chosen from the set ZM , and c denotes the resulting ciphertext by

encrypting m. Decryption is executed in the following manner:

DM(c) = m = L̂(cλ mod M2)u mod M (5.2.5)
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Remark 5.2.1. Traditional approaches, such as mapping floating points to a set or applying math-

ematical transformations to achieve data privacy, may prove inadequate in practice. When these

methods are used during steady-state operation, it results in the transmission of identical values.

On the other hand, during encryption, a distinct random number is generated each time data is

encrypted. This feature ensures that encrypting identical numbers results in different ciphertexts,

thereby significantly enhancing cybersecurity measures. While encryption enhances privacy, it

also enhances cybersecurity by protecting the system against intelligent cyberattacks as discussed

in the work of [41].

5.2.2.5 Quantization

For the utilization of the Paillier cryptosystem, the data intended for encryption is required to be

in the form of natural numbers within ZM . However, prior to encryption, the signal values exist

in floating-point format. Thus, we implement quantization, to map the floating-point numbers

into ZM [19]. Employing a signed fixed-point binary representation, we establish a set, Ql1,d,

characterized by parameters l1 and d. The parameter l1 is defined as the total bit count (integer

and fractional), and d denotes the fractional bits. The number of fractional bits represents the

number of bits used to represent the fractional part of the floating point data. It is equal to the

quantization parameter. The Ql1,d set encompasses rational numbers ranging from −2l1−d−1 to

2l1−d−1 − 2−d, with increments of 2−d. For a number q in Ql1,d, there exists β ∈ {0, 1}l1 , such that

q = −2l1−d−1βl1 +
∑l1−1

i=1 2i−d−1βi. The function gl1,d maps a real-number data point a to the set
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Ql1,d, and is defined by the following equation,

gl1,d : R → Ql1,d

gl1,d(a) := arg min
q∈Ql1,d

|a− q|
(5.2.6)

Following this, the quantized data undergoes a transformation into a set of positive integers (ZM )

via a bijective mapping (fl2,d), as detailed in [19]:

fl2,d : Ql1,d → Z2l2

fl2,d(q) := 2dq mod 2l2
(5.2.7)

In the encryption process, integer plaintext messages from the set Z2l2 are transformed into cipher-

texts, and can then be decrypted back to set Z2l2 . To retrieve the original data point belonging to

the set Ql1,d, we define an inverse mapping denoted as f−1
l2,d

in the following manner:

f−1
l2,d

: Z2l2 → Ql1,d
(5.2.8)

f−1
l2,d

(m) :=
1

2d


m− 2l2 if m ≥ 2l2−1

m otherwise
(5.2.9)

5.2.3 Development of the encrypted iterative distributed LMPC

5.2.3.1 Design of the encrypted iterative distributed LMPC

Figure 5.2.1 illustrates the control structure of the encrypted iterative distributed LMPC, where

all LMPCs collaboratively optimize control actions for their respective subsystems. The sampling
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Figure 5.2.1: Block diagram of the encrypted iterative distributed LMPC system.

period represents the time between two consecutive measurements during which a constant control

input is maintained by the actuators in a sample-and-hold manner. A total of two LMPCs that uti-

lize the complete process model for computing a set of distinct control inputs has been considered

to present the control strategy. A single iteration of an LMPC corresponds to an optimal control

input computation by an LMPC, which may be repeated with updated input information from the

other LMPC, if the termination criterion is not satisfied. The control strategy can be implemented

through the following steps:

1. At time t = tk, where k is the current sampling instance, using public key 1, signals x(tk)

from sensors are encrypted to ciphertext c and transmitted to the computing units of distinct

control subsystems.
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2. In each unit, using private key 1, the encrypted signals are decrypted. The resulting quantized

states x̂(tk) initialize the LMPC model.

3. At iteration z = 1, LMPC 1 computes the optimal control input trajectory u∗
1(t), using

the quantized states x̂(tk), and assuming the stabilizing control law u2(t) = Φ2(x̂(t)) for

the second subsystem, for t ∈ [tk, tk+N), where N is the prediction horizon. In parallel,

LMPC 2 computes the optimal control input trajectory u∗
2(t) assuming u1(t) = Φ1(x̂(t)),

the stabilizing controller for the first subsystem, for t ∈ [tk, tk+N).

4. At the end of the first iteration, LMPC 1 and LMPC 2 encrypt their computed control inputs

over the prediction horizon using public key 2, to the ciphertexts c1 and c2, respectively.

Subsequently, LMPC 1 decrypts c2 to obtain the quantized control input of LMPC 2, û∗
2(t),

and LMPC 2 decrypts c1 to obtain the quantized control input of LMPC 1, û∗
1(t), for t ∈

[tk, tk+N).

5. At iteration z = 2, both LMPCs recalculate the optimal control inputs of their subsystem

using the quantized control inputs (after decryption) of the other subsystems. Subsequently,

the new control input trajectories are again shared with the other LMPCs, as described previ-

ously. The aforementioned steps are reiterated till a termination condition is satisfied, which

could be the number of iterations, or the difference between computed control inputs in

successive iterations is less than a specified threshold value.

6. Upon meeting this termination condition, both LMPCs encrypt their optimal control inputs

for the subsequent sampling period (utilizing public key 1) and transmit the ciphertexts to
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the corresponding actuators of each of their respective subsystem.

7. At the actuator, the ciphertext ć undergoes decryption using private key 1 to yield û∗(tk), the

quantized input, which is applied to the process.

By encrypting all signals in a distributed setting between the sensors, controllers, and actuators,

secure information exchange is established between computing units situated at various locations,

eliminating the necessity of a control room.

Remark 5.2.2. In the proposed design, sensor–controller and controller–actuator communication

links utilize distinct keys for encryption–decryption compared to the inter-controller communica-

tion link. However, a single pair of keys may also serve this purpose. The decision to choose a

distinct set of keys aims to meet the specific cybersecurity requirements based on the cyber-physical

needs of the system. For instance, in transmitting encrypted signals across the entire plant, higher

bit length keys would be recommended. Conversely, when exchanging encrypted signals between

various controllers or computing units, lower bit length keys might be sufficient.

Remark 5.2.3. The time and computational load required for encrypting signals increases with

longer key bit lengths. A 2048-bit key results in an approximately 4096-bit ciphertext and requires

about 0.066 seconds for encryption. On the other hand, a 1024-bit key produces a ciphertext of

around 2048 bits within 0.0096 seconds. The most recent NIST recommendations suggest using

asymmetric keys of 2048 bits, an upgrade from the previous recommendation of 1024 bits [8]. The

determination of key lengths should be guided by factors like cyber-physical vulnerability, desired

cybersecurity level, and available computational resources. The time estimates were derived from
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encryption processes on an Intel i7-10700K 3.80 GHz computer with 64 GB of RAM. The compu-

tational complexity of encryption–decryption varies by O(k̄3) as mentioned in the work of [17],

where k̄ represents the number of bits of the keys utilized. Thus, increasing the bits of the keys

significantly increases the computational load for encryption–decryption.

Remark 5.2.4. In an industrial setting, the standard approach for encryption would involve em-

ploying microcontrollers within sensors and actuators to encrypt and decrypt signals, respectively.

Encrypted signals are sent to the controllers via RF (radio-frequency) transmission modules. Sim-

ilarly, actuators receive signals from the RF receiver module. To decrease the total computation

time for encryption-decryption, large-scale systems can equip individual sensors and actuators

with dedicated microcontrollers and RF modules. This setup enables parallel operations for the

transmission and reception of encrypted signals.

Remark 5.2.5. A ciphertext encrypted using a 2048-bit key will be roughly 4096 bits or 512 bytes

(1 byte = 8 bits). Wireless communication standards like Wi-Fi 4, Wi-Fi 5, and Wi-Fi 6 offer band-

widths ranging from hundreds of megabytes per second (MBps) to a few gigabytes per second.

This bandwidth is more than adequate to transmit multiple encrypted ciphertexts at each sampling

instance. For instance, a 4096-bit ciphertext would require approximately 1 microsecond for trans-

mission through Wi-Fi with a bandwidth of 500 MBps. Therefore, the transmission of encrypted

signals would not significantly burden established communication channels, while reinforcing the

cybersecurity of the control system.

Remark 5.2.6. To deal with input delays, a state-predictor can be integrated. The state predictor

would estimate the state values after the period corresponding to the input delay and the LMPC
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model would be initialized with these predicted states. This has been demonstrated in the work of

[37] using an encrypted decentralized LMPC. As the LMPC is initialized with the new predicted

states, the same concept can be extended to the encrypted distributed LMPC presented in this

research.

5.2.3.2 Quantization errors in the control architecture

The closed-loop configuration presented in Figure 5.2.1 introduces two error sources: one origi-

nating from state quantization in the sensor-controller link, while another stemming from control

input quantization within the controller-actuator link, which are bounded as follows:

|x(tk)− x̂(tk)| ≤ 2−d−1 (5.2.10a)

|u(tk)− û(tk)| ≤ 2−d−1 (5.2.10b)

The upper bounds for the quantization error in Eq. (5.2.10) has been derived in [39]. Leveraging

the local Lipschitz property, the error for the stabilizing controller of the j th subsystem will be

bounded by the following equation, where L′
j is a positive constant, for x ∈ Ωρ, the stability

region:

|Φj(x̂)− Φj(x)| ≤ L′
j|x̂− x| ≤ L′

j2
−d−1 (5.2.11)
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5.2.3.3 Encrypted iterative distributed LMPC system

The optimization task for the j th LMPC in the iterative distributed LMPC, during the initial itera-

tion (z = 1), is formulated as:

J = min
uj∈S(∆)

∫ tk+N

tk

L(x̃(t),Φm(x̃(t)), uj(t)) dt,

where m = 1, 2 and m ̸= j (5.2.12a)

s.t. ˙̃x(t) = f(x̃(t),Φm(x̃(t)), uj(t)) (5.2.12b)

uj(t) ∈ Uj, ∀ t ∈ [tk, tk+N) (5.2.12c)

x̃(tk) = x̂(tk) (5.2.12d)

V̇ (x̂(tk),Φm(x̂(tk)), uj(tk)) ≤

V̇ (x̂(tk),Φm(x̂(tk)),Φj(x̂(tk))),

if x̂(tk) ∈ Ωρ\Ωρmin
(5.2.12e)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N),

if x̂(tk) ∈ Ωρmin
(5.2.12f)
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For subsequent iterations z > 1, following the exchange of the optimal control inputs u∗
m(t) with

all the other LMPCs, the optimization task for the j th LMPC is:

J = min
uj∈S(∆)

∫ tk+N

tk

L(x̃(t), ûm(t), uj(t)) dt,

where m = 1, 2 and m ̸= j (5.2.13a)

s.t. ˙̃x(t) = f(x̃(t), ûm(t), uj(t)) (5.2.13b)

uj(t) ∈ Uj, ∀ t ∈ [tk, tk+N) (5.2.13c)

x̃(tk) = x̂(tk) (5.2.13d)

V̇ (x̂(tk), ûm(tk), uj(tk)) ≤

V̇ (x̂(tk),Φm(x̂(tk)),Φj(x̂(tk))),

if x̂(tk) ∈ Ωρ\Ωρmin
(5.2.13e)

V (x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N),

if x̂(tk) ∈ Ωρmin
(5.2.13f)

The key contrast between Eq. (5.2.12) and Eq. (5.2.13) is that in the former, the j th LMPC com-

putes the optimal control inputs for its respective subsystem by assuming the stabilizing control

laws for the remaining subsystems, while in the latter, the LMPC uses quantized control inputs

of other LMPCs (after decryption) from the previous iteration, to calculate the optimal inputs for

its subsystem. x̃ denotes the state trajectory predicted by the LMPC model. The quantized states,

denoted as x̂, from Eq. (5.2.12d) and Eq. (5.2.13d), initialize the LMPC model for predicting the

state trajectory in accordance with Eq. (5.2.12b) and Eq. (5.2.13b), respectively. This prediction is

219



used to calculate the integral of the cost functions represented by Eq. (5.2.12a) and Eq. (5.2.13a),

respectively, to determine the optimized control inputs, u∗
j(t), throughout the prediction horizon.

However, the LMPC transmits only the first control input of the sequence which is applied to the

system by the actuator within the interval t ∈ [tk, tk+1), where this process is repeated at each sam-

pling period. Here, k is the sampling instance, while N denotes the number of sampling periods

in the prediction horizon. The constraints of Eq. (5.2.12c) and Eq. (5.2.13c) bound the control

inputs, and it remains consistent across all iterations for a particular subsystem. The Lyapunov

constraint of Eq. (5.2.12e) and Eq. (5.2.13e) bounds the state x(tk) at time tk within the region

Ωρ\Ωρmin
, where ρmin is a level set of V in proximity to the origin. Eq. (5.2.12f) and Eq. (5.2.13f)

ensure that the closed-loop state is bounded within Ωρmin
once it enters Ωρmin

.

Remark 5.2.7. In the LMPC formulation presented, the LMPCs transmit only the control inputs

to be implemented by the actuators over the next sampling period. To address challenges related

to delayed and/or asynchronous signals, a control logic can be integrated. In instances where

sensor signals are absent, the LMPC transmits the control input calculated for the subsequent

sampling period during the preceding instance, ensuring continuous operation. This adaptive

strategy can be selectively applied by subsystems experiencing signal reception issues within a

distributed system. Moreover, a control logic can be devised to transmit the control inputs after the

first iteration, if challenges arise in communicating control inputs with other controllers, switching

from a distributed to a decentralized setup. Consequently, the utilization of distributed MPC intro-

duces substantial flexibility to adapt control systems according to diverse conditions and practical

requirements, all without necessitating extensive modifications.
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5.2.3.4 Robustness of the encrypted distributed LMPC

In this subsection, we will conduct a comprehensive stability analysis of the nonlinear system

of Eq. (5.2.1), considering bounded process disturbances. Initially, we ascertain the closed-loop

stability using the encrypted stabilizing controllers Φ̂1(x̂) and Φ̂2(x̂), and subsequently, we extend

our results to evaluate system stability under the encrypted iterative distributed LMPC defined by

Eq. (5.2.12) and Eq. (5.2.13).

Theorem 5.2.1. We consider the system of Eq. (5.2.1) with bounded disturbances |w| ≤ wm,

to examine the closed-loop system stability under the encrypted stabilizing controllers Φ̂1(x̂) and

Φ̂2(x̂). The stabilizing controllers Φ1(x) and Φ2(x), without encryption, complies with the inequal-

ities stated in Eq. (5.2.2). Also, the initial state x0 is assumed to be within the region Ωρ̂ where

ρ̂ < ρ. For a sufficiently large time T > 0, where T is defined as the time taken by x(t) to enter

Ωρmin
, the positive real numbers L′

x, L
′
e1
, L′

e2
,MF , L

′
w, e1 = (L1+1)2−d−1, and e2 = (L2+1)2−d−1

can be determined, for which ∆, w, d, and ϵw > 0 exist, such that the subsequent conditions are

met:

L′
xMF∆+ L′

e1
|e1|+ L′

e2
|e2|+ L′

w|w| −
c3
c2
ρs ≤ −ϵw

ρmin = max{V (x(t+∆))|V (x(t)) ≤ ρs}
(5.2.14)

where ρ > ρ̂ > ρmin > ρs. Then, x(t), under the encrypted stabilizing controller, is within Ωρ̂ and

ultimately converges to Ωρmin
for t ≥ T .

Proof. The time-derivative of the control Lyapunov function for the nonlinear system ( Eq. (5.2.1))
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with bounded disturbances under the stabilizing control law is:

V̇ =
∂V (x(t))

∂x
f(x(t), Φ̂1(x̂(tk)), Φ̂2(x̂(tk)), w)

=
∂V (x(t))

∂x
f(x(t), Φ̂1(x̂(tk)), Φ̂2(x̂(tk)), w)

− ∂V (x(t))

∂x
f(x(t), Φ̂1(x̂(tk)), Φ̂2(x̂(tk)), 0)

+
∂V (x(t))

∂x
f(x(t), Φ̂1(x̂(tk)), Φ̂2(x̂(tk)), 0).

(5.2.15)

Based on the Lipschitz condition in Eq. (5.2.2) and Eq. (5.2.3b), the subsequent inequality holds:

V̇ ≤ ∂V (x(t))

∂x
f(x(t), Φ̂1(x̂(tk)), Φ̂2(x̂(tk)), 0) + L′

w|w| (5.2.16)

Substituting the error bounds resulting due to quantization, as derived in Eq. (5.2.10),

V̇ ≤ ∂V (x(t))

∂x
f(x(t),Φ1(x̂(tk))

+ 2−d−1,Φ2(x̂(tk)) + 2−d−1, 0) + L′
w|w|

(5.2.17)

Further, Φj(x̂(tk)) = Φj(x̂(tk)) − Φj(x(tk)) + Φj(x(tk)) for j = {1, 2}. Using the Lipschitz

property, Φj(x̂(tk))−Φj(x(tk)) ≤ Lj|x̂−x| ≤ Lj2
−d−1. When we substitute this in Eq. (5.2.17),

we get:

V̇ ≤ ∂V (x(t))

∂x
f(x(t),Φ1(x(tk)) + e1,Φ2(x(tk)) + e2, 0)

+ L′
w|w|

(5.2.18)

where e1 = (L1 + 1)2−d−1 and e2 = (L2 + 1)2−d−1 represent the error bounds from quantization.
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From the constraints stated in Eq. (5.2.2), we can re-write Eq. (5.2.18) as:

V̇ ≤ ∂V (x(t))

∂x
f(x(t),Φ1(x(tk)) + e1,Φ2(x(tk)) + e2, 0)

− ∂V (x(tk))

∂x
f(x(tk),Φ1(x(tk)),Φ2(x(tk)), 0)

+
∂V (x(tk))

∂x
f(x(tk),Φ1(x(tk)),Φ2(x(tk)), 0)

+ L′
w|w|

(5.2.19)

From Eq. (5.2.19), we can define g(x, e1, e2) = f(x,Φ1(x) + e1,Φ2(x) + e2, 0). In addition, the

positive constants, L′
x, L′

ξ, and L′
q exist, such that the subsequent Lipschitz inequality holds for all

x, x′ ∈ Ωρ̂: ∣∣∣∣∂V (x)

∂x
g(x, e1, e2)−

∂V (x′)

∂x
g(x′, 0, 0)

∣∣∣∣ ≤
L′
x|x− x′|+ L′

e1
|e1|+ L′

e2
|e2|

(5.2.20)

Hence, we can re-write Eq. (5.2.19) as:

V̇ ≤ ∂V (x(t))

∂x
g(x(t), e1, e2)−

∂V (x(tk))

∂x
g(x(tk), 0, 0)

− c3|x(tk)|2 + L′
w|w|

≤ L′
x|x(t)− x(tk)|+ L′

e1
|e1|+ L′

e2
|e2|

− c3|x(tk)|2 + L′
w|w|

(5.2.21)

From the continuity property of x(t) ∀ t ∈ [tk, tk + ∆), we have |x(t) − x(tk)| ≤ MF∆,∀t ∈

[tk, tk + ∆). Utilizing this bound and from the inequalities of Eq. (5.2.2), we can re-write

Eq. (5.2.21) as follows:

V̇ ≤ L′
xMF∆+ L′

e1
|e1|+ L′

e2
|e2|+ L′

w|w| −
c3
c2
ρs (5.2.22)
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In Eq. (5.2.22), the first term signifies the error stemming from the sample-and-hold control in-

put implementation, the second and third terms denote quantization errors due to encryption, and

the fourth term indicates the error from process disturbances. The aforementioned errors are con-

strained and can be effectively minimized by utilizing a lower sampling time and a higher quan-

tization parameter for encryption. As a result, the combined sum of these is also constrained and

can be rendered suitably small. Hence, there exist positive real numbers ∆, d, and ϵw, such that the

following inequality holds for all t ∈ [0, T ]:

L′
xMF∆+ L′

e1
|e1|+ L′

e2
|e2|+ L′

w|w| −
c3
c2
ρs ≤ −ϵw

implying that V̇ ≤ −ϵw for any x(tk) ∈ Ωρ̂ \ Ωρs for all tk ∈ [0, T ]. Thus, upon satisfying the

conditions of Eq. (5.2.14), under the encrypted stabilizing controller, the closed-loop system state

is confined in Ωρ̂ and converges within Ωρs ⊆ Ωρmin
in time T , and stays within the desired stability

region.

Now, we advance to the stability analysis of the closed-loop system employing the encrypted

distributed LMPC.

Theorem 5.2.2. We consider the system of Eq. (5.2.1) with bounded disturbances |w| ≤ wm, to

examine the closed-loop stability under the encrypted iterative distributed LMPCs of Eq. (5.2.12)

and Eq. (5.2.13). The initial state x0 is assumed to be within Ωρ̂. Utilizing the results derived

in Theorem 5.2.1, and preserving our earlier assumption that ρ > ρ̂ > ρmin > ρs, if the ensuing
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conditions are met,

V̇ ≤ L′
xMF∆+ L′

e1
|e1|+ L′

e2
|e2|+ L′

w|w| −
c3
c2
ρs ≤ −ϵw

ρmin = max{V (x(t+∆))|V (x(t)) ≤ ρs}
(5.2.23)

then the closed-loop state x(t) remains inside Ωρ̂ and is ultimately bounded within Ωρmin
for t ≥ T ,

by implementing the encrypted iterative distributed LMPCs of Eq. (5.2.12) and Eq. (5.2.13).

Proof. First, we establish the feasibility of the optimization problem associated with each LMPC

in the encrypted distributed LMPC system, for all the states bounded within Ωρ̂. Subsequently,

with the optimized control inputs from the encrypted distributed LMPC, we will demonstrate that

the closed-loop state of Eq. (5.2.1) is bounded and converges to the stability region Ωρ̂, thereby

extending the findings presented from Theorem 5.2.1. If x(tk) ∈ Ωρ̂ \Ωρmin
, the input trajectories,

uj(t), where j = {1, 2} for t ∈ [tk, tk+1) are feasible solutions of the optimization problem of each

LMPC, as these trajectories satisfy the constraints of Eq. (5.2.12c) and Eq. (5.2.13c), as well as

the Lyapunov constraints of Eq. (5.2.12e) and Eq. (5.2.13e). Additionally, if x(tk) ∈ Ωρmin
, the

control inputs uj(t), j = {1, 2} meet the constraints imposed in Eq. (5.2.12c) and Eq. (5.2.13c),

as well as the Lyapunov constraints of Eq. (5.2.12f) and Eq. (5.2.13f); hence, the predicted states

by the LMPC model are bounded within Ωρmin
. Thus, for all x0 ∈ Ωρ̂, the LMPC optimization

problems of Eq. (5.2.12) and Eq. (5.2.13) can be solved recursively for all iterations with feasible

solutions as x(t) ∈ Ωρ̂ for all times.

Next, we establish that for any x0 ∈ Ωρ̂, the state of the closed-loop system remains bounded

within Ωρ̂ for all times, and given a sufficiently large time T > 0, it converges to a small neighbor-

hood Ωρs ⊆ Ωρmin
and remains there. Under the encrypted iterative distributed LMPC system, the
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time derivative of the control Lyapunov function is:

V̇ =
∂V (x(t))

∂x
f(x(t), û1(tk), û2(tk), w) (5.2.24)

From the Lyapunov constraint of Eq. (5.2.12e) and Eq. (5.2.13e), the following inequality holds:

V̇ =
∂V (x(t))

∂x
f(x(t), û1(tk), û2(tk), w)

≤ ∂V (x(t))

∂x
f(x(t), Φ̂1(x̂(tk)), Φ̂2(x̂(tk)), w)

(5.2.25)

However, extending the results of Theorem 5.2.1, the time-derivative of the control Lyapunov

function under the encrypted iterative distributed LMPC can be bounded as follows:

∂V (x(t))

∂x
f(x(t), û1(tk), û2(tk), w) ≤ L′

xMF∆

+L′
e1
|e1|+ L′

e2
|e2|+ L′

w|w| −
c3
c2
ρs ≤ −ϵw

(5.2.26)

Hence, for the selected time T , there exist positive real numbers d,∆, and ϵw, such that the subse-

quent inequality holds ∀ t ∈ [0, T ],

V̇ ≤ L′
xMF∆+ L′

e1
|e1|+ L′

e2
|e2|+ L′

w|w| −
c3
c2
ρs ≤ −ϵw

which implies that V̇ ≤ −ϵw for any x(tk) ∈ Ωρ̂ \ Ωρs for all tk ∈ [0, T ]. This confirms that when

the conditions of Eq. (5.2.23) are satisfied, the closed-loop system state remains consistently

bounded within Ωρ̂. Furthermore, it converges to Ωρs ⊆ Ωρmin
within time T and stays there. With

this, the proof for the stability of the system under the encrypted distributed LMPC is concluded.
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5.2.4 Application to a nonlinear chemical process network op-

erating at an unstable steady state

In this section, we demonstrate the application of the proposed encrypted iterative distributed

LMPC system to a nonlinear chemical process that is to be operated at an unstable steady state.

5.2.4.1 Process description and model development

The process considered involves the production of ethylbenzene (EB) through the reaction of ethy-

lene (E) and benzene (B) in two separate non-isothermal continuous stirred tank reactors (CSTRs),

connected in series, as illustrated in Figure 5.2.2. The principal reaction, referred to as “primary”,

is a second-order, irreversible, and exothermic reaction, accompanied by two additional side reac-

tions. The chemical reactions can be described as follows:

C2H4 + C6H6 → C8H10 (primary) (5.2.27a)

C2H4 + C8H10 → C10H14 (5.2.27b)

C6H6 + C10H14 → 2C8H10 (5.2.27c)

Comprehensive information on the first-principles-based dynamic model, including equations,

model parameter values, and steady-state values are provided in [39]. The state variables are the

concentration of ethylene, benzene, ethylbenzene, di-ethylbenzene, and the reactor temperature for

each CSTR in deviation terms, that is: x⊤ = [CE1 −CE1s , CB1 −CB1s , CEB1 −CEB1s , CDEB1 −

CDEB1s , T1 − T1s, CE2 − CE2s , CB2 − CB2s , CEB2 − CEB2s , CDEB2 − CDEB2s , T2 − T2s].
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Figure 5.2.2: Process schematic of the two CSTR network.

The subscript “s” denotes the steady-state value. We create two distributed LMPCs to control the

overall process. LMPC 1 optimizes the control inputs u1 = [CEo1 − CEo1s , CBo1 − CBo1s , Q1 −

Q1s]
⊤. These inputs are bounded by the closed sets [−3, 3] kmol/m3, [−3, 3] kmol/m3, and

[−104, 2×103] kW, respectively. LMPC 2 optimizes the control inputs u2 = [CEo2−CEo2s , CBo2−

CBo2s , Q2−Q2s]
⊤. These manipulated inputs are bounded by the closed sets, [−2.5, 2.5] kmol/m3,

[−2.5, 2.5] kmol/m3, and [−1.5 × 104, 5 × 103] kW, respectively. The primary goal is to man-

age both CSTRs at their unstable equilibrium point by utilizing the encrypted iterative distributed

LMPC system. This involves the use of quantized states and control inputs for the purposes of

computation and actuation.

5.2.4.2 Encrypting the distributed control system

Prior to integrating encryption and decryption into a process, the parameters d, l1, and l2 are chosen,

considering the extreme feasible states and inputs. This involves deriving the integer bit count
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l1 − d. In the Ql1,d set, the upper limit is 2l1−d−1 − 2−d, and the lower limit is −2l1−d−1. Within

the set, rational numbers are separated by a resolution of 2−d. The quantization parameter d,

representing the fractional bit count, is determined by the desired precision level and the range of

state and input values. l2 is chosen to exceed l1. For the case discussed in this section, l1− d = 16,

and subsequently, l1 and d are fixed. Next, d = 8 is chosen for simulations. Accordingly, l1 is

24, and l2 is 30. Encryption (Paillier cryptosystem) is implemented using Python’s “phe” module,

PythonPaillier [21]. To solve the multi-constrained, non-convex optimization task of the LMPCs,

the IPOPT software [83] in Python is utilized.

The termination criterion for the distributed LMPCs was set to 2 iterations. Thus, control

inputs are exchanged only once with the other LMPC, at the end of the first iteration. For the com-

putation of the control cost of the distributed LMPCs, the integration step is set to hc = 10−2 ×∆.

We assume a control Lyapunov function of the form V = x⊤Px, where P is a positive defi-

nite matrix chosen as diag; [200 200 400 1000 2.5 250 250 200 1000 0.5], through ex-

tensive simulations. Autocorrelated noise, represented as wk = 0.75 × wk−1 + ξk, was intro-

duced to the inlet flow rates, F1 and F2, but the liquid level remains constant in both CSTRs at

all times. Here, k = 1, 2, . . . denotes discrete time steps of 10−2 × ∆, ξk is a randomly gen-

erated normally distributed variable with zero mean, and a standard deviation of 5% of the inlet

flow rates. The prediction horizon of both LMPC is set to two sampling periods. The stability

region is set as ρ = 1800, while ρmin = 2 represents the smaller region within which the closed-

loop system state is desired to be bounded. The distributed LMPC cost function is defined as

L(x, u) = x⊤Qx+ u⊤Ru, where Q = diag; [1000 1000 1500 5 8 1000 1000 3000 5 110] and

R = diag; [2.1 1.95 1.5×10−5 10 10 0.5×10−4]. As the undesired byproduct, di-ethylbenzene,
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is present in minimal quantities in both CSTRs, its trajectories are not illustrated. Non-Gaussian

measurement noise obtained from the noise distribution in [57] extracted from industrial data, is

added to all the measured states. As this noise is normalized, it was scaled by 2% of the operating

steady-state value for each state.

It must be ensured that the sampling time (∆) exceeds the combined time needed for encryption-

decryption of the states and control inputs, along with the time required by the LMPCs to compute

the control inputs at each sampling instance for the given quantization parameter. In mathematical

terms,

∆ >max (Encryption-decryption time)

+max (Control input computation time)
(5.2.28)

The control inputs are applied in a sample-and-hold manner throughout the sampling period. As

long as the time required for computing control inputs and encryption–decryption is shorter than

the sampling period, no lag in the control variables would occur. As explained in Remark 5.2.3

and Remark 5.2.4, the time needed to encrypt–decrypt states and inputs depends on the bit lengths

of the keys, number of microcontrollers, and RF modules used, and hence can be decided accord-

ingly. For simulation purposes, 1024-bit length keys were used for encrypted communication be-

tween controllers, and 2048-bit length keys were utilized for all other encrypted communications.

Considering the above criteria, assuming all encryption-decryption operations to be performed in

series, although it can be done in parallel, the sampling time ∆ was selected as 30 seconds in this

example. Based on the constraint of Eq. (5.2.28), the encrypted distributed LMPC can only be

implemented in systems that allow us to use sufficiently large sampling times that also stabilize

the system as per the constraint of Eq. (5.2.26). Eq. (5.2.12e) and Eq. (5.2.13e) are Lyapunov
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constraints that ensure that the time-derivative of the control Lyapunov function is more negative

under the encrypted distributed LMPC than the stabilizing controller for the control input applied

over the next sampling period. The future control input computed by the LMPC beyond the next

sampling period may not yield a more negative time-derivative of the control Lyapunov function.

Hence, we have utilized the stabilizing controller for the other subsystems in the first iteration.

Moreover, as the system is operated at an unstable equilibrium, stability is critical. Alternatively,

the neighboring LMPCs can utilize the future control inputs when the system is operated at a stable

equilibrium.

5.2.4.3 Simulation results of the encrypted distributed LMPC system

Figure 5.2.3, Figure 5.2.4, and Figure 5.2.5 depict the results of the encrypted iterative distributed

LMPC against the encrypted centralized LMPC. The normalized sum of the cost function for the

encrypted distributed and centralized LMPCs was 0.9795 and 1, respectively. Also, the average

computational time needed to compute the optimal control inputs by the distributed LMPC system

and the centralized LMPC was 7.33 s and 13.14 s, respectively. Thus, not only did the distributed

LMPC provide better closed-loop performance, but it also reduced the average computational time

significantly compared to the centralized LMPC. This is evident with the fewer oscillations ob-

served in the control input trajectories of the encrypted distributed LMPC in Figure 5.2.5. No

significant difference was observed in the closed-loop state trajectories in both cases, as visible

in Figure 5.2.3 and Figure 5.2.4. Nonetheless, in both cases, the system successfully converges

within Ωρmin
in approximately 1.5 hours of process time. We note that the time of convergence to

the steady state for the desired product ethylbenzene is longer in the second CSTR as it starts with
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a low initial concentration; this time may be reduced by modifying the second reactor design to

adjust the residence time to speed up the second reactor dynamics.
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Figure 5.2.3: State trajectories of CSTR 1 under the encrypted iterative distributed LMPC (blue
solid line) and encrypted centralized LMPC (orange dashed line).

Remark 5.2.8. For the encrypted distributed LMPC investigated in this research, encryption–

decryption of data as depicted in Figure 5.2.1 leads to errors due to quantization. [39] empha-

sized the potential for these errors to surpass plant/model mismatch errors in cases where distinct

models are utilized in the controlled process and the LMPC. To mitigate the error caused by quan-

tization, a higher quantization parameter d was recommended. Adopting d = 8 resulted in nearly

indistinguishable closed-loop results with encryption when compared to those without encryption.

Therefore, a quantization parameter of d = 8 was uniformly applied in all simulations conducted

in this study.

232



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

C
E

2
−
C
E

2
s

(k
m
ol
/m

3
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.5
C
B

2
−
C
B

2
s

(k
m
ol
/m

3
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

−0.5

0.0

C
E
B

2
−

C
E
B

2
s

(k
m
ol
/m

3
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time (hours)

−20

0

T
2
−

T
2
s

(K
) Distributed LMPC

Centralized LMPC

Figure 5.2.4: State trajectories of CSTR 2 under the encrypted iterative distributed LMPC (blue
solid line) and encrypted centralized LMPC (orange dashed line).

5.2.5 Conclusion

In this chapter, we formulated an encrypted iterative distributed LMPC system employing en-

crypted signals for data transmission between sensors, controllers, and actuators. Following a

comprehensive stability analysis, we determined bounds for errors from quantization, process dis-

turbances, and the sample-and-hold implementation of the controller. With these bounds, the sys-

tem could be stabilized within the desired stability region. Selection of encryption-decryption

key lengths, quantization parameters, sampling time criterion, and potential methods to decrease

the encryption–decryption time were discussed to facilitate practical implementation. Closed-loop

simulations were performed, comparing the proposed control scheme against the encrypted cen-

tralized LMPC. Non-Gaussian sensor noise obtained from an industrial data set and process distur-
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Figure 5.2.5: Control input trajectories under the encrypted iterative distributed LMPC (black solid
line) and encrypted centralized LMPC (blue dashed line).

bances were used to demonstrate the industrial relevance and suitability of the proposed approach.

The results favor the use of the encrypted distributed LMPC system, which not only improves

closed-loop performance but also significantly reduces the computational time needed to calculate

the control input, positioning the encrypted iterative distributed LMPC as an effective solution for

improving closed-loop performance, decreasing computational time, and enhancing cybersecurity

in large-scale nonlinear systems.
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Chapter 6

Integrating dynamic economic optimization

and encrypted control for cyber-resilient

operation of nonlinear processes

6.1 Introduction

Networked control systems have emerged as a transformative paradigm in industrial operations,

offering numerous advantages [90]. By harnessing networked communication protocols, these

systems significantly reduce the need for extensive wiring and hardware, leading to cost savings

and streamlined operations. Additionally, they modernize plant infrastructure by enabling real-

time monitoring and control, thereby enhancing operational efficiency and responsiveness. With

fewer physical components, maintenance issues are minimized, contributing to improved system

reliability and reduced downtime. Further, the ease of implementation and scalability make net-

worked control systems accessible to a wide range of applications, from small-scale operations
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to large industrial complexes. Given these benefits, networked control systems have become the

standard for control systems, offering unparalleled flexibility, efficiency, and reliability in manag-

ing industrial processes. As technology continues to evolve, embracing networked control systems

remains imperative for organizations aiming to maintain competitiveness and adaptability in an

ever-changing industrial landscape.

While networked communication facilitates seamless and rapid data transfer, it also intro-

duces vulnerabilities to cyberthreats. Breaches or compromises in these systems can have severe

consequences such as disruptions of essential services or physical harm, which are threats to pub-

lic safety. Recent advances in cyberattack techniques support the imperative of establishing robust

cybersecurity protocols [31]. Real-world incidents reaffirm the critical need of cybersecurity in net-

worked cyber-physical systems. For example, the 2015 BlackEnergy malware attack on SCADA

controls overseeing Ukraine’s power grid resulted in widespread power outages [45]. Similarly,

Colonial Pipeline suffered a ransomware attack by DarkSide hackers in 2021, when its networked

communication was encrypted and a ransom was demanded for the decryption keys. Subsequently,

Colonial Pipeline had to shut down its fuel distribution operations, resulting in significant financial

losses [82]. As cyber threats continue to evolve, cybersecurity concerns loom over process con-

trol systems. Modern control systems must be designed with robust security measures to mitigate

the impact of cyberattacks. Some measures include implementing secure communication proto-

cols, regularly updating software and firmware, and employing cyberattack detection systems with

reconfiguration protocols in the event of an attack.

In traditional process control frameworks, model predictive control (MPC) is combined with

a real-time optimizer (RTO), the latter of which is tasked with determining economically opti-
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mal steady-states to be tracked by the MPC through a comprehensive plant model. However, as

energy consumption and operational efficiency concerns escalate in industries like chemical and

petrochemicals, economic model predictive control (EMPC) has emerged. EMPC enables dy-

namic optimization of economic cost functions while maintaining stability constraints. Extensive

research in chemical process control literature indicates that several industrial processes can attain

greater profits through time-varying operation compared to constant steady-state operation [6, 29].

Also, today’s dynamic economic landscape is characterized by rapid globalization, technological

advancements, and unforeseen disruptions. Fluctuations in energy costs, commodity prices, cur-

rency values, interest rates, logistics costs, and market trends can significantly impact businesses

and industries worldwide. By incorporating fluctuating real-world economics, EMPC systems can

yield superior results, emphasizing the importance of dynamic optimization techniques for maxi-

mizing economic benefits and maintaining competitiveness in volatile environments.

Previous studies have explored topics like implementing secure communication in networked

control systems through encryption [19, 20], developing cyberattack detectors [2, 26], creating

cyberattack-resilient controllers [68], and developing economic MPCs with time-varying objective

functions [28, 29]. However, these efforts have not yet resulted in control systems resilient to cyber

threats that seamlessly integrate secure communication, cyberattack detection, nonlinear dynamic

economic optimization, and real-time fluctuations in economics. Establishing such capabilities is

critical for contemporary control systems to navigate economic challenges and cyber vulnerabili-

ties in dynamic environments. This gap motivates our proposal for a new control framework aimed

at effectively addressing this challenge.

Specifically, we introduce an encrypted two-layer control framework comprising a nonlin-
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ear Lyapunov-based economic model predictive control (LEMPC) scheme in the upper layer and

an encrypted linear feedback control system in the lower layer. As we cannot perform nonlinear

computations in an encrypted space, we decrypt state information in the upper layer to determine

the economically optimal dynamic set point trajectory via nonlinear optimization. Conversely, the

lower layer securely tracks these set points in an encrypted space without decryption, utilizing the

additive homomorphic property of the Paillier cryptosystem for secure, private communication. To

address the cyber vulnerability of the upper layer, we integrate a logic-based cyberattack detector.

In the event of an attack, the encrypted lower layer autonomously continues operation, disregard-

ing compromised signals from the upper layer, thus ensuring cyber-resilient operation. In [29], a

two-level EMPC system was implemented, consisting of an EMPC in the upper level computing

the operating trajectory for the lower-level LMPC to track through closed-loop feedback. In our

framework, the objective is to facilitate encrypted operating trajectory tracking without decryption

using encrypted feedback at the lower-layer, by employing proportional-integral (PI) controllers

which allow linear mathematical operations to be performed in an encrypted space without de-

cryption. Unlike the previous approach which lacked encryption, this method ensures secure com-

munication. While utilizing LMPC in the lower layer would enhance control input computation

optimization, it would not fortify against cyberattacks as the computations would occur without

encryption.

The subsequent sections of the paper are structured as follows: in Section 6.2, we cover pre-

liminaries, including notation, the class of systems under consideration, system stability assump-

tions, the cryptosystem employed for encryption, and the effects of quantization. In Section 6.3, we

discuss the encrypted two-layer control framework, formulate the LEMPC, and present the stabil-

238



ity analysis of the proposed control system. Section 6.4 presents and analyzes various closed-loop

simulations of a nonlinear chemical process within the encrypted two-layer control framework.

6.2 Preliminaries

6.2.1 Notation

The notation x⊤ represents the transpose of a vector x. The sets of real numbers, integers, and

natural numbers are represented by R, Z, and N, respectively. Additionally, ZM refers to the

additive group of integers modulo M . Set subtraction is indicated by “\”, where A\B denotes

the set of elements in A but not in B. A function denoted by f(·) belongs to the class C1 if it is

continuously differentiable within its domain. Furthermore, a continuous function α : [0, a) →

[0,∞) is classified as class K if α(0) = 0, and it is strictly increasing. The terms lcm(i, j) and

gcd(i, j) represent the least common multiple and greatest common divisor of integers i and j,

respectively.

6.2.2 Class of systems

In this research, we focus on multi-input multi-output (MIMO) nonlinear systems, which are de-

scribed by a set of ordinary differential equations (ODEs) in the following manner:

ẋ = f(x(t), u(t), w(t))

y = x+ v

(6.1)
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The state vector is represented by x ∈ Rn, and y ∈ Rn denotes the vector of continuously sampled

state measurements. The control input vector, denoted by u ∈ Rm, is subject to bounds defined by

the set U ⊂ Rm. Specifically, U is defined as U = {u ∈ Rm|umin
i ≤ ui ≤ umax

i , i = 1, . . . ,m},

where umin
i and umax

i represent the lower and upper bounds, respectively, of the ith control input in

the vector u. Additionally, the disturbance vector is denoted by w ∈ Rw, and the noise vector is

denoted by v ∈ Rn. Similarly, the disturbance and noise vectors are bounded by |W (t)| ≤ θ and

the set V̄ ∈ Rn, respectively. The function f(·) is locally Lipschitz and evaluates to zero at the

origin f(0, 0, 0) = 0, establishing it as an equilibrium of Eq. (6.1). We set the initial time as zero

(t0 = 0). Further, S(∆) is defined as the set of piece-wise constant functions with a period of ∆.

We introduce a dynamic economic optimization and encrypted feedback control framework

to guide the system of Eq. (6.1) in tracking the reference trajectory representing time-varying

operating set points, xE(t) ∈ Ωρ, where Ωρ is defined in the subsequent subsection. The rate of

change of the reference trajectory is bounded by:

|ẋE(t)| ≤ γE (6.2)

To capture the deviation between the actual state trajectory x(t) and the time-varying reference

trajectory xE(t), we introduce,

e(t) = x(t)− xE(t) (6.3)
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and we can characterize its dynamics by

ė = ẋ(t)− ẋE(t)

= f(x(t), u(t), w(t))− ẋE(t)

= f(e(t) + xE(t), u(t), w(t))− ẋE(t)

= g(e(t), xE(t), ẋE(t), u(t), w(t)).

(6.4)

We assume that Eq. (6.4) is continuously differentiable and possesses a unique equilibrium point

for each fixed xE ∈ Ωρ. In other words, for every xE there exists a corresponding uE , resulting in

e = 0 being an equilibrium of Eq. (6.4). This condition can be expressed mathematically as

g(0, xE, 0, uE, 0) = 0 (6.5)

Remark 6.1. Assuming that the system described by Eq. (6.1) has an equilibrium for each fixed

xE ∈ Ωρ is crucial for enabling the tracking of the reference trajectory. With an economic model

predictive controller (EMPC) in place, the economically optimal dynamic state trajectory can be

determined for any initial condition xE(t0) ∈ Ωρ, where t0 = 0. Consequently, the generated

reference state trajectory contains set points that can be effectively tracked for any xE ∈ Ωρ.

6.2.3 Stability assumptions

We assume the existence of an explicit stabilizing feedback control law, u(t) = h(e(t), xE(t)) ∈ U ,

that renders the origin of the system of Eq. (6.1) with w ≡ 0 and v ≡ 0 asymptotically stable, for

each xE ∈ Ωρ. This assumption guarantees that the time-varying state trajectory xE(t) can be

241



tracked and signifies the existence of a C1 control Lyapunov function V (e, xE) that satisfies the

following inequalities:

α1(|e|) ≤ V (e, xE) ≤ α2(|e|), (6.6a)

∂V (e, xE)

∂e
g(e, xE, 0, h(e, xE), 0) ≤ −α3(|e|), (6.6b)∣∣∣∣∂V∂e

∣∣∣∣ ≤ α4(|e|), (6.6c)∣∣∣∣ ∂V∂xE

∣∣∣∣ ≤ α5(|e|) (6.6d)

∀e, xE ∈ Rn in an open region D surrounding the origin. The functions α1, α2, α3, α4, and α5

belong to the class K. For the system of Eq. (6.1), the region of closed-loop stability can be

defined as a level set denoted by Ωρ of the control Lyapunov function V . This set is described as

Ωρ := {x ∈ D|V (e, xE) ≤ ρ}, where ρ > 0. Therefore, starting from any initial condition inside

Ωρ, the control input h(e, xE) ensures that the closed-loop state trajectory remains within Ωρ.

Based on the continuity of f , we attribute the local Lipschitz property to the vector field f .

Further, considering that the manipulated input vector u is bounded within nonempty convex sets,

a positive constant exists such that

|f(x, u, w)| ≤ MF (6.7)

∀x ∈ Ωρ, u ∈ U , and w ∈ W . Extending this to the system of Eq. (6.4), considering that the rate

of change of xE(t) is bounded by γE ,

|g(e, xE, ẋE, u, w)| ≤ M (6.8)
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∀(x − xE) ∈ Ωρ∗ , xE ∈ Ωρ, u ∈ U , and w ∈ W . Further, due to the continuous differentiability

of the control Lyapunov function V (e, xE) and the Lipschitz property of f , there exist positive

constants Lw, L
′
w, Le, L

′
e, L

′
E, L

′′
E, L

′
u such that

|g(e, xE, ẋE, u, w)| − |g(e′, x′
E, ẋE, u, 0)| ≤ Le|e− e′|+ LE|xE − x′

E|+ Lw|w|, (6.9)

∣∣∣∣∂V (e, xE)

∂e
g(e, xE, ẋE, u, w)−

∂V (e′, x′
E)

∂e
g(e′, x′

E, ẋ
′
E, u

′, 0)

∣∣∣∣ ≤ L′
e|e− e′|+ L′

E|xE − x′
E|

+ L′′
E|ẋE − ẋ′

E|+ L′
w|w|

+ L′
u|u− u′|

(6.10)

∀xE, x
′
E ∈ Ωρ, e, e′ ∈ Ωρ∗ , |ẋE| ≤ γE , |ẋ′

E| ≤ γE , u ∈ U , and w ∈ W .

Remark 6.2. In various nonlinear systems commonly encountered in chemical process control

systems, Lyapunov functions have often been formulated using state variables V (x) = f̄(x(t)). In

our study, leveraging the previous definitions of e and xE , we can also represent the state vector as

x(t) = xE(t)− e(t). Consequently, we broaden the Lyapunov function to take the form V (e, xE),

as we proceed to examine the stability of the system within the proposed control framework in the

following section.

6.2.4 Paillier cryptosystem

In this study, we utilize the Paillier cryptosystem [67] to encrypt various signals, including state

measurements (y), reference trajectory set points (xE), and manipulated inputs (u), which are trans-

mitted to and from the controllers. A key aspect of our approach is utilizing the semi-homomorphic

property of additive homomorphism inherent in the Paillier cryptosystem. This property enables
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us to perform linear additive operations in an encrypted space, particularly within the lower en-

crypted feedback control layer. The encryption process begins with the generation of both public

and private keys. As the Paillier cryptosystem is an asymmetric encryption scheme, it utilizes two

different keys for encryption and decryption: a public key for encrypting plaintext and a private

key for decrypting ciphertext. The procedure for generating these keys is:

1. Select two large prime integers (p and q) based on the desired key bit length, such that,

gcd(pq, (p− 1)(q − 1)) = 1.

2. Calculate, M = pq.

3. Search for an arbitrary integer ḡ such that ḡ ∈ ZM2 , that is, the multiplicative group of

integers modulo M2.

4. Calculate λ = lcm(q − 1, p− 1).

5. Define L̄(x) = (x− 1)/M .

6. Verify the existence of the subsequent modular multiplicative inverse:

u = (L̄(ḡλ modM2))−1 mod M .

7. If the inverse does not exist, go back to step 3. If the inverse exists, (M, ḡ) is the public key

and (λ, u) is the private key.

After obtaining the keys, authorized recipients receive the public and private keys for encryption

and decryption, respectively. The message m is encrypted as follows:

EM(m, r) = c = ḡmrM mod M2 (6.11)
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where r is a random integer from the set ZM , and c is the resulting ciphertext obtained by encrypt-

ing m. Decryption is performed as follows to obtain m:

DM(c) = m = L̄(cλ mod M2)u mod M. (6.12)

6.2.5 Quantization

Prior to encrypting data using the Paillier cryptosystem, it must be processed to natural numbers

in ZM . However, signal values are typically in floating-point format before encryption. As a

result, a process known as quantization is employed to convert the floating-point numbers into

ZM [19]. This involves creating a set, denoted as Ql1,d, which is characterized by two parameters:

l1, representing the total bit count (combining integer and fractional bits), and d, indicating the

number of fractional bits. The set, Ql1,d, comprises rational numbers ranging from −2l1−d−1 to

2l1−d−1−2−d, with intervals of 2−d. A rational number q within Ql1,d can be expressed as q ∈ Ql1,d,

where ∃β ∈ {0, 1}l1 , and q = −2l1−d−1βl1 +
∑l1−1

i=1 2i−d−1βi. The function, gl1,d maps a real

number data point a to q ∈ Ql1,d as follows:

gl1,d : R → Ql1,d

gl1,d(a) := arg min
q∈Ql1,d

|a− q|
(6.13)

Subsequently, we convert the quantized data to a set of positive integers using a one-to-one (bijec-

tive) mapping referred to as fl2,d, as described in [19]. This mapping is structured to ensure that the
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quantized data is translated into a subset of the message space, ZM , and is performed as follows:

fl2,d : Ql1,d → Z2l2

fl2,d(q) := 2dq mod 2l2
(6.14)

In the encryption process, plaintext messages from the set Z2l2 are transformed to ciphertexts,

which can subsequently be decrypted back into the original set Z2l2 . Next, to retrieve the original

data from the set Ql1,d, an inverse mapping, labeled as f−1
l2,d

, is performed as follows:

f−1
l2,d

: Z2l2 → Ql1,d
(6.15)

f−1
l2,d

(m) :=
1

2d


m− 2l2 if m ≥ 2l2−1

m otherwise
(6.16)

Remark 6.3. Quantization-related errors tend to accumulate in multiplicatively homomorphic

encryption schemes like ElGamal, due to the compounding nature of multiplication and associated

scaling operations. In contrast, additive homomorphism, like in the Paillier scheme employed in

our work, is generally less prone to quantization error accumulation, as addition does not involve

scaling or compounding of errors through multiplication. To mitigate this effect, one can select a

higher quantization parameter.

6.3 Development of the encrypted two-layer control framework

In this section, we describe the design of the proposed encrypted two-layer control framework,

formulate the LEMPC and encrypted feedback controller, and perform a stability analysis of the
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encrypted control system.

6.3.1 Design and implementation

In the encrypted control framework illustrated in Figure 6.1, at time tk, sensor signals x(tk)

undergo encryption to form ciphertext c1 using a public key. These encrypted signals are then

transmitted to a cloud hardware security module (HSM), a dedicated hardware device utilized for

managing cryptographic keys and securely performing cryptographic operations within a cloud

computing environment. After decryption using the private key, the quantized sensor signals x̂(tk)

are sent to the cloud server responsible for nonlinear EMPC computations, aimed at determining

economically optimal dynamic set points xE(t) for t = [tk, tk + t′), where t′ represents the EMPC

operating period. Following this, the set points xE(t) are encrypted into ciphertext c′1 using the

public key within another cloud HSM. Subsequently, these encrypted set points are transmitted to

a set of PI (proportional-integral) controllers in the encrypted lower feedback control layer. Oper-

ating with a sampling period ∆ significantly smaller than the operating period t′, this lower layer

computes control inputs to track the set point trajectory using encrypted sensor signals c2, sampled

at intervals of ∆. These control input computations take place within an encrypted space without

decryption, leveraging the additive homomorphic property of the Paillier cryptosystem. At the ac-

tuator, encrypted control inputs c3 are decrypted to obtain the quantized input û(tk), which is then

applied to the process. This cycle within the lower layer continues until it receives a new encrypted

state trajectory from the EMPC in the upper layer at the end of the operating period.

The closed-loop design depicted in Figure 6.1 has three potential points vulnerable to cyber-

attacks for data manipulation: the updated economic information containing the weights of the

247



Process
Actuators
Decryption
(private key)

Sensors
Encryption
(public key)

Cyberattack 
detection 

Decryption
(private key)

Encryption
(public key) EMPC

Fluctuating 
Economics

Set of 
Encrypted 

PI-controllers
–––––– ––––––

𝐶𝑙𝑜𝑢𝑑	𝑆𝑒𝑟𝑣𝑒𝑟

𝑃𝑟𝑜𝑐𝑒𝑠𝑠	𝑆𝑖𝑡𝑒

Encrypted Networked communication channels 
Plaintext communication channels

Upper Layer – Dynamic Economic Optimization

Lower Layer – Encrypted Feedback Control

𝑐!

𝑐"

𝑐!́

𝑐# 𝑢"(𝑡𝑘) 𝑥(𝑡𝑘)

𝑥"(𝑡𝑘)𝑥𝐸(𝑡)

Cyber AttackCyber Attack

Cyber Attack

––––––
𝑥(𝑡𝑘)

𝐶𝑙𝑜𝑢𝑑	𝐻𝑆𝑀𝐶𝑙𝑜𝑢𝑑	𝐻𝑆𝑀

Figure 6.1: A block diagram of the proposed encrypted two-layer control framework.

EMPC objective function, the decrypted sensor signal received from the cloud HSM, and the com-

puted set points of the EMPC before transmission to the cloud HSM. To detect potential threats

initiated against the vulnerable upper layer, a logic-based cyberattack detector is integrated into

the lower layer, which utilizes sensor-derived data for attack detection. Upon detection, the con-

trol system logic reconfigures, disregarding signals received from the compromised upper layer,

and operates independently. Detailed information of the cyberattack detector and reconfiguration

mechanism is provided in Section 6.4.

Further, this design introduces three sources of error: one stemming from state quantization

in the sensor-to-upper layer EMPC link, another arising from set point quantization in the upper

layer EMPC-to-lower layer feedback controller link, and a third originating from control input
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quantization in the lower layer feedback controller-to-actuator link. These errors are bounded by:

|x(tk)− x̂(tk)| ≤ 2−d−1 (6.17a)

|xE(tk)− x̂E(tk)| ≤ 2−d−1 (6.17b)

|u(tk)− û(tk)| ≤ 2−d−1 (6.17c)

The bounds of the quantization error, as detailed in Eq. (6.17), are derived in Remark 6.5. Further,

an additional error is introduced in the applied control input. This stems from the lower layer

feedback controller, h(e, xE), that uses the quantized error ê = x̂ − x̂E to compute control inputs

in an encrypted space. This error will be bounded by:

|e− ê| = |(x− xE)− (x̂− x̂E)|

= |(x− x̂) + (x̂E − xE)|

≤ 2−d−1 + 2−d−1

≤ 2−d

(6.18)

Remark 6.4. The two-layer encrypted dynamic optimization and control framework outlined in

our work is adaptable and can be applied when other dynamic optimization strategies are used in

the upper-layer to calculate the set points (current values of the operating trajectory) of the lower-

layer control system, not just the economic MPC scheme employed in our work. The key objective

of this structure is to facilitate nonlinear control and optimization within an encrypted system.

In this framework, the upper layer computes set points through nonlinear dynamic optimization

(which cannot be performed in an encrypted space), then encrypts these set points and transmits
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them to the lower layer. The lower layer, without decrypting the set points, utilizes encrypted

measurement feedback to track these set points, integrating encryption with nonlinear dynamic

optimization and control.

Remark 6.5. Quantization error occurs when a value intended for quantization does not precisely

match any value in the set Ql1,d, which is spaced apart by 2−d. Suppose the value to be quantized

is denoted as a, which is positioned between b and b + 2−d. If the absolute difference between a

and b is smaller than that between a and b+ 2−d, then a is assigned to b; otherwise, it is assigned

to b+ 2−d. As a result, the maximum potential difference between the actual and quantized values

is half the resolution, or 2−d−1. Therefore, increasing the value of d reduces the quantization error.

Remark 6.6. We operate the proposed closed-loop design under a few assumptions. Firstly, we

assume that plaintext data is vulnerable to cyberattacks, wherein it can be manipulated or sub-

jected to denial-of-service (DOS) attacks. However, we do not consider attacks on encrypted data

due to its inherent privacy. Each encryption process generates a unique ciphertext due to the ran-

dom number generated, making manipulation easily detectable. In case of an attack on encrypted

data, the only recourse is to transfer control to a secure backup system isolated from any network.

Secondly, we assume that the cloud server where nonlinear computations occur in plaintext is

vulnerable to cyber threats. Lastly, we assume that the cloud HSMs responsible for housing cryp-

tographic keys and performing cryptographic operations are fully secure. Cloud HSMs, offered

by leading providers such as Microsoft Azure, Amazon Web Services (AWS), and Google Cloud

Platform (GCP), adhere to stringent security standards like FIPS 140-2/3 [12]. They are chosen

precisely because they are impervious to cyberattacks, validating this assumption.
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Remark 6.7. While the proposed closed-loop design of the encrypted two-layer control framework

is vulnerable to cyberattacks, it enhances cybersecurity by integrating a cyberattack detection and

subsequent reconfiguration mechanism. Furthermore, it improves the robustness of the control

system by transmitting data only once during each operating period between the lower and upper

control layers, reducing the potential for attacks due to less frequent data transmission. Addition-

ally, in this design, the cloud server does not have access to either key, and no component has

access to both the public and private keys; they only have access to one or the other. Also, follow-

ing the prevailing standard recommended by NIST, it is recommended to use cryptographic keys

with a bit-length greater than 2048 to assure robustness [9].

Remark 6.8. For large-scale processes with numerous states and inputs, employing a centralized

MPC in the cloud server would entail significant computational expenses. Alternatively, decentral-

ized and distributed MPCs could be integrated into the same framework to alleviate the computa-

tional burden associated with the centralized approach, as demonstrated in prior works [37, 38].

In these works, encrypted data was decrypted at each sampling instance within the nonlinear MPC

to compute control inputs. However, in our approach, decryption only occurs within the LEMPC

of the upper layer at the start of each operating period, rather than at every sampling period.

Control inputs for tracking the reference trajectory are then computed without decryption. As a

result, the frequency of encryption-decryption operations at the controllers is substantially reduced

in our proposed framework. This reduction enhances security by minimizing the opportunities for

manipulating decrypted data.

Remark 6.9. The duration of the operating period t′ is established by considering the lowest fre-
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quency required for updating economic data, including energy prices, raw material costs, product

demand, or product selling prices. Within the EMPC objective function, this economic information

remains constant throughout the operating period. Additionally, the chosen period can be shorter

than the interval between updates of economic information. In this scenario, economic data would

remain constant between operating periods. However, it should still be long enough to compute

state trajectories optimized over a period significantly larger than the sampling period of the lower

feedback layer, where these trajectories are tracked.

6.3.2 Dynamic economic optimization

The optimization problem for the LEMPC in the upper layer of the proposed control framework is

represented as:

J = max
uE∈S(∆E)

∫ tk+NE

tk

L(x̃E(t), uE(t)) dt (6.19a)

s.t. ˙̃xE(t) = f(x̃E(t), uE(t)) (6.19b)

uE ∈ U, ∀ t ∈ [tk, tk+NE
) (6.19c)

|ẋE(t)| ≤ γE, ∀ t ∈ [tk, tk+NE
) (6.19d)

x̃E(tk) = x̂(tk) (6.19e)

V (x̃E(tk)) ≤ ρsecure, ∀ t ∈ [tk, tk+NE
),

if x̃E(tk) ∈ Ωρsecure (6.19f)

V̇ (x̃E(tk), uE) ≤ V̇ (x̃E(tk),Φ(x̃E(tk)),

if x̃E(tk) ∈ Ωρ\Ωρsecure (6.19g)
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where ∆E is the LEMPC sampling period. Eq. (6.19e) uses the quantized state, x̂(tk), after decryp-

tion, to initialize the LEMPC plant model of Eq. (6.19b). k represents the sampling instance, and

NE represents the number of sampling periods within the LEMPC prediction horizon. x̃E(t) is the

predicted state trajectory of the LEMPC model of Eq. (6.19b). This model is utilized to integrate

the economic objective function of Eq. (6.19a) to calculate the optimized LEMPC control inputs,

uE(t), where t ∈ [tk, tk + NE). The LEMPC’s goal is to maximize this objective function over

the prediction horizon such that it satisfies the constraints of Eqs. (6.19c) to (6.19g). Eq. (6.19c)

represents the constraints imposed on the control inputs. The constraint of Eq. (6.19d) ensures that

the lower layer can track the reference trajectory xE(t) by limiting its rate of change, ẋE(t). From

the Lyapunov constraint of Eq. (6.19f), the LEMPC ensures that, if the state x̃(tk) ∈ Ωρsecure at

time tk, then it lies within this region for t ∈ [tk, tk+NE), where ρsecure is a level set of the control

Lyapunov function V (x̃E) such that V (x̃E) ≤ ρsecure. If x̃E(tk) lies within the set Ωρ \ Ωρsecure ,

the Lyapunov constraint of Eq. (6.19g), ensures that LEMPC drives the predicted state trajectory

x̃E(t) to the origin at a rate faster than or at least equal to the stabilizing controller Φ(x̃E(tk))

(the existence of Φ(·) follows from the stabilizability assumption on the process made in Sec-

tion 6.2.3). Following the computation of optimized control inputs uE by LEMPC, the reference

trajectory xE(t) is derived by recursively solving the model described in Eq. (6.19b), where uE is

implemented in a sample-and-hold fashion. The xE values are logged at intervals of ∆, denoting

the lower layer’s sampling period, and subsequently relayed to the cloud HSM for encryption prior

to transmission to the encrypted lower-layer control system for tracking.

Remark 6.10. The proposed LEMPC operates on feedback, as it starts with actual state measure-
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ments. However, in case of an event like a denial-of-service (DOS) attack where the threat actor

blocks the decrypted sensor measurements from reaching the upper layer, we can initialize the

LEMPC using the final value of the predicted state trajectory from the previous operating period.

This assumes that at the end of the previous operating period, the deviation between the actual

state trajectory and the reference trajectory is within the bounds as derived in Section 6.3.4.

6.3.3 Encrypted feedback control

In the encrypted space, only linear mathematical operations are permissible. Consequently, we

utilize the recursive rule to approximate integral terms within the set of proportional-integral con-

trollers of the encrypted lower layer feedback control system, ensuring strictly linear mathematical

operations, as illustrated below:

ui(tk) = Kci

(
ei(tk) +

1

τi

∫ tk

0

ei(τ) dτ
)

= Kciei(tk) + Itk

= Kciei(tk) +K ′
ci
ei(tk) + Itk−1

(6.20)

where ui(tk) is the ith control input of the lower layer. The error of the ith state at time tk is

described by ei(tk) = xEi
(tk) − xi(tk), with xEi

(tk) and xi(tk) denoting the set point and state

measurement of the ith state, at time tk, respectively. tk and tk−1 denote the sampling instances

k and k − 1, respectively. Kci and K ′
ci

represent the proportional and integral gains, while Itk

denotes the integral control action at tk. At k = 0, It0 is assumed to be 0. The lower layer has a

sampling period of ∆, and applies the computed control inputs in a sample-and-hold manner for

the time t = [tk, tk + ∆), and then recomputes the control input with the updated set point and
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state feedback at time t = tk+1.

6.3.4 Stability analysis

In this subsection, we examine the closed-loop stability of the proposed two-layer encrypted con-

trol framework, with the LEMPC at the upper layer and the encrypted feedback controller at the

lower layer.

Theorem 6.1. Considering the nonlinear system described in Eq. (6.1), we analyze its stability

under the encrypted lower layer feedback controller ĥ(ê, x̂E), under the influence of bounded

disturbances. The lower layer feedback controller h(e, x), operating without encryption, satisfies

the inequalities specified in Eq. (6.6). Additionally, we assume that the initial error ê(t0) = x̂(t0)−

x̂E(t0) lies within the region Ωρ∗ . For the closed-loop system of Eq. (6.1) under the encrypted lower

layer feedback controller, we can determine positive real numbers ϵerror, ϵw, for which there exist

∆,∆E, γE , and d, that satisfy the following conditions:

|ẋE(t)| ≤ γE <
θ̂α3(ϵerror)

2L′′
E + α4(α

−1
1 (ρ∗)) + α5(α

−1
1 (ρ∗) +M∆)

(6.21)

µ = α−1
3

[
(2L′′

E + α4(α
−1
1 (ρ∗)) + α5(α

−1
1 (ρ∗) +M∆))γE

θ̂

]
(6.22)

− (1− θ̂)α3(µ) + L′
wθ + L′

eM∆+ L′
EγE∆E + eq ≤ −ϵw/∆ (6.23)

for some θ̂ with 0 < θ̂ < 1. If (x̂(t0) − x̂E(t0)) ∈ Ωρ∗ , then the deviation ê(t) remains bounded

in Ωρ∗ under the encrypted stabilizing controller and the actual closed-loop state trajectory x

is always bounded in Ωρ. Furthermore, given a sufficiently large time T , the deviation between
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the actual system of Eq. (6.1) and the economically optimal trajectory is ultimately bounded by

|e(t)| ≤ ϵerror for t ∈ [tk, tk + t′).

Proof. We prove that the deviation between the actual system evolution and economically opti-

mal set point trajectory under the lower layer encrypted feedback controller (i.e., ê(t)) is always

bounded in Ωρ∗ and, after a sufficiently large time T < t′, where t′ is the operating period of the

LEMPC from t0 to t0 + t′, the deviation is bounded in Bϵerror . Also, based on the bound derived in

Eq. (6.18), we can say e(t) is also bounded in Ωρ∗ as ê(t) ∈ Ωρ∗ .

We assume that, at sampling time tk ∈ [t0, t0 + t′), ê(tk) ∈ Ωρ∗\Bµ. At t0, the LEMPC

recomputes a new optimal trajectory xE(t) for the encrypted lower feedback layer to track from

t0 to t0 + t′. We define two sets Bϵerror = {|e(t)| ≤ ϵerror} and Bµ = {|e(t)| ≤ µ}, where µ is

defined in Eq. (6.22) and Bµ ⊂ Bϵerror . If the deviation ê(t) is bounded in the set Ωρ∗\Bµ and the

conditions of Eq. (6.21) and Eq. (6.22) are met, the deviation will decrease along the closed-loop

state trajectory, and after a sufficiently large time T , the deviation will converge to the set Bµ.

Furthermore, the deviation e(t) is ultimately bounded in the ball Bϵerror .

The time derivative of the control Lyapunov function along the deviation of system trajectory

of Eq. (6.3) is, without disturbances or encryption:

V̇ (e(tk), x(tk)) =
∂V (e(tk), xE(tk))

∂e
ė(tk) +

∂V (e(tk), xE(tk))

∂xE

ẋE(tk) (6.24)
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Using the Lipschitz property of Eq. (6.6b), after substituting ė(tk) = ẋ(tk)− ẋE(tk), we get

V̇ (e(tk), x(tk)) =
∂V (e(tk), xE(tk))

∂e
ẋ(tk)−

∂V (e(tk), xE(tk))

∂e
ẋE(tk) +

∂V (e(tk), xE(tk))

∂xE

ẋE(tk)

≤ ∂V (e(tk), xE(tk))

∂e
g(e(tk), xE(tk), 0, h(e(tk), xe(tk)), 0)

− ∂V (e(tk), xE(tk))

∂e
ẋE(tk) +

∂V (e(tk), xE(tk))

∂xE

ẋE(tk)

≤ −α3(|e(tk)|)−
∂V (e(tk), xE(tk))

∂e
ẋE(tk) +

∂V (e(tk), xE(tk))

∂xE

ẋE(tk)

(6.25)

The time derivative of the control Lyapunov function along the deviation and economically optimal

state trajectory for τ ∈ [tk, tk +∆), under the encrypted feedback controller, with disturbances is

V̇ (ê(τ), x̂(τ)) =
∂V (ê(τ), x̂E(τ))

∂e
ė(τ) +

∂V (ê(τ), x̂E(τ))

∂xE

ẋE(τ) (6.26)

Adding and subtracting Eq. (6.24) to and from Eq. (6.26), we get

V̇ (ê(τ), x̂(τ)) ≤ ∂V (ê(τ), x̂E(τ))

∂e
ė(τ)− ∂V (e(tk), xE(tk))

∂e
ė(tk) +

∂V (e(tk), xE(tk))

∂e
ė(tk)

+
∂V (ê(τ), x̂E(τ))

∂xE

ẋE(τ)−
∂V (e(tk), xE(tk))

∂xE

ẋE(tk))

+
∂V (e(tk), xE(tk))

∂xE

ẋE(tk))

(6.27)

Substituting Eq. (6.25) in Eq. (6.27), using the bound of Eq. (6.2), and using the Lipschitz property
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of Eq. (6.10), we get

V̇ (ê(τ), x̂(τ)) ≤ −α3(|e(tk)|)−
∂V (e(tk), xE(tk))

∂e
ẋE(tk) +

∂V (e(tk), xE(tk))

∂xE

ẋE(tk)

− ∂V (e(tk), xE(tk))

∂e
ė(tk)−

∂V (e(tk), xE(tk))

∂xE

ẋE(tk)

+
∂V (ê(τ), x̂E(τ))

∂e
ė(τ) +

∂V (ê(τ), x̂E(τ))

∂xE

ẋE(τ)

≤ −α3(|e(tk)|) +
∂V (ê(τ), x̂E(τ))

∂e
ė(τ)− ∂V (e(tk), xE(tk))

∂e
ė(tk)

+
∂V (ê(τ), x̂E(τ))

∂xE

ẋE(τ)−
∂V (e(tk), xE(tk))

∂e
ẋE(tk)

≤ −α3(|e(tk)|) + L′
w|w(τ)|+ L′

e|ê(τ)− e(tk)|+ L′
E|x̂E(τ)− xE(tk)|

+ L′′
E|ẋE(τ)− ẋE(tk)|+ L′

u|û− u|+ α5(|ê(τ)|)γE + α4(|e(tk)|)γE

(6.28)

Using the quantization error bounds of Eq. (6.17) and Eq. (6.18), in Eq. (6.28), we get

V̇ (ê(τ), x̂(τ)) ≤ −α3(|e(tk)|) + L′
w|w(τ)|+ L′

e|ê(τ)− e(τ)|+ L′
e|e(τ)− e(tk)|

+ L′
E|x̂E(τ)− xE(τ)|+ L′

E|xE(τ)− xE(tk)|

+ 2L′′
EγE + L′

u2
−d−1 + α5(|ê(τ)|)γE + α4(|e(tk)|)γE

≤ −α3(|e(tk)|) + L′
w|w(τ)|+ L′

e2
−d + L′

E2
−d−1

+ L′
e|e(τ)− e(tk)|+ L′

E|xE(τ)− xE(tk)|

+ 2L′′
EγE + L′

u2
−d−1 + α5(|ê(τ)|)γE + α4(|e(tk)|)γE

(6.29)

Due to the continuity of e(t) and xE(t) ∀ t ∈ [tk, tk + ∆), and from Eq. (6.8), we can write that

|e(τ)− e(tk)| ≤ M∆, and |xE(τ)− xE(tk)| ≤ γE∆E ∀t ∈ [tk, tk +∆). Using these bounds, and
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the inequalities of Eq. (6.6), it follows from Eq. (6.29):

V̇ (ê(τ), x̂(τ)) ≤ −α3(|e(tk)|) + L′
w|w(τ)|+ L′

e2
−d + L′

E2
−d−1 + 2L′′

EγE + L′
u2

−d−1

+ L′
EγE∆E + L′

eM∆+ α5(|ê(τ)|)γE + α4(|e(tk)|)γE
(6.30)

As e(tk) ∈ Ωρ∗\Bµ, Eq. (6.30) can be written as,

V̇ (ê(τ), x̂(τ)) ≤ −α3(µ) + L′
wθ + L′

eM∆+ L′
EγE∆E + eq

+ (α4(α
−1
1 (ρ∗)) + α5(α

−1
1 (ρ∗) +M∆) + 2L′′

E)γE

(6.31)

with eq = L′
e2

−d +L′
E2

−d−1 +L′
u2

−d−1 representing the error due to quantization (for performing

encryption). If Eq. (6.21) is satisfied, then there exists a γE such that the following equation holds:

V̇ (ê(τ), x̂(τ)) ≤ −(1− θ̂)α3(µ) + L′
wθ + L′

eM∆+ L′
EγE∆E + eq (6.32)

for some positive θ̂ < 1. If the condition of Eq. (6.23) is satisfied, then there exists ϵw > 0 such

that the following inequality holds for ê(tk) ∈ Ωρ∗\Bµ:

V̇ (ê(τ), x̂(τ)) ≤ −ϵw/∆, ∀τ ∈ [t, tk+1) (6.33)

Integrating this bound over t ∈ [tk, tk+1), we get

V (ê(tk+1), x̂(tk+1)) ≤ V (ê(tk), x̂(tk))− ϵw, ∀t ∈ [tk, tk+1) (6.34)

∀ê(tk) ∈ Ωρ∗\Bµ. Using the above inequalities recursively, if e(tk) ∈ Ωρ∗\Bµ, the deviation

between the actual state trajectory and the economically optimal reference trajectory will converge
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to Bµ, within time T , without exiting the set Ωρ∗ . Further, there exists a sufficiently large ϵerror > 0,

such that if the deviation exits the ball Bµ, it is still maintained within Bϵerror as the increase in

deviation would be bounded over one sampling period. From the Lyapunov constraints of the

LEMPC in Eq. (6.19f), and Eq. (6.19g), the reference trajectory xE(t) will be bounded in Ωρsecure

within time T . As e(t) is always bounded in the set Ωρ∗ , from Theorem 6.1, and x(t) = xE(t) +

e(t), the closed-loop state trajectory of the system will converge to the set Ωρe in time T , where

Ωρ < Ωρe < Ωρsecure , and will remain there.

Remark 6.11. From Eq. (6.31), we can identify five factors affecting the rate of change of the con-

trol Lyapunov function when ê(tk) ∈ Ωρ∗\Bµ: the lower layer control system and LEMPC sam-

pling periods (∆ and ∆E), disturbance bound (θ), rate of change of the reference state trajectory

(ẋE), and the quantization parameter (d). While disturbance is inherent to the system, adjustments

to the other factors can be made to restrict the deviation between the state trajectory and refer-

ence state trajectory, thus achieving the desired tracking performance. In essence, decreasing the

sampling times and the rate of change of the reference state trajectory while increasing the quanti-

zation parameter can help reduce the deviation between the actual state trajectories and reference

trajectories.

6.4 Application to a nonlinear chemical process

In this section, we apply the proposed encrypted two-layer control framework on a nonlinear chem-

ical process with disturbance and sensor noise, operating at an unstable steady state. Multiple simu-

lation cases are presented and compared to demonstrate the economic benefits and cyber-resilience

of the proposed control framework.
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6.4.1 Process description and model development

Specifically, the process considered is the conversion of reactant A to product B in a non-isothermal,

well-mixed continuous stirred tank reactor (CSTR). This involves an irreversible second-order

exothermic reaction, denoted as A → B, with a reaction rate given by rB = k0e
− E

RT C2
A. The

CSTR is equipped with a heating jacket that can either supply or remove heat at a rate Q. Using

material and energy balance equations, we define the dynamic model of this process as follows:

dCA

dt
=

F

V
(CA0 − CA)− k0e

−E
RT C2

A (6.35a)

dT

dt
=

F

V
(T0 − T ) +

−∆H

ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(6.35b)

The reactor holds the reacting liquid with a constant volume V , CA denotes the concentration of

reactant A, and T represents the reactor temperature. The reactant A is introduced by the feed with

a volumetric flow rate F , concentration CA0, and a temperature of T0. The liquid in the reactor

maintains a constant heat capacity Cp and density ρL. Parameters such as ∆H , k0, R, and E

correspond to the enthalpy of reaction, pre-exponential constant, ideal gas constant, and activation

energy, respectively. These parameters are quantified in Table 6.1. The state variables, expressed

in deviation terms, consist of the reactant concentration and the reactor temperature, denoted as

x⊤ = [CA−CAs, T−Ts], where the subscript "s" denotes the steady-state value. Initially, the CSTR

operates at an unstable steady-state characterized by [CAs, Ts] = [1.9537 kmol/m3, 401.87 K],

with inlet feed concentration and heat input rate denoted as [CA0s, Qs] = [4 kmol/m3, 0 kJ/hr].

The control inputs are: CA0 − CA0s and Q − Qs, representing deviations from the steady-state

inlet concentration and heat input rate, respectively. These inputs are constrained within the closed
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sets [−3.5, 3.5] kmol/m3 and [−5 × 105, 5 × 105] kJ/hr, respectively. At the initial time t = t0,

the system begins at equilibrium (x0 = [0, 0]⊤). Process noise, wk, is introduced to the inlet flow

rate, F , such that |wk| ≤ 0.1 × F . Here, k denotes the sampling period, and wk is a normally

distributed random variable with zero mean and a standard deviation of 3.5% of the inlet flow

rate of 5m3/hr. Additionally, non-Gaussian measurement noise, extracted from industrial data as

described in [57], is added to all measured states. This noise is normalized and scaled by 1% before

being applied to the concentration state, while it is applied to the temperature state without scaling.

The control objective is to increase the economic profit of the process described in Eq. (6.35) by

Table 6.1: Parameter values for the chemical process example

F = 5m3/hr V = 1m3

k0 = 8.46× 106m3/(kmol hr) E = 5× 104 kJ/kmol
R = 8.314 kJ/(kmolK) ρL = 1000 kg/m3

∆H = −1.15× 104 kJ/kmol T0 = 300K
Qs = 0kJ/hr CA0s = 4kmol/m3

CAs = 1.9537 kmol/m3 Ts = 401.87K
Cp = 0.231 kJ/(kgK)

manipulating the inlet concentration and heat input rate, while ensuring that the state trajectories

of the closed-loop system remains within the stability region Ωρ at all times using the LEMPC.

Ultimately, the system should converge to the economically viable region Ωρe and stay there. The

objective function of the LEMPC optimizes the production rate of B, consumption of reactant A,

and the heat input rate Q−Qs as follows:

L(xE, u) = A1k0e
− E

RT C2
A − A2(CA0 − CA0s)− A3(Q−Qs)

2 (6.36)
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where A1, A2, and A3 are the potentially time-varying weighting factors that account for fluctua-

tions in process economics, i.e. product selling price, reactant cost, and energy cost, respectively.

The control Lyapunov function V (e, xE) = x⊤
EPxE is defined with the following positive definite

P matrix:

P =

1060 22

22 0.52

 (6.37)

The time-varying weights chosen for the example considered are provided in Table 6.2. The closed-

Table 6.2: Time-varying LEMPC weights for chemical process example

Time (t) A1 A2 A3

0 hr ≤ t < 1 hr 1 17 1× 10−8

1 hr ≤ t < 2 hr 0.99 14 0.8× 10−8

2 hr ≤ t < 3 hr 1.01 5 0.84× 10−8

3 hr ≤ t < 4 hr 0.98 7 0.9× 10−8

t ≥ 4 hr 1.02 9 0.9× 10−8

loop stability region for the CSTR is defined as Ωρ, with ρ = 320, which is characterized as a level

set of the Lyapunov function. The secure operating region Ωρsecure for the LEMPC described in

Eq. (6.19) is defined with ρsecure = 85. Further, the desired region of economic feasibility, Ωρe ,

within which the real state trajectory is to be bounded, is selected to have ρe = 130. The operating

period of the LEMPC is t′ = 1hr. The lower layer encrypted control system operates with a

sampling period of 1.8 s, whereas the LEMPC has a sampling period of 180 s. The prediction

horizon for the LEMPC is set to NE = 20 sampling periods. The integration step hc chosen to

integrate the LEMPC objective function using the explicit Euler method is 0.36 s. The positive

definite matrix P in V = x⊤
EPxE and the stability region Ωρ are determined through simulations

that search for the largest invariant set Ωρ in the state-space within which V̇ is rendered negative,
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for all states in Ωρ under the stabilizing controller h(e, xE) ∈ U . In the present example, h(e, xE)

is a set of PI controllers, [u1, u2]
⊤ of the form of Eq. (6.20) with proportional gains K1 = 101 and

K2 = 104, and integral time constants τ1 = 10−3 and τ2 = 10−6.

6.4.2 Performing encryption in the two-layer control framework

Before encrypting and decrypting the data, parameters such as d, l1, and l2 are carefully selected.

The integer bit count l1−d is determined from extreme feasible states and control inputs. The upper

limit of Ql1,d is calculated using from 2l1−d−1 − 2−d, while the lower limit can be obtained from

−2l1−d−1. The quantization parameter, d, is selected depending on the desired level of accuracy

and operating range of state and control input values. Further, l2 is chosen to exceed l1. In the

example presented in this section, l1 − d is calculated to be 16, determining l1 and d. In the set

Ql1,d, numbers are separated by a resolution of 2−d. In our simulations, we use d = 8 in all

scenarios except when it is specifically changed and noted to be d = 1. For d = 8, l1 = 24,

and l2 is selected as 30. Similarly, for d = 1, l1 = 16, and l2 is set to 20. Paillier Encryption

is implemented using Python’s "phe" module, PythonPaillier [21]. To solve the multi-constrained

non-convex optimization problem of the upper layer LEMPC in the two-layer encrypted control

framework, we utilize the Python module of the IPOPT software [83].

6.4.3 Cyberattack detection and system reconfiguration

A logic-based cyberattack detector is integrated into the lower layer of the encrypted two-layer con-

trol framework. This detector receives sensor readings every three sampling instances of the lower

control layer and utilizes this data to compute the control Lyapunov function V (x). Importantly,
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this computation occurs prior to encryption or transmission to the cloud HSM, ensuring its security.

In the event of a cyberattack, the objective of the attack is to divert the process from its operating

trajectory while still maintaining it within the stability region, Ωρ. This may lead to a prolonged

cyberattack that could go undetected, potentially being mistaken for a process disturbance. The

upper layer LEMPC aims to maintain the set point trajectory within a more conservative region,

Ωρsecure , and lacks information about the bounded region Ωρe as detailed in the earlier section. In

the event of an attack, the system would drift away from the economically viable operating re-

gion, making it challenging to bring it back within Ωρsecure due to the attack’s interference. If the

system were not under attack, the contractive constraints of the LEMPC would drive the system

back toward the secure operating region. If the detector records three consecutive instances where

the control Lyapunov function has values V (x) ≥ ρe, and its value increases compared to its last

recorded value, it identifies the system as being under attack. Subsequently, the control reconfigu-

ration logic rejects the previously received economically optimal set points from the compromised

upper layer. Subsequently, it utilizes the encrypted set points of the prior operating period when

the system operated without attack detection.

Remark 6.12. In the proposed control architecture, the lower-layer control system receives en-

crypted set-points (values of the operating trajectory at the current time) that are maintained at

different time intervals. The control actions implemented on the process by the lower-layer control

system are calculated from encrypted feedback without decrypting the state information or the set

points. Since the measured state data remains encrypted, it is very difficult to implement a cyber-

attack in the lower-layer control system; this is an important advantage of the proposed control

architecture. On the other hand, cyberattacks can be launched in the upper-layer EMPC system

that calculates the set-points for the lower-layer control system and this is where attack detection

mechanisms are implemented to detect such attacks. With respect to cyberattacks that can influ-
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ence encrypted communication, this is an issue that goes beyond the scope of the present work.

It is important to note that given the linear nature of the lower-layer control system, alternative,

perhaps more secure, encryption schemes can be used in the lower-layer with similar properties

being proved for the closed-loop system.

Remark 6.13. Since the lower layer solely receives encrypted set points from the upper layer and

operates within the defined economically viable region, taking into account fluctuating economics,

identifying cyberattacks that do not push the system outside this region becomes challenging. How-

ever, the absence of information in the compromised upper layer concerning the bounds of this re-

gion adds another layer of robustness to the proposed detection scheme. Detecting attacks within

this region would necessitate decrypted economic information from the upper layer, which could

also be vulnerable to cyberattacks. Therefore, in this study, we only focus on cyberattacks capable

of driving the system away from the economically viable operating region while maintaining it

within the stable region.

Remark 6.14. As mentioned in Section 6.3.1, there are three potential points of cyberattack where

plaintext data could be manipulated in the presented closed-loop design of Figure 6.1. For brevity,

we only demonstrate results when a false-data injection cyberattack is initiated on the data received

by the upper layer LEMPC after decryption, ensuring that the system does not exit the stability

region. Detailed information on the launched cyberattack and similar classes of cyberattacks has

been discussed in [41]. These attacks are designed to ensure that the system does not exit the

stability region during the attack, making them difficult to detect.
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6.4.4 Simulation results of the encrypted two-layer control framework

The proposed encrypted two-layer control framework is applied to a nonlinear chemical process

with sensor noise and disturbances. Results depicted in Figures 6.2 and 6.3 illustrate the pro-

posed two-layer framework’s performance under an LEMPC objective function whose coefficients

(weights) change for each operating period.Figures 6.4 and 6.5 display the closed-loop states and

inputs and corresponding state-space trajectories under encrypted lower-layer control with set-

points calculated. Furthermore, Figures 6.6 and 6.7 show the results under the encrypted two-layer

control framework with an LEMPC objective function whose coefficients are set equal to the ones

of the first operating period throughout the five-period operation. Finally, Figures 6.8 and 6.9 il-

lustrate closed-loop states, inputs and state-space trajectories under encrypted lower-layer control

with set-points calculated at the upper layer using steady-state optimization with the same eco-

nomic objective as in the LEMPC and with weights set equal to the ones of the first operating

period.

Analyzing these results in more detail, the closed-loop simulation results in Figures 6.2

and 6.3 illustrate time-varying operating trajectories for different operating periods. Initially, when

raw material costs are high, a time-varying operation is preferred to maximize economic benefits.

As raw material costs decrease over successive periods, steady-state operation becomes more fa-

vorable as determined by the upper-layer LEMPC. Figures 6.4 and 6.5 depict how different steady-

states are maintained for each operating period with time-varying (changing every period and re-

maining constant within a single period) weights in the objective function of the steady-state opti-

mizer. Figures 6.6 and 6.7 show that with time-invariant weights in the LEMPC objective function,

267



similar dynamic trajectories are computed and maintained across operating periods. Figures 6.8

and 6.9 demonstrate that steady-state operation is maintained when a time-invariant objective is

used in the steady-sate optimizer for all operating periods. Comparing the performance of these

scenarios justifies the application of EMPC through the encrypted two-layer framework to achieve

economically optimal time-varying operation in certain periods over steady-state operation.
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Figure 6.2: State and control input profiles under the encrypted two-layer control framework with
an LEMPC objective function whose weights change for each operating period.

Table 6.3 presents the total economic objective function values for the closed-loop simula-

tions. These results demonstrate that the proposed framework, particularly with dynamic economic

optimization, outperforms steady-state optimizers. Notably, the time-varying LEMPC objective

function yields the highest economic objective function after 5 hr of process time, followed by the
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Figure 6.3: State-space plot for the evolution of the state and reference trajectories under the
encrypted two-layer control framework with an LEMPC objective function whose weights change
for each operating period.

Table 6.3: Economic Objective function values for different simulations at the end of a 5 hr process
duration

Operation type

Objective function weights Optimization Total economic objective function Increase (%)

Time-varying
LEMPC 70,569 47.66
Steady-state 56,541 18.30

Time-invariant
LEMPC 65,614 37.28
Steady-state 47,793 0

LEMPC with a constant objective function. In all aforementioned cases, the lower layer encrypted

feedback controllers track the state trajectory well, and it remains bounded in Ωρe at all times.

Figure 6.11 and Figure 6.10 depict results under the encrypted two-layer control framework with

a time-varying LEMPC objective function, with and without a cyberattack detection and recon-

figuration mechanism, respectively. In both cases, a false-data injection attack is initiated at 4 hr.

With the detection and reconfiguration mechanism, the state trajectory is promptly tracked within
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Figure 6.4: State and control input profiles under encrypted lower-layer control with set-points
calculated at the upper layer using steady-state optimization with the same economic objective as
in the LEMPC and with weights changing at each operating period.

Ωρe upon exit as shown in Figure 6.11, while without it, the trajectory remains outside Ωρe for

an extended period as depicted in Figure 6.10. After detection, the lower-layer controller follows

the state trajectory from the previous operating period, during which no attack was detected, and

the closed-loop state remained within Ωρe at all times. In all these simulations, the quantization

parameter d is maintained at 8. Figure 6.12 illustrates results under the encrypted two-layer control

framework with a time-varying LEMPC objective function for d = 1, where the state trajectory

exits Ωρe at certain points and struggles to track the set point trajectory effectively, unlike the other

cases. All other parameters were maintained the same as the case presented in Figure 6.3, for
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Figure 6.5: State-space plot for the evolution of the state and reference trajectories under encrypted
lower-layer control with set-points calculated at the upper layer using steady-state optimization
with the same economic objective as in the LEMPC and with weights changing at each operating
period.

comparison. This highlights the need for using a higher quantization parameter and validates the

theoretical results.

Remark 6.15. As previously mentioned, we have employed both time-varying and time-invariant

coefficients (weights) in the objective functions across different scenarios. However, the coeffi-

cients remain the same for the initial operating period in all cases. In conducting the economic

performance comparison presented in Table 6.3, we utilized recorded state and control input tra-

jectory data from the different closed-loop simulations spanning a process duration of 5 hours.

This data was used to compute the total objective function value with time-varying (changing from

period to period and staying constant within a single period) coefficients in all listed scenarios.

This approach facilitates a quantitative comparison of the potential loss or gain resulting from the

utilization or omission of time-varying coefficients in the objective function.
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Figure 6.6: State and control input profiles under the encrypted two-layer control framework with
an LEMPC objective function that uses the same weights for each operating period.

Remark 6.16. In Figure 6.12, the actual state trajectory exits the economically optimal operating

region. This is attributed to the use of a different value for the quantization parameter, d = 1, as

opposed to d = 8, resulting in a different bounded error and consequently, a distinct economically

optimal region Ωρe . Despite this variation, we have depicted the same regions for comparison

purposes, emphasizing that opting for a higher quantization parameter enables a stricter bounded

error. Similarly, maintaining lower layer sampling times, and a lower rate of change of the state

reference trajectory can lead to stricter bounds on the error.

Remark 6.17. With respect to comparing the proposed cybersecure, two-layer control architecture

to other approaches, it is important to point out that it is not as optimal as the use of a single-
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Figure 6.7: State-space plot for the evolution of the state and reference trajectories under the
encrypted two-layer control framework with an LEMPC objective function that uses the same
weights for each operating period.

layer EMPC system where there is no need to impose rate of change constraints in the operating

trajectory calculated by the EMPC. However, such a single-layer EMPC system (in addition to

requiring a significant computational load at the lower layer) is fully non-robust to cyber-attacks

as it requires decrypted signals to carry out calculations in the feedback control layer, rendering

it vulnerable to cyber-attacks. If, on the other hand, one were to compare the two-layer con-

trol architecture with encryption at the lower layer to the same architecture without encryption,

then the performance loss is relatively small when a sufficiently large d value is used as we have

demonstrated above (see also [81]).
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Figure 6.8: State and control input profiles under encrypted lower-layer control with set-points
calculated at the upper layer using steady-state optimization with the same economic objective as
in the LEMPC and with fixed weigths.

6.5 Conclusion

In this chapter, we introduced an encrypted two-layer framework to integrate dynamic economic

optimization with encrypted control for nonlinear processes. At the upper layer, an LEMPC with a

time-varying objective function computed the economically optimal state trajectories to be tracked

by the encrypted lower layer feedback control system. Through a comprehensive stability analysis,

we established bounds on the deviation between the actual state trajectory and reference trajec-

tory, and listed tunable parameters to achieve the desired bounded error. Theoretical results were

demonstrated and validated using a chemical process example, and the economic benefits of the
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Figure 6.9: State-space plot for the evolution of the state and reference trajectories under encrypted
lower-layer control with set-points calculated at the upper layer using steady-state optimization
with the same economic objective as in the LEMPC and with fixed weights.
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Figure 6.10: State-space plot for the evolution of the state and reference trajectories under the
encrypted two-layer control framework using an LEMPC objective function whose weights change
for each operating period, without cyberattack detection and reconfiguration, when a cyberattack
is initiated at t = 4hr.
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Figure 6.11: State-space plot for the evolution of the state and reference trajectories under the
encrypted two-layer control framework using an LEMPC objective function whose weights change
for each operating period, with cyberattack detection and reconfiguration, when a cyberattack is
initiated at t = 4hr.
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Figure 6.12: State-space plot for the evolution of the state and reference trajectories under the
encrypted two-layer control framework using an LEMPC objective function whose weights change
for each operating period, with d = 1.
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encrypted two-layer control framework were showcased. Moreover, we demonstrated the cyber-

resilience of the proposed control framework through cyberattack detection and reconfiguration

mechanisms when the system was subjected to a cyberattack.
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Chapter 7

Conclusion

This thesis discusses a number of different designs of MPC systems with encrypted commu-

nication between different components of the control system to improve the confidentiality of data

transmitted, cybersecurity, and ensure cyber-resilient operation of nonlinear chemical processes.

Firstly, an encrypted centralized LMPC system is proposed, the effect of quantization on closed-

loop performance is demonstrated, and its computational burden is studied. Next, a two-tier LMPC

system with machine-learning-based cyberattack detection is proposed with attack-resilient oper-

ation strategies when decryption occurs in cyber-vulnerable environments. Next, an encrypted de-

centralized model predictive control scheme for nonlinear time-delay systems with rigorous theo-

retical analysis on their closed-loop stability properties. Furthermore, encrypted distributed model

predictive control systems with extended Luenberger observer-based state estimations for nonlin-

ear processes when only partial state measurements are available. Lastly, an encrypted two-layer

control framework to maximize economic performance while addressing fluctuating real-world

economic with cyberattack resilient operation.
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In Chapter 2, we developed and applied an Encrypted Lyapunov-based model predictive con-

trol (LMPC) Scheme to a large-scale chemical process network involved in the production of ethyl-

benzene. By employing the encrypted LMPC, we conducted closed-loop simulations for different

quantization parameters and identified errors resulting from quantization. We illustrated that the

effect of quantization could be more profound than plant/model mismatch when a low quantization

parameter is chosen. To mitigate the impact of quantization, we proposed using a higher quantiza-

tion parameter, specifically d = 8. Furthermore, through a comprehensive analysis of the duration

of encryption-decryption at each sampling instance, we observed that the computational burden

on the control input calculation time remained consistent across all tested quantization parame-

ters. This finding supports the recommendation of employing a higher quantization parameter, as

it not only minimizes the impact of quantization errors but also ensures secure communication be-

tween the sensor-controller and controller-actuator, thus enhancing system cybersecurity without

compromising the performance of the controller.

In Chapter 3, we presented an encrypted two-tier control architecture incorporating an ML-

based cyberattack detector to enhance the operational safety, cybersecurity, and closed-loop per-

formance of nonlinear process systems. The lower-tier control system comprises a set of en-

crypted proportional-integral controllers, while the upper-tier control system employs an encrypted

Lyapunov-based model predictive controller. This architecture enhances system cybersecurity,

even in settings where control input computations may not be cybersecure. By integrating both

linear and nonlinear controllers with encryption, the developed two-tier control architecture can be

adapted to large-scale nonlinear processes. Further, we have provided insights into the framework

and formulation of the encrypted lower- and upper-tier control systems. Through a comprehensive

279



stability analysis, we have identified potential sources of error and established bounds to ensure

closed-loop system stability. Additionally, we have delved into the development of an ML-based

cyberattack detector, addressed critical aspects such as quantization parameter selection, sampling

time criteria, and computational load assessment. These issues are essential for the practical im-

plementation of the proposed control system across nonlinear processes. To validate the efficacy of

our control framework, we subjected it to previously unseen cyberattack patterns within a nonlinear

chemical process network utilized in ethylbenzene production. We carried out a detailed simula-

tion study that exposed the implementation and performance of the two-tier control architecture

and the usefulness of the cyberattack detector.

In Chapter 4, we devised and applied an encrypted decentralized control architecture to a

large-scale nonlinear chemical process network with input and state delays. A stability analysis of

the encrypted decentralized MPC applied to a nonlinear system with state delays was conducted,

yielding bounds on the errors due to quantization, state delays, and sample-and-hold implemen-

tation of the controller. Based on these bounds, the system can be stabilized within the desired

stability region. We established guidelines to implement this control structure in any nonlinear

process, such as selection of parameters l1, l2, and d for quantization, and the sampling time crite-

rion. The encrypted decentralized LMPC employs a DDE model to account for state delays in the

process. Closed-loop simulations are compared with and without the incorporation of a predictor

into the LMPC design, where the predictor predicts the state values after the input delay period. A

significant improvement in the closed-loop performance was observed with the integration of the

predictor, as the states and inputs converged to their steady state values with negligible oscillations.

Also, with the inclusion of the predictor, states converged within the desired stability region rep-
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resented by the level set Ωρmin
. However, without the predictor, the states only stabilize within the

larger level set Ωρ and with oscillations. Thus, by employing the encrypted decentralized LMPC

with predictor feedback, we were able to reduce the computation time and complexity of the con-

trol problem, improve the closed-loop performance, and enhance the cybersecurity of the control

system.

In Chapter 5.1, we introduced and applied encrypted distributed control architectures, both

sequential and iterative, with state estimation, to a large-scale nonlinear chemical process network

utilizing partial state feedback with sensor noise. We established practical guidelines for imple-

menting this control structure in any nonlinear process by including the selection of key parame-

ters such as l1, l2, and d for quantization, and the criterion for setting the sampling time. Through

closed-loop simulations, we demonstrated that both the sequential and iterative distributed LM-

PCs, with encrypted communication between the sensor–controller and controller–actuator links,

could stabilize the system within the desired stability region using the extended Luenberger ob-

server for state estimation, in a finite process simulation time. Furthermore, we conducted a

comprehensive comparative analysis of various encrypted control strategies, including central-

ized, decentralized, and distributed approaches with state estimation. The computational time,

closed-loop performance, and suitability of the different encrypted control architectures were dis-

cussed. In conclusion, our findings indicate that the encrypted iterative distributed LMPC emerges

as the most suitable choice for enhancing the cybersecurity of large and complex systems, with

highly coupled dynamics between states. This approach reduces the computational complexity

associated with centralized control, leverages controller communication to improve closed-loop

performance, and maintains a reasonable computation time, while enhancing the cybersecurity
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of the control system. Following this, in Chapter 5.2 we also formulated an encrypted iterative

distributed LMPC system employing encrypted signals for data transmission between sensors,

controllers, and actuators. Following a comprehensive stability analysis, we determined bounds

for errors from quantization, process disturbances, and the sample-and-hold implementation of the

controller. With these bounds, the system could be stabilized within the desired stability region.

Selection of encryption-decryption key lengths, quantization parameters, sampling time criterion,

and potential methods to decrease the encryption–decryption time were discussed to facilitate prac-

tical implementation. Closed-loop simulations were performed, comparing the proposed control

scheme against the encrypted centralized LMPC. Non-Gaussian sensor noise obtained from an in-

dustrial data set and process disturbances were used to demonstrate the industrial relevance and

suitability of the proposed approach. The results favor the use of the encrypted distributed LMPC

system, which not only improves closed-loop performance but also significantly reduces the com-

putational time needed to calculate the control input, positioning the encrypted iterative distributed

LMPC as an effective solution for improving closed-loop performance, decreasing computational

time, and enhancing cybersecurity in large-scale nonlinear systems.

In Chapter 6, we introduced an encrypted two-layer framework to integrate dynamic eco-

nomic optimization with encrypted control for nonlinear processes. At the upper layer, an LEMPC

with a time-varying objective function computed the economically optimal state trajectories to be

tracked by the encrypted lower layer feedback control system. Through a comprehensive stability

analysis, we established bounds on the deviation between the actual state trajectory and reference

trajectory, and listed tunable parameters to achieve the desired bounded error. Theoretical results

were demonstrated and validated using a chemical process example, and the economic benefits
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of the encrypted two-layer control framework were showcased. Moreover, we demonstrated the

cyber-resilience of the proposed control framework through cyberattack detection and reconfigu-

ration mechanisms when the system was subjected to a cyberattack.
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