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ABSTRACT
Objective Mental illness is the leading cause of
disability in the USA, but boundaries between different
mental illnesses are notoriously difficult to define.
Electronic medical records (EMRs) have recently emerged
as a powerful new source of information for defining the
phenotypic signatures of specific diseases. We
investigated how EMR-based text mining and statistical
analysis could elucidate the phenotypic boundaries of
three important neuropsychiatric illnesses—autism,
bipolar disorder, and schizophrenia.
Methods We analyzed the medical records of over
7000 patients at two facilities using an automated text-
processing pipeline to annotate the clinical notes with
Unified Medical Language System codes and then
searching for enriched codes, and associations among
codes, that were representative of the three disorders.
We used dimensionality-reduction techniques on
individual patient records to understand individual-level
phenotypic variation within each disorder, as well as the
degree of overlap among disorders.
Results We demonstrate that automated EMR mining
can be used to extract relevant drugs and phenotypes
associated with neuropsychiatric disorders and
characteristic patterns of associations among them.
Patient-level analyses suggest a clear separation between
autism and the other disorders, while revealing significant
overlap between schizophrenia and bipolar disorder. They
also enable localization of individual patients within the
phenotypic ‘landscape’ of each disorder.
Conclusions Because EMRs reflect the realities of
patient care rather than idealized conceptualizations of
disease states, we argue that automated EMR mining can
help define the boundaries between different mental
illnesses, facilitate cohort building for clinical and
genomic studies, and reveal how clear expert-defined
disease boundaries are in practice.

BACKGROUND
Fluid boundaries of mental illnesses
Over the course of the 20th century, scientists have
struggled to refine the mental health classification
system. Even as diagnostic manuals swell with new
disorders and additional definitions of existing con-
ditions, the underlying complexity of the mental
illness landscape has continued to handicap effect-
ive diagnosis and treatment. Mental disorders are
often characterized as distinct illnesses despite high
rates of comorbidity, which indicate more fluid
boundaries.1 Some have argued that even the
extensively updated DSM-V (fifth edition of the
Diagnostic and Statistical Manual of Mental
Disorders) does little to address the need of an
objective approach to disease classification.2 3

Diagnostic criteria continue to evolve; new categor-
ies are added, and some traditional categories have
recently been dropped.4

Because electronic medical records (EMRs)
reflect the realities of patient care rather than idea-
lized conceptualizations of diseases, they could
potentially serve as a new source of information for
this classification task. By revealing the phenotypic
signatures of different disorders as they are
observed and recorded by clinicians, EMRs could
allow a more data-driven approach to the classifica-
tion of mental illnesses.5–7

Among mental illnesses, three related disorders
—autism, bipolar disorder, and schizophrenia—
have a particularly high impact on affected indivi-
duals and their families, and present a heavy eco-
nomic burden for the healthcare system.8–11 These
disorders are complex, with a significant degree of
shared clinical presentation, and may share
common genetic origins.12 For example, recent
work exploring the genetic link between schizo-
phrenia and autism has suggested that certain rare
structural genetic variants, including copy number
variants, play a role in both disorders.13 14 Bipolar
disorder and schizophrenia have also been shown
to overlap because of their shared presentation of
certain ‘neurological soft signs’,15 as well as cogni-
tive and memory impairments.16 17 Certain copy
number variants are also common to the two disor-
ders.18 Finally, case studies have suggested a genetic
link between bipolar disorder and autism.19 20

Our approach
In an effort to elucidate the shared and distinct
phenotypic features of autism, bipolar disorder,
and schizophrenia as they are discussed in clinical
records, we mined the records of over 7000 psychi-
atric patients from Stanford Hospital and the Palo
Alto Medical Foundation (PAMF). After annotating
these records with concepts from the Unified
Medical Language System (UMLS) and other ontol-
ogies, we searched for concepts that were enriched
in each disorder relative to the baseline population
at each facility. We also identified highly associated
concept pairs in each disorder, and we applied
dimensionality-reduction techniques to the individ-
ual patient records to determine variations in the
clinical presentations for these disorders. We
present our findings with a focus on the specific
areas of overlap among the different disorders. We
demonstrate that EMRs present a rich, objective
and expert-sourced repository of information for
studies seeking to delineate the clinical, phenotypic
boundaries between important neuropsychiatric
disorders.
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METHODS
Data sources
Our data consisted of EMRs from Stanford University’s
STRIDE (Stanford Translational Research Integrated Database
Environment) database and PAMF. Stanford Hospital is a
613-bed teaching hospital and tertiary care facility; it admits
over 24 000 patients per year and receives over 558 000 out-
patient visits. In contrast, PAMF consists of community-based
clinics throughout the San Francisco Bay area, covering roughly
700 000 patients across Alameda, San Mateo, Santa Clara, and
Santa Cruz counties. Because Stanford Hospital is a referral
facility, its psychiatric patient population might not be represen-
tative of the general population of patients with autism, bipolar
disorder, and schizophrenia. We therefore considered data from
both facilities in all parts of our analysis.

All of the data in this study were deidentified using the
method described in US Patent Application 13 420 402. We
used this technology to process clinical notes that contained
protected health information, keep only the medically relevant
concepts, and transform the data into a deidentified patient–
feature matrix.21 22 The Stanford Institutional Review Board
determined that the analysis of patient data deidentified in this
way was not human subjects research, and the PAMF
Institutional Review Board approved the study under an expe-
dited review protocol for deidentified data. The technology
used to deidentify the data is freely available to academics, and
can be licensed non-exclusively to commercial entities.

Patient cohorts
Our initial patient cohorts consisted of patients who had
received International Classification of Diseases (ICD-9) diagno-
sis codes of autism, bipolar disorder, or schizophrenia at any
visit. These patients and their notes constitute the ‘Before
pruning’ column in table 2. We then narrowed the cohorts,
keeping patients who had received two separate diagnoses for
the same disorder within 1 year and had more than 1 year
between their earliest and latest notes. While there is no stand-
ard way to identify patients with a specific mental diagnosis
based on EMR data alone, the best-performing algorithm for
extracting depressed patients from EMRs requires two separate
diagnoses and at least 1 year of follow-up.23 24

After identifying candidate patients, we extracted only those
notes that were associated with patient visits. For STRIDE, the
final set of notes included clinic notes, consultation notes, pro-
gress/discharge/transfer summaries, letters (such as referral
letters) written by physicians, and patient histories/physicals.
Pathology results and radiology transcripts were excluded.
Detailed initial psychological evaluations were also excluded in
the interest of patient privacy. For PAMF, the final set of notes
included letters, history/physical notes, procedure notes, and
problem/visit notes. Patient instructions and transcripts of
phone calls were excluded. The pruned set of patients and notes
constitutes the ‘After pruning’ column in table 2.

Annotation pipeline
The final set of notes was processed with the annotation pipe-
line described previously.25–27 We used an optimized version of
the NCBO (National Center for Biomedical Ontology)
Annotator28 to annotate the patient notes with concepts from
22 clinically relevant ontologies. The pipeline involved:
1. Generating a corpus of ∼5.6 million strings from 22 relevant

ontologies and all trigger terms from NegEx29 and
ConText.30

2. Pruning by term frequency and syntactic type information
(eg, predominant noun phrases) from Medline to create a
clean lexicon,31–33 which was used for dictionary-based
concept recognition to produce annotations.

3. Using NegEx and ConText rules to filter out negated terms
and terms found in the family history.

4. Normalizing terms into concepts based on interontology
mappings and semantic grouping by drug, disease, device, or
procedure.

5. Normalizing drugs into ingredients using RxNorm,34 so that
(for example) ‘fluoxetine’ and ‘Prozac’ were both normalized
to ‘fluoxetine’. Brand name mentions were normalized to
their generic names, and combination drugs to their con-
stituent substances.

Concept enrichment calculations
We first identified those concepts that were (a) significantly
enriched among patients with a particular mental disorder rela-
tive to the general population and (b) not indicative of the
patient population at a particular facility, but rather, indicative
of the disorder itself. Because our six patient cohorts (table 2)
were of different sizes, statistical power calculations were crit-
ical: we wanted to ensure that the minimum effect size required
for concept enrichment was the same across all three disorders,
as well as across both facilities. For each disorder, we carried
out the following:
1. Randomly selected 1000 notes from patients with that dis-

order. This process involved first selecting a patient at
random, then selecting one of that patient’s notes (again at
random). Thus patients with longer histories were not
over-represented.

2. Randomly selected 1000 notes from patients without a
mental disorder diagnosis at the same facility in the same
fashion.

3. For each UMLS concept found in a note from a patient with
the disorder, performed Fisher’s exact test to determine if
the term was significantly enriched among patients with the
disorder (p<0.05).

4. Repeated steps 1–3 twenty times for each facility.
Using the statistical software package G*Power,35 we deter-

mined that a cohort size of 1000 ‘cases’ and 1000 ‘controls’
would yield a power of 0.80 for detecting effect sizes of ∼6%
difference in proportions between the cases and controls. We
therefore considered a term ‘enriched’ for a particular mental
disorder if Fisher’s test found it so with p<0.05 in at least 80%
of our trials from both facilities. It is important to note that this
sampling procedure did not guarantee that each note in the
sample came from a unique patient, even when the number of
patients was much greater than 1000; it simply ensured that
sampling was uniform across patients, regardless of length of
history.

Finding associated concepts
We defined the clinical presentation of a disease along two
dimensions: the concepts enriched for that disease, and the sig-
nificant associations among those concepts. Power and effect
size calculations were less straightforward for the association
analysis because of the widely varying numbers of notes in
which each concept occurred. We wanted to ensure that we did
not see an increased number of significant concept–concept
associations for a given disorder, such as bipolar disorder,
simply because the larger number of notes for that disorder con-
ferred greater power (the ability to detect associations with
smaller effect sizes).
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If we consider two concepts, C1 and C2, the ‘effect size’ was
the difference in proportions of occurrence of C2 between
notes where (a) C1 occurred and (b) C1 did not occur. If C1
and C2 were highly associated, we would expect C2 to occur in
a high proportion of notes that contained C1 and a lower pro-
portion of notes that did not contain C1. Initial power calcula-
tions revealed that, with an overall sample size of 1866 (the size
of our smallest set of notes, for schizophrenia/STRIDE), we
could observe an effect size of 8% with a power of 0.8 at a sig-
nificance level of 0.05, even if the distribution of notes contain-
ing C1 versus notes without C1 were skewed as much as 4:1.

We used Fisher’s exact test to find enriched associations
between all pairs of concepts for each disorder where at least
one of the concepts was among our set of 123 ‘enriched’ drugs
or phenotypes for autism, bipolar disorder, and schizophrenia
(figure 1). We required that the effect size be at least 8% for an
association to be significant. This meant that, even if a given
association was significant with p<0.05, it would not be
accepted if the post hoc estimated effect size was not large
enough to assure us that we would see the same association in
the schizophrenia/STRIDE group with 80% power. Doing so
reduced the chance that we would call an association significant
for one disorder but not for a second disorder simply because
the second disorder had a smaller sample size.

Finally, for each pair of concepts, we actually measured two
separate associations: the chance of observing C2, depending on
whether C1 was present in the note, and the chance of observ-
ing C1, depending on whether C2 was present. The two effect
sizes may be different, and the two directional associations were
treated as separate in our analysis and viewed in our subsequent
network visualization as directed edges between C1 and C2.

Network visualization and analysis were performed using
Cytoscape 2.8.36 A ‘neighbor’ of a node in a network is any
node that is connected to it via an edge, ignoring edge direction.
The ‘mean degree’ is the average number of neighbors of a node
in the network. The ‘clustering coefficient’ is defined as the
number of edges among neighbors of a specific node, divided
by the total number of edges that could possibly exist among
those neighbors, averaged over all nodes in the network. It is a
measure of transitivity: how likely it is that ‘a friend of my
friend is also my friend’.

Practically speaking, these network metrics provide different,
though related, perspectives on similar phenomena. A high
mean degree indicates the presence of a large number of signifi-
cant associations among concepts for a particular disorder; the
concepts are not distributed independently throughout patient
notes, but tend to occur preferentially with certain other con-
cepts: the higher the mean degree, the greater the number of
significant associations. The clustering coefficient is related to
the presence of community structure in the network.37

Networks with high clustering coefficients are often distin-
guished by the presence of ‘hubs’: concepts with a dispropor-
tionately large number of connections.

Patient-level analysis
To visualize the overlap among patients with the three disorders,
we consolidated each patient’s record into a feature vector of
length 123: one element for each of the 45 enriched drugs and
78 enriched phenotypes shown in figure 1 and figure 2. The
value at each location was the number of mentions of the term
in each patient’s record, divided by the total number of notes in
the patient’s record. We normalized by the number of notes in
the patient’s record to ensure that two patients with similar dis-
tributions of concepts looked similar, even if one had a greater

number of total notes (perhaps because of a longer follow-up
time). We then performed principal components analysis38 on
the patient–concept matrix and graphed the patients’ locations
along the first three principal components.

RESULTS
Patient demographics and dataset characteristics
Age and gender information for the population in our study is
shown in table 1. Autism shows a bias toward younger ages,
while there is substantial overlap of age ranges for schizophrenia
and bipolar disorder. The gender ratios for the three disorders
differ, with autism enriched for males and bipolar for females,
while schizophrenia is more evenly distributed.

Table 2 shows the numbers of patients and notes in each
dataset, before and after preprocessing. Schizophrenia was the
least common disorder, and the schizophrenia/STRIDE cohort
our smallest dataset, containing 270 patients and 1886 notes. In
contrast, bipolar disorder was the largest cohort; the bipolar/
PAMF dataset contained 2296 patients and 129 980 notes.

Enriched concepts
We grouped the significantly enriched terms for each disease
into drugs and phenotypes (symptoms or clinical findings). The
enriched set of drugs for each disorder is shown in figure 1, and
the enriched phenotypes are shown in figure 2.

While the overall pattern of drug use in figure 1 is not sur-
prising, it serves as a useful validation for the phenotype enrich-
ment and concept association calculations. Note that because of
our note sampling procedure, the number of drugs found
enriched for bipolar disorder is not an artifact of its larger
sample size: there are in fact 40 different drugs significantly
associated with bipolar disorder, compared with 13 for schizo-
phrenia and 13 for autism. Bipolar patients overlap with schizo-
phrenic patients mainly because of their use of antipsychotics,
such as haloperidol (Haldol), and they overlap with autistic
patients mainly because of their use of antidepressants, such as
sertraline (Zoloft), and stimulants, such as methylphenidate
(Ritalin). There are no drugs associated with both schizophrenia
and autism that are not also associated with bipolar disorder. If
we interpreted these disorders solely in terms of their associated
drugs, we might conclude that bipolar disorder is the most vari-
able in its presentation, and that autism and schizophrenia each
overlap with distinct aspects of bipolar disorder.

Figure 2 shows the overlap among the phenotypes associated
with each disorder. There is substantial phenotypic overlap
between bipolar disorder and schizophrenia: these patients are
more likely to abuse alcohol and suffer from chronic health pro-
blems such as obesity, chronic obstructive pulmonary disease,
neuropathy, and hepatitis. (For example, approximately 10–15%
of patients with bipolar disorder are also chronically infected
with hepatitis C.39) These associations may reflect these patients’
more advanced age as well as various social and environmental
factors associated with mental illness; elevated rates of nicotine
dependence, for example, are well known in both schizophrenia
and bipolar disorder.40 41 Epilepsy and mental retardation are
both common to autism and schizophrenia but not bipolar
disorder.

From a diagnostic standpoint, the most interesting findings
are those phenotypic concepts uniquely enriched in each dis-
order. If we assume that some of these specific phenotypes lead
physicians to prefer one diagnosis over another, we may con-
sider them ‘signature’ concepts for each disorder. For example,
enriched phenotypes unique to autism include developmental
delays (eg, in speech) or certain repetitive behaviors such as tics.
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(Although the concept ‘corn of toe’ seems incongruous here,
the terms ‘corn’ and ‘callous’ both map to it and these condi-
tions could be the result of repetitive behaviors common in aut-
istic children.) Enriched phenotypes in bipolar disorder include
symptoms associated with depression and anxiety, such as
migraines, irritable bowel syndrome, sleep disorders, and ulcers,
as well as the core diagnostic criterion of bipolar disorder itself:
mania. Finally, schizophrenic patients exhibit both paranoia and
schizoaffective traits, but also suffer from chronic problems such
as heart failure, cancers, dementia, diabetes, and hypertension.
These probably reflect the advanced age of schizophrenic
patients as well as the physical toll of living with schizophrenia.

Patient-level analysis
Figure 3 shows the result of the patient-level principal compo-
nents analysis. Each dot represents a single patient. We see that
there is significant overlap between schizophrenic and bipolar
patients; in fact, the schizophrenic patient cluster is nearly
encompassed by the bipolar cluster in all subplots. In contrast,
autistic patients form a distinct cluster.

The first principal component (PC1) is a vector in the space
of covariates (drugs, phenotypes) from the original dataset; it
captures the direction along which most of the variability in the
dataset lies.38 The second principal component (PC2) captures
the direction of next highest variability (orthogonal to the first);
the others follow in turn. It is therefore interesting to look at
the first few principal components from our data to see which
drug and phenotype terms contribute the most to each.

The major contributors to PC1 are, in order, ‘depressive dis-
order’, ‘anxiety disorders’, ‘mental disorders’, ‘drug abuse’,
‘sleeplessness’, ‘mood disorders’, and ‘bipolar disorder’. These

contributing terms all have a positive sign, which means that the
more each term occurs the more it pulls the associated patient
along the positive PC1 axis. PC1 includes terms indicating the
presence or absence of broad sets of conditions and could
perhaps represent the variability in a patient’s primary presenta-
tion. Bipolar patients extend beyond the rest along the positive
PC1 axis; their records appear to discuss a wider variety of dif-
ferent potential diagnoses. (Notably, the term ‘bipolar disorder’
itself also plays a prominent role in this component.)

PC2 includes the following major contributors in the positive
direction: ‘autistic disorder’, ‘developmental delay’, ‘pervasive
development disorder’, ‘developmental disabilities’, ‘valproate’,
and ‘valproic acid’, followed closely by ‘dextroamphetamine’ and
‘methylphenidate’. All of these terms are highly associated with
autism. Conversely, the major negative contributors to PC2 are
‘heart failure’, ‘congestive heart failure’, ‘chronic obstructive
airway disease’, ‘hypertensive disease’, ‘schizophrenia’, ‘anemia’,
and ‘degenerative polyarthritis’. PC2 might be considered the
‘autism/schizophrenia axis’; patients are situated further along
the positive axis if they exhibit autistic traits and further along
the negative axis if they exhibit schizophrenic traits or chronic
health disorders commonly associated with schizophrenia. PC2
explains roughly half as much variance in the original data as
PC1; a patient can be autistic-like or schizophrenic-like, but not
both. (Of course, much of this variability can be explained by the
relative ages of the two groups of patients.)

The third principal component (PC3) contains the following
major positive contributing terms: ‘major depressive disorder’,
‘depressive disorder’, ‘sleep apnea syndromes’, ‘duloxetine’,
‘bupropion’, ‘sleep apnea, obstructive’, and ‘anxiety disorders’.
Major negative contributing terms include ‘valproic acid’,

Figure 1 Significantly enriched psychoactive drug terms for each disease, and their overlap.
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‘valproate’, ‘bipolar disorder’, ‘haloperidol’, ‘mania’, ‘risperi-
done’, ‘schizoaffective disorder’, and ‘psychotic disorders’. We
might conclude that PC3 represents a tradeoff between depres-
sive/anxious symptoms and psychotic/manic symptoms. A
patient sits further along the positive PC3 axis if he or she is
depressed, has trouble sleeping, is anxious, or is taking duloxe-
tine or bupropion (both antidepressants). A patient moves
toward the negative axis if he or she is taking valproate/valproic
acid (a mood stabilizer and anticonvulsant), an antipsychotic
such as haloperidol or risperidone, or has been diagnosed with
mania or psychotic symptoms. There is considerable overlap
between autistic and schizophrenic patients along PC3, while
bipolar patients exhibit high variance in this aspect of the clin-
ical presentation.

After considering the terms that contribute the most to each
principal component, therefore, the picture in figure 3 becomes
clearer. First, we see that diversity of clinical presentation is
greater for bipolar patients than autistic or schizophrenic
patients: bipolar patients show a wide spread across the PC1
axis, and extend off in the positive direction. (Interestingly,
inter-rater reliability studies of diagnoses from the initial DSM-V
field trials showed a κ statistic of 0.52 for bipolar I disorder in
children compared with 0.69 for autism spectrum disorder in
children,3 indicating higher inter-rater agreement for autism vs

Figure 2 Significantly enriched phenotypes for each disease, and their overlap.

Table 1 Demographic information about the study population in
the two centers

Sex ratio (male:female) Age (median; range)

STRIDE, autism 80:20 15; 4–63
PAMF, autism 82:18 10; 2–53
STRIDE, bipolar 33:67 51; 14–102
PAMF, bipolar 34:66 49; 10–103
STRIDE, schizophrenia 51:49 56; 19–98
PAMF, schizophrenia 44:56 53; 11–96

PAMF, Palo Alto Medical Foundation; STRIDE, Stanford Translational Research
Integrated Database Environment.

Table 2 Patients and records (notes) represented in the STRIDE
and PAMF corpora, before and after pruning

Before pruning After pruning

Patients Notes Patients Notes

STRIDE, autism 2037 30 718 533 6598
PAMF, autism 1474 108 769 610 15 941
STRIDE, bipolar 5901 139 455 2946 55 700
PAMF, bipolar 5299 677 980 2296 129 980
STRIDE, schizophrenia 2198 45 292 270 1886
PAMF, schizophrenia 1018 136 758 449 27 937
STRIDE, total 10 136 215 465 3749 64 184
PAMF, total 7791 923 507 3355 173 858

PAMF, Palo Alto Medical Foundation; STRIDE, Stanford Translational Research
Integrated Database Environment.
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bipolar diagnoses.) Second, we see that patients can also be
organized along an ‘autism/schizophrenia axis’, PC2, and along
a ‘depressive/psychotic scale’, PC3. Autism and schizophrenia
exhibit considerable separation along PC2 but not PC3. Bipolar
overlaps with schizophrenia, but not autism, along PC2, and
extends much further than either schizophrenia or autism into
‘depressive territory’ along PC3.

Enriched associations
If we consider the significant associations for each disorder as a
network of directed edges (arcs) between concepts, the autism
network encompasses 204 unique concepts and 363 arcs. The
bipolar network includes 1160 unique concepts and 4306 arcs.
The schizophrenia network includes 219 unique concepts and
485 arcs. There were 25 concept–concept associations that

occurred in all three disorders, two that occurred for
autism and schizophrenia but not bipolar, 136 that occurred
for bipolar disorder and schizophrenia but not autism, and 112
that occurred for autism and bipolar disorder but not
schizophrenia.

The full network files are available as online supplementary
material for this paper, and can be viewed using Cytoscape or
similar software.

We visualized each disease in terms of its characteristic pheno-
types and the associations among them ignoring drugs, as well
as phenotypes that are merely side effects of drugs (figure 4).
We removed drug names from the networks, as well as all
phenotype concepts that were connected to the networks only
through their interactions with drugs. Table 3 contains a
summary of each network’s properties.

Figure 3 Patient-level plots of the first three principal components (PC1 vs PC2 in (C), PC2 vs PC3 in (A), and PC1 vs PC3 in (B)). Autistic patients
are shown in orange, schizophrenic patients in light green, and bipolar patients in dark turquoise.
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The differences among the three networks are apparent even
by inspection. The network for bipolar disorder is the largest
and has the highest clustering coefficient and the highest mean
degree. It appears to form one connected ‘community’ of edges
without any fragmentation. On the opposite end of the spec-
trum is autism, a much smaller network with the lowest cluster-
ing coefficient and lowest mean degree. The autism network
consists of six separate fragments, and there exist nodes that, if
removed, would fragment it further. From a topological stand-
point, the autism network consists of phenotypic ‘communities’
that are loosely bound to each other, reflecting the heterogen-
eity of autism and the fact that it may actually be a group of dis-
orders.42 Schizophrenia’s network lies between these two
extremes.

DISCUSSION
Phenotypic signatures in cohort building
The annotation and statistical analysis methods described here
serve two main purposes. First, recognition of ontological con-
cepts in unstructured EMR text followed by statistical

enrichment analysis identifies a set of UMLS concepts, and asso-
ciations among concepts, that are indicative of one or more dis-
orders of interest. This process defines phenotypic ‘signatures’
for disorders, enabling researchers interested in cohort building
for clinical or genomic studies to identify patients that may meet
the phenotypic criteria for a particular disease. Importantly,
phenotypic signatures can be ‘built’ using EMR text from one
facility and then applied to text from a different facility to iden-
tify phenotypically similar patients, even if specific diagnosis
codes are applied differently at the two facilities. Such signatures
could also play a crucial role in the development of a new ‘tax-
onomy’ of diseases, as suggested by the National Academy of
Sciences.43

Second, once the phenotypic signatures are identified, individ-
ual patients can be situated relative to the principal conceptual
‘axes’ within the overall landscape of a disorder. Considering an
individual as a point in a high-dimensional feature space—
where each feature is one of the ‘signature’ concepts for a dis-
order—analyses such as ours enable researchers to pick out
‘matched’ patients from different disorder groups, and to

Figure 4 Network representations of phenotype–phenotype associations for (A) autism, (B) bipolar disorder, and (C) schizophrenia. The nodes
represent phenotypic concepts, and the node sizes are proportional to the number of connections for each node (disregarding directionality). The
edge widths are proportional to the strength of the interaction between the two concepts they connect.
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identify patients who are more or less representative of different
disorders; both of which are useful steps in cohort building.
Although we have focused on mental disorders, the methods
described here can be applied to other disorder(s) of interest.

Related work
Several groups have explored ways to define phenotypic signa-
tures for diseases from EMRs,44 although most have used struc-
tured EMR data (diagnosis codes, etc) rather than unstructured
text. For example, Hanauer et al45 examined temporal associa-
tions among ICD-9 codes, and Kohane et al46 showed that
patients with autism have significantly increased rates of other
comorbidities. Denny et al47 were the first to conceptualize the
PheWAS, or Phenome-Wide Association Study, where EMR data
are used to identify specific phenotypes of interest, and then
genetic data from those patients are examined to identify asso-
ciated genetic variations. Data-driven phenotyping methods
similar to ours are therefore essential to nuanced PheWAS
studies for neuropsychiatric disorders. Finally, recent work on
‘EMR phenotyping’ has resulted in a web knowledge base that
collects algorithms designed to extract patients with specific
phenotypes from EMRs (http://phekb.org). Our approach is
complementary to this effort; the annotation pipeline and
enrichment statistics framework can be applied to develop
phenotypic signatures for multiple diseases of interest.

Study limitations
As with any observational study, especially one where much
about the underlying data collection process is unknown, ours
suffers from several important limitations. Foremost among
these is the difficulty we faced in validating our findings, since
there is no such thing as a training set of all known UMLS con-
cepts associated with schizophrenia, for example, or all known
associations among different UMLS concepts for these different
disorders. The most we could hope for was that a psychiatrist
would deem our findings reasonable. We did present this work
to several psychiatrists and other researchers interested in
mental illness, but it would be impossible to ask an expert to
produce a list of all relevant concepts and associations that exist
so we could estimate our recall. Therefore, our study is necessar-
ily somewhat qualitative and descriptive in nature.

In addition, it is possible that clinicians might base their
descriptions of patients on what is in the DSM, in an attempt to
provide support for a particular diagnosis. If this is the case, we
might miss rarer associations with concepts that are not found
in the DSM for a particular disorder. We may also have biased

our results somewhat because of a lack of knowledge (as a result
of privacy concerns) about the specialties of the particular physi-
cians who wrote the clinical notes; an internist might record a
longer and more detailed history for a patient who has seen a
psychiatrist, for example, than for one who has not.

Future directions
Beyond cohort building and the identification of phenotypic sig-
natures for specific diseases, our approaches could be extended
to other problems related to EMR-based phenotyping. For
example, the use of EMR-based text mining in combination
with network-based analyses will likely have broad utility for
uncovering new associations between clinical entities48 and
potentially in analyzing patient outcomes.49 In addition, it is
known that psychiatry patients have a higher mortality and mor-
bidity from ‘usual’ causes, such as heart failure, diabetes, etc.50

Knowing the strength of associations among comorbidities, as
we have calculated in our association networks, would assist
in devising care management protocols similar to those in
Petri et al.51

CONCLUSION
By annotating, and then statistically exploring, the text of EMRs
associated with mental illness, we have examined the phenotypic
signatures of autism, bipolar disorder, and schizophrenia from
three perspectives: the enriched concepts for each disorder, the
networks of associations among those concepts, and the cluster-
ing of patients based on the concept mentions in their records.
We have also examined the combinations of concepts that
account for the most variance in patient records, uncovering a
‘diagnostic variability’ axis, an ‘autistic/schizophrenic’ axis, and
a ‘depressive/psychotic’ axis. Our experiences analyzing these
data underscore the importance of statistical power calculations
to reduce the chances of introducing artifacts when comparing
disease populations of very different sizes.

We have demonstrated that EMR mining can extract relevant
drugs and phenotypes associated with three important psychi-
atric disorders, and can reveal reasonable phenotypic signatures.
Examination of the first three principal components appears to
isolate autism as a separate disorder, while revealing significant
overlap between schizophrenia and bipolar disorder. We con-
clude that such automated EMR mining can elucidate the
phenotypic boundaries between different mental illnesses, reveal
how clear the defined diagnostic boundaries are in practice,
assist in data-driven cohort building, and assist in the classifica-
tion of psychiatric disorders in an objective manner.

Table 3 A summary of some basic network parameters for the phenotype networks shown in figure 4

Parameter Autism value Bipolar value Schizophrenia value

Clustering coefficient 0.154 0.306 0.249
Mean degree (ignoring edge direction) 2.699 5.177 4.074
Hubs (nodes with highest degrees) Hypersensitivity

Asthma
Autistic disorder
Epilepsy
Eczema
Otitis media
Obesity
Constipation
Depressive disorder
Sleep apnea syndromes

Depressive disorder
Gastroesophageal reflux disease
Bipolar disorder
Anemia
Hyperlipidemia
Sleep apnea syndromes
Hypothyroidism
Sleeplessness
Asthma
Vomiting

hypertensive disease
Schizophrenia
Chronic obstructive airway disease
Gastroesophageal reflux disease
Asthma
Anemia
Heart failure
Constipation
Congestive heart failure
Depressive disorder

For the purposes of this analysis, the networks are treated as undirected.
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