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ABSTRACT OF THE DISSERTATION 

 

Accelerated Design of Disordered Materials by Computational Simulation and Machine 

Learning 

 

by 

Han Liu 

 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2021 

Professor Mathieu Bauchy, Chair 

 

Materials modeling is revolutionizing materials discovery paradigms through rationalizing 

the exploration of vast material design space. In general, materials modeling is built upon certain 

physics laws (e.g., computational simulations) and/or experimental data (e.g., machine learning). 

However, the state-of-the-art materials modeling is facing two grand challenges, i.e., (i) the high 

complexity of physics laws that govern materials properties, and (ii) the low informativity of 

experimental data. In order to address the two grand challenges of materials modeling, next-

generation materials modeling aims to (i) make the physics simple to facilitate physics-driven 

modeling, and (ii) make the data informative to facilitate data-driven modeling. 

This thesis highlights the unparallel predictive power of integrating data-driven machine 

learning (ML) and physics-driven computational simulations to unlock a new era for materials 

discovery and for next-generation materials modeling: 



 iii 

On the one hand, ML can assist in (i) developing empirical forcefields for accurate and 

computationally-efficient simulations, (ii) “separating the wheat from the chaff” in large amounts 

of complex simulation data to gain new insights or generate new knowledge of the underlying 

physics governing materials behaviors, and (iii) accelerating simulations by surrogate machine 

learning engines. On the other hand, simulation can generate large amounts of high-fidelity data 

that can be used to train machine learning models, which, in turn, can be validated by simulations. 

Both simulations and their integration pipeline with ML can be accelerated by leveraging 

automated differentiable programming engines and hardware accelerators.  

Overall, I envision that the “fusion” of simulations and ML models will unlock a new era 

in materials modeling—wherein traditional boundaries between physics and empirical models, 

knowledge and data, forward and inverse predictions, or experimental and simulation data would 

eventually fade. I hope that the present thesis will modestly contribute to stimulating new 

developments in that direction. 
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Figure 5-1: Predictions from “blind” machine learning (“Model I”). (a) Evolution of the relative 

root square mean square error (RRMSE) of the training and validation sets with respect to 

the polynomial degree p. The minimum in the RRMSE of the validation set indicates that 
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β). In both panels, the dashed red curve represents the true function relating the inputs to 

the targeted output. The squares indicate the known points from the training set. The solid 

green curve represents the “guessed” function interpolated by the ML model. The grey 
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represented within the training set and for the predictions from the ML models are tested. 
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the polynomial degree p. The minimum in the RRMSE of the validation set indicates p = 

1 as an optimal polynomial degree (i.e., linear model). (b) Predicted dissolution rate for p 
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herein, namely, (Na2O)0.25(Al2O3)x(SiO2)0.75–x (Glasses A) and (Na2O)x(Al2O3)x(SiO2)1–2x 
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Figure 5-14: Outcomes of the "topology-informed” machine learning (Model IV-a) using as 

inputs the numbers of bond stretching constraints per atom (BS) and bond bending 

constraints per atom (BB). (a) Evolution of the relative root square mean square error 

(RRMSE) of the training and validation sets with respect to the polynomial degree p. The 

minimum in the RRMSE of the validation set indicates p = 1 as an optimal polynomial 

degree (i.e., linear model). (b) Predicted dissolution rate (for p = 1) as a function of the 

measured dissolution rate. (c) Coefficients of the polynomial model associated with the 

BS and BB inputs. Note that the BS and BB input values are normalized in the training 

process to ensure that the model coefficients reflect the contribution of each input to the 
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Figure 5-15: Outcomes of the "topology-informed” machine learning (Model IV-b) using as 
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validation sets with respect to the polynomial degree p. The minimum in the RRMSE of 
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Predicted dissolution rate (for p = 1) as a function of the measured dissolution rate. (c) 

Coefficients of the polynomial model associated with the ncSi and ncAl inputs. Note that, 
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Figure 6-1: End-to-end differentiable simulation of water adsorption in porous materials. (a) 

Illustration of the numerical water sorption simulation for a target porous matrix. The 

porous matrix is represented by a N-by-N grid, wherein each pixel i of the grid can be filled 

with solid (𝜂i = 0) or be a pore (𝜂i = 1). 𝜌i is the density of water in the pore. 𝜌i  = 0 and 1 
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denote that the pore is fully empty or saturated with water, respectively. 𝜌i is calculated at 

each relative humidity (RH) for RH = 0-to-100% with an increment dRH. At each 

increment K, the equilibrium water density values {𝜌i}Kth at RH = K × dRH serve as starting 

configuration to calculate {𝜌i}K+1 at the subsequent step K+1, where the equilibrium 

fraction of water is determined by iteratively applying Eq. (6-2) on each pixel until a 

convergence in the {𝜌𝑖} values is obtained. (b) End-to-end differentiable reformation of 

the sorption simulation as a series of differentiable computation layers in TensorFlow. 

Each layer is a mathematical operation by decomposing Eq. (6-2), where CONV layer 

represents the convolution operation in Eq. (6-2). This block is then repeated into M 

convolutional layers, which is equivalent to iteratively solving Eq. (6-2) until a 

convergence in the water density is achieved. (c-i) Comparison between the sorption curve 

ground-truth (undifferentiable) sorption simulator and its reformulated differentiable 

counterpart for the porous matrix shown in panel (a), which defines the percentage loss L. 

(c-ii) Distribution of the sinuosity index of reference curve (i.e., ground-truth sorption 

curve) Sr for 8769 validation grids. Sr is calculated as the ratio of the curvilinear length 

along the curve over the straight-line length between end points of the curve. (c-iii) 

Average percentage loss as a function of the number of convolution layers M. The grey 

window (M ≥ 100) indicates the range where the differentiable simulator is as accurate as 

the ground-truth simulator. (c-iv) Average percentage loss ⟨L⟩ as a function of Sr at M = 

100. The blue line represents the average percentage loss for 8769 validation grids. .... 150 

Figure 6-2: Training of the generative model by differentiable simulation and tensor processing 

unit (TPU) computing. (a) General architecture of the generator-simulator training pipeline. 

The generator is designed as a dual, parallel deconvolution-block structure, where each 
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block is fed with half of the input curve {𝜌w,K } that represents low- and high-RH range 

signal, respectively. The associated porous matrix {𝜂i } predicted by the generator is 

subsequently fed to the differentiable simulator for validation. The forward output of the 

simulator is then compared with the targeted output—which is the same as generator input 

{𝜌w,K }—to calculate the loss function used for backward training on TensorFlow. (b) Loss 

function L (grey area) for a target output (blue line). (c) Evolution of the test set loss 

function as a function of the number of training epochs. The test set contains 8769 

validation curves (see Fig. 6-1c-ii). The plateau in the grey window indicates the generator 

reaches optimal prediction performance. (d) Average test set loss function as a function of 

the sinuosity index of reference curve (i.e., target output) Sr at epoch = 100. (e-i) Schematic 

of the TPU computing system composed of both software and hardware architecture, 

where TensorFlow is a software used to compile program ready for TPU computing on 

TPU chip. TPU chip is an assembly of different computing units specific for machine 

learning, where the main computing power arises from the matrix unit (MXU) capable of 

128 × 128 multiply-accumulate operation. (e-ii) Comparison of the training time per batch 

as a function of the grid size and batch size offered by Google’s TPU-v2 and an NVIDIA 

TITAN X GPU. All benchmarks are conducted on Google Colab using the same 

TensorFlow code and single precision (float32). (e-iii) Detailed comparison of the training 

time per batch between TPU and GPU as a function of batch size for grid size N = 20 and 

80. (e-iv) TPU acceleration ratio (defined as GPU time / TPU time) as a function of batch 

size for grid size N = 20 and 80. ..................................................................................... 154 

Figure 6-3: Accuracy of the generative model. (a) Illustration of three porous matrices that are 

generated so as to present three archetypical sorption isotherms associated with small, 
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medium, and large pores. (b) Porous matrix generated for a target sorption curve y = x. 

The activation pattern of low- and high-RH block is also provided. .............................. 156 
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Figure 7-2: (a) Si–O, (b) O–O, and (c) Si–Si partial pair distribution functions (PDFs) in liquid 

silica (at T = 3600 K) predicted by our new “ML” forcefield and compared with the ab 

initio reference [15]. The partial PDFs predicted by the BKS potential are added for 
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Figure 7-3: (a) O–Si–O and (b) Si–O–Si partial bond angle distributions (PBADs) in liquid silica 

(at T = 3600 K) predicted by our new “ML” forcefield and compared with the ab initio 

reference [15]. The PBADs predicted by the BKS potential are added for comparison [14].
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Figure 7-4: Comparison between machine learning and conjugate gradient optimization. Only the 

partial charge of the Si atoms qSi and the parameter ASiO are here optimized, while the other 

8 forcefield parameters are kept fixed. (a) Contour plot showing the cost function Rχ as a 

function of qSi and ASiO. The red and black circles indicate the path explored upon machine 
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presented in panel (a) to better observe the path explored upon conjugate gradient 

optimization. (c) Evolution of the cost function Rχ during the machine learning and 
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fixed. (a) Interpolation of the cost function (Rχ, see Eq. (8-2)) offered by Gaussian Process 

Regression (red line) as a function of the qSi. The prediction is based on an initial training 

set comprising 5 datapoints (i.e., known points, black symbols). The grey area indicates 

the uncertainty (95% confidence interval) of the prediction. (b) Expected Improvement 
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𝑞Si and ASiO. The white dashed line indicates the path explored by the Bayesian 
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Figure 8-5: Comparison of the final cost function values Rχ obtained by including, in order of 

increasing complexity: (i) only Si–O interactions (“ML-SiO” potential), (ii) both Si–O and 

O–O interactions (“ML” potential), and (iii) Si–O, O–O, and Si–Si interactions (“ML-
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the parameter ASiO are here optimized, while the other 8 forcefield parameters are kept 

fixed. In both cases, the contour plot shows the value of the cost function Rχ as a function 
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Figure 8-9: (a) Si–O, (b) O–O, and (c) Si–Si partial pair distribution functions (PDFs) in liquid 
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initio reference [14]. The partial PDFs predicted by the BKS potential [12] and CHIK 
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Figure 9-1: (a) Cost function R𝜒 yielded by select Buckingham forcefields for liquid silica as a 

function of the partial charge of Si atoms qSi. The black line is to guide the eye. The grey 

and white windows (qSi < 2.4 and qSi > 2.4) herein defines the soft and hard forcefield 

regimes, respectively. The arrows indicate the minimum position of R𝜒 in the soft and hard 

forcefield regimes (i.e., qSi = 2.094 and 2.883, respectively), defining the soft and hard 

potentials used the following. (b) Total pair distribution function (PDF) g(r) of liquid silica 

at 3600 K generated by the soft and hard potentials offering minimum R𝜒. These two PDFs 

are compared to that generated by ab initio molecular dynamics. The blue dashed line (r = 

2.1 Å) indicates the boundary between the first and second coordination shells, which is in 

the following used as a threshold distance to define the “short-range order” (r < 2.1 Å) and 

the “higher-range order” (r > 2.1 Å). (c) Contour plot showing the absolute error between 

the total PDF g(r) generated by the classical forcefields presented in panel (a) and the ab 

initio reference PDF gref(r) as a function of the correlation distance r (x-axis) and Si partial 

charge (y-axis). The horizonal white lines indicate the position of the soft (qSi = 2.094) and 

hard potentials (qSi = 2.883). The vertical red lines indicate the values of the average Si–O 

(r = 1.635 Å), O–O (r = 2.715 Å), and Si–Si (r = 3.115 Å) interatomic bond distances.220 

Figure 9-2: Cost function R𝜒 calculated over the short-range (r < 2.1 Å) and higher-range orders 

(r > 2.1 Å) yielded by select Buckingham forcefields for liquid silica as a function of the 

partial charge of Si atoms qSi. The solid line is to guide the eye. The grey and white 

windows (qSi < 2.4 and qSi > 2.4) represent the soft and hard forcefield regimes, 

respectively. .................................................................................................................... 222 
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Figure 9-3: (a) Si–O–Si partial bond angle distributions (PBADs) PSi–O–Si(𝜃) generated by the 

soft (qSi = 2.094) and hard potentials (qSi = 2.883). The data are compared with the 

reference PBAD yielded by ab initio molecular dynamics. (b) Si–O–Si angular peak 

position 𝜃Si–O–Si as a function of the Si partial charge qSi. The black line is to guide the eye. 

The blue dashed line (𝜃Si–O–Si = 136.25°) indicate the ab initio reference value. The grey 

and white windows (qSi < 2.4 and qSi > 2.4) represent the soft and hard forcefield regimes, 
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Figure 9-4: (a) Ring size distribution generated by the soft (qSi = 2.094) and hard potentials (qSi 

= 2.883). The data are compared with the reference data yielded by ab initio molecular 

dynamics. The lines are to guide the eye. (b) Average ring size as a function of the Si 

partial charge qSi. The solid line is to guide the eye. The blue dashed line (average ring size 

of 7.35) indicates the reference value yielded by ab initio molecular dynamics. The grey 

and white windows (qSi < 2.4 and qSi > 2.4) represent the soft and hard forcefield regimes, 
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Figure 9-5: Neutron structure factors S(Q) yielded by the soft (qSi = 2.094) and hard potentials 

(qSi = 2.883). The data are compared with the reference S(Q) obtained from ab initio 
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Figure 10-1: Distribution of the Na atoms’ displacement D in a (Na2O)30(SiO2)70 glass at the end 

of the relaxation simulation. The system contains 205,800 Na atoms and is relaxed at a 

constant temperature (700 K) and volume for 50 picoseconds. The green dash refers to a 

selected threshold displacement D0 = 2 Å that discriminates mobile Na atoms from 

immobile Na atoms. The inset is a colormap of the Na atoms’ displacement in the bonded 
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Figure 10-2: (a) Schematic of the classification model used to separate mobile Na atoms (red 

circle) from immobile Na atoms (blue square) using a classification hyperplane (green 

line). The input features are constructed by a series of Nr structural order parameters G(i; 

r) that describe the local oxygen density of each Na atom i at different distances r (see Eq. 

(10-1)). For illustration purpose, here, two input features associated with the distances r1 

= 2.36 Å and r2 = 4.68 Å (i.e., the average distance of the first and second coordination 

shell, respectively) are selected to represent the Nr-dimensional feature space. The 

hyperplane is identified by logistic regression. (b) Distribution density of the Na atoms’ 

final displacement D and initial softness S. The softness S is defined as the orthogonal 

distance between the atom and the hyperplane in classification space (see panel (a)). 

Mobile and immobile atoms correspond to positive and negative S, respectively. The 

dataset contains 205,800 Na atoms from a large (Na2O)30(SiO2)70 configuration with 39.7% 

mobile Na (D ≥ D0) and is randomly divided into the training (70%) and test sets (30%). 

(c) Final average Na atom displacement ‹D› of the training and test sets as a function of 

their initial softness S. The blue line is a power fit to guide the eye. ............................. 240 

Figure 10-3: (a) Snapshot of the predicted Na atom softness S for a new, independent test 

(Na2O)30(SiO2)70 glass. The system contains 600 Na atoms as a test set. (b) Distribution of 

the softness of all Na atoms (black) and mobile Na atoms (red) in the glass. The orange 

area represents the properly predicted soft Na atoms (S > 0) within the mobile Na atoms. 

(c) Logarithm of the probability log(PR(S)) of a Na atom to rearrange (D ≥ D0) as a 

function of its initial softness S. The red line is an exponential fit following Eq. (10-2).
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Figure 10-4: (a) Weight coefficient w(r) of the classification hyperplane (see Fig. 10-2a) at 

different distances r. The red line is to guide the eyes. The partial Na–O pair distribution 

function gNa–O(r) of the glass is added in the top panel as reference. The distance r1 and r2 

are associated with the peak position of the 1st and 2nd coordination shell of gNa–O(r), 

respectively. The grey window indicates the range of large weights. The inset illustrates 

the local oxygen (purple sphere) environments around (i) a soft Na atom (red sphere) and 

(ii) a “harder” Na atom (blue sphere) with an extra O atom (gold sphere) in between the 1st 

and 2nd coordination shells (green halo). (b) Na atom softness S as a function of their 

Voronoi volume V and coordination number CN. The color coding is based on a linear 

interpolation between the datapoints in the Na atom dataset. ......................................... 245 

Figure 11-1: (a) Shear strain 𝛾 as a function of the number of stress perturbation cycles of a 

colloidal C–S–H gel subjected to a constant shear stress 𝜏0. The dashed line is a logarithmic 

fit following Eq. (11-4). (b) Distribution of the normalized non-affine squared 

displacement D2min/𝜎2 for a shear strain 𝛾 = 1%. The red area highlights the tail of the 

distribution, i.e., its deviation from a Gaussian distribution (in grey). The inset shows the 

corresponding gel configuration, wherein the color of the particles denotes their D2min/𝜎2 

value. The green dash line indicates the threshold (D2min,0/𝜎2) that is used herein to 

discriminate immobile (low displacement) from mobile (high displacement) particles. 260 

Figure 11-2: (a) Illustration of the classifier model, wherein the position of each particle is 

determined from the values of the two most influential structural features used for the 

classification, i.e., the order parameters G(i; r) calculated at r0 = 1.00𝜎 and r1 = 1.14𝜎. The 

color of each particle denotes its relative non-affine squared displacement (D2min/𝜎2). The 

black line represents the projection of the hyperplane identified by logistic regression in 
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this 2-dimensional space. (b) Distribution density of the particles’ normalized non-affine 

square displacement (D2min/𝜎2) (at the end of the creep simulation) and initial softness (S), 

wherein the softness of each particle is defined as the orthogonal distance from the 

hyperplane to its position in the Nr-dimensional feature space (see panel a). The dataset 

consists of 10 creep simulations (~1700 particles and ~7% mobile particles per 

configuration), wherein 7 final configurations serve as training set and the rest 3 

configurations are test set. The green dash line indicates the threshold (D2min,0/𝜎2) of 

particle rearrangement. For illustration purposes, the density of mobile particles is rescaled 

to ensure balance with the number of immobile particles. (c) Final average normalized 

non-affine squared displacement ‹D2min/𝜎2› of the particles of the training and test sets (at 

the end of the creep simulation) as a function of their initial softness. The blue line is a 

power fit to guide the eye. .............................................................................................. 265 

Figure 11-3: (a) Snapshot of the predicted particles’ softness of an initial static gel (shear strain 

𝛾 = 0) in the test set. (b) Distribution of the softness of all particles (black) and mobile 

particles (red) in the gel. The orange area represents the fraction of properly predicted soft 

particles (S > 0) within the mobile particles. (c) Logarithm of the probability of a particle 

to rearrange upon creep (D2min/𝜎2 ≥ D2min,0/𝜎2) log(PR(S)) as a function of its initial 

softness S in the initial gel structure. The red line is an exponential fit following Eq. (11-
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normalized average energy barrier Eave/𝜀 in the gel. The red line is an exponential fit 

following Eq. (11-9). ...................................................................................................... 272 

Figure 11-7: (a) Illustration of the spatial correlation between the fields of the final non-affine 

squared displacement (D2min), the initial softness (S), and the initial average energy barrier 

(Eave). The particles are colored based on their standardized value in the corresponding 

field. (b) Distribution density of the particles’ initial normalized average energy barrier 

(Eave/𝜀) and initial softness (S). (c) Initial average normalized energy barrier (‹Eave/𝜀›) of 

the particles in the gel (before any stress is applied) as a function of their initial hardness 

(H = –S). The red line is a linear fit following Eq. (11-10). (d) Spatial correlation function 

‹C(0)C(r)› of the displacement field (D2min, black), the softness field (S, red), and the 

energy barrier field (Eave, blue) in the gel. Note that the field value C (i.e., D2min, S, Eave) is 

standardized for the calculation. The lines are exponential fits following exp(-r/ξ), where 

ξ is the characteristic correlation length. ......................................................................... 276 

Figure 12-1: Summary of different paradigms for materials discovery, including (a) Edisonian 

trial-and-error method, (b) high-throughput virtual screening, (c) machine learning using 

experimental data, and (d) integration of machine learning and simulations. The color 

coding represents the target property in the material design space, and the red star denotes 

the optimal material exhibiting optimal property. The grey circles are the present datapoints 

explored by the method, and the red arrow shows the machine learning search path. ... 285 

Figure 12-2: Schematic summarizing future opportunities for materials modeling offered by the 

mutual integration of simulations and machine learning (ML). On the one hand, ML can 

assist in (i) developing empirical forcefields for accurate and computationally-efficient 

simulations, (ii) “separating the wheat from the chaff” in large amounts of complex 



 xxxix 

simulation data to gain new insights or generate new knowledge of the underlying physics 

governing glases, and (iii) accelerating simulations by surrogate machine learning engines. 

On the other hand, simulation can generate large amounts of high-fidelity data that can be 
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automated differentiable programming engines (e.g., Python JAX) and hardware 

accelerators (e.g., graphics processing unit (GPU) and tensor processing unit (TPU)). 
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Chapter 1. Introduction 

1.1 Motivation for Modeling of Disordered Materials 

1.1.1 Vast Design Space of Disordered Materials 

Developing novel materials with new, improved properties and functionalities is key to 

address some of the Grand Challenges facing our society [1,2]. Although the process of designing 

a new material is always a difficult task, the design of novel disordered materials (e.g., glasses) 

comes with some unique challenges [3]. Taking the example of glassy materials, virtually all the 

elements of the periodic table can be turned into a glass if quenched fast enough [4]. Moreover, 

unlike crystals, noncrystalline solids are intrinsically out-of-equilibrium and, hence, can exhibit a 

continuous range in their stoichiometry (within the glass-forming ability domain) [5]. For both of 

these reasons, the compositional envelope that is accessible to glass is limitless and, clearly, only 

an infinitesimal fraction of these compositions have been explored thus far [4]. 

Figure 1-1 shows an atomistic structure of sodium silicate glass prepared by melt-

quenching molecular dynamics (MD) simulation. Notably, the disordered structure exhibits a 

variety of complexity at different length scale, including atom type, bond length, bond angle, atom 

coordination number, ring size, Voronoi volume, local packing density, radial 2-body order, 

angular 3-body order, etc. As a key advantage of disordered materials, such high structural 

complexity provides a vast design space to tune materials properties [6]. Although the design space 

accessible to disordered materials (e.g., the infinite compositional envelope to glasses) opens 

endless possibilities for the discovery of new structures with unusual properties [4], efficiently 

exploring such a high-dimension space is notoriously challenging and traditional discovery 

methods based on trial-and-error Edisonian approaches are highly inefficient (see Sec. 1.1.2) [7,8]. 
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Figure 1-1: Illustration of structural complexity in a sodium silicate glass ((Na2O)30(SiO2)70). 

The glass structure exhibits various structural features, including atom type, bond length, bond 

angle, atom coordination number, ring size, Voronoi volume, local packing density, radial 2-

body order, angular 3-body order, etc. 

 

1.1.2 Traditional Design Paradigm by Edisonian Trial-and-Error Experiments 

Due to their structural complexity (see. Fig. 1-1), disordered materials exhibit continuously 

changing properties in their vast design space [6]. Figure 1-2 illustrates a material design space, 

where the color coding represents a target property of the material. In order to find out the optimal 

material exhibiting optimal target property, we need to search the high-dimension design space 

point by point, and in our human history, numerous efforts have been made to find a more efficient 

search strategy for materials discovery [9,10]. 

The traditional paradigm for materials discovery is based on “intuition” and takes many 

trial-and-error “Edisonian” experiments (see Fig. 1-2) [10]. Note that, this method is widely 

applied in laboratory and industry [11]. Based on the accumulated data and experiences, the next 

candidate datapoints are usually chosen with some randomness or slightly adjusted from previous 
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experiments, resulting in sparse data over the entire design space or clustered data in a small region 

[11,12]. However, both the two types of data explorations are not ideal situation to find the optimal 

materials [11,12]. Moreover, traditional experiments require relatively high material and time cost 

to generate data points and cannot produce enough data points cover the entire exploration domain 

[11]. 

 

Figure 1-2: Illustration of Edisonian trial-and-error method for materials discovery. The color 

coding represents the target property in the material design space, and the red star denotes the 

optimal material exhibiting optimal property. The grey circles are the present datapoints 

explored by trial-and-error method. 

 

1.1.3 Accelerated Design of Disordered Materials by In Silico Modeling 

In order to overcome the limitations of intuition-based “trial-and-error” approach and 

reduce search randomness (see Sec. 1.1.2), past centuries have witnessed significant revolutions 

in materials discovery paradigm [9,10].  Figure 1-3 shows the evolution of materials discovery 

paradigms along human history timeline [10]. Along with the advancement of science and 

technology, the revolution for materials discovery is roughly divided into four stages, i.e., 

empirical, theoretical, computational, and data-driven stages [10]. 
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In stage I (before seventeen century), materials discovery is purely driven by empirical 

science, and our ancestors relied on their intuitions to refine materials using Edisonian trial-and-

error approach (see Sec. 1.1.2)—although it is rarely possible to find the optimal material in the 

vast design space [9,10]. Then starting from seventeen century (stage II), modern science emerges, 

and materials scientists started to propose, establish, and continuously refine a systematic set of 

model-based theories that govern materials properties (e.g., laws of thermodynamics) [6]. These 

material theories greatly facilitate materials discovery by identifying the most promising “optimal” 

regions in their design space [9,10]. However, there remains some level of intuition-based 

randomness to explore the identified local regions [13]. 

 

Figure 1-3: Schematic of fourth paradigm for materials discovery. Along the human history 

timeline, the way we discover materials is evolving from empirical (1st paradigm), to 

theoretical (2nd paradigm), computational (3rd paradigm), and now, to data-driven paradigm 

(4th paradigm). Image adopted from ref. [10] 

 

Starting from the middle of last century (stage III), we have witnessed the revolution of 

every scientific field with the advancement of computer science [14]. In this stage, relying on more 
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and more powerful computing resources, we envisioned to encode any model-based material 

theories into computational algorithms predictive in materials behaviors and properties—namely, 

computational simulations (e.g., molecular dynamics) [15]. Compared to traditional experiments, 

simulations usually require relatively lower material (computational power only) and time cost, 

and therefore, can generate much more data points in short time [11]. As such, many materials 

experiments were expected to be conducted by computational simulations as a more efficient in 

silico experiments—rather than conducted by traditional laboratory experiments [16]. As an ideal 

scenario, high-throughput virtual screening (HTVS) has been proposed to allow computational 

tools to provide an efficient way to test on-the-fly every datapoint in material design space [17], 

as illustrated in Fig. 1-4a. Although there is no guarantee that HTVS can provide the optimal 

material unless more finer simulations (i.e., higher resolution over the entire design space tested 

by simulations), it remains a “cheap” approach to guide experiments and accelerate the discovery 

of new materials [17]. 

Now entering into this century (stage IV), the accumulation of materials data during past 

centuries along with the thrust of computer science has unlocked a new era of “big data” [9,10]. 

In this stage, materials scientists aim to leverage the power of data-driven science (e.g., machine 

learning) to efficiently establish data-driven (physics-blind) models that (i) predict materials 

properties and (ii) guide the discovery of optimal material [3]. Figure 1-4b shows an illustration 

of machine learning (ML) for materials discovery. In detail, using the learning examples (i.e., the 

training dataset), ML infers the landscape of target property over the entire material design space 

through a ML regression model [3]. This landscape is informative to guide a ML search path 

toward local regions most promising to exhibit optimal properties (see Fig. 1-4b), thus significantly 

reducing the exploration efforts [7,8]. Overall, in contrast to traditional laboratory “trial-and-error” 
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explorations, both stage III and stage IV paradigm greatly facilitate materials discovery by 

resorting to in silico modeling approaches—either driven by physics (3rd paradigm) or by data 

(4th paradigm) [10,18]. 

  

(a) (b) 

Figure 1-4: Illustration of (a) high-throughput virtual screening and (b) machine learning 

method for materials discovery. The color coding represents the target property in the material 

design space, and the red star denotes the optimal material exhibiting optimal property. The 

grey circles are the present datapoints explored by the method, and the red arrow shows the 

machine learning search path. 

 

1.2 Overview of the State-of-the-Art in Modeling of Disordered Materials 

1.2.1 Materials Modeling driven by Physics and Data 

Looking into the evolution of materials discovery paradigms (see Fig. 1-3) [10], it is 

notable that, having an extensive set of materials modeling tools revolutionizes the way we 

discover new materials [18]. In general, materials modeling is built upon certain physics laws 

and/or experimental data [18]. Figure 1-5 shows a variety of modeling tools [18], ranging from 

functional physics-driven models (e.g., quantum mechanics simulation [19]), to empirical models 

relying on both physics laws and experimental data (e.g., topological constraint theory [20]), and 
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to the most extreme case where the modeling is completely physics-blind and purely driven by 

data (e.g., data-driven machine learning [3]). In this thesis, based on whether physics law involved 

or not, materials modeling tools are roughly categorized into (i) physics-driven modeling (e.g., 

computational simulations, see Sec. 1.2.2) and (ii) data-driven/physics-blind modeling (e.g., 

machine learning models, see Sec. 1.2.3) [18]. Note that, the scope of this thesis would mainly 

focus on two representative modeling tools in the two categories, respectively, that is, (i) physics-

driven computational simulations (3rd paradigm for materials discovery, see Fig. 1-4a), and (ii) 

data-driven machine learning (4th paradigm for materials discovery, see Fig. 1-4b). 

 

Figure 1-5: Illustration of various materials modeling tools, ranging from physics-driven 

modeling to (physics-blind) data-driven modeling. Image adopted from ref. [18] 

 

1.2.2 Computational Simulation: Physics-Driven Modeling 

Built on computational programming platforms (containing both software and hardware), 

computational simulations aim to implement model-based material theories into computational 

algorithms—which enable predictions of materials behaviors and properties [15]. Here, taking the 

example of atomistic simulations, Figure 1-6 illustrates the physics principles behind their 
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algorithm implementations so as to reveal the physics-driven nature of computational simulations 

[21]. As a simple classification, atomistic simulations can be broadly divided in terms of their 

description of the atomic motion [21]. Namely, (i) molecular dynamics (MD) simulations offer a 

direct description of the spontaneous dynamics of the atoms as per the Newton’s law of motion 

[15], whereas (ii) other types of simulations (e.g., Monte Carlo (MC) simulations [14]) simply aim 

to construct an atomic structure based on a target objective (e.g., minimizing energy) without any 

explicit description of the dynamics of the atoms [14].  

MD simulations predict the true motion of the atoms that is predicted by the Newton’s law 

of motion (see Fig. 1-6a) [22]. This requires the knowledge of the interatomic forcefield, that is, 

the real-time force experienced by each atom [23]. Such forces can comprise radial 2-body 

interactions [24], angular 3-body interactions [25], and/or many-body interactions [26] and play a 

key role in predicting atom trajectories. In practice, the interatomic forcefield can be accurately 

computed using first-principles electron-level methods (e.g., ab initio MD simulation [19]) or can 

be approximately estimated by some empirical functions (i.e., classical MD simulation [27,28]). 

Unlike MD simulations, other types of atomistic simulations such as energy-based MC 

[14], or energy minimization based on gradient descent [29,30] do not follow the Newton’s law of 

motion. Rather, these approaches rely on exploring and finding the minimum position of a given 

“cost landscape” (e.g., potential energy for MC and energy minimization) via a series of structural 

modifications (e.g., displacing atoms) [22]. For instance, Figure 1-6b illustrates the principle 

behind energy-based MC simulations [21], wherein the MC simulation searches the global 

minimum within the potential energy landscape (PEL) by performing a series of tentative MC 

moves. Each move is either accepted or rejected according to a given acceptance probability 

defined in the MC algorithm [14]. In contrast to MD simulations wherein large energy barriers are 
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unlikely to be overcome [29,31], simulations based on sampling a PEL can “accelerate” atomic 

motion to (i) jump over energy barriers and (ii) move toward the minimum energy state [32,33], 

which corresponds to the most stable energy state that the atomic system relaxes toward upon 

aging/relaxation [34]. Note that the landscape to explore (i.e., the function to minimize) is not 

always the potential energy, but, rather, can take the form any function, e.g., a loss function 

capturing the structural difference between simulated and experimental glass in the case of reserve 

Monte Carlo (RMC) simulations [35]. 

 

Figure 1-6: (a) Illustration of a molecular dynamics (MD) simulation of a glass system, 

wherein, starting from an initial configuration, the motion of the atoms is determined based on 

the interatomic interactions following the Newton’s law of motion. (b) Illustration of a Monte 

Carlo (MC) simulation, wherein an MC search algorithm (e.g., energy-based Metropolis 

algorithm) is used to find the minimum state (e.g., minimum energy) of a glass system within 

a cost function landscape—e.g., potential energy landscape (PEL), namely, a system’s 

potential energy as a function of its atom positions. The landscape is sampled by performing a 

series of MC moves (e.g., random displacement of an atom). Image adopted from ref. [21] 
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1.2.3 Machine Learning: Data-Driven Modeling 

As an alternative route to physics-based modeling, artificial intelligence (AI) and machine 

learning (ML) offer a promising path to leverage existing datasets and infer data-driven models 

that, in turn, can be used to accelerate the discovery of novel materials [36,37]. Over the past 

decade, thanks to the rapid increase in available computing power [38], AI and ML have 

revolutionized various aspects of our lives [39], including for image recognition [40], Internet data 

mining [41], or self-driving cars [42]. 

In details, machine learning can “learn from example” by analyzing existing datasets and 

identifying patterns in data that are invisible to human eyes [43]. Figure 1-7 shows a typical 

application of machine learning to glass design [3]. First, some data are generated (by experiments, 

simulations, or mining from existing databases) to build a database of properties. Such databases 

can comprise, as an example, the glass composition, synthesis procedure, as well as select 

properties. Machine learning is then used to infer some patterns within the dataset and establish a 

predictive model. 

Machine learning algorithms can accomplish two types of tasks, namely, supervised and 

unsupervised [44]. In the case of supervised machine learning, the dataset comprises a series of 

inputs (e.g., glass composition) and outputs (e.g., density, hardness, etc.). Supervised machine 

learning can then learn from these existing examples and infer the relationship between inputs and 

outputs. Supervised machine learning comprises (i) regression algorithms [3], which can be to 

predict the output as a function of the inputs (e.g., glass composition-property predictive models) 

and (ii) classification algorithms [3], which can be used to label materials within different 

categories (e.g., transparent or nontransparent glasses). In contrast, in the case of unsupervised 

machine learning, the dataset is not labeled (i.e., no output information is known). Unsupervised 
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machine learning can, for instance, be used to identify some clusters within existing data, that is, 

to identify some families of data points that share similar characteristics [3]. 

 

Figure 1-7: Illustration of a machine learning (ML) pipeline for glass design. ML models are 

generally applied to two types of learning tasks, i.e., supervised learning (e.g., regression and 

classification), and unsupervised learning (e.g., clustering). Image adopted from ref. [3] 

 

1.3 Present Challenges in Modeling of Disordered Materials 

1.3.1 Is the Physics Simple? 

Although various materials modeling tools, including both physics- and data-driven 

models, have been established to accelerate materials design (see Fig. 1-5) [18,36], there remain 

two grand challenges facing materials modeling in general, that is, (i) the high complexity of 

physics laws that govern materials properties (see Fig. 1-8) [45], and (ii) the low informativity of 

experimental dataset (see Fig. 1-9) [11,12]. In this section, I would introduce the complex physics 

that challenges the development of physics-driven modeling. 

In order to build a physics-based predictive model, it is necessary to quantify the physics 

laws governing materials properties. However, on the one hand, the underlying physics might be 

too complex to be simplified as quantitative model-based theories. One typical example is glass 
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dissolution (see Chapter 5) [12], where the dissolution rate can be divided into three stages 

governed by different, complex dissolution mechanisms [46]. This renders challenging to build a 

physics-driven model that can meaningfully predict the glass dissolution rate, and we then resort 

to build a data-driven model instead (see Chapter 5) [12].  

On the other hand, although there exists a ground truth that nearly all condensed-state 

properties of materials can be ascribed to the electron-level interactions as explicitly formulated 

by first-principles theories [19], building a predictive model relying on first-principles 

formulations would result in notoriously expenesive computational cost [47,48]. Figure 1-8 

illustrates a computational expensive virtual screening relying on first-principles molecular 

dynamics (MD) simulations [19]. MD simulation implements Newton’s law of motion to predict 

atom motions by a loop of 4-successive-step computational algorithm [21], namely, (i) computing 

the system’s potential energy U({ri}) by summing up all interatomic interactions for the current 

atom positions {ri}, (ii) calculating the resultant force {Fi} experienced by each atom i via energy 

differentiation (i.e., Fi = –𝜕U/𝜕ri), (iii) obtaining each atom’s acceleration {ai} from {Fi} as per 

the Newton’s law of motion, that is, ai = Fi/mi, where mi is the mass of atom i, and finally, (iv) 

updating the atom positions and velocities after a small, fixed timestep via numerical integration 

(e.g., Verlet or leapfrog algorithm [49]). Eventually, this four-step loop yields the position of the 

atom at a function of time, that is, the trajectory of each atom. In first-principles ab initio MD 

(AIMD) simulations, the system’s potential energy is accurately computed using first-principles 

electron-level methods, and the computational cost of first-principles MD simulations typically 

scales with the cube of the number of electronic degrees of freedom [19]. The extremely high 

computation cost would significantly slow down the simulation runtime, and a typical AIMD 

simulation running on regular computing platforms usually takes a long time from weeks to 
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months—which limits its potential to virtually screen the entire material design space and discover 

new materials [21]. 

 

Figure 1-8: Illustration of a computational expensive virtual screening relying on ab initio 

molecular dynamics (AIMD) simulations. AIMD simulation implements Newton’s law of 

motion into a 4-step computational algorithm (see left panel), and the system’s potential 

energy is computed by first-principles formulation of electron-level interactions (see middle 

panel), which takes numerous computation cost []. In right panel, the color coding represents 

the target property in the material design space, the red star denotes the optimal material 

exhibiting optimal property, and the grey circles are the present datapoints explored by AIMD 

simulations. 

 

1.3.2 Is the Data Informative? 

As a supplement to physics-driven modeling, data-driven modeling provides new 

opportunities to build predictive models for certain materials properties governed by complex, 

unknown physics [12,46]. However, the accuracy of data-driven modeling, especially machine 

learning (ML), is largely limited by the non-informativity of datasets in the field of materials 

science [11].  

A successful ML model usually requires large amounts of “informative” data to train the 

model and produce reasonable predictions. To be considered as “informative”, a dataset needs to 
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be (i) available, (ii) complete, (iii) consistent, (iv) accurate, and (v) representative. However, most 

materials experiment datasets do not satisfy such requirements, which make the application of ML 

in materials engineering very challenging [11]. 

Figure 1-9 shows an example of ML using an uninformative experimental dataset. Since 

Edisonian “trial-and-error” method has been widely applied in laboratory and industry (see Sec. 

1.1.2), the datapoints of experimental datasets are usually chosen with some randomness or slightly 

adjusted from previous experiments, resulting in sparse data over the entire design space or 

clustered data in a small region (see Fig. 1-9) [11]. However, both the two types of data curations 

are not ideal to inform ML models to guide the discovery of optimal material, considering ML 

models generally excel at interpolating existing datapoints but show poor extrapolatability to 

ranges away from the existing dataset (see Fig. 1-9) [12]. Overall, the low informativity of 

materials datasets would reduce the predictivity of data-driven modeling and significantly limits 

its huge potential for materials discovery. 

 

Figure 1-9: Illustration of machine learning (ML) using an uninformative experimental 

dataset. ML models are good at interpolation but not extrapolation (see left panel). In right 

panel, the color coding represents the target property in the material design space, and the red 

star denotes the optimal material exhibiting optimal property. The grey circles are the present 

datapoints explored by the method, and the red arrow shows the machine learning search path. 
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1.4 Proposal of Next-Generation Modeling and Thesis Overview 

1.4.1 Main Contributions of the Thesis in Next-Generation Modeling 

 

Figure 1-10: Illustration of next-generation paradigm for materials discovery by integrating 

machine learning and simulations. The color coding represents the target property in the 

material design space, and the red star denotes the optimal material exhibiting optimal 

property. The grey circles are the present datapoints explored by the method, and the red arrow 

shows the machine learning search path. 

 

To address these challenges facing materials modeling—namely, (i) the complex physics 

and (ii) the uninformative data (see Sec. 1.3), I propose herein the framework of next-generation 

paradigm for materials discovery, that is, integration of machine learning (ML) and simulations 

(see Fig. 1-10). On the one hand, computational simulation enables virtual screening of the entire 

material design space, but the simulations often take numerous computational costs [17]. On the 

other hand, ML could guide the exploration toward local regions most promising to find optimal 

material, but the model accuracy is highly dependent on the quality of the dataset [3]. Taking into 
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account the pros and cons of both modeling methods, I envision that the integration of ML and 

simulations is promising to leverage the predictive power of both modeling methods, and at the 

same time, overcome the limitations of each individual method (see below). Overall, it is a promise 

that the predictivity of the integrated modeling is unparallel so as to unlock a new era for materials 

discovery (see Fig. 1-10) [11,50]. 

 

Figure 1-11: Schematic of next-generation modeling via integration of machine learning and 

simulations. The integrated modeling aims to (i) make the data informative to facilitate data-

driven machine learning and (ii) make the physics simple to facilitate physics-driven 

simulations. 

 

The unparallel predictive power of this integrated modeling method can be understood 

from two aspects described below (see Fig. 11). First, from the aspect of data-driven ML models, 

in contrast to traditional experiments, high-throughput simulations are able to produce large 

amounts of “informative” data to train ML models and provide new opportunities to overcome the 

limitations using experimental data (see Sec. 1.3.2 and 1.4.3) [11]. Second, from the aspect of 

physics-driven simulations, since our goal is to facilitate the modeling by adopting less-complex 

physics laws (see Sec. 1.3.1 and 1.4.2), we expect that, when using ML models to infer the target 

property landscape in the material design space, the ML models could capture some physics 
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laws— which are otherwise hard to formulate but govern the property landscape, so as to build 

simulations driven by machine-learned-physics (see Sec. 1.4.4) [51,52]. Overall, by “fusion” of 

ML and simulations, this thesis contributes the next-generation materials modeling in leveraging 

the predictive power of both data-driven ML and physics-driven simulations toward (i) more 

informative data-driven ML and (ii) less complex physics-driven simulation. 

 

1.4.2 Physics-Driven Modeling: Make the Physics Simple 

According to the two grand challenges facing materials modeling (see Sec. 1.3), next-

generation materials modeling would contain two types of tasks, namely, (i) make the physics 

simple to facilitate physics-driven modeling [51,52], and (ii) make the data informative to facilitate 

data-driven modeling [11,50]. In this section, I would introduce the next-generation modeling 

driven by simple physics. 

To be considered as “simple”, physics-driven modeling follows a 3-stage scheme in 

simplifying the physics principles that govern materials properties, i.e., (i) make the complex (or 

unknown) physics become interpretable [53], (ii) make the interpretable physics become 

computational [29], (iii) make the computational physics become computationally efficient [47]. 

In practice, each stage contains some unique challenges and needs numerous efforts to make some 

progress. For example, Figure 1-12 shows a computational simplification of ab initio MD 

simulation by classical MD simulation, where ab initio MD simulations conduct a computationally 

expensive calculation of interatomic potentials using the first-principles electron-level methods 

(see Sec. 1.3.1) [19]. In order to make the computation more efficient, the interatomic potentials 

can be approximately estimated by some empirical functions, that is, empirical potentials (viz., 

empirical forcefields) in classical MD simulations (see Fig. 1-12) [47,48]. Nevertheless, this 
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approximation still needs a lot of consideration about the balance between accuracy and simplicity 

of empirical forcefields (see Chapter 7–9) [54].  

In practice, we have different approaches to fulfill the 3-stage scheme so as to make the 

physics simple, including experimental [55], theoretical [6], and data-driven analysis [18,56]. This 

thesis provides examples of all the 3 stages. First, some new types of simulations are developed 

by using theoretical analysis to make the interpretable physics become computational (see Chapter 

2-4) [16,29,57]. Then it is notable that, by integrating machine learning and simulations, this thesis 

contributes to make the complex physics become interpretable (see Chapter 10-11) [58,59], and 

make the computational physics become computationally efficient (see Section Chapter 7-9) 

[24,54,60]. 

 

Figure 1-12: Illustration of making the physics simple in molecular dynamics (MD) 

simulation, where the computationally expensive formulation of first-principles interatomic 

potentials in ab initio MD can be simplified as some empirical potential functionals that take 

little computation cost in classical MD. 

 

1.4.3 Data-Driven Modeling: Make the Data Informative 

Clearly, the bottleneck of next-generation modeling driven by data lies in the quality (viz. 

informativity) of the dataset used to train the model [61]. As illustrated in Fig 1-13, by making the 

data more informative—note that, to be considered “informative”, a dataset needs to be (i) 
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available, (ii) complete, (iii) consistent, (iv) accurate, and (v) representative [11]—that is, by 

reducing the sparseness and randomness of data distribution in the material design space, machine 

learning models become properly trained to offer more precise guidance in discovering optimal 

material [3]. In this section, I would introduce the methods that make the data informative toward 

next-generation data-driven modeling. 

 

Figure 1-13: Illustration of making the data informative in machine learning, where more 

informative data-driven machine learning would facilitate materials discovery. The color 

coding represents the target property in the material design space, and the red star denotes the 

optimal material exhibiting optimal property. The grey circles are the present datapoints 

explored by the method, and the red arrow shows the machine learning search path. 

 

As a simple classification, the methods to make the data informative can be divided into 

two groups: (i) transforming the existing dataset into a more informative format [12], and (ii) 

adding more “informative” data into the existing dataset [7,8,50]. This thesis contributes to use 

both types of methods toward more informative data-driven machine learning (ML). First, I use 

some prior physics knowledge to transform an existing dataset into a more informative format to 

enhance the ML model’s extrapolability (see Chapter 5) [12]. Second, by integrating ML and 

simulations, I enable an automatic addition of informative simulation data in the training of ML 
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models—which greatly improves the models’ prediction accuracy and extrapolability (see Chapter 

6) [50]. 

 

1.4.4 Fusion of Physics- and Data-Driven Modeling 

As both physics- and data-driven modeling have their advantages and bottlenecks 

individually in next-generation paradigm for materials discovery (see Sec. 1.4.1) [10,18], it 

become urgently important to “fuse” physics- and data-driven modeling—that is, integration of 

machine learning and simulations in the scope of this thesis—so as to overcome their individual 

limitations (see Sec. 1.3) and maximize both modeling tools’ predictive power in the integrated 

pipeline (see Sec. 1.4.1) [11,50].  

 

Figure 1-14: Schematic of “fusion” of physics-driven simulations and data-driven machine 

learning (ML), by (i) providing simulation data/fingerprints to inform ML models [50], (ii) 

developing potential energy by ML [24], and (iii) deciphering complex simulation data by ML 

[59]. 

 

To demonstrate the predictive power, I investigate several applications of the integrated 

modeling (see Fig. 15). On the one hand, ML can assist in (i) developing empirical forcefields for 

accurate and computationally-efficient simulations (Chapter 7-9) [24,54,60], (ii) “separating the 
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wheat from the chaff” in large amounts of complex simulation data to gain new insights or generate 

new knowledge of the underlying physics governing materials behaviors (Chapter 10-11) [58,59], 

and (iii) accelerating simulations by surrogate machine learning engines [62,63]. On the other hand, 

simulation can generate large amounts of high-fidelity data that can be used to train machine 

learning models, which, in turn, can be validated by simulations (Chapter 6) [50]. Overall, I 

envision that smart closed-loop integrations of ML modeling and simulations will leapfrog 

materials modeling [3,18,36]. 

 

1.4.5 Thesis Organization 

To address the two grand challenges facing materials modeling (i.e., the complex physics 

and the uninformative data, see Sec. 1.3), next-generation materials modeling aims to (i) make the 

physics simple to facilitate physics-driven modeling (see Sec. 1.4.2), and (ii) make the data 

informative to facilitate data-driven modeling (see Sec. 1.4.3) [3,18,36]. By integrating data-driven 

machine learning (ML) and physics-driven computational simulations (see Sec. 1.4.4), the next-

generation paradigm for materials discovery emerges (see Fig. 1-10), that is, advancing less-

complex physics-driven simulations and more-informative data-driven ML models toward 

unparalleled acceleration for materials discovery [3,18,36].  

Based on the interplay between ML and simulation (see Fig. 1-11), this thesis is divided 

into three sections to describe the methodology of next-generation materials modeling: 

• Section A is “physics-driven computational simulations: make the physics simple”, where 

I adopted theoretical analysis to make the interpretable physics become computational (see 

Chapter 2-4) [16,29,57]. Based on the interpretable physics that governs materials 

behaviors, I simplify the physics laws and formulate the laws into computational models 
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so as to simulate the material behaviors, including precipitation kinetics (see Chapter 2) 

[57], nanomechanics (see Chapter 3) [16], and long-time creep deformation (see Chapter 

4) [29] of colloidal calcium–silicate–hydrate (C–S–H) gels— the glue of concrete that 

forms upon the hydration of cement. 

• Section B is “data-driven machine learning: make the data informative”, where I use some 

prior physics knowledge to transform an existing dataset into a more informative format 

to enhance the ML model’s extrapolability (see Chapter 5) [12]. Specifically, in contrast to 

blind machine learning of glass composition-dissolution rate relationship, I construct some 

features of the glass network topology as ML input descriptors and apply it to predict the 

stage I dissolution kinetics (i.e., forward rate, far from saturation) of sodium 

aluminosilicate glasses (see Chapter 5) [12]. 

• Section C is “integration of machine learning and simulations: toward next-generation 

materials modeling”, where the applications of the integrated modeling can be further 

divided into three sub-sections: 

o Section C1 is “toward more informative data-driven machine learning”, where 

machine learning is informed by differentiable simulations. This enables an 

automatic addition of informative simulation data in the training of ML models, 

which greatly improves the models’ prediction accuracy and extrapolability (see 

Chapter 6) [50]. Specifically, taking the example of the inverse design of a porous 

matrix featuring targeted sorption isotherm, I introduce a deep generative pipeline 

that combines an end-to-end differentiable simulator with a generator model, and 

demonstrate the power of this approach in accelerating materials’ inverse design 

(see Chapter 6) [50]. 
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o Section C2 is “toward less complex physics-driven simulation”, where some 

accurate-yet-computationally efficient empirical forcefields for classical MD 

simulations are developed by ML methods (see Chapter 7-9) [24,54,60]. Taking the 

example of Buckingham-format empirical forcefield for glassy silica, I utilize ML 

to explore the entire landscape of Buckingham potential to (i) pinpoint the 

forcefield exhibiting highest accuracy (see Chapter 7) [60], (ii) obtain the balance 

between forcefield accuracy and simplicity (see Chapter 8) [54], and (iii) compare 

the competitive forcefields in the “bistability” landscape (see Chapter 9) [24]. 

o Section C3 is to “gain new physics knowledge”, where ML can assist in “separating 

the wheat from the chaff” in large amounts of complex simulation data to gain new 

insights or generate new knowledge of the underlying physics governing materials 

behaviors (Chapter 10-11) [58,59], including glass dynamics (Chapter 10) [58], and 

early-stage creep dynamics of gels (Chapter 11) [59]. 
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Chapter 2. Structural Percolation Controls the Precipitation 

Kinetics of Colloidal Calcium–Silicate–Hydrate Gels 

2.1 Introduction 

The precipitation process strongly affects the microstructure and properties of colloidal 

gels [1–3]. This is a consequence of the fact that jammed colloidal gels are out-of-equilibrium—

so that they are non-ergodic and their properties depend on their history [2]. During precipitation, 

microstructure (i.e., the spatial organization of the colloidal grains) and kinetics (i.e., precipitation 

rate) are closely related to each other [2–4]. Based on these linkages, the precipitation kinetics can 

be tuned by different experimental methods, such as chemical modification of the grain surfaces, 

control of the grain concentration, or reaction temperature and pressure [2]. In turn, the 

precipitation kinetics eventually controls the microstructure of the final jammed colloidal gel [3,4]. 

However, little remains known about the mutual linkages between microstructure and precipitation 

kinetics. 

Calcium–silicate–hydrate (C–S–H) gel—the glue of concrete that forms upon the hydration 

of cement—is a technologically-important inorganic colloidal hydrogel material [5,6]. Importantly, 

the colloidal microstructure of C–S–H largely controls its mechanical response and governs 

concrete strength [7–9].This is significant as, due to the large carbon impact of cement and 

concrete, improving the mechanical properties of C–S–H would permit to use less material while 

achieving constant performance [3,10,11]. Hence, enhancing the properties of C–S–H largely 

relies on our ability to finely tune the colloidal structure of C–S–H during and after the 

precipitation process. However, the complex and heterogeneous nature of cement pastes largely 

limit our ability to experimentally characterize the time-dependent microstructure of C–S–H.   
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Recently, based on coarse-grained mesoscale simulations, Masoero et al. introduced a 

colloidal model that offers a realistic description of the mesoscale structure and nanomechanics of 

C–S–H [6]. Ioannidou et al. also proposed an alternative model to describe the early-stage gelation 

of C–S–H [4]. These colloidal models have permitted to investigate the relationship between 

structure and precipitation kinetics [3,4,12]. However, several questions remain unanswered. What 

are the structural features that govern the precipitation kinetics of the gel? In turn, how does the 

kinetics of precipitation control the microstructure of the gel at setting? Answering these questions 

would facilitate the design of new gel formulations that can set “on demand” at low or high packing 

density. 

Here, based on grand canonical Monte Carlo (GCMC) simulations, we investigate the 

precipitation mechanism of C–S–H gels. We show that both the thermodynamics and kinetics of 

the precipitation of C–S–H are governed by the underlying percolation of its microstructure. 

Further, we demonstrate that the critical gel packing density at which percolation occurs is 

controlled by the balance between the size and shape of the globular clusters that form upon 

precipitation. These results highlight the retroactive nature of the linkages between structure and 

precipitation dynamics. 

This paper is organized as follows. In Sec. 2.2, we describe the simulation methodology 

used to model and analyze the precipitation of C–S–H. In Sec. 2.3, we investigate the effect of 

structural percolation of the C–S–H grains on the kinetics and thermodynamics of precipitation. In 

turn, the effect of the precipitation kinetics on the nature of the structural percolation of C–S–H is 

discussed in Sec. 2.4. Finally, some conclusions are presented in Sec. 2.5. 
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2.2 Methods 

2.2.1 Inter-grain interactions 

We adopt here the coarse-grained mesoscale model of C–S–H introduced by Masoero et 

al. [6], which has been shown to offer an excellent description of C–S–H structure and mechanical 

properties [9,13,14]. The C–S–H gel is here described as an ensemble of monodisperse C–S–H 

grains with a diameter of 5 nm. The grains interact with each other through a generalized Lennard-

Jones interaction energy potential: 

𝑈"#D𝑟"#E = 4𝜀 GH $
%&'
I
()
− H $

%&'
I
)
K          Eq. (2-1) 

where 𝜎 is the grain diameter (5 nm here), 𝛼 a parameter that controls the narrowness of the 

potential well, 𝑟"# the distance between the centers of a pair of grains 𝑖 and 𝑗, and 𝜀 the depth of 

the potential energy well. By considering each pair of grains in contact as two springs in series, 

the energy depth is given by 𝜀 = 𝐴*𝜎+, where 𝐴* = 𝑘𝐸 is a prefactor that is proportional to the 

Young’s modulus 𝐸  of a bulk C–S–H grain ( 𝐸 = 63.6  GPa based on previous atomistic 

simulations of bulk C–S–H [15]) and 𝑘 = 0.002324 (computed from a serial spring model [9]). 

The potential defined in Eq. (2-1) exhibits a minimum at 𝑟, = √2- 𝜎 so that the effective diameter 

of a grain 𝑖 is here defined as 𝜎* = √2- 𝜎. The attractive force shows a maximum at the distance 

𝑟. = U/)0(
)01

- 𝜎 so that, by choosing 𝛼 = 14, the tensile strain at failure 𝜀. = (𝑟. − 𝑟,)/𝑟, is close 

to the value of 5% obtained in previous atomistic simulation of bulk C–S–H [9,15,16]. 

 

2.2.2 Grand Canonical Monte Carlo simulations 

The C–S–H gel configurations are generated by grand canonical Monte Carlo (GCMC) 

simulations using the open-source LAMMPS package [17], as described in the following. Starting 



 34 

from an initially empty cubic box of length 600 Å with periodic boundary conditions, C–S–H 

grains are iteratively inserted to mimic the precipitation process [4]. Each GCMC step comprises 

X attempts of grain insertions or deletions followed by Y attempts to randomly displace an existing 

grain. At each step, the probability of acceptance of the attempt is given by min{1,

exp[−(Δ𝑈 − 𝜇𝜆) 𝑘B𝑇⁄ ]} , where 𝑘B  is the Boltzmann constant, T the temperature, Δ𝑈  the 

variation in potential energy caused by the trial move, µ the chemical potential (taken here as –

2𝑘B𝑇 based on previous studies [4,12]), and 𝜆 the variation in the number of C–S–H grains [18]. 

This GCMC step is then iteratively repeated until the number of inserted grains reaches a plateau. 

During the precipitation process, the packing fraction 𝜑 of each gel configuration is computed as 

𝜑 = 𝑛2𝜋𝜎+/6𝑉, where ng is the number of inserted grains at a given time and 𝑉 is the volume of 

the simulation box. Based on the system size considered herein, we typically get ng ≈ 1700 at 

saturation.  

The extent of structural relaxation in the gel upon precipitation strongly depends on the 

number of grain displacements in between two insertions/deletions. To quantify this effect, we 

define here a kinetic rate R as: 

R = X/Y                             Eq. (2-2) 

R is a metric that is qualitatively equivalent to a precipitation rate as it characterizes the inverse of 

the duration during which the grains are allowed to reorganize in between two successive 

insertions. Namely, a large R value corresponds to a high precipitation rate, wherein the grains 

have only limited opportunity to reorganize during precipitation. Here, to investigate the effect of 

the kinetics of precipitation, six values of the kinetic rate R (1.0, 0.5, 10-1, 10-2, 10-3, and 10-4) are 

considered.  
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The precipitation dynamics is dominated by not only the kinetic rate, but also the diffusion 

time of the system, i.e., the characteristic time that is needed for the grains to overcome some 

activation energy barriers. Although our GCMC simulations do not rely on any explicit time, it 

has been suggested that the “real” precipitation time 𝜏 should be proportional to the logarithm of 

the number of simulation steps [4]: 

𝜏 ∝ log(𝑁)                     Eq. (2-3) 

where N is the total number of steps insertions/deletions or displacements, i.e.,  𝑁 = 𝑛 × (𝑋 + 𝑌) 

after n GCMC steps. This can be understood from the fact that, although it is instantaneous in our 

simulations, the precipitation of a C–S–H grain would occur within a typical timescale 𝜏*, which 

increases as the system becomes more and more packed. Assuming that, to the first order, 𝜏* ∝ 𝑁, 

an increment in real time Δ𝜏 should be compared with an increment Δ𝑁/𝑁 (or Δ𝑁/𝜏*) in our 

simulations, which yields Eq. (2-3) by integration [4]. 

 

2.2.3 Analysis of the clusters of C–S–H grains 

To track the structural percolation of the C–S–H configuration upon the addition of grains 

in the simulation box, we compute the number, size, and shape of the clusters of C–S–H grains. 

Two C–S–H grains are here defined as belonging to the same cluster if their distance is lower than 

6 nm—note that this cutoff distance is here defined as the position of the first minimum after the 

main peak in the pair distribution function, that is, the extent of the first coordination shell. Periodic 

boundary conditions are considered in the determination of each cluster. We then compute the total 

number of clusters c and the average number of grains per cluster g. The length of the largest 

cluster Lmax in a given C–S–H configuration is calculated as follows. The dimensions Lx, Ly, and 

Lz of each cluster along the x, y, and z axis are first calculated by taking into account the periodic 
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boundary conditions. Lmax is then defined as the largest dimension of any cluster among all the 

clusters in this ensemble. Note that we only consider here the projections of the cluster dimensions 

on the Cartesian axis as we aim to compare these dimensions to the size of the simulation box. The 

normalized length of the largest cluster is then defined by normalizing this quantity by the length 

of the cubic simulation box 𝐿345: 

𝐿 = 𝐿675 𝐿345⁄                            Eq. (2-4) 

To characterize the shape of the clusters, we then compute an “aspect ratio” parameter A 

for the clusters as detailed in the following. First, for each individual cluster, the pair of grains 

belonging to the cluster and exhibiting the largest distance from each other is identified. The 

positions of these two grains are then used to define the diameter of a sphere that, by construction, 

entirely contains the cluster. The shape of the cluster is then characterized by randomly inserting 

some points within the sphere. Each point is defined as being part of the cluster if its distance from 

the center of the nearest grain is less than 2 times the grain diameter. Periodic boundary conditions 

are taken into account throughout the process. The aspect ratio parameter of the cluster is then 

defined as the fraction of these points that is part of the cluster. Note that, for a perfectly spherical 

cluster, this aspect ratio would be equal to 1 since all the randomly inserted points would be part 

of the cluster. In contrast, more elongated clusters are characterized by A < 1. To exclude the effect 

of isolated grains or tiny clusters, only the ones that are made of more than 5 grains are considered 

for this calculation. To filter out the effect of statistical fluctuations, the clustering analysis is 

performed for six independent simulations of precipitation simulations for each kinetic rate. All 

the clustering results presented thereafter are averaged over these configurations. 
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2.2.4 Tracking the percolation of the microstructure 

Following classical percolation theory, we describe the evolution of normalized length of 

the largest cluster L as a function of the packing fraction 𝜑 as [19,20]: 

𝐿 ∝ (𝜑8 − 𝜑)9:                      Eq. (2-5) 

where 𝜑8 is the critical percolation threshold, i.e., the packing fraction at which percolation occurs, 

and v is the percolation exponent. Namely, when 𝜑 approaches 𝜑8 , L tends to infinity and the 

system is percolated. Here, 𝜑8 was determined as the packing fraction for which the length of the 

largest cluster reaches the dimension of the simulation box, i.e., 𝐿675 = 𝐿345	or	𝐿 = 100%. The 

critical percolation exponent v is then determined by fitting the slope of the logarithm of L as a 

function of (𝜑8 − 𝜑). This analysis is conducted on the independent simulations of precipitation 

performed for each kinetic rate to calculate the mean and standard deviation of 𝜑8 and v. 

 

2.3 Results 

2.3.1 Kinetics of C–S–H precipitation 

We first analyze the kinetics of the precipitation of C–S–H and its relationship to the kinetic 

rate R (see Eq. (2-2)). Figure 2-1(a) shows the evolution of the C–S–H packing density 𝜑 as a 

function of time. Overall, we observe that 𝜑 increases monotonically with time and exhibit the 

typical sigmoidal shape that is observed experimentally [4]. In the following, the precipitation rate 

of C–S–H is defined as 𝜕𝜑 𝜕𝜏⁄ , that is, the increase in the packing density resulting from the 

successful insertions of C–S–H grains per unit of time. As shown in Fig. 2-1(b), C–S–H’s 

precipitation kinetics exhibits an initial acceleration stage, which is followed by a deceleration—

in agreement with experimental observations [4]. 



 38 

   

(a) (b) (c) 

Figure 2-1: (a) Packing fraction of the C–S–H gel and (b) precipitation rate (slope of the 

packing fraction) as a function of the number of simulation steps and normalized time for 

select kinetic rates R—see Eq. (2-2). (c) Kinetics time constant t; 	(i.e., time at which the 

precipitation rate is maximum) as a function of the kinetic rate R. 

 

We observe that the final packing density at saturation is around 0.6—that is, close to the 

packing density of random monodisperse spheres [21,22]—and does not significantly depend on 

the kinetic rate. In contrast, C–S–H precipitation kinetics is found to be largely affected by the the 

kinetic rate imposed in the simulations (see Figs. 2-1(a) and 2-1(b)).  As expected, we observe that 

a lower kinetic rate results in delayed precipitation. To further quantify the relationship between 

precipitation kinetics and kinetic rate, we define here a kinetic time constant t; as the time at 

which the maximum precipitation rate occurs, that is, at the transition between the accelerating 

and decelerating regime. We find that t; decreases logarithmically with increasing kinetic rate 

(see Fig. 2-1(c)), which a posteriori justifies the assumptions used to establish Eq. (2-3)—that is, 

that the real time should be compared with the logarithm of the simulation time lapse. 

Finally, we observe that the maximum in the precipitation rate of C–S–H becomes more 

and more sharp with decreasing kinetic rate (see Fig. 2-2(b)). This suggests that, as the 
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precipitation dynamics rate decreases, the range of packing density values over which the jamming 

transition occurs in the gel tends to become narrower. This echoes the fact that, in glasses, the glass 

transition typically becomes more and more well-defined (that is, it occurs over a narrower range 

of temperature values) upon decreasing cooling rate [23,24]. 

 

2.3.2 Thermodynamics of C–S–H precipitation 

We now investigate the thermodynamics of the precipitation of C–S–H, with a focus on 

potential energy and pressure. Figure 2-2(a) shows the time-evolution of the potential energy of 

the system. As expected, we find that the potential energy of the system decreases with time, since 

more and more C–S–H grains are inserted within the box and start interacting with each other. 

Further, we observe that the trend of the potential energy closely follows that of the packing 

fraction (see Fig. 2-1(a)), namely, a lower kinetic rate results in a delayed decrease of potential 

energy, whereas the final of the potential energy of the system at saturation does not significantly 

depend on the kinetic rate. 

Since the potential energy captures the level of cohesion of the system, the results presented 

in Fig. 2-2 highlight a transition from a non-cohesive liquid state (at low packing density) to a 

cohesive “packed” state (at high packing density) [25]. This arises from the fact that the system 

initially consists of isolated, non-interacting C–S–H grains (or clusters of grains) and eventually 

becomes cohesive as it approaches the jamming transition (see below). To further characterize the 

kinetics of this transition, we define here an energy time constant t<  as the time at which the 

potential energy exhibits the highest concave curvature, that is, when 𝜕(𝑈 𝜕𝜏(⁄  is minimum (see 

Fig. 2-2(b))—which captures the time at which the potential starts to drop and becomes non-trivial. 

As shown in Fig. 2-2(c), we find that t< logarithmically decreases with increasing kinetic rate. 
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This highlights the fact that the thermodynamics of C–S–H during precipitation is strongly affected 

by the precipitation kinetics. 

   

(a) (b) (c) 

Figure 2-2: (a) Potential energy of the system and (b) curvature thereof (i.e., second 

derivative of the potential energy) as a function of the number of simulation steps and 

normalized time for select kinetic rates R. (c) Energy time constant t< (defined as the time at 

which the potential energy exhibits the highest concave curvature) as a function of the kinetic 

rate R. 

 

We now focus on the relationship between precipitation kinetics and pressure. Fig. 2-3(a) 

shows the time-evolution of the pressure undergone by the gel upon precipitation. The system 

pressure is calulcated by  the force virial for all pairwise interactions [26]. We note that evolution 

of pressure closely follows those of the packing density (see Fig. 2-1(a)) and potential energy (see 

Fig. 2-2(a)). In details, we observe that, initially, the system is at neglectible pressure, which arises 

from the fact that the systems comprises isolated, weakly-interacting grains. However, at some 

point, the pressure undergone by the gel starts to decrease and becomes negative (which is 

indicative here of a state of tension). This arises from the fact that the precipitation of C–S–H 

occurs in isochoric conditions—so that, upon precipitation, the grains are attracted to each other 

0 2 4 6 8 10
Normalized time  τ

-800

-600

-400

-200

0

Po
te

nt
ia

l e
ne

rg
y 

U 
(k

eV
)

100 102 104 106 108 1010

Number of steps N

R=1
R=

0.01
R=

0.0001

0 2 4 6 8 10
Normalized time  τ

-400

-200

0

200

400

C
ur

va
tu

re
 o

f t
he

 p
ot

en
tia

l e
ne

rg
y 
∂

2 U 
/ ∂

τ
2

100 102 104 106 108 1010

Number of steps N

R=1

R=0.01 R=0.0001

 τU
 τU  τU

10-4 10-3 10-2 10-1 100

Kinetic rate R

3

4

5

6

7

En
er

gy
 ti

m
e 

co
ns

ta
nt

  τ
U



 41 

and the system would shrink if the volume was free to change. As such, the onset of such stress is 

a direct manifestation of the colloidal (rather than granular) nature of C–S–H, which results from 

the existence of attractive forces among grains.  Note that such tensile stress is also observed 

experimentally [25] as C–S–H typically precipitates in confined conditions. The tensile stress that 

forms in C–S–H during precipitation largely contributes to the physical shrinkage of cement pastes 

over time [25]. 

   

(a) (b) (c) 

Figure 2-3: (a) Pressure (a negative value being here indicative of a state of tension) and (b) 

curvature thereof (i.e., second derivative of the pressure) as a function of the number of 

simulation steps and normalized time for select kinetic rates R. (c) Pressure time constant t= 

(defined as the time at which the pressure exhibits the highest concave curvature) as a function 

of the kinetic rate R. 
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3(c), we find that t= decreases logarithmically with the kinetic rate. This highlights once again the 
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fact that the thermodynamics of C–S–H during precipitation is strongly controlled by the 

precipitation kinetics. 

Finally, we note that, in contrast with the cases of the potential energy or packing fraction, 

the final pressure at saturation exhibits a stronger dependence on the kinetic rate (see Fig. 2-3(a)) 

as the final pressure at saturation decreases with lower values of the kinetic rate. This indicates 

that the level of tensile stress that forms in C–S–H does not only depend on the number of grains 

inserted within the system, but also on the overall mesostructure of the gel. This likely arises from 

the fact that, upon slower precipitation, the C–S–H gel is able to further relax in between the 

insertation of each grain (see Sec. 2.4), thereby limiting the formation of internal stress [27,28]. 

This contrasts with the potential energy of the system, which appears to be less sensitive to the 

structure of the gel. 

 

2.3.3 Role of the structural precipitation in the gel 

Finally, we investigate how the dynamics and thermodynamics of the precipitation of the 

C–S–H gel are controlled by its underlying mesostructure. We observe that, starting from an initial 

situation wherein the C–S–H grains form some isolated clusters due to limited structural 

reorganization, the mesostructure eventually becomes fully-connected as precipitation proceeds. 

This picture suggests that the precipitation of C–S–H is associated with a percolation of its 

mesoscale structure, as detailed in the following. 

Fig. 2-4(a) shows the time-evolution of the length L of the largest C–S–H cluster, 

normalized by the size of the simulation box (see Sec. 2.2.3). As expected, we observe that L 

increases over time as the mesostructure becomes more and more interconnected, until the length 

of the largest cluster becomes equal to the size of the simulation box (i.e., Lmax = Lbox or L = 
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100%)—which is indicative of percolation. Further, we observe that the evolution of L can be well 

described by the framework of classical percolation theory, namely, L follows a power-law 

dependence with respect to the packing density of the gel (see Eq. (2-5) and Sec. 2.2.4) [19,20]. 

To further describe the relationship between precipitation kinetics and structural 

percolation, we define a percolation time t>?@A4 as the time at which percolation occurs (i.e., Lmax 

= Lbox). As shown in Fig. 2-4(b), we observe that t>?@A4 decreases logarithmically with the kinetic 

rate. This suggests that precipitation kinetics and structural percolation are closely related to each 

other, as detailed in the following. 

  

(a) (b) 

Figure 2-4: (a) Length of the largest C–S–H cluster normalized by the size of the simulation 

box (L, see Eq. (2-4)) as a function of the number of simulation steps and normalized time for 

select kinetic rates R (wherein a length of 100% indicates that the system exhibits percolation). 

(b) Percolation time t>?@A4 (time at which the system becomes percolated, i.e., L = 100%) as a 

function of the kinetic rate R. 

 

We now further compare the time-evolution of the precipitation kinetics ( t; ), 
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Interestingly, we observe that the typical times associated with the (i) precipitation kinetics (i.e., 

time at which the accelerating-to-decelerating  transition occurs) and (ii) thermodynamics (i.e., 

times at which the system becomes cohesive and at which some tensile stress forms) are both 

largely correlated to time at which the mesostructure of C–S–H features percolation. 

 

Figure 2-5: Time constants associated with the precipitation kinetics t; 	(i.e., time at which the 

precipitation rate is maximum), energy t< (i.e., time at which the potential energy exhibits the 

highest concave curvature), and pressure t= (i.e., time at which the pressure exhibits the 

highest concave curvature) as a function of the time constant associated with structural 

percolation tBC%8D (i.e., time at which the mesostructure of C–S–H becomes percolated). 
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On the other hand, the relationship between thermodynamics and structural percolation 

identified herein suggests that the degree of cohesion and internal stress present in the colloidal 

structure of the C–S–H gel are also closely correlated to the percolation of its mesostructure. This 

can be understood from the fact that the degree of cohesion of C–S–H should indeed largely depend 

on the size of the grain clusters. In turn, it suggests that, starting from an initial situation wherein 

the C–S–H clusters are mutually isolated and, thereby, do not impose any macroscopic stress, the 

time at which some internal stress forms within the system corresponds to the time at which the 

structure percolates—so that stress also percolates through the simulation box.  

More generally, these results highlight the close correlation between the structure, kinetics, 

and thermodynamics of C–S–H upon precipitation. Nevertheless, we observe the difference 

between the thermodynamics, kinetics, and structural time constants tends to slightly increase with 

lower kinetic rate values (see Fig. 2-5). This suggests that, as the precipitation kinetics decreases, 

some level of self-organization may occur due to more relaxation time within the C–S–H 

structure—for instance, to limit the onset of internal stress (see Fig. 2-3(a)). This echoes the 

“intermediate phase” that has been reported to form in optimally-connected isostatic structural 

glasses, wherein the atomic network self-organizes to become rigid while avoiding the formation 

of any internal stress [29–33]. 

 

2.4 Discussion 

2.4.1 Gel packing density at percolation 

Having established that the percolation of the C–S–H mesostructure is closely correlated 

to its precipitation kinetics, we now discuss how, in turn, the precipitation kinetics controls the 

structure of C–S–H. First, we note that the evolution of the length of the largest cluster as a function 
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of packing density can be well described within the framework of classical percolation theory 

[19,20] (see Fig. 2-6(a) and Sec. 2.2.4). This allows us to extract the critical packing density 𝜑8 at 

which the percolation occurs and percolation exponent ν (see Eq. (2-5)). We observe that ν does 

not significantly depend on the kinetic rate and remains close to 0.9. This value matches with the 

one expected in the case of random-site percolation [19]. In contrast, interestingly, we observe that 

𝜑8  exhibits a non-monotonic dependence on the kinetic rate (see Fig. 2-6(b)) as 𝜑8  features a 

minimum for intermediate values of kinetic rate and increases for low and high kinetic rates. This 

signals that the kinetics of precipitation significantly affects the nature of the structural percolation 

occurring in C–S–H, as discussed in the following. This also indicates that tuning the precipitation 

rate can be used to as an efficient method to alter the degree of packing of the C–S–H gel during 

setting [34,35]. 

  

(a) (b) 

Figure 2-6: (a) Length of the largest C–S–H cluster, normalized by the size of the simulation 

box, as a function of the packing fraction for select kinetic rates R. (b) Percolation critical 

threshold 𝜑8 (packing fraction at which the system becomes percolated) as a function of the 

kinetic rate R. The inset shows the percolation exponent ν (see Eq. (2-5)) as a function of R. 
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2.4.2 Evolution of the gel microstructure upon percolation 

Finally, we investigate how the mesostructure of C–S–H is controlled by the precipitation 

kinetics—with a focus on understanding the structural origin of the non-monotonic evolution of 

the critical packing density at percolation (see Fig. 2-6(b)). Some illustrative snapshots of C–S–H 

mesostructures at percolation are presented in Fig. 2-7. On the one hand, we observe that, at large 

kinetic rate (i.e., large precipitation rate), the structure of C–S–H comprises a large number of 

small isolated clusters. In contrast, at lower kinetic rate (i.e., slower precipitation rate), the C–S–

H structure comprises fewer, but larger clusters. On the other hand, we note that the overall shape 

of the cluster also depends on the kinetic rate, as large spherical and compact clusters tend to form 

at low kinetic rate (see Fig. 2-7). These observations suggest that the non-monotonic evolution of 

the critical packing density at percolation arises from a balance between the size (i.e., number of 

grains in cluster) and shape (i.e., sphericity and openness of cluster structure) of the C–S–H clusters 

forming upon percolation. 

 

Figure 2-7: Snapshots of colloidal C–S–H structures at the percolation threshold (i.e., 

𝜑 = 𝜑8) for select kinetic rates R. In each case, the largest cluster (red) is differentiated from 

the other clusters (blue). 
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To establish this mechanism, Fig. 2-8 quantifies the number, size, and shape of the C–S–

H clusters at the percolation threshold (i.e., 𝜑 = 𝜑8). First, we note that, at percolation, the number 

of clusters increases with increasing kinetic rate (see Fig. 2-8(a)), whereas the average size of the 

cluster decreases (see Fig. 2-8(b)). These results demonstrate that low precipitation rates tend to 

favor the formation of few large clusters, as the grains have the ability to significantly move and 

agglomerate in between two successive insertions. In contrast, high precipitation rates result in the 

formation of a large number of isolated clusters. This scenario is further supported by the fact that, 

upon decreasing kinetic rate, (i) larger clusters gradually become dominant and (ii) the average 

coordination number of the grains increases as the clusters become more compact. This can be 

understood as a “Tetris effect” [3], wherein precipitation is so fast that the C–S–H grains do not 

have enough time to agglomerate. The lack of grain agglomeration at high kinetic rate explains 

why percolation is delayed and occurs at larger packing density. 

   

(a) (b) (c) 

Figure 2-8: (a) Number of clusters c, (b) average number of grains per cluster g, and (c) 

average aspect ratio of the clusters A at the percolation threshold (i.e., 𝜑 = 𝜑8) as a function of 

kinetic rate R. Lower aspect ratio values are indicative of more elongated (i.e., less spherical) 

clusters. 
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Finally, although low kinetic rate values tend to favor the formation of larger clusters, Fig. 

2-8c shows that such clusters tend to be more spherical (i.e., an aspect ratio that is closer to 1) at 

low precipitation rate. This can be understood from the fact that, at low precipitation rate, the 

grains can freely reorganize to form spherical clusters—i.e., to minimize surface energy effect. In 

contrast, intermediate values of kinetic rates yield more elongated clusters (i.e., lower aspect ratio). 

Such elongated clusters are more likely to induce structural percolation at low packing density. 

This explains why percolation tends to occur at larger packing density values at very low kinetic 

rate. This confirms that the minimum of the critical packing density at which C–S–H exhibits 

structural percolation arises from the formation of C–S–H clusters that are simultaneously large 

(in terms of average number of grains) and elongated (i.e., non-spherical). To further elucidate the 

origin of this minimum, we calculate the fractal dimension D of the structure at the percolation 

threshold for each kinetic rate (see Fig. 2-9) by using the following equation [36]: 

𝑁2 ∝ 𝑅2E                                                          Eq. (2-6) 

where Ng is the number of grains in each cluster and Rg is the radius of gyration of the cluster. Note 

that a fully compact structure exhibits D = 3, while D tends to decrease in the case of more open 

structures. As shown in Fig. 2-9(b), we find that the dimensionality D shows a minimum at 

intermediate kinetic rate. This strongly supports the idea that, at intermediate kinetic rate, the 

structure comprises (at percolation) some clusters that are more open/elongated clusters than at 

lower or higher kinetic rate. It is worth pointing out that, although the dimensionality value D 

becomes larger at higher or lower kinetic rate, it remains smaller than 3. This suggests that, even 

at low kinetic rate, the clusters remain partially loosely packed and elongated—in accordance with 

the clusters are not fully spherical (i.e., with a ~0.5 average aspect ratio, see Fig. 2-8(c)). Overall, 
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these results highlight how the mesoscale topology of C–S–H gels is closely correlated to the 

kinetics of its precipitation. 

  

(a) (b) 

Figure 2-9: (a) Logarithm of the cluster size Ng (i.e., expressed in terms of the number of 

grains in cluster) at the percolation threshold (i.e., 𝜑 = 𝜑8) as a function of the logarithm of 

the cluster radius of gyration Rg for select kinetic rates R. The lines are power law fits (Eq. (2-

6)). (b) Fractal dimension D (i.e., the slope of the lines in panel (a), see Eq. (2-6)) as a function 

of the kinetic rate R. 
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highlight the complex, retroactive relationship between the structure and kinetics of gels. More 

generally, these results suggest that the mesostructure of gels can be finely tuned by carefully 

adjusting the precipitation kinetics, and vice versa. This paves the way toward the rational design 

of tailored gels that can set “on-demand” with tunable degrees of packing. 
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Chapter 3. Effects of Polydispersity and Disorder on the Mechanical 

Properties of Hydrated Silicate Gels 

3.1 Introduction 

Colloidal gels—i.e., systems made of interacting grains with sizes ranging from 

nanometers to hundreds of nanometers [1,2]—are widely used in many realms of science and 

technology [3–5]. Colloid aggregation and gelation is controlled by a complex interplay between 

thermodynamics and kinetics [6–8]. After gelation, the structure of colloidal gels largely depends 

on the formation process [7,9]. In particular, the degree of polydispersity (i.e., the distribution of 

grain sizes) and the level of disorder affect the mechanical properties of colloidal gels—although 

such linkages remain poorly understood [3,10,11]. 

Calcium–silicate–hydrate (C–S–H) gel—the glue of concrete that forms upon the hydration 

of cement—is a typical inorganic colloidal hydrogel material [3,12,13]. The C–S–H phase largely 

controls the strength of cement paste and concrete [14,15]. This is significant as, due to its large 

carbon impact [16–18], there is a strong interest in improving concrete’s mechanical properties—

i.e., so that less material can be used while achieving constant performance. In turn, the colloidal 

structure of C–S–H largely controls its mechanical response [10,19,20]. At the mesoscale, C–S–H 

forms a polydisperse, disordered gel-like structure, with the grain size ranging from nanometers to 

several tens nanometers [3,12,13]. However, the linkages between the structure and mechanical 

behavior of C–S–H are not fully elucidated. 

Recently, Masoero et al. introduced a polydisperse colloidal model of C–S–H that shows 

a good agreement with nanoindentation experiments [3]. Based on this model, the packing density 

was shown to have a first order effect on the mechanical properties of C–S–H [3,10]. In the same 

spirit, Ioannidou et al. proposed an alternative model to account for the early-age structure and 
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properties of C–S–H [14]. These colloidal models have been widely investigated to elucidate the 

relationship between C–S–H’s structure and mechanical properties [10,13,21,22]. However, 

several questions, in this regard, remain unanswered. Which structural features have a first-order 

effect and which one do not? What is the effect of polydispersity and structural disorder on the 

mechanical properties of C–S–H? Indeed, although polydispersity has been shown to play a critical 

role in controlling the packing density (and, thereby, the mechanical properties) [3,10], the role of 

polydispersity at constant packing density remains unclear. Similarly, although structural and 

mechanical heterogeneity has been pointed out to impact the nanomechanics of C–S–H gels 

[10,22,23], the role of the extent of order and disorder on macroscopic properties remains poorly 

understood. Meanwhile,  little is known about the role of the level of order in the mesostructure of 

C–S–H—which has been suggested to be higher in high-density C–S–H phases [14,19,22,24]. 

To address these questions, we conduct some grand canonical Monte Carlo (GCMC) 

simulations to investigate the effect of grain polydispersity and structural disorder on the 

mechanical properties of colloidal C–S–H, by relying on the model of Masoero et al [3]. Our 

simulations yield an excellent agreement with nanoindentation data for a wide range of packing 

density. We show that, at constant packing fraction, polydispersity does not affect the stiffness and 

hardness of C–S–H. In contrast, we demonstrate that the degree of disorder has a first-order effect 

on the mechanical properties of C–S–H gels. This is ascribed to the existence of some local stress 

heterogeneity within the disordered structure, which arises from the out-of-equilibrium nature of 

the C–S–H gels. We show that, upon loading, such stress heterogeneity induces the occurrence of 

some local structural nanoyielding, which, in turn, decreases the apparent macroscopic stiffness of 

the bulk C–S–H gel. These results highlight the critical importance of the level of order and 

disorder in the mechanical properties of colloidal systems.  
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This paper is organized as follows. In Sec. 3.2, we describe the simulation methods used 

to generate the C–S–H gel configurations and to calculate their mechanical properties. In Sec. 3.3, 

we compare the outcomes of our simulations to nanoindentation data and investigate the effect of 

polydispersity and disorder on C–S–H’s mechanical properties. These results are discussed in Sec. 

3.4. Finally, some conclusions are given in Sec. 3.5. 

 

3.2 Methods 

3.2.1 Preparation of the C–S–H configurations 

To establish our conclusions, we adopt here the colloidal model of C–S–H introduced by 

Masoero et al [3,10]. In this model, the C–S–H gel is described as an ensemble of polydisperse 

spherical grains that interact with each other via a generalized Lennard-Jones interaction energy 

potential: 

𝑈"#D𝑟"#E = 4𝜀D𝜎" , 𝜎#E GH
$F&'
%&'
I
()
− H$

F&'
%&'
I
)
K         Eq. (3-1) 

where 𝜎" and 𝜎# are the diameters of grains 𝑖 and 𝑗, 𝜎s"# = D𝜎" + 𝜎#E/2 is the average diameter for 

a given pair of atom, 𝛼 is a parameter that controls the narrowness of the potential well, 𝑟"# is 

distance between the centers of the grains 𝑖 and 𝑗, and 𝜀D𝜎" , 𝜎#E is depth of the potential energy 

well. By considering each pair of grains in contact as two springs in series, the depth is given by 

𝜀D𝜎" , 𝜎#E = 𝐴*𝛽"#𝜎s"#+ , where 𝐴* = 𝑘𝐸  is a prefactor that is proportional to the bulk Young’s 

modulus 𝐸 of a grain, wherein 𝑘 = 0.002324 (computed by the serial spring model) and 𝐸 =

63.6 GPa (based on previous atomistic simulations of bulk C–S–H) [10,25]. 𝛽"# = 𝜎"𝜎#/𝜎s"#( is a 

correction term arising from the serial arrangement. The potential defined in Eq. (3-1) shows a 

minimum at 𝑟, = √2- 𝜎s"# so that the effective diameter of a grain 𝑖 is defined as 𝜎*," = √2- 𝜎". The 
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attractive force is maximum at a distance 𝑟. = U/)0(
)01

- 𝜎s"# so that, by choosing 𝛼 = 14, the tensile 

strain at failure 𝜀. = (𝑟. − 𝑟,)/𝑟,  is close to the value of 5% obtained in previous atomistic 

simulation of bulk C–S–H [10,25,26]. Note that orientational effects arising from the layered 

structure of bulk C–S–H are not accounted by present the two-body potential—we assume here 

that, overall, the grain anisotropy is lost due to the random mutual orientation of the C–S–H grains 

[10,27,28]. 

The C–S–H configurations are generated by grand canonical Monte Carlo (GCMC) 

simulations, as described in the following. Starting from an initially empty cubic box of size 1000 

Å, some C–S–H grains are iteratively inserted, wherein the size of each grain is randomly selected 

from a uniform distribution between a minimum 𝜎,  and a maximum 𝜎H  value. The standard 

deviation 𝜇 of the distribution is then used to define the polydispersity index of the configuration 

as:3,10 

𝛿 = 𝜇/[(𝜎, + 𝜎H)/2]                                                         Eq. (3-2) 

Here, various polydispersity values are considered, with 𝜎 ranging from 3.0 to 35 nm, and the 

number of grains at saturation ranging from 4000 to 12000. In detail, each GCMC step comprises 

X attempts of grain insertions or deletions followed by Y attempts to randomly displace an existing 

grain. At each step, the probability of success of the attempt is given by exp(−Δ𝑈 𝑘B𝑇⁄ ), where 

𝑘B is the Boltzmann constant, T the temperature, and Δ𝑈 is the variation in potential energy caused 

by the trial insertion/displacement [3,10,13]. The factor R = X/Y is then qualitatively equivalent to 

a precipitation rate, which characterizes the time duration during which the grains are allowed to 

reorganize in between two successive insertions. Namely, a large R value corresponds to a high 

precipitation rate, wherein the grains have only limited opportunity to move during precipitation. 

In this work, we use R = 0.01. This process is iteratively repeated until the number of inserted 
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grains reaches a plateau (see Fig. 3-1). The packing fraction f of each configuration is computed 

as f = ∑ 𝜋/6𝜎*,"+/𝑉" , where 𝑉 is the volume of the simulation box. 

   

(a) (b) (c) 

Figure 3-1: Snapshots of select monodisperse C–S–H gel configurations with increasing 

packing fraction values of (a) 0.055, (b) 0.174 and (c) 0.417. 

  

In agreement with previous simulations [3,29], we observe that the C–S–H models 

exhibiting higher degree of polydispersity eventually reach higher final packing fraction values—

as small grains are able to fill the space left in between larger grains (see Fig. 3-2). For 

monodisperse configurations, the packing fraction at saturation is around 0.63, that is, close to the 

theoretical packing limit of random monodisperse spheres [30,31]. Further, we note that the 

evolution of the packing fraction at saturation with polydispersity is in good agreement with the 

range of data previously observed [3,29]. Note that this analysis is conducted on five independent 

simulations of precipitation performed for each polydispersity to calculate the mean value and 

standard deviation of the final packing fraction. 
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(a) (b) (c) 

Figure 3-2: Snapshots of select (a) monodisperse (polydispersity index d = 0) and (b) 

polydisperse C–S–H gel configurations (d = 0.49). (c) Computed packing fraction (at 

saturation) of the C–S–H gel configurations as a function of the polydispersity index (see Eq. 

(3-2)). The grey area indicates the range of data previously observed [3,29]. 

 

3.2.2 Preparation of artificial C–S–H crystalline configurations 

To assess the effect of order and disorder on the mechanical properties of C–S–H, a 

selection of “artificial” C–S–H crystalline configurations with varying different packing fractions 

are generated. This is achieved by creating a series of C–S–H configurations based on a selection 

of crystalline lattices and relaxing the configuration at zero stress to assess the stability of the 

crystal. Note that the same interatomic potential (Eq. (3-1)) is used for the ordered C–S–H 

configurations. A series of five stable artificial C–S–H crystals is considered herein, namely, (1) a 

DNA-like structure (f = 0.63, d = 0), (2) a CsCl-type structure (f = 0.73, d = 0.15), (3) a body-

centered cubic structure (HCP) structure (f = 0.74, d = 0), (4) a face-centered cubic structure (FCC) 

structure (f = 0.74, d = 0), (5) and a NaCl-type structure (f = 0.79, d = 0.41)—see Fig. 3-3. Note 

that the crystals 1, 3, and 4 are monodisperse, with a grain size of 5 nm. Here, the DNA-like 
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structure refers to a type of helical lattice structure where grains are aligned on the lattices—a 

configuration that is obtained by removing select grains from a HCP configuration (see Fig. 3-3a). 

Note that the simple cubic lattice is found to be an unstable configuration for C–S–H. In contrast 

to the previous configurations, the configurations 2 and 5 mimic oxide crystals, i.e., wherein small 

cations fill the available space left in between the O atoms. Based on the same idea, the CsCl- and 

NaCl-like configurations are obtained by introducing smaller grains (3.66 and 3.31 nm, 

respectively) in between larger grains (5 and 8 nm, respectively). This yields some polydisperse 

crystalline configurations exhibiting large packing fraction values. 

   

(a) (b) (c) 

Figure 3-3: Snapshots of some of the artificial C–S–H crystalline configurations generated 

herein, which comprise (in order of increasing packing fraction f) (a) a DNA-like structure (f 

= 0.63), (b) a HCP crystal (f = 0.74), and (c) a NaCl-type crystal (f = 0.79). 

 

3.2.3 Stiffness computation 

Select C–S–H configurations corresponding to different packing fractions are extracted 

during the GCMC process. These structures are relaxed by molecular dynamics simulations in the 

NVT ensemble, and subjected to an energy minimization prior to any subsequent characterization. 
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In addition, for each degree of polydispersity considered herein, final C–S–H configurations (i.e., 

at saturation) are relaxed by molecular dynamics simulations in the NPT ensemble at zero stress 

and subjected to a final energy minimization. The stiffness tensor of each configuration is then 

computed by subjecting the simulation box to a series of axial and shear plane deformations along 

each Cartesian axis [32,33]. The maximum strain for each deformation is restricted to ±0.005. 

The corresponding changes in the potential energy 𝜕𝑈 and strain 𝜕𝑒 define six stress components: 

 𝑠) =
1
I
J<
JC-

                                                           Eq. (3-3) 

and 36 elastic constants: 

 𝐶)K =
1
I

JL<
JC-CM

                                                       Eq. (3-4) 

where 𝛼 and 𝛽 are the Cartesian direction indexes. All configurations are found to be nearly fully 

isotropic. The Young’s modulus (E), shear modulus (G), bulk modulus (K), and Poisson’s ratio (ν) 

are then calculated from the stiffness tensor. Finally, the indentation modulus (M) is determined 

as [19,34]: 

𝑀 = 4𝐺 +;0N
+;0/N

                                             Eq. (3-5) 

 

3.2.4 Hardness computation 

The indentation hardness (H) of the relaxed C–S–H configurations is then computed 

following the method introduced by Qomi et al. [35–37], as described in the following. This 

method is based on the computation of the failure envelope of the system as a function of the 

normal and shear stresses (σ, 𝛕). In detail, the failure envelope is determined by performing a series 

of different deformations (pure uniaxial tension and compression, pure shear, and combinations 

thereof) by incrementally increasing the strain via a series of box deformation. For each 
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deformation, the yield stress is determined based on the 0.2% offset method. In each case, the 

normal and shear stresses at the yield point are used to draw a Mohr circle. The envelope of all the 

Mohr circles is then fitted by a Mohr-Coulomb failure criterion: 

𝜏 = 𝐶 − 𝜎 × tan𝜑                                                       Eq. (3-6) 

where C is the cohesion stress j is the friction angle. The hardness H of a cohesive-frictional 

material such as C–S–H is then given by: 

O
P
= Q(S,T)

V7WS
= 1

V7WS
∑ [𝑎X(𝜃) tan𝜑]XY
XZ1        Eq. (3-7) 

where θ is the indenter apex angle, 𝑎X are fitting parameters for a given indenter geometry, and N 

is the maximum order of the polynomial expansion. In the case of the C–S–H gels, since the 

friction angle is on the order of 5° or less, tan𝜑 is here considered negligible, and, as a result, the 

hardness is approximated as 5.8C [35]. More details about the hardness computation methodology 

can be found in Ref [35]. 

 

3.2.5 Stress per grain 

Finally, the local stress experienced by each C–S–H grain is computed. Although stress is 

intrinsically a macroscopic property that is ill-defined for individual grains, a local “stress per 

grain” can be defined based on the formalism proposed by Thompson et al [38]. This approach 

consists in expressing the contribution of each grain i to the virial of the system [39]: 

3𝜎"𝑉" = 𝑚"𝑣"( + 𝑟[��⃗ . 𝐹[��⃗                 Eq. (3-8) 

where 𝜎" is the local stress per grain, 𝑉", 𝑚", vi, and 𝑟[��⃗  are the volume, mass, velocity, and position 

of the grain i, respectively, and 𝐹[��⃗  is the resultant of the force applied on the grain i by all the other 

grains in the system. Here, we define the volume Vi of each grain based on its Voronoi volume. 

By convention, a positive stress represents here a state of tension, whereas a negative one 



 65 

represents a state of compression. We recently used this approach to quantify the internal stress 

exhibited by stressed–rigid atomic networks [40] and mixed alkali glasses [39,41–43]. It should 

be noted that, in the thermodynamic sense, stress is only properly defined for a large ensemble of 

atoms, so the physical meaning of the “stress per grain” is unclear. Nevertheless, this quantity can 

conveniently capture the existence of local instabilities within the gel due to competitive inter-

grain forces [23]. 

 

3.3 Results 

3.3.1 Comparison with nanoindentation experiments 

We first compare the computed modulus and hardness values with nanoindentation 

experimental data [20,44]. Overall, as shown in Fig. 3-4, we obtain an excellent agreement 

between simulation and nanoindentation data over a large range of packing fractions, which 

establishes the ability of our simulations to properly describe the nanomechanics of C–S–H. We 

observe that both the indentation modulus and hardness increase monotonically with the packing 

fraction. In details, the increase is noted to be limited at low packing fraction (f < 0.5), whereas it 

is more pronounced at high packing fraction (f > 0.5)—in agreement with previous simulation 

data [13]. The specific value of f = 0.5 corresponds to the percolation point of the system, which 

supports the idea of a granular description of C–S–H, wherein the grains interact with each other 

via Hertz contact points [19,20]. However, we note that a finite value of the indentation modulus 

is achieved even below the percolation point. This highlights the colloidal nature of C–S–H and 

the fact that the grains exhibit some level of attraction even when they are not in direct contact 

with each other. 
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Figure 3-4: Computed (a) indentation modulus and (b) hardness of C–S–H gels as a function 

of the packing fraction. The results are compared with experimental nanoindentation data 

[20,44].  

 

3.3.2 Effect of polydispersity 

We now investigate the effect of the polydispersity in the grain sizes on the nanomechanics 

of C–S–H gels. To this end, Fig. 3-5 shows the computed values of the indentation modulus and 

hardness as a function of the packing fraction for select polydispersity (see Eq. (3-2)). Overall, we 

observe that larger polydispersity values yield larger final packing fraction at saturation (see Fig. 

3-2c) and, thereby, larger values of indentation modulus and hardness. However, we note that, at 

constant packing fraction, the mechanical properties of C–S–H do not depend on polydispersity 

since all data fall on the same “master curve” (see Fig. 3-5). This suggests that, in the case of the 

present disordered C–S–H configurations, the packing fraction is the only order parameter that 

controls the stiffness and hardness of C–S–H, whereas polydispersity itself is not a relevant 

parameter. This result is in agreement with previous observations reporting some universal scaling 

relationships between density and stiffness [45–50]. 
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Figure 3-5: Computed (a) indentation modulus and (b) hardness of C–S–H gels with varying 

polydispersity index (d, see Eq. (3-2)) as a function of packing fraction. 

 

3.3.2 Effect of disorder 

Finally, we focus on elucidating the effect of disorder on the nanomechanics of C–S–H. 

To this end, Fig. 3-6 shows the indentation modulus and hardness of the disordered C–S–H 

configurations (i.e., obtained by GCMC simulations) and those of the artificial C–S–H crystals. 

First, we observe a significant shift between the indentation modulus and hardness of the 

disordered and ordered C–S–H configurations, wherein ordered configurations systematically 

exhibit higher values than their disordered counterparts at constant packing fraction. Second, we 

note that the indentation modulus and hardness of the crystalline C–S–H configurations 

significantly departs from the experimental data, which supports the intrinsically disordered nature 

of C–S–H gels. Last, we note that, in contrast to the case of the disordered C–S–H configuration, 

the packing fraction is not a universal order parameter for the ordered configurations. Indeed, for 

instance, we note that, even though the FCC and HCP configurations have the same packing 

fraction (f = 0.74), the HCP configuration shows significantly larger indentation modulus and 

hardness values than those of the FCC configuration. This demonstrates that the details of the 

structure have a strong impact on the mechanical properties of ordered configurations. Overall, 
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these results highlight the critical role played by the degree of order and disorder in controlling the 

mechanical properties of C–S–H gels. 

 

Figure 3-6: Computed (a) indentation modulus and (b) hardness of disordered (back squares) 

and crystalline (blue circles) C–S–H gels as a function of the packing fraction. Experimental 

nanoindentation data (red diamonds) are added for comparison [20,44]. 

 

3.4 Discussion 

3.4.1 Effect of disorder on stiffness 

We now discuss the origin of the results presented in Sec. 3.3 and further investigate the 

effect of order and disorder on the stiffness of the C–S–H gels. Fig. 3-7 shows the Young’s 

modulus, shear modulus, bulk modulus, and Poisson’s ratio of the ordered and disordered C–S–H 

configurations as a function of the packing fraction. First, we note that all the moduli increase 

monotonically with the packing fraction (see Figs. 3-7a, 3-7b, and 3-7c), in agreement with the 

fact that lower porosity results in higher stiffness [45]. Further, we note that, similar to the 

indentation modulus, ordered C–S–H gels systematically exhibit higher Young’s modulus and 

shear modulus values than their disordered counterparts at constant packing fraction (see Figs. 3-

7a and 3-7b). Again, this suggests that an increased level of order tends to enhance stiffness.  
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Figure 3-7: Computed (a) Young’s modulus, (b) shear modulus, (c) bulk modulus, and (d) 

Poisson’s ratio of the disordered (back squares) and crystalline (blue circles) C–S–H gels as a 

function of the packing fraction. 

 

Second, we note that the Poisson’s ratio also monotonically increases with increasing 

packing fractions (see Fig. 3-7d). Such a trend has been observed for a large variety of materials 

and has been suggested to arise from the fact that systems featuring higher packing fraction values 

have less ability to locally densify upon longitudinal loading and, hence, show a higher propensity 

for lateral deformations [45]. However, we observe a bifurcation between the Poisson’s ratios of 

the ordered and disordered configurations, wherein ordered gels systematically exhibit a lower 

Poisson’s ratio than their disordered counterparts at constant packing fraction. This suggests that 
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disordered systems exhibit a pronounced propensity for lateral deformations when subjected to 

longitudinal loads, which may arise from an increased mobility of the atoms. 

In contrast, interestingly, we note that the bulk modulus values of the ordered and 

disordered configurations fall on the master curve (see Fig. 3-7c). This suggests that, in contrast 

to the other moduli, the level of disordered and the details of the structure do not impact the bulk 

modulus of gels—and that the packing density acts as an order parameter. This can be understood 

from the fact that the bulk modulus is a quantity that is primarily related to the volumic density of 

the potential energy between grains [51], which is similar for ordered and disordered 

configurations. Overall, this suggests that the level of disorder does not significantly affect the 

response of C–S–H when subjected to hydrostatic loads, but has a more pronounced effect in 

controlling its response to shear. 

 

3.4.2 Nanoyielding and stress heterogeneity 

Finally, we investigate the origin of the distinct behaviors of ordered and disordered C–S–

H gels under shear. To the end, we focus on two select C–S–H gel configurations: (i) a disordered 

monodisperse C–S–H at saturation and (ii) a crystalline DNA-like C–S–H structure. These 

configurations are selected as they exhibit a different degree of order while having similar packing 

fraction values (f = 0.63). These two configurations are then subjected to pure shear deformation 

by gradually deforming the simulation box and performing an energy minimization after each 

incremental deformation. Figure 3-8 shows the corresponding stress-strain curves. First, we 

observe that, in both cases, the stress initially increases fairly linearly with strain until the system 

yields—which manifests by a plateau in the stress-strain curve (see Fig. 3-8). However, the slope 

of the stress-strain curve of the disordered C–S–H configuration is significantly lower than that of 
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the ordered one, in agreement with the fact that the disordered C–S–H structure exhibits a lower 

shear modulus (see Fig. 3-7b). 

 

Figure 3-8: Computed shear stress vs. shear strain upon shearing in a disordered and 

crystalline C–S–H gel with similar packing fraction. In each case, three configurations (I, II, 

and III) achieved at select shear strains (0.4%, 0.8%, and 1.2%, respectively) are subsequently 

unloaded (dashed curves). 

 

To assess the occurrence of any plastic deformations upon shearing, three configurations 

(I, II, and III in Fig. 3-8) obtained at select shear strains (0.4%, 0.8%, and 1.2%, respectively) are 

extracted and subsequently unloaded. We observe that, in the case of the ordered C–S–H system, 

the deformation is fully reversible, that is, the loading and unloading stress-strain curves are similar 

to each other—as expected in the case of a perfectly elastic deformation. In contrast, in the case of 

the disordered C–S–H gel, we observe a significant degree of irreversibility, that is, the unloading 

stress-strain curves differs from that obtained upon loading and the system remains permanently 

deformed after a loading/unloading cycle. Such irreversibility suggests that, although the whole 

system deforms in a linear fashion upon increasing stress, some irreversible plastic events upon 

loading occur in the structure. Note that, upon unloading, the stress-strain curve of the disordered 

C–S–H configurations exhibits a slope that is fairly similar to that of the ordered configuration. 

0.0 0.4 0.8 1.2 1.6 2.0
Shear strain (%)

0

50

100

150

200

250

Sh
ea

r s
tre

ss
 (M

Pa
)

Crystalline
Non-crystalline

yield
I

II

III

yield



 72 

This suggests that the plastic events that are activated upon loading are solely responsible for the 

difference in the shear modulus of the ordered and disordered configurations. 

To better understand the nature of these plastic events, we compute the local shear stress 

per grain in both the ordered and disordered C–S–H configurations before any deformation is 

applied, that is, the overall structure being relaxed to zero stress. As expected and shown in Fig. 

3-9, we observe that all grains are experiencing a nearly zero shear stress in the crystalline C–S–

H configuration. In contrast, we observe the existence of some significant stress variations in the 

disordered C–S–H configuration, wherein the local shear stress per grain ranges from around –1 

to +1 GPa. Note that this local stress does not result in any macroscopic stress, namely, the grains 

experiencing some positive or negative shear stress mutually compensate each other so that the 

overall structure remains at zero stress. The presence of such eigenstress is a manifestation of the 

out-of-equilibrium nature of disordered C–S–H and arises from the fact that the grain precipitate 

in a random fashion, so that the addition of new grains in a preexisting rigid structure necessarily 

involves some non-optimal contact among grains and, hence, the formation of some local stress 

[23]. A visual inspection of the local stress map (see Fig. 3-9a) reveals that the stress distribution 

is highly heterogeneous, that is, most of the stress is concentrated in some local clusters of 

interconnected grains. 

Based on these observations, the following physical picture emerges. In crystalline C–S–

H configurations, all the grains are initially at zero stress. Upon loading, the local stress 

experienced by each grain then increases in a homogeneous fashion. At a certain threshold stress, 

all the grains simultaneously reach their local yield stress, which causes the whole structure to 

yield. In contrast, in the disordered C–S–H configuration, the grains are initially pre-stressed 

(positively or negatively). The additional stress induced by the macroscopic deformation causes 
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some the positively pre-stressed grains to quickly reach their yield stress and, thereby, to release 

their local stress through local plastic, irreversible reorganizations. Note that such “nanoyielding” 

is highly localized (e.g., unlike collective plastic events like shear bands [52]) and, hence, does not 

result in the macroscopic yielding of the gel [10,21,53]. Overall, the nanoyielding events arising 

from the presence of some stress heterogeneity within the gel explain the origin of the lower 

apparent shear modulus of the disordered C–S–H configurations as well as their non-reversible 

behaviors. 

  

(a) (b) 

Figure 3-9: (a) Initial spatial distribution of the local shear stress per grain in a crystalline and 

disordered C–S–H gel with similar packing fraction before any deformation. (b) Distribution 

of the local shear stress per grain in the crystalline and disordered C–S–H gel configurations. 

The stress distribution of the disordered configuration is multiplied by 10× for readability. 

 

3.4.3 Disordered nature of the structure of C–S–H gels 

Finally, we briefly discuss the implications of the present findings. The C–S–H gels found 
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low packing efficiency of LD C–S–H is due to its disordered nature, whereas the high packing 

efficiency of HD C–S–H arises from a crystal-like ordered structure [19,20,24]. Clearly, the fact 

that indentation modulus of the ordered C–S–H gels does not match with nanoindentation data 

(see Fig. 3-6) suggests that the variations in the packing density observed in the C–S–H gels 

forming in hydrated cement pastes (i.e., from LD to HD) does not arise from some variations in 

the level of order, but rather from different degree of polydispersity in grain sizes. These results 

also suggest that the yield stress of C–S–H gels (and, thereby, concrete strength) could be greatly 

enhanced by controlling the level of structural order and disorder and, hence, the extent of stress 

heterogeneity within the structure. The existence of local eigenstress within C–S–H is also likely 

to control the creep relaxation behavior of cement pastes [54,55]. 

 

3.5 Conclusions 

Overall, these results reveal the crucial effect of structural disorder in controlling the 

mechanical properties of gels. This arises from the out-of-equilibrium nature of disordered gels, 

which results in the formation of some local size mismatch among neighboring grains and, thereby, 

the formation of some local eigenstress. In turn, the presence of such eigenstress result in the 

occurrence of the nanoyielding of individual grains upon loading, which reduces the effective 

stiffness and strength of the gel. In contrast, the mechanical properties are found to be independent 

of the extent of polydispersity in grain size. Overall, these results suggest that the mechanical 

properties of gels could be enhanced by tuning the extent of order and disorder in their structures. 
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Chapter 4. Long-Term Creep Deformations in Colloidal Calcium–

Silicate–Hydrate Gels by Accelerated Aging Simulations 

4.1 Introduction 

Jammed colloidal gels—i.e., aggregated systems made of interacting nanograins [1,2]—

are widely used in many industrial fields [3–5]. When subjected to a sustained load, jammed 

colloidal gels can feature some delayed viscoplastic creep deformations that can ultimately result 

in macroscopic failure [6–8]. Specifically, creep deformations in calcium–silicate–hydrate (C–S–

H) gels—the glue of concrete that forms upon the hydration of cement [5,9,10]—can decrease the 

lifespan of concrete structures [11–15]. This is significant as the maintenance or replacement of 

structures impacted by creep involves the use of large quantities of cement and concrete, which 

come with a significant environmental burden [6,16–18]. As such, the prediction of long-term 

creep deformations in C–S–H (and colloidal gels in general) could facilitate the design of new 

binders featuring minimal creep. 

However, although various models have been proposed to explain the origin of concrete 

creep [11,15,19–22], the prediction of long-term creep deformations remains challenging. This 

arises from the facts that (i) cement binders are complex, multi-scale materials [5,9,23], (ii) various 

scales (atomic, mesoscale, etc.) may contribute to controlling creep [12], and (iii) creep 

deformations are associated with extended timescales, which far exceed the timescale accessible 

to conventional computional simulation methods (e.g., molecular dynamics or coarse-grained 

mesoscale simulations) [6,24,25]. 

To overcome the timescale limitation of conventional physics-based simulations 

techniques, we recently showed that stress perturbations cycles can be efficiently used to accelerate 

the aging of disordered, out-of-equilibrium materials [6,24,26]. Here, building on these ideas, we 
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report some accelerated simulations of creep deformations in C–S–H based on the mesoscale 

model introduced by Masoero et al. [5]. We obtain a very good agreement with nanoindentation 

creep tests, which suggests that the reorganization of C–S–H grains at the mesoscale controls the 

creep of concrete. Based on these results, we show that the creep of C–S–H increases 

logarithmically with time, which is in line with experimental results from nanoindentation and 

with the predictions from the free-volume dynamics theory of granular physics [11,27]. Further, 

we establish the existence of a linear regime wherein creep deformations linearly depend on the 

applied load, which allows us to define a “creep modulus” material constant. These findings could 

offer a new physics-based basis for nanoengineering colloidal gels featuring minimal creep. 

This paper is organized as follows. In Sec. 4.2, we describe the methodology used herein 

to generate the C–S–H mesoscale configurations and model their creep deformations. In Sec. 4.3, 

we validate out simulations based on nanoindentation data and investigate the nature of creep 

deformations in C–S–H. Some consequences in the mechanism of creep in C–S–H are discussed 

in Sec. 4.4. Finally, some conclusions are presented in Sec. 4.5. 

 

4.2 Methods 

4.2.1 Preparation of the C–S–H configurations 

We adopt here the colloidal model of C–S–H introduced by Masoero et al. [5,28], as it has 

been found to offer a realistic description of the mesoscale structure and nanomechanics of C–S–

H [5,28,29]. In this model, the C–S–H gel is described as an ensemble of polydisperse spherical 

grains that interact with each other via a generalized Lennard-Jones interaction energy potential: 

𝑈"#D𝑟"#E = 4𝜀D𝜎" , 𝜎#E GH
$F&'
%&'
I
()
− H$

F&'
%&'
I
)
K         Eq. (4-1) 
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where 𝜎" and 𝜎# are the diameters of grains 𝑖 and 𝑗, 𝜎s"# = D𝜎" + 𝜎#E/2 is the average diameter for 

a given pair of atom, 𝛼 is a parameter that controls the narrowness of the potential well, 𝑟"# is 

distance between the centers of the grains 𝑖 and 𝑗, and 𝜀D𝜎" , 𝜎#E is the depth of the potential energy 

well. By considering each pair of grains in contact as two springs in series, the depth is given by 

𝜀D𝜎" , 𝜎#E = 𝐴*𝛽"#𝜎s"#+ , where 𝐴* = 𝑘𝐸  is a prefactor that is proportional to the bulk Young’s 

modulus 𝐸 of a grain, wherein 𝑘 = 0.002324 (computed by the serial spring model) and 𝐸 =

63.6 GPa (based on previous atomistic simulations of bulk C–S–H) [28,30]. 𝛽"# = 𝜎"𝜎#/𝜎s"#( is a 

correction term arising from the serial arrangement. The potential defined in Eq. (4-1) shows a 

minimum at 𝑟, = √2- 𝜎s"# so that the effective diameter of a grain 𝑖 is defined as 𝜎*," = √2- 𝜎". The 

attractive force is maximum at a distance 𝑟. = U/)0(
)01

- 𝜎s"# so that, by choosing 𝛼 = 14, the tensile 

strain at failure 𝜀. = (𝑟. − 𝑟,)/𝑟,  is close to the value of 5% obtained in previous atomistic 

simulation of bulk C–S–H [28,30,31]. 

The C–S–H configurations are generated by grand canonical Monte Carlo (GCMC) 

simulations, as described in the following [5,29,32]. Starting from an initially empty cubic box 

with a size ranging from 600 to 920 Å, some C–S–H grains are iteratively inserted, wherein the 

size of each grain is randomly selected from a uniform distribution between a minimum 𝜎, and a 

maximum 𝜎H value. Experimentally, the polydispersity of the C–S–H grains is strongly supported 

by the absence of a clear characteristic size in SANS neutron scattering [9]. The standard deviation 

𝜃 of the distribution is then used to define the polydispersity index of the configuration as: [5,28] 

𝛿 = 𝜃/[(𝜎, + 𝜎H)/2]                                                Eq. (4-2) 

Here, various polydispersity values are considered, with 𝜎 ranging from 3.0 to 35 nm, and the 

number of grains at saturation ranging from 1700 to 7000. In detail, each GCMC step comprises 
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5 attempts of grain insertions or deletions followed by 500 attempts to randomly displace an 

existing grain. At each step, the probability of acceptance of the attempt is given by 

min{1, exp[−(∆𝑈 − 𝜇∆𝑁) 𝑘B𝑇⁄ ]} [33], where 𝑘B is the Boltzmann constant, T the temperature, 

∆𝑈 the variation in potential energy caused by the trial move,	∆𝑁 the variation in the number of 

C–S–H grains, and µ the chemical potential, which is taken here as –2𝑘B𝑇 based on previous 

studies [34]. This value ensures the formation of a realistic final structure within a reasonable 

simulation time. Note that, here, the chemical potential does not bear a quantitative meaning and 

that small variation in the chemical potential do not significantly alter the structure and properties 

of the simulated C–S–H samples [34,35]. This process is iteratively repeated until the number of 

inserted grains reaches a plateau. Note that the GCMC process is performed at constant volume—

so that some tensile pressure builds up in the system upon precipitation. At the end of the GCMC 

simulation, such pressure is released by subjecting the system to a molecular dynamics relaxation 

in the NPT ensemble at zero stress, eventually followed by a final energy minimization. The 

packing fraction f of each configuration is then computed as f = [∑ ((𝜋/6)𝜎*,"
+)]/𝑉" , where 𝑉 is 

the volume of the simulation box. Note that five independent simulations of C–S–H precipitation 

are performed for each degree of polydispersity to calculate the mean value and standard deviation 

of all the properties presented in the following. 

In agreement with previous simulations [5,36], we observe that the C–S–H models that 

exhibit higher degrees of polydispersity eventually reach higher final packing fraction values—as 

small grains are able to fill the space left in between larger grains (see Fig. 4-1). For monodisperse 

configurations, the packing fraction at saturation is found to be around 0.63, that is, close to the 

theoretical packing limit of random monodisperse spheres [37,38]. Further, we note that the 
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evolution of the packing fraction at saturation with polydispersity is in good agreement with the 

range of data observed in previous simulations [5,36]. 

    

(a) (b) (c) 

Figure 4-1: Snapshots of select (a) monodisperse (polydispersity index δ = 0, see Eq. (4-2)) 

and (b) polydisperse C–S–H gel configurations (δ = 0.49). (c) Computed packing fraction (at 

saturation) of the C–S–H gel configurations as a function of the polydispersity index. The grey 

area indicates the range of data observed in previous simulations [5,36].  

 

4.2.2 Accelerated aging simulation methodology 

We now focus on the methodology introduced herein to simulate creep. As mentioned 

above, the long-term nature of creep deformations far exceeds the typical timescale accessible to 

(coarse-grained) molecular dynamics simulations (i.e., from nano- to microseconds at most). 

Although kinetic Monte Carlo simulations could, in theory, describe the dynamics of the system 

over up to a few seconds, the application of this technique to polydisperse colloidal gels is 

challenging due to the high mobility of the small grains—which results in the existence of a large 

number of small energy barriers [25]. As such, the direct simulation of the stress-induced creep 

deformation dynamics of C–S–H is, at this point, unachievable. 
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To overcome this limitation, we present here an accelerated simulation technique that is 

inspired by previous studies focusing on the relaxation of disordered atomic networks [6,24,26]. 

Refs. [24,26] provide some technical details on our accelerated method and offer an enthalpy 

landscape interpretation to the acceleration in the system dynamics that our technique yields. This 

technique relies on the application of small stress perturbations, which can accelerate the relaxation 

of out-of-equilibrium materials. Here, to simulate creep under sustained deviatoric load, the 

mesoscale C–S–H configurations are subjected an average shear stress 𝜏* combined with small, 

cyclic perturbations of shear stress ±∆𝜏 (see Fig. 4-2). At each stress cycle, a minimization of the 

energy is performed, with the system having the ability to deform (shape and volume) in order to 

reach the target stress. 

This method is inspired by the artificial aging and rejuvenation experienced by granular 

materials subjected to vibrations [39]. Namely, small vibrations can induce a compaction of 

granular materials, making the system overage. In contrast, large vibrations tend to randomize the 

grain configuration, which decreases the overall compactness and, therefore, makes the system 

rejuvenate. Similar ideas, relying on the energy landscape framework [7,8], have been applied to 

amorphous solids—based on the idea that an external stress tends to deform the energy landscape 

locally explored by the atoms. The application of a small external stress can result in the removal 

of some energy barriers existing at zero stress, thereby allowing some atoms to jump toward a new 

energy basin and relax to lower energy states. This transformation is irreversible as, once the stress 

is removed, the system remains in its aged state. In contrast, the application of a large stress can 

make the system move far from its initial state, which eventually leads to rejuvenation—i.e., 

similar to thermal annealing [40]. As such, a succession of many of such small stress perturbations 
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can be used to simulate the delayed relaxation of a disordered configuration subjected to a 

sustained load, i.e., creep. 

 

Figure 4-2: Schematic presenting the stress perturbation cycles applied during our accelerated 

aging simulation method, where 𝜏* is the average shear stress (i.e., causing the creep 

deformation of the colloidal C–S–H gel) and ∆𝜏 is the amplitude of the stress perturbations. 

 

 

Figure 4-3: Computed shear strain in monodisperse colloidal C–S–H gels with respect to the 

number of stress perturbation cycles N and for select average shear stress 𝜏* values. The 

amplitude of the stress perturbations ∆𝜏 is here set as 30 MPa. The dashed lines are some 

logarithmic fits following Eq. (4-3). 
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4.3 Results 

4.3.1 Logarithmic nature of creep in C–S–H 

Figure 4-3 shows the evolution of the shear strain g  of select C–S–H systems—under a 

sustained shear stress 𝜏*—obtained using our accelerated simulation method. Overall, we observe 

that the application of the stress cycles results in a gradual increase in shear strain. Note that, at 

zero average shear stress (i.e. 𝜏* = 0 MPa) no noticeable shear strain occurs. Further, we note that 

g increases logarithmically with the number of applied stress cycles N and linearly with the applied 

stress 𝜏*. This suggests that the shear strain induced by creep can be expressed as: 

𝛾(𝑁) = (𝜏* 𝐶⁄ )log	(1 + 𝑁 𝑁*⁄ )                               Eq. (4-3) 

where C is the creep modulus and 𝑁* a fitting parameter that is analogous to a relaxation time 

[6,11]. Note that the number of load cycles N has been demonstrated to be equivalent to a fictitious 

time t, that is, 𝑡 = 𝑁∆𝑡, wherein ∆𝑡 is a constant duration corresponding to each stress cycle 

[6,24,26]. This arises from the fact that the height of the energy barriers through which the system 

transits across each cycle, remains roughly constant over successive cycles [6]. As such, on the 

basis of transition state theory, the time needed for a system to jump over an energy barrier EA is 

constant and proportional to exp(−EA/kT), where k is the Boltzmann constant and T the temperature 

[41]. However, the fictitious time associated with each stress cycle cannot be directly mapped into 

real time. In other words, we cannot ensure the trajectory of the C–S–H grains predicted by our 

accelerated simulation method is fully equivalent to the one that would be observed upon 

spontaneous creep. However, we previously demonstrated that macroscopic properties (e.g., 

strain), which are not very sensitive to the microscopic details of the system, exhibit a realistic 

evolution with the fictitious time [6]. The logarithmic nature of C–S–H creep observed herein is 

in good agreement with nanoindentation data [11,42] and such a logarithmic evolution has also 
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been observed in the creep of various materials [43,44]. Similarly, a logarithmic compaction is 

also found in granular materials that are subjected to vibrations [39]. 

 

4.3.2 Linear regime and creep modulus as a material constant 

We now focus on the dependence of the shear strain g  on the applied shear stress 𝜏*. As 

expected, we observe that the magnitude of the creep-induced deformation increases with 

increasing values of applied load (see Fig. 4-3). The relationship between g  and 𝜏* is effectively 

captured by the value of the creep modulus C—which should be constant if g  increases linearly 

with 𝜏*. Note that monodisperse C–S–H configurations and small stress perturbation values (here 

taken as 30 MPa) are first considered in this section. 

Figure 4-4a presents the evolution of the creep modulus, which is obtained by fitting the 

strain curves such as those presented in Fig. 4-3 by the logarithmic law given in Eq. (4-3). 

Interestingly, we observe that, at low 𝜏* values, the value of the creep modulus is constant and 

does not depend on 𝜏*. However, we note that the value of the creep modulus drastically decreases 

once the applied shear stress 𝜏* exceeds a critical value (which is here found to be around 320 

MPa). Note that, in the low-stress regime, the 𝑁* constant is also found to be constant, which 

indicates that the mapping between number of stress cycles and corresponding creep time does not 

depend on the applied load. 

Importantly, the fact that the creep modulus exhibits a constant value upon the application 

of low loads suggests that, under this regime, creep deformations feature a linear dependence on 

the applied load (see Eq. (4-3)), in agreement with nanoindentation data [11,42]. This observation 

also establishes the creep modulus as an intrinsic material constant, that is, that only depends on 

the material composition and structure [6]. In addition, the linear nature of creep observed herein 
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strongly supports the fact that, despite the large difference in length and time scales, small-scale 

creep deformations obtained by nanoindentation (obtained over a few seconds) should yield 

similar values of creep modulus than macroscopic creep tests (obtained over much longer periods 

of time). 

  

(a) (b) 

Figure 4-4: (a) Computed creep modulus C (see Eq. (4-3)) in monodisperse colloidal C–S–H 

gels under varying average shear stress values 𝜏* (for ∆𝜏 = 30 MPa). The results are compared 

with experimental nanoindentation data (blue line) [11,42]. (b) Computed stress–strain curve in a 

monodisperse colloidal C–S–H gel upon shearing. The dash line is an unloading curve from the 

yield point (square point), where the residual strain is found to be 0.2%. In both panels, the grey 

window shows the range of average load values 𝜏* wherein creep is linear. 
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Fig. 4-4a). To this end, Fig. 4-4b shows stress–strain behavior of monodisperse C–S–H under 
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characterizes a linear elastic deformation. We note that the system starts to exhibit some yielding 

around 600 MPa, which manifests itself by a deviation from linearity in the stress–strain curve and 

the existence of a residual permanent strain upon unloading.  Based on this result, we conclude 

that creep remains linear as long as the applied load remains low as compared to the yield point of 

the material. These results echo the conclusions of a previous study, wherein it was found that a 

mathematical condition to have a constant creep modulus C is that the activation energy for the 

irreversible rearrangements increases as the logarithm of the shear strain—a condition that was 

found to be valid only when the applied stress is lower than the yield stress [45]. Here, the present 

results suggest that the linear regime of creep extends up to stress values that are about 60% of the 

yield stress threshold. This can be understood from the fact that, when the load approaches the 

yield point, the material starts to experience local yielding, which results in a drop in creep 

modulus—i.e., a drastic increase in creep compliance (see Fig. 4-4a). 

 

4.3.4 Aging and rejuvenation in C–S–H under stress perturbations 

We now assess the influence of the amplitude of the stress perturbations used herein to 

accelerate the dynamics of C–S–H under creep. Figure 4-5a shows the creep modulus value C 

(computed under a constant shear stress of 100 MPa, i.e., in the linear regime) as a function of the 

amplitude of the stress perturbation ∆𝜏. We observe that, for low values of ∆𝜏, the obtained creep 

modulus remains largely constant. This indicates that, in this regime, the creep modulus value 

yielded by our methodology is not affected by the specific choice of ∆𝜏—which is an important 

observation that confirms the reliability of our approach. 

However, we observe that C suddenly increases when ∆𝜏 becomes larger than a threshold 

value (found to be around 45 MPa herein). This indicates that the accelerated creep of the system 
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is only achieved over a certain range of stress perturbation magnitude (i.e., less than 45 MPa). In 

contrast, larger values of stress perturbation amplitude do not result in any significant creep 

deformation, which manifests itself by an increase in C—i.e., an increase in the apparent resistance 

to creep under fixed external load. 

  

(a) (b) 

Figure 4-5: (a) Computed creep modulus C (see Eq. (4-3)) in monodisperse colloidal C–S–H 

gels under varying stress perturbation amplitudes ∆𝜏 (for 𝜏* = 100 MPa). The results are 

compared with experimental nanoindentation data (blue line) [11,42]. (b) Computed molar 

potential energy of monodisperse colloidal C–S–H gels at fixed shear strain deformation (𝛾 = 

0.2%) under select stress perturbation amplitudes ∆𝜏 (for 𝜏* = 100 MPa). In both panels, the grey 

window shows the range of ∆𝜏 values wherein C is constant. 

 

This observation can be understood as a balance between stress-induced overaging and 

rejuvenation. Indeed, as mentioned above, it has been observed that the application of a small 

stress tends to make a system overage (i.e., accelerate the spontaneous aging of an out-of-

equilibrium system) by deforming the energy landscape and suppressing some preexisting energy 

barriers [40,46]. In turn, the application of a large stress can induce some rejuvenation by 

significantly moving the system away from its initial position in the energy landscape [8,40,46]. 
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To demonstrate the effect, we compute the potential energy U of a monodisperse C–S–H system 

having experienced upon creep a constant shear strain deformation (γ = 0.2%). Figure 4-5b shows 

the evolution of U as a function of the stress perturbation amplitude ∆𝜏 used to stimulate creep. 

We observe that, for small values of ∆𝜏 (i.e. less than 45 MPa), the energy of the system remains 

fairly independent of ∆𝜏. In contrast, for larger values of ∆𝜏, we observe a significant increase in 

U. This confirms that large values of stress perturbations amplitude results in a rejuvenation of the 

system, that is, a destabilization toward higher energy states. This a posteriori confirms that the 

energy state of the system experiencing creep is not affected by the choice of ∆𝜏 as long as no 

rejuvenation is induced. 

  

(a) (b) 

Figure 4-6: (a) Computed shear strain in polydisperse colloidal C–S–H gels with respect 

to the number of stress perturbation cycles and for select packing densities ϕ (with 𝜏* = 100 MPa 

and ∆𝜏 = 30 MPa). The dashed lines are some logarithmic fits (see Eq. (4-3)). (b) Computed 

creep modulus C (see Eq. (4-3)) of C–S–H as a function of the packing fraction. The results are 

compared with experimental nanoindentation data [11] and data from a previous atomistic 

simulation of creep in bulk C–S–H at ϕ = 1, that is, with no porosity [6]. The solid line is a 

power-law fit (see Eq. (4-4)). 
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4.3.5 Experimental validation of our accelerated simulation technique 

Having established the range of ∆𝜏 values for which our methodology yield an accelerated 

creep dynamics without inducing any rejuvenation, we are now in position to compare our 

computed results with those obtained experimentally. Note that such a direct comparison may be 

challenging due to the fact that the state of stress experienced in experiments (e.g., nanoindentation) 

can significantly differ from that imposed herein. Nevertheless, the fact that (i) the value of the 

creep modulus and (ii) the nature of the mapping between number of stress cycles and 

corresponding creep time both do not depend on the applied load (see Sec. 4.3.2) makes it possible 

to meaningfully compare computed and experimental data. 

Based on these observations, we now assess the effect of the packing density of C–S–H on 

its creep modulus and compare the outcome to nanoindentation data [11,42]. The nanoindentation 

experiments—whose outcomes are used herein to validate our simulations—were conducted on 

cementitious binders formed upon the hydration of ordinary portland cement [11]. The creep 

modulus was determined by applying a constant load and measuring the time-dependent 

displacement of the indenter. A clustering algorithm was used to isolate the properties of C–S–H 

from those of the other phases [11]. Figure 4-6a shows the shear strain exhibited by C–S–H 

configurations for select packing density values. Overall, we observe the conclusions previously 

established in the case of monodisperse C–S–H are retained for polydisperse systems, namely, (i) 

creep exhibits a logarithmic dependence on time, (ii) creep is load-linear as long as the applied 

stress remains smaller than the yield stress of the system, and (iii) the value of the computed creep 

modulus is independent of the amplitude of the stress perturbations as long as no rejuvenation is 

induced. This allows us to compute the evolution of the creep modulus as a function of packing 

density following Eq. (4-3). As shown in Fig. 4-6b, we observe that the creep modulus increases 
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with increasing values of C–S–H packing density. Importantly, we obtain an excellent agreement 

between simulation and nanoindentation data [11,42], which strongly supports the ability of our 

model and accelerated simulation method to offer a realistic description of the creep of C–S–H. 

 

4.4 Discussion 

The good agreement between the creep modulus data presented in Fig. 4-6b with 

nanoindentation suggests that the mesoscale model of C–S–H is able to properly capture the 

mechanism of creep in C–S–H and, in turn, that other features that are not considered by the present 

model do not necessarily need to be accounted for to model C–S–H creep (see below). This shows 

that, under load, the creep of C–S–H occurs via some structural reorganization within the 

mesoscale structure of C–S–H. Specifically, the fact that our mesoscale model of C–S–H is based 

on grains of constant geometry suggests that creep does not arise from time-dependent variations 

in the volume or shape of the C–S–H grains, but rather arise from some reorganization in the 

mesoscale structure of the grains. Nevertheless, such mesoscale rearrangements necessarily occur 

through some atomic-scale deformations at the interface between C–S–H grains. Then, the fact 

that the present mesoscale model yields some creep modulus values that are in good agreement 

with experiments although it only considers spherical grains suggests the shape of the grains may 

not have a first-order effect on the height of the energy barriers that need to be overcome upon 

creep. In addition, since the present mesoscale model relies on a spherical, isotropic description of 

the C–S–H grains, our results suggest that the relative orientation of the C–S–H grains with respect 

to each other may not affect creep to the first order—which may arise from the fact that the local 

packing density has a first order effect in controlling the magnitude of the energy barriers in such 

dense systems. Finally, the fact that our model does not incorporate any transversal force opposing 
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the sliding among particles suggests that frictional and shearing effects acting the level of the 

interlayer space in the C–S–H grains are not necessarily the sole or main factor responsible for 

creep of C–S–H, which in agreement with previous studies [47]. 

Overall, our results suggest that the nature of C–S–H creep is primarily nanogranular. This 

is also supported by the logarithmic time-evolution of creep (see Sec. 4.3.1), which can elegantly 

be explained by the free-volume theory (FVT) in granular physics. In details, FVT assumes that 

the creep/aging of the system occurs via some structural reorganization of the grains that jump into 

some local free space—so that the changing rate of the packing density �̇� (and, hence, the creep 

deformation rate �̇�) is expected to be proportional to the amount of holes that are larger than the 

grain size. It is then assumed that that size of the holes (i.e., local free volume Ω) exhibits a 

Poisson’s distribution 𝑝(Ω) = 1
T
exp	(−Ω/𝜃), wherein 𝜃 the average free volume per grain. The 

normalized amount of accessible holes per jumping grain can be expressed as the probability of 

holes that are larger than the grain size (𝜌), that is, ∫ 𝑝(Ω)\
] 𝑑Ω = exp(−ρ/𝜃). As such, FVT 

predicts that the deformation rate  �̇� decreases exponentially as a function of the excluded volume 

𝜃, i.e., �̇� ∝ exp(−ρ/𝜃). Further, one gets 𝜃 = 𝜌(1/𝜙 − 1/𝜙\) ≈ 𝜌𝜙\9((𝜙\ − 𝜙), wherein 𝜙 

represents the packing density of current aging system and 𝜙\  is the ultimately limit packing 

density (note that, at the vicinity of the jamming threshold,  |𝜙\ − 𝜙| ≪ 1). Finally, the time 

integration of �̇� ∝ exp(−ρ/𝜃) yields 𝑡 ∝ exp(ρ/𝜃), so that �̇� ∝ 𝑡91 [11,27]. 

The nanogranular nature of C–S–H’s creep is also supported by the dependence of the 

creep modulus on the packing density (see Fig. 4-6b). In details, we find that the evolution of the 

creep modulus can be well described by a power law: [11,42] 

𝐶 = 𝐶* × (2𝜙 − 1))                                                Eq. (4-4) 
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where a is the power law exponent and 𝐶* the value of the creep modulus at zero porosity (i.e., 

𝜙 = 1). This trend can be understood from the fact that C–S–H must exhibit a minimum packing 

fraction that is larger than 0.5 to present a percolated structure featuring a non-zero stiffness, 

hardness, and resistance to creep [9,29]. Starting from this threshold, the increase in C (i.e., 

increase in C–S–H’s resistance to creep) with increasing packing density is consistent with the 

free-volume theory framework [27]—since the level of free space (𝜃) accessible to the C–S–H 

grains decreases upon increasing packing density 𝜙. In details, the relationship: 

�̇� ∝ exp(−ρ/𝜃) = exp	[−(1 𝜙⁄ − 1 𝜙\⁄ )91]                              Eq. (4-5) 

established above based on the FVT framework suggests that the deformation rate �̇� decreases 

(and, therefore, that the resistance to creep C increases) with increasing packing density. From a 

mechanism viewpoint, this trend suggests that, by filling the existing free space left in the 

mesostructure, the presence of small C–S–H grains in between the larger C–S–H grains effectively 

reduces the number of possible structural reorganizations and, thereby, reduces the propensity for 

creep. Finally, it should be pointed out that, although our results are consistent with free-volume 

theory, our simulations do not exclude other possible physical origins. Clearly, more work is 

needed to further investigate the nature of the structural reorganization occurring during creep. 

Note that the present results do not involve that the atomic structure and composition of 

the C–S–H grains is irrelevant. Actually, these atomic details are already embedded in the effective 

potential energy governing the mutual interactions between each pair of C–S–H grains (following 

Eq. (4-1)). Namely, a variation in the atomic composition and structure of the C–S–H grains would 

affect the values of the parameters used in Eq. (4-1), which, in turn, would change the dynamics 

of creep. In fact, the role of the atomic scale is captured in the C0 term in Eq. (4-4), that is, the 

creep modulus at zero porosity (i.e., in the absence of any free volume). Notably, the creep 
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modulus at zero porosity that can here be obtained by extrapolating our computed results toward 

ϕ = 1 is in very good agreement with the data predicted by atomic-scale molecular dynamics 

simulations (see Fig. 4-6b) [6,15]. This highlights the importance of both the atomic and mesoscale 

structure in controlling the creep of cementitious binders. 

 

4.5 Conclusions 

To summarize, by accelerating the aging of the C–S–H mesostructure when subjected to a 

sustained load, our accelerated simulation method can properly describe the long-term creep of C–

S–H and yield a quantitative agreement with experimental nanoindentation data. We observe that 

the creep of C–S–H exhibit a logarithmic dependence on time and a linear dependence on the 

applied load—which supports the nanogranular nature of C–S–H creep. Importantly, this work 

offers the first consistent description of the effect of packing on the propensity for creep of C–S–

H. Our modeling framework now makes it possible to further investigate the structural mechanism 

of creep in C–S–H gels, explore the potential for the discovery of creep-resistant structures, and 

investigate the effect of each of the hypothesis/parameters of our model. From a practical 

viewpoint, our methodology can be used to predict the long-term creep deformation of C–S–H 

gels, which is challenging to access experimentally due to associated time and length scales [11,42]. 

More generally, our accelerated aging methodology is generic and can be applied to investigate 

the mechanism(s) governing the relaxation of out-of-equilibrium phases, e.g., glassy, colloidal, or 

granular materials. 
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Section B. Data-Driven Machine Learning: Make the Data 

Informative 
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Chapter 5. Predicting the Dissolution Kinetics of Silicate Glasses by 

Topology-informed Machine Learning 

5.1 Introduction 

Machine learning (ML)—a subfield of artificial intelligence—offers a promising route to 

predict the properties of silicate glasses as a function of their composition [1–7]. Indeed, by 

“learning” from existing dataset, ML algorithm can infer some complex patterns within the data 

that would otherwise remain hidden to human eyes [8–10]. As such, ML has previously been used 

with great success to predict the compositional dependence of the liquidus temperature [1], 

solubility [2], glass transition temperature [3], stiffness [4], and dissolution kinetics [5] of oxide 

glasses. 

However, data-driven models present several limitations and challenges. (i) The use of ML 

requires the existence of large, accurate, and consistent datasets (wherein a consistent dataset 

should comprise data that are measured by the same operation, including the same equipment, 

operator, protocol, data processing scheme, and environmental conditions), which are not always 

available [8,11]. (ii) Data-driven models are usually good at “interpolating” data, but typically fail 

to “extrapolate” data far from the training set [5,10,12]. This is a serious issue as it implies that 

ML cannot reliably be used to investigate presently unexplored compositional domains that are 

not explicitly considered during the training phase. This limits the potential of ML for the 

discovery of novel glasses with significantly improved properties. (iii) Data-driven models do not 

embed any mechanistic knowledge and, as such, can violate physical laws [8,12]. (iv) Finally, ML-

based models are usually complex and hardly interpretable (i.e., they act as “black boxes”). Hence, 

they usually do not offer any new physical insights [3,5,8]. These issues are challenging to mitigate 

within traditional machine learning frameworks—wherein traditional descriptors (e.g., glass 
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composition, interatomic bond energy, etc.) ignore underlying physical and chemical mechanisms 

and may not properly exhibit a simple and direct relationship with the predicted properties. More 

generally, when the linkages between the descriptors and the mechanism governing the target 

property of interest is unclear, the causality of the learned descriptor-property relation is uncertain 

[13]. 

Here, to address the challenges facing traditional “blind machine learning” (i.e., which 

does not embed any topological information), we introduce a “topology-informed machine 

learning” paradigm—wherein some features of the network topology are used as descriptors—and 

apply it to predict the stage I dissolution kinetics (i.e., forward rate, far from saturation) of sodium 

aluminosilicate glasses [14–16]. Indeed, no universal physics-based model is presently available 

to predict the dissolution kinetics of silicate glasses (even in stage I). This arises from (i) a lack of 

knowledge regarding the rate-controlling mechanism of dissolution [14,17–19], (ii) the large 

number of potential intrinsic (e.g., glass composition) and extrinsic (e.g., temperature, pH, etc.) 

parameters [5,14,20], and (iii) an incomplete knowledge of the complex, disordered structure of 

silicate glasses [21–25]. In the present contribution, we show that, by embedding some degree of 

physics and chemistry, our approach yields a predictive model that is simple (linear), accurate, and 

transferable to untrained glass compositions. 

 

5.2 Methods 

5.2.1 Experimental dissolution rate data 

For each glass composition and pH, the dissolution tests conducted by Hamilton et al. were 

carried out on glass powders comprising grain sizes ranging from 74-to-149 µm. These 

experiments were conducted under static conditions at a surface area to solution volume ratio 
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(SA/V) of approximately 1.4 to 2.0 cm−1 [26]. For each pH, the extent of dissolution was assessed 

from the concentration of leached SiO2 (as measured by ICP-AES and ICP-MS) in solution at 5-

to-7 regular intervals (for example, 24, 49, 96, 168, and 336 h) of solvent contact. In each case, 

the pH was recorded before any dissolution and at the time of the dissolution measurement. All 

the experiments were conducted at 25 °C and ambient pressure. The experimental data present an 

uncertainty of ±1.5% of the logarithm of the dissolution rates—as estimated from the standard 

deviation of the dissolution rate data associated with different measurements conducted on the 

same glass and at constant pH. More details about the measurements can be found in Ref. [26]. 

 

5.2.2 Machine learning method 

The data points from the training set are first divided into a training and test set (which 

comprises 30% of the data points). The test set is created by randomly selecting some data points 

within the training set, while ensuring that the data from the test set are truly unknown to the 

training set (that is, the pH/compositions combinations used in the test set are not present in the 

training set). Polynomial regression is then used as a regression method to infer the relationship 

between inputs and output [9,10]. The least square optimization method is used during the training 

process of the regression models. We then adopt the 10-fold cross-validation technique [9,10] to 

optimize the complexity of the model, that is, to identify the maximum polynomial degree of the 

model. This is accomplished by dividing the initial training set into 10 folds, training the model 

based on 9 of the folds, and using the remaining fold for validation. This procedure is then repeated 

10 times until each of the folds has been used as a validation set. The accuracy of the model (for a 

given maximum polynomial degree) is then determined by averaging the accuracy of the prediction 

over all the 10 validation folds. The accuracy of the final model (i.e., with optimal complexity) is 
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then assessed by computing the relative root square mean square error (RRMSE) by comparing 

the measured and predicted dissolution rate values DRi present in the test set [27]: 

RRMSE = �∑ _DR&
predicted9DR&

measured`
La

&bc

d
�∑ DR&

measureda
&bc

d
��                          Eq. (5-1) 

The intrinsic uncertainty of the dissolution data is here directly embedded within the 

machine learning framework by incorporating in the training set all the dissolution data obtained 

for the same glass composition and solution pH (rather than only their average value). This imposes 

a lower bound of RRMSE = 1.5%, which corresponds to the intrinsic degree of uncertainty of the 

DR dataset measured in experiments. 

 

5.2.3 Topological constraints enumeration 

Topological constraint theory (TCT) describes the disordered network of glasses as a 

mechanical truss wherein the atoms are connected to each other via some constraints [21,28,29]. 

TCT considers two kinds of constraints, namely, (i) the radial bond-stretching (BS) constraints 

that keep the interatomic bond length fixed around their average values and (ii) the angular bond-

bending (BB) constraints that fix the average values of the interatomic angles. A previous study 

recently suggested that the dissolution rate is related to the number of constraints per atom in the 

“skeleton” network (that is, that formed by the network-forming species, i.e., Si and O here) rather 

than to the number of constraints per atom in the whole network (that is, including the network-

modifying species, i.e., Na here) [30]. Based on this, we enumerate the number of constraints per 

atom in (Na2O)x(Al2O3)y(SiO2)1–x–y) as follows. (i) Each Si creates 4 BS constraints with its 4 

surrounding O neighbors and 5 BB constraints (i.e., the number of independent angles that needs 

to be fixed to define the tetrahedral angular environment of Si atoms). Note that, here, the BS 
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constraints are fully attributed to the cations—so that we do not attribute any BS constraint to the 

O atoms. (ii) Each tetrahedral Al creates 4 BS constraints with its 4 oxygen neighbors. However, 

based on previous findings [31], Al atoms do not create any BB constraints—in agreement with 

the fact that the angular environment of Al atoms is not as well defined as that of Si atoms [32]. 

(iii) Bridging oxygen (BO) atoms (i.e., surrounded by 2 network-forming cations) form 1 BB 

constraint. The number of constraints per atom nc is then calculated by summing the number of 

constraints created by each element and dividing by the total number of atoms in the skeleton 

network, namely, Si, Al, BO, NBO (non-bridging oxygen atoms), but excluding Na. The 

constraints enumeration is summarized in Tab. 5-1. It follows that: 

𝑛A =
1191(e0(f
+9(e0(f

                                                  Eq. (5-2) 

This metric (nc) is used as an input (in lieu of x and y) in Model IV. 

Similarly, the number of bond-stretching constraints per atom BS is calculated by summing all 

bond stretching constraints created by each element and dividing by the total number of atoms in 

the skeleton network: 

BS = /9/e0/f
+9(e0(f

                                                  Eq. (5-3) 

The number of bond-bending constraints per atom BB is calculated by summing all bond bending 

constraints created by each element and dividing by the total number of atoms in the skeleton 

network: 

BB = g9he9(f
+9(e0(f

                                                  Eq. (5-4) 

The silicon-dominated constraints per atom 𝑛Aij  is calculated by summing the number of 

constraints created by silicon atoms and dividing by the total number of atoms in the skeleton 

network: 
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𝑛Aij =
k9ke9kf
+9(e0(f

                                                  Eq. (5-5) 

The aluminum-dominated constraints per atom 𝑛Alm  is calculated by summing the number of 

constraints created by aluminum atoms and dividing by the total number of atoms in the skeleton 

network: 

𝑛8no =
hf

+9(e0(f
                                                  Eq. (5-6) 

In all cases, each input X (i.e., BS, BB, ncSi, and ncAl) is transformed into a normalized variable 0 

< X’ < 1 as: 

𝑋′ = p9pqrs
pqtu9pqrs

                                                  Eq. (5-7) 

where Xmin and Xmax are the minimum and maximum values of X, respectively. 

 

Table 5-1. Table summarizing the fraction, coordination number (CN), number of bond-

stretching (BS), and number of bond-bending (BB) constraints created by each atomic species in 

(Na2O)x(Al2O3)y(SiO2)1–x–y glasses. Note that y ⩾ x in all glasses, so that all the Al atoms are 

assumed to be in tetrahedral configuration [33]. 

Atom Fraction CN BS BB BS+BB 

Si 1 – x – y 4 4 5 9 

Al 2y 4 4 0 4 

Na 2x - - - - 

O 2 – x + y - - - - 

NBO 2x – 2y 1 - 0 0 

BO 2 – 3x + 3y 2 - 1 1 

 



 110 

5.3 Results 

5.3.1 Nature of the dataset 

To establish our conclusions, we rely on the database developed by Hamilton et al. 

[24,26,34,35], which comprises the forward dissolution rate of a series of aluminosilicate glasses 

with varying compositions under varying pH conditions. In details, the database comprises 

dissolution data for two families of glasses, namely, (i) the “Glasses A” series 

(Na2O)25(Al2O3)y(SiO2)75–y, with y = 5%, 10%, 15%, 20%, and 25% and (ii) the “Glasses B” series 

(Na2O)x(Al2O3)x(SiO2)100–2x, with x = 12.5%, 16.7%, and 25%. As such, the glass compositions 

cover both the tectosilicate and peralkaline domains, with varying fractions of non-bridging 

oxygen atoms. The dissolution kinetics of these glasses is systematically studied in unsaturated 

aqueous solutions over a wide domain of pH, ranging from pH 1 to pH 12. The dissolution rate is 

here quantified in terms of the SiO2 leaching rate (expressed in units of mol/cm2/s). In total, the 

database comprises 200 data points [26]. More details can be found in the Methods section. Note 

that simple metrics (e.g., the fraction of non-bridging oxygen atoms) do not offer any good 

correlation with the dissolution rate (see Ref. [5]). In particular, all the glasses from the series B 

are fully charge-compensated and, hence, present a theoretical zero fraction of non-bridging 

oxygen atoms and yet exhibit varying dissolution rates. This justifies the use of more complex 

descriptors as presented in the following. 

 

5.3.2 Blind machine learning 

We first assess the ability of “blind machine learning” [8,10,12] (that is, which does not 

embed any physics/chemistry about the dissolution process) to offer realistic prediction of the 

dissolution kinetics of the aluminosilicate glasses considered herein. To this end, we first consider 
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as inputs the glass composition (i.e., the molar fractions of Na2O and Al2O3) and the solution pH, 

while the dissolution rate (DR) is used as output. We then adopt the polynomial regression 

technique to infer the relationship between inputs and output [9,10]. Indeed, although our previous 

work on the same DR dataset has shown that more complex machine learning algorithms (e.g., 

artificial neural network) offer improved performance [5], such complex algorithms do not yield 

any analytical, easily usable function relating the inputs and output of the model and are poorly 

interpretable. In contrast, the polynomial regression method eventually yields an analytical model 

expressing the dissolution rate as a polynomial function of the inputs: 

Model	I:											DR = 𝑓(pH, Na(O, Al(O+)                              Eq. (5-8) 

In the following, we refer to this model as “Model I.” To avoid any overfitting, we divide the 

database into (i) a training set, which is used to train the model, (ii) a validation set (10% of the 

data points of the database generated by the cross-validation method [9,10]), which is used to 

validate the performance of the model and identify the optimal polynomial degree, and (iii) a test 

set, that is, some data that are kept fully invisible to the model and that are used to assess its ability 

to predict unknown data. The test is here chosen by randomly selecting 30% of the data points 

from the database. The accuracy of the prediction is assessed by calculating the relative-root-mean-

square-error (RRMSE [27], see Methods section). More details about the machine learning 

methodology can be found in the Methods section. 

Figure 5-1(a) shows the RRMSE of the training and validation sets as a function of the 

maximum polynomial degree (p) of the model. We observe that the RRMSE of the training set 

decreases monotonically upon increasing polynomial degree (i.e., increasing model complexity) 

and eventually plateaus. This signals that, as the model becomes more complex, it can better 

interpolate the training set. In contrast, we observe an increase in the RRMSE of the training set 
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when the polynomial degree is lower than 3, which indicates that these models are too simple to 

properly describe the relationship between inputs and output. On the other hand, we observe that 

the RRMSE of the validation set initially decreases with increasing polynomial degree, shows a 

minimum for degree 5, and eventually increases with increasing degree. This demonstrates that 

the models incorporating some polynomial terms that are strictly larger than 5 are overfitted. This 

arises from the fact that, in the case of high degrees, the model starts to fit the “noise” of the 

training set rather than the “true” overall trend. These results exemplify how the evolution of the 

RRMSE as a function of the polynomial degree of the model allow us to identify (i) the minimum 

level of model complexity that is required to avoid underfitting and (ii) the maximum level of 

model complexity before overfitting. Overall, the optimal polynomial degree (here found to be 5) 

manifests itself by a minimum in the RRMSE of the validation set. 

Figure 5-1(b) shows the dissolution rate values predicted by this model with p = 5 for the 

training and test sets. Overall, we find that blind polynomial regression (Model I) does not 

accurately capture the relationship between glass composition, pH, and dissolution rate. The 

RRMSE of the training set is found to be very high (98%), which indicates that the model does not 

properly interpolate the data used during its training. In turn, the RRMSE of the test set (731%) 

highlights the fact that this model is largely unable to properly predict the dissolution rate of 

glasses/pH for which it has not explicitly been trained for. This likely arises from the fact that the 

relationship between inputs and output is here largely non-linear and, hence, cannot be properly 

captured by a linear model—in agreement with our previous findings [5]. Note that, considering 

the low performance of the present model, no effort is here made to understand why the dissolution 

rates of certain glasses are well predicted, whereas others are not. 
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(a) (b) 

Figure 5-1: Predictions from “blind” machine learning (“Model I”). (a) Evolution of the 

relative root square mean square error (RRMSE) of the training and validation sets with 

respect to the polynomial degree p. The minimum in the RRMSE of the validation set 

indicates that p = 5 is the optimal polynomial degree. (b) Predicted dissolution rate for p = 5 as 

a function of the measured dissolution rate. 

 

5.3.3 Strategy for topology-informed machine learning 

Figure 5-2 illustrates the main idea of “topology-informed” machine learning and how it 

compares to traditional “blind” machine learning. By being blind to the nature of the mechanism 

governing the property of interest, traditional blind machine learning ignores (i) which descriptors 

govern the output property and (ii) the analytical form of the input-output relationship. As 

illustrated in Fig. 5-2(a), a poor choice of descriptors can result in a complex, highly nonlinear 

function. Although complex regression algorithms can properly interpolate such nonlinear datasets, 

they are unlikely to offer realistic predictions extrapolated far from the training set. In contrast, 

topology-informed ML models are expected to address these limitations by: (i) reducing the 

dimensionality of the problem (since several glasses with varying compositions can present the 
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same topology and, hence, similar dissolution kinetics), (ii) simplifying the trained models (since 

the number of descriptors is decreased), and (iii) linearizing the relationship between inputs and 

output. As illustrated in Fig. 5-2(b), relying on a topological fingerprint (rather than traditional 

descriptors) is expected to facilitate extrapolations far from the training set. 

  

(a) (b) 

Figure 5-2: Schematic illustrating the ability (or inability) to extrapolate predictions far from 

the training set of (a) traditional blind machine learning (trained based on arbitrary descriptors 

𝛼) and (b) topology-informed machine learning (trained based on topological descriptors β). In 

both panels, the dashed red curve represents the true function relating the inputs to the targeted 

output. The squares indicate the known points from the training set. The solid green curve 

represents the “guessed” function interpolated by the ML model. The grey window indicates a 

range of systems (i.e., specific values of descriptors 𝛼) that is not represented within the 

training set and for the predictions from the ML models are tested. Note that this window is 

outside the training set in panel (a), but not in panel (b)—since several systems with different 

descriptors 𝛼 may present the same topology. 
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method since more complex machine learning algorithms (e.g., artificial neural network or random 

forest [9,10]) offer poor interpretability [8]. Rather, the polynomial regression yields an analytical 

function, which, in turn, can serve to infer some of the underlying physics of the dissolution 

mechanism. (ii) Second, we attempt to “linearize” the relationship between inputs and output based 

our physical understanding of the dissolution process. This is based on the idea that linear models 

are expected to be more likely to offer a good transferability to unknown inputs and to potentially 

yield some useful physical insights [8,10,12]. (iii) Third, we attempt to identify some relevant 

reduced-dimensionality descriptors capturing the effect of the atomic structure of the glass on 

dissolution rate that can be used as inputs. This is based on the idea that, although the dissolution 

kinetics of glasses is controlled by their composition (at fixed thermal history) for a given set of 

environment conditions (T, pH and solution composition [36–39]), the knowledge of the structure 

of the atomic network makes it possible to decipher the relationship between composition and 

dissolution rate—so that it should be easier for machine learning algorithms to infer the 

relationship between “structure and dissolution rate” than between “composition and dissolution 

rate.” In the following, we present how these topology-informed ingredients allow us to derive less 

complex, yet more accurate predictive models. 

 

5.3.4 Linearization of the inputs/output relationship 

In an attempt to linearize the relationship between the inputs and output of the model, we 

first note that, in general, the dissolution rate is an exponential (rather than linear) function of pH 

and composition. This can be illustrated from the fact that, based on transition state theory, the 

Aagaard-Helgeson model expresses the forward dissolution rate in terms of (i) the activity of H+ 

ions, which, in turn, is an exponential function of pH [40], and (ii) an Arrhenius term exp(–Ea/RT), 
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wherein the activation energy has recently be suggested to be a function of the number of 

topological constraints per atom in the network, which, in turn, is often a linear function of 

composition [21,36,37]. Based on this fact, it follows that one can increase the degree of linearity 

of the relationship between inputs and output by predicting the logarithm of the dissolution rather 

than the dissolution rate itself (referred to as “Model II” thereafter): 

Model	II:											log(DR) = 𝑓(pH, Na(O, Al(O+)                       Eq. (5-9) 

We find that, by using Model II, the prediction accuracy is significantly improved when the 

polynomial degree p decreases to 3. To further enhance the degree of linearity of the inputs/output 

relationship, we now consider the dependence of the dissolution on pH. As illustrated in Fig. 5-3, 

the dissolution rate exhibits a fairly bilinear V-shape dependence on pH, with a minimum in neutral 

condition (pH 7) [36,38]. This is an issue as the description of a bilinear function in terms of a sum 

of polynomials requires the use of high degrees to account for the break in slope. As an alternative 

route, we define two new input variables, namely, pHacid and pHbase, which are defined as pHacid = 

max(0; 7 – pH) and pHbase = max(0; pH – 7). Note that these inputs contain the same information 

of the pH variable but allow us to describe the linear evolution of the dissolution rate with respect 

to pHacid and pHbase for pH < 7 and pH > 7, respectively, rather than the bilinear evolution of the 

dissolution with respect to pH (see Fig. 5-3). Note that the variables pHacid and pHbasic are equal to 

0 for pH > 7 and pH < 7, respectively, so that only one of these variables at a time is non-zero. 

Model III expresses the logarithm of the dissolution rate in terms of the glass composition and 

these two new variables: 

Model	III:											log(DR) = 𝑓(pHacid, pHbase, Na(O, Al(O+)                  Eq. (5-10) 
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Figure 5-3: Measured dissolution rate of a (Na2O)0.125(Al2O3)0.125(SiO2)0.75 glass as a function 

of pH [26]. 

 

  

(a) (b) 

Figure 5-4: Predictions from machine learning while explicitly accounting for the exponential 

dependence of the dissolution rate on the inputs and capturing the distinct acidic and caustic 

regimes (“Model III”). (a) Evolution of the relative root square mean square error (RRMSE) 

of the training and validation sets with respect to the polynomial degree p. The minimum in 

the RRMSE of the validation set indicates p = 1 as an optimal polynomial degree (i.e., linear 

model). (b) Predicted dissolution rate for p = 1 as a function of the measured dissolution rate. 
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Figure 5-4(a) shows the RRMSE of the training and validation sets as a function of the 

maximum polynomial degree p for Model III. Importantly, we find that the explicit description of 

the bilinear dependence of the dissolution rate on pH allows us to further reduce the complexity of 

the model since the RRMSE of the validation set shows a minimum for p = 1. This indicates that 

Model III can express the dissolution rate through a simple, linear relationship. In addition to 

decreasing the complexity of the model, Model III also offers an increased degree of accuracy 

since the RRMSE of the test set is found to be 3.76% (as compared to 731% for Model I, see Fig. 

5-4(b)). These results illustrate how the linearization of the relationship between inputs and output 

based on our physical/chemical understanding of the dissolution process can results in the training 

of a less complex, yet more accurate model. 

 

Figure 5-5: Dissolution rate of the silicate glasses considered herein as a function of the 

number of topological constraints per atom for pH = 9 and 12. 
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network as mechanical trusses, wherein some nodes (the atoms) are connected to each other by 

some topological constraints (the chemical bonds) [21,28,29,41]. Based on this framework, the 

number of topological constraints per atom (nc) has been shown to offer a useful reduced-

dimensionality descriptor that captures the connectivity of the atomic network and, hence, can be 

used to predict various glass properties, e.g., hardness, stiffness, fracture toughness, glass transition 

temperature, fragility, etc. [21,42–47]. Importantly, the effective activation energy of dissolution 

for a fixed pH has recently been suggested to be proportional to nc [30,31,37,39,48–52]. Based on 

these findings, we compute the number of topological constraints of the rigid aluminosilicate 

network nc for each glass (see Methods section) and use it as a descriptor of the atomic structure. 

As shown in Fig. 5-5, we observe that, at fixed pH, the dissolution rate is indeed largely correlated 

to nc, which supports the use of this metric as an input to the model. We then define Model IV, 

which expresses the logarithm of the dissolution rate in terms of pH, nc, and the fraction of network 

modifiers (i.e., Na2O)—since the network modifiers are not explicitly accounted for in the number 

of topological constraints of the rigid aluminosilicate network (see Methods) [30]: 

Model	IV:											log	(DR) = 𝑓(pHacid, pHbase, 𝑛A, Na(O)                   Eq. (5-11) 

Figure 5-6(a) shows the RRMSE of the training and validation sets as a function of the 

maximum polynomial degree p for Model IV. Like Model III, we note that a linear model (i.e., p 

= 1) offers the best performance. As shown in Fig. 5-6(b), Model IV is able to (i) properly 

interpolate the training set and (ii) predict realistic values for the test set. Nevertheless, we note 

that the overall degree of accuracy remains comparable to that offered by Model III. In particular, 

select points appear to systematically act as outliners in all the models considered herein and, hence, 

might be experimental artefacts. 
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(a) (b) 

Figure 5-6: Predictions from "topology-informed” machine learning, that is, by explicitly 

accounting for the exponential dependence of the dissolution rate on the inputs, capturing the 

distinct acidic and caustic regimes, and describing the glass structure in terms of the number of 

topological constraints per atom nc (“Model IV”). (a) Evolution of the relative root square 

mean square error (RRMSE) of the training and validation sets with respect to the polynomial 

degree p. The minimum in the RRMSE of the validation set indicates p = 1 as an optimal 

polynomial degree (i.e., linear model). (b) Predicted dissolution rate for p = 1 as a function of 

the measured dissolution rate. 
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efficient, and (iii) more interpretable models are more likely to offer some new insights into the 

underlying physics governing the relationship between inputs and outputs. Figure 5-7 shows the 

complexity (captured by the optimal polynomial degree) and accuracy (captured by the RRMSE) 

of the different models considered herein. Overall, we find that embedding topological descriptors 

yields models that are less complex and more accurate. This establishes topology-informed 

machine learning as a promising route to overcome the tradeoff between accuracy and simplicity, 

which are otherwise often mutually exclusive [5,10,53]. 

  

(a) (b) 

Figure 5-7: (a) Complexity (as captured by the polynomial degree) and (b) accuracy (as 

captured by the relative root square mean square error, RRMSE) of the “blind” and “topology-

informed” machine learning models described herein. 
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of the atomic network) offers a level of accuracy that is comparable to that offered by Model IV 

(which embeds nc as an explicit input). To further understand this point, we now assess whether 

Model III is able to “learn” by itself that the dissolution rate can be described by the reduced-

dimensionality parameter nc. To this end, we analyze the coefficients of the final linear function 

yielded by Model III, which relates –log(DR) to the pH and the molar fractions of Na2O and Al2O3. 

This model can be expressed as: 

DR = 𝐹(pH) exp(𝑎[Na(O] + 𝑏[Al(O+])                    Eq. (5-12) 

where F(pH) is a function that depends only on the pH of the solution and a and b are some 

coefficients of the model. On the other hand, Ref. [37] suggests that the dissolution rate can be 

expressed as: 

DR = DR*(pH) exp ¥
9dcvw
xy

¦                                Eq. (5-13) 

where DR0(pH) is the dissolution rate when nc = 0, E0 is activation energy needed to break a unit 

constraint per atom, R is the perfect gas constant, and T is the temperature. 

A comparison between Eqs. (5-12) and (5-13)—i.e., by setting equal their respective 

exponent terms—allows us to determine the number of topological constraints per atom ncguessed 

that is “guessed” by Model III as a function of the glass composition. As shown in Fig. 5-8, we 

find that Model III is able to infer how the number of constraints depends on the glass composition 

(see Methods section), which explains why Model III and Model IV eventually offer the same 

level of accuracy. This demonstrates that, in the present case, ML is able to learn by itself some 

chemical rules governing the number of topological constraints created by each atom. Note that 

the number of constraints per atom (nc) depends not only on glass composition, but also on some 

“chemical knowledge” of the system, that is, (i) the coordination number of each atom, (ii) the 

energy of each chemical bond, which can be active or thermally-broken, and (iii) the directionality 
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of each interatomic bond (i.e., covalent vs. ionic), which governs the existence of bond-bending 

constraints. In that sense, it is notable that the ML model is able to properly “guess” all these 

chemical features and how they govern the dissolution rate. As discussed below, this is permitted 

by the fact that, here, the training set homogeneously covers all the range of the possible glass 

compositions. More generally, these results exemplify how an interpretable ML model can offer 

some physical insights into the relationship between inputs and output—which would not be 

possible with a less interpretable model (e.g., artificial neural network). 

 

Figure 5-8: Number of topological constraints per atom nc “guessed” by Model III (which is 

blind to the topology of the atomic network) as a function of the real value of nc—wherein the 

training set randomly covers the whole range of glass composition and solution pH. The red 

and blue lines indicate the guessed nc values for the two families of glasses considered herein, 

namely, (Na2O)0.25(Al2O3)x(SiO2)0.75–x (Glasses A) and (Na2O)x(Al2O3)x(SiO2)1–2x (Glasses B). 
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on the dissolution rate data of the first series of glasses with varying Na/Al molar ratios, namely, 

(Na2O)25(Al2O3)y(SiO2)75–y and (ii) we test the ability of the models to predict the dissolution rate 

of the second series of fully charge-compensated glasses with varying fractions of Na2O, namely, 

(Na2O)x(Al2O3)x(SiO2)100–2x. In this scenario, the training set does not homogeneously sample the 

range of glass composition, which allows us to determine whether the models are able to 

extrapolate predictions from their training sets. Note that these two families of glasses exhibit 

significantly different structures, namely, (i) Glasses A exhibit varying degrees of polymerization 

and present some non-bridging oxygen (NBO) atoms, whereas (ii) Glasses B are fully-

compensated and theoretically do not comprise any NBO. In addition, the training set (Glasses A) 

presents a fixed fraction of Na2O, so that the test set (Glasses B, with varying fractions of Na2O) 

is truly unknown to the model. 

Figure 5-9 shows the dissolution rate data predicted by Model III (“topology-blind”) and 

Model IV (“topology-informed”) based on the above-mentioned training scenarios. In both cases, 

the prediction error distribution of the training set is centered around 0 with a standard deviation 

that is close to experimental uncertainty (i.e., ±0.2 log[mol SiO2/cm2/s]) (see Fig. 5-9(c)). This 

indicates that both models are able to properly interpolate the training set (i.e., Glasses A). In 

contrast, we find that the test set RRMSE of Model IV is lower than that offered by Model III. In 

addition, we note that the prediction error distribution is around 0 in Model IV, but shows a 

systematic deviation from 0 in Model III (see Fig. 5-9(c)). This signals that the topology-informed 

Model IV shows an enhanced ability to extrapolate predictions far from the training set. 
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(a) (b) (c) 

Figure 5-9: Dissolution rate predicted by (a) “topology-blind” machine learning (Model III) 

and (b) “topology-informed” machine learning (Model IV) as a function of the measured 

dissolution rate—wherein the dissolution data of Glasses A ((Na2O)0.25(Al2O3)x(SiO2)0.75–x, 

training set) are used as a training set to predict the dissolution kinetics of Glasses B 

((Na2O)x(Al2O3)x(SiO2)1–2x, test set). (c) Distribution of prediction error for the training (solid 

line) and test sets (dash line) offered by Models III (black) and IV (red), respectively. The 

error is defined as the difference between predicted and measured dissolution rate. 

 

To further understand how explicitly using the number of constraints per atom nc as a 
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III fails to properly infer the compositional evolution of nc. This arises from the fact that, in this 
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Figure 5-10: Number of topological constraints per atom nc “guessed” by Model III (which is 

blind to the topology of the atomic network) as a function of the real value of nc. The red and 

blue lines indicate the guessed nc values for the two families of glasses considered herein, 

namely, (Na2O)0.25(Al2O3)x(SiO2)0.75–x (Glasses A) and (Na2O)x(Al2O3)x(SiO2)1–2x (Glasses B), 

respectively. Here, the dissolution data of Glasses A are used as a training set to predict the 

dissolution kinetics of Glasses B (test set). 
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relationship between the nc and the dissolution rate. It follows that, once the relationship between 

nc and the dissolution rate is properly parameterized, the model will be able to properly predict the 

dissolution rate of new unknown glass compositions, provided that their number of constraints nc 

is similar to that of some glasses of the training set—based on the idea that two glasses with 

different composition but similar nc values will exhibit a comparable dissolution rate. As such, 
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topology-informed models only need to be trained with a relatively small training set comprising 

different glasses with varying nc values to be able to properly predict the dissolution rate of new 

glasses with compositions that are unknown to the model. This is illustrated by Fig. 5-11, which 

shows that here, some of the glasses of the B series have a number of constraints per atom nc that 

is similar to some of glasses of the A series—so that Model IV (topology-informed) succeeds in 

predicting their dissolution rate while Model III (topology-blind) does not. This suggests that the 

use of topological inputs capturing into a single metric (nc) some details of the glass structure 

makes it possible to reduce the dimensionality of the problem and, thereby, to train predictive 

models based on limited datasets. 

  

(a) (b) 

Figure 5-11: Dissolution rate predicted by (a) “topology-blind” machine learning (Model III) 

and (b) “topology-informed” machine learning (Model IV) as a function of the number of 

topological constraints per atom nc for pH 9—wherein the dissolution data of Glasses A 

((Na2O)0.25(Al2O3)x(SiO2)0.75–x, training set) are used to predict the dissolution kinetics of 

Glasses B ((Na2O)x(Al2O3)x(SiO2)1–2x, test set). The measured dissolution rates are added for 

comparison. 
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We now further assess the degree of transferability of our topology-informed machine 

learning model by testing its ability to predict the dissolution rate of pure glassy silica (SiO2, taken 

from Ref. [37]). It is worth mentioning that, although the composition of this glass may look 

similar the those of the training set (i.e., Glasses A), pure glassy silica often exhibits unique, 

anomalous behaviors. For instance, it is notable that the dissolution rate of SiO2 (or logarithm 

thereof) cannot be predicted as a linear extrapolation of those of Glasses B 

(Na2O)x(Al2O3)x(SiO2)100–2x toward x→0. As shown in Fig. 5-12, we find that our topology-

informed machine learning model offers an excellent prediction of the dissolution rate of glassy 

silica (with RRMSE = 1.66%). It is notable that, although it is trained for glasses comprising a 

fixed fraction (25%) of Na2O, our model is able to accurately predict the dissolution rate of pure 

silica. These results exemplify how adopting topological descriptors enables extrapolations far 

from the training set—although it will certainly be desirable in the future to test the predictions of 

this model to some additional families of silicate glasses (e.g., borosilicate, phosphosilicate, etc.). 

Note that traditional machine learning approaches typically rely on a large number of 

descriptors (e.g., molar masses, bond energy, atomic charges, field strength, etc.), which can be a 

posteriori be filtered out to reduce the complexity of the model (e.g., using LASSO [54]). Although 

using a large number of descriptors can increase the ability of the model to interpolate complex 

data, this comes with several challenges, namely, (i) the computational burden required to filter 

out irrelevant descriptors is increased, (ii) certain descriptors can appear as being insignificant 

when taken individually, but may become very useful when combined with each other, (iii) models 

relying on a large number of descriptors typically require large training sets, (iv) a larger number 

of descriptors usually increase the complexity of the model, (v) a larger number of descriptors 

usually decrease the interpretability of the model, and (vi) the use of a large number of descriptors 
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can result in some degree of overfitting, which, in turn, tends to decrease the extrapolability of the 

model. In contrast, adopting a topological fingerprint of the atomic network filters out some of the 

structural details. As such, the use of topological descriptors only may not fully capture some of 

the fine details of the relationship between composition and dissolution kinetics, but, nevertheless, 

we find here this level of simplification/filtering to be key in enhancing the extrapolability of the 

trained models. 

 

Figure 5-12: Dissolution rate predicted by “topology-informed” machine learning (Model IV) 

as a function of the measured dissolution rate—wherein the dissolution data of sodium 

aluminosilicate Glasses A ((Na2O)0.25(Al2O3)x(SiO2)0.75–x, training set) are used as a training 

set to predict the dissolution kinetics of glassy silica (SiO2, test set). 
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with topological descriptors (model IV). We assess their potential for extrapolation by training 

them based on Glasses A and testing their ability to predict the dissolution rates of Glasses B (see 

above). As expected, we find that both the ANN and GPR models can very accurately interpolate 

the training set. In both cases, the RRMSE of the training set is below 2%, which is smaller than 

that offered by polynomial regression (2.4%). We note that the distribution of the prediction error 

is centered around 0 and is sharper than that offered by polynomial regression (see Fig. 5-13(c)). 

This arises from the fact that, as compared to polynomial regression, both the ANN and GPR 

models exhibit higher complexities, that is, higher numbers of adjustable parameters. This 

complexity provides them with more flexibility to interpolate fine details of the training set. 

However, we find that both the ANN and GPR models do not offer satisfactory predictions 

for the test set (see Figs. 5-13(a) and 5-13(b)). In detail, the RRMSE of the test set offered by ANN 

and GPR is 5.62% and 4.51%, respectively, which are both higher than that offered by polynomial 

regress (i.e., 4.25%, see Fig. 5-9(b)). Notably, a visual inspection of Figs. 5-13(a) and 5-13(b) and 

the analysis of the distribution of the prediction error (see Fig. 5-13(c)) reveals that both ANN and 

GPR exhibit a systematic error when predicting the test set—especially for slowly-dissolving 

glasses, whose dissolution rate tends to be overpredicted. This poor extrapolability can be 

understood from the fact that both ANN and GPR are intrinsically nonlinear and, hence, do not 

capture the linear dependence of the logarithm of the dissolution rate on the number of constraints 

per atom. Such nonlinearity can clearly be observed in Figs. 5-13(a) and 5-13(b). In contrast, 

polynomial regression intrinsically relies on a linear formulation and, as such, offers more realistic 

predictions far from the training set. These results exemplify that, in addition of informing the 

choice of the descriptors, our physical understanding of the underlying mechanism can also guide 

the choice of the regression technique. 
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(a) (b) (c) 

Figure 5-13: Dissolution rate predicted by “topology-informed” machine learning (Model IV) 

using (a) Artificial Neural Network (ANN) and (b) Gaussian Process Regression (GPR) as a 

function of the measured dissolution rate—wherein the dissolution data of Glasses A 

((Na2O)0.25(Al2O3)x(SiO2)0.75–x, training set) are used as a training set to predict the dissolution 

kinetics of Glasses B ((Na2O)x(Al2O3)x(SiO2)1–2x, test set). (c) Distribution of the prediction 

error for the training (solid line) and test set (dash line) by using the ANN (black) and GPR 

models (blue), respectively. The results offered by polynomial regression are added for 

reference. The error is here defined as the difference between predicted and measured 

dissolution rates. 
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Model IV-a:         log(DR) = 𝑓(pHacid, pHbase, BS, BB)                          Eq. (5-14) 

Model IV-b:         log(DR) = 𝑓(pHacid, pHbase, 𝑛Aij, 𝑛Alm)                         Eq. (5-15) 

In detail, Model IV-a investigates the relative weights of the radial bond-stretching (BS) and 

angular bond-bending (BB) constraints, whereas Model IV-b investigates the relative weights of 

the constraints created by Si and Al atoms (ncSi and ncAl, respectively). Note nc = BS + BB (see 

Methods section), so that the original Model IV assumes that radial and angular constraints have 

the same weight, and so do the constraints created by different elements.  

  

 

(a) (b) (c) 

Figure 5-14: Outcomes of the "topology-informed” machine learning (Model IV-a) using as 

inputs the numbers of bond stretching constraints per atom (BS) and bond bending constraints 

per atom (BB). (a) Evolution of the relative root square mean square error (RRMSE) of the 

training and validation sets with respect to the polynomial degree p. The minimum in the 

RRMSE of the validation set indicates p = 1 as an optimal polynomial degree (i.e., linear 

model). (b) Predicted dissolution rate (for p = 1) as a function of the measured dissolution rate. 

(c) Coefficients of the polynomial model associated with the BS and BB inputs. Note that the 

BS and BB input values are normalized in the training process to ensure that the model 

coefficients reflect the contribution of each input to the dissolution rate. 
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(a) (b) (c) 

Figure 5-15: Outcomes of the "topology-informed” machine learning (Model IV-b) using as 

inputs the number of constraints per atom created by silicon (ncSi) and aluminum (ncAl). (a) 

Evolution of the relative root square mean square error (RRMSE) of the training and 

validation sets with respect to the polynomial degree p. The minimum in the RRMSE of the 

validation set indicates p = 1 as an optimal polynomial degree (i.e., linear model). (b) 

Predicted dissolution rate (for p = 1) as a function of the measured dissolution rate. (c) 

Coefficients of the polynomial model associated with the ncSi and ncAl inputs. Note that, the 

ncSi and ncAl input values are normalized in the training process to ensure that the model 

coefficients reflect the contribution of each input to the dissolution rate. 
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coefficients are negative (see Figs. 5-14(c) and 5-15(c)), which confirms that all the topological 

constraints, whatever their nature, tend to decrease the dissolution rate. Interestingly, we find that 

the angular bond-bending BB constraints present a larger weight than the linear bond-stretching 

BS constraints (see Figs. 5-14(c)). This finding is confirmed by the fact that the topological 

constraints created by Si atoms have a larger weight than those created by Al atoms (see Figs. 5-

15(c))—since Al atoms do not create any angular constraints (see Methods section) [32]. Overall, 

these results signal that bond-bending constraints have more influence than radial ones on the 

dissolution kinetics. This suggests that the dissolution kinetics is strongly affected by the 

directionality of the interatomic bonds. We note that insights of this nature would be challenging 

to obtain from more complex, less interpretable “black-box” machine learning models (e.g., ANN). 

 

5.5 Conclusions 

Overall, these results show that embedding some physical and chemical descriptors within 

ML models can increase the degree of linearity of the input/output relationship and reduce the 

dimensionality of the model. This establishes topology-informed machine learning as a promising 

route to address some of the limitations of traditional blind machine learning, namely, by (i) 

reducing the complexity and increasing the interpretability of the trained models, (ii) limiting the 

need for large training sets, and (iii) enhancing the ability of the models to extrapolate predictions 

far from their training sets. 
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Chapter 6. End-to-End Differentiability and Tensor Processing Unit 

Computing to Accelerate Materials’ Inverse Design 

6.1 Introduction 

Numerical simulations have transformed the way we design materials [1]. For instance, 

density functional theory and molecular dynamics excel at predicting the properties of materials 

based on the knowledge of their composition and atomic structure [2,3]. This makes it possible to 

replace costly trial-and-error experiments by simulations so as to screen in silico promising 

materials [4]. However, numerical simulations are of limited help to tackle “inverse design” 

problems (i.e., identifying an optimal material featuring optimal properties within a given design 

space) [5–7]. Indeed, although numerical simulations are typically faster and cheaper than 

experiments, their computational burden usually prevents a thorough exploration of the design 

space (e.g., the systematic exploration of all possible materials’ compositions) [8]. In addition, 

traditional numerical simulations are usually not differentiable, which prevents their seamless 

integration with gradient-based optimization methods [9,10]. These limitations—which are 

reminiscent of the state of machine learning before automatic differentiation became popular 

[11]—have limited the use of numerical simulations in inverse design pipelines [12]. 

To address this issue, it is common to replace simulations by a differentiable surrogate 

predictor machine learning model, which aims to approximately interpolate the mapping between 

design space parameters (e.g., the material’s structure) and the target property of interest [7,12,13]. 

Following this approach, Generative Networks (GNs) [5] have been used for inverse design 

application using, for instance, autoencoders [14], generative adversarial networks [15], or 

generative inverse design networks [12]. The generator can then be combined with the 

differentiable surrogate predictor in the same pipeline so as to be trained by gradient 
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backpropagation [12,16,17]. However, this approach can result in difficulties associated with the 

fact that the generator and predictor must both be trained, either simultaneously or sequentially. In 

addition, the ability of the generator to discover new unknown, potentially non-intuitive material 

designs (i.e., which are very different from those in the training set) is often limited by the accuracy 

and generalizability of the surrogate predictor [5–7].  

Then the question is, can we avoid using surrogate predictor? With the recent expansion of 

automatic differentiation technologies [18,19], differentiable programming platforms—such as 

TensorFlow [20], JAX [21], and TaiChi [22]—are rapidly developing and getting attention for 

differentiable simulation applications [23,24], including molecular dynamics [10,11] and robotic 

dynamics [25]. However, as differentiable programming remains largely unexplored in material 

simulations, the potential of directly training a generator based on a differentiable predictor has 

received less attention. 

Here, to address the challenges facing surrogate predictor, we introduce a deep generative 

pipeline that combines an end-to-end differentiable simulator with a generator model. We illustrate 

the power of this approach by taking the example of the inverse design of a porous matrix featuring 

targeted sorption isotherm—wherein the sorption isotherm corresponds here to the amount of 

adsorbed liquid water in the porous structure as a function of relative humidity. This is enabled by 

the implementation of an end-to-end differentiable lattice-based density functional theory code in 

TensorFlow [20,21]. We show that the trained generative model is able to successfully generate 

porous structures with arbitrary sorption curves. Moreover, this generator-simulator pipeline 

leverages for the first time the power of tensor processing units (TPU)—an emerging family of 

dedicated chips [26], which, although they are specialized in deep learning, are flexible enough 



 143 

for intensive scientific simulations. This approach holds promise to accelerate the inverse design 

of materials with tailored properties and functionalities. 

 

6.2 Methods 

6.2.1 Lattice density function theory (LDFT) of sorption 

We consider a simplified model of porous matrix by using a square N-by-N lattice (see Fig. 

6-1a). In this lattice, the state of each pixel i is given by the knowledge of (𝜂i, 𝜌i), where 𝜂i = 0 and 

1 indicate that the pixel is filled with solid or is a pore, respectively, and 𝜌i is the density of water 

in the pore upon increasing relative humidity (RH). 𝜌i  = 0 and 1 denote that the pore is fully empty 

or saturated with water, respectively. According to LDFT [27,28], the equilibrium {𝜌i} at a given 

RH is computed by minimizing the configuration’s grand potential function Ω({𝜌"}): 

Ω({𝜌"}) = 𝑘𝑇∑ [𝜌" ln(𝜌") + (𝜂" − 𝜌") ln(𝜂" − 𝜌")]" −𝑤zz∑ 𝜌"𝜌#〈"#〉 −𝑤6z∑ ¨𝜌"D1 − 𝜂#E +〈"#〉

𝜌#(1 − 𝜂")© − 𝜇 ∑ 𝜌""                                            Eq. (6-1) 

where k is the Boltzmann constant, T is temperature (here, T = 298 K),  𝑤zz is interaction energy 

between two neighboring pixels that are filled with water, 𝑤6z is the interaction energy between a 

pixel filled with water and a neighboring pixel filled with solid, 〈𝑖𝑗〉  indicates the sums are 

restricted to distinct nearest neighbor pairs (note that, to avoid any surface effect, periodic 

boundary conditions are applied), µ is the chemical potential (which depends on RH). µ is 

calculated by 𝜇 = 𝜇}~� + 𝑘𝑇	ln(RH), where 𝜇}~� is the chemical potential of water at saturated 

state and can be estimated as 𝜇}~� = 𝑤zz × 𝑐/2  (here, the coordination number c = 4). 𝑤zz  is 

derived from the critical temperature of water (Tc = 647 K) and 𝑤zz = 4𝑘𝑇8/𝑐. 𝑤6z is calculated 

from the interaction ratio parameter 𝑦 = 𝑤6z/𝑤zz, where y > 1 indicates a hydrophilic substrate 
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and y < 1 a hydrophobic substrate (here, y = 1.5). By minimizing Eq. (6-1) with respect to {𝜌i}, 

the solution of equilibrium {𝜌i} is rewritten as an iteration loop of Eq. (6-2) until convergence: 

𝜌" =
�&

10C�{��∑ [����'��q�(c��')]'/& }/(��)                                   Eq. (6-2) 

where j/i are the pixel IDs of the 4 neighbors of pixel i [28], that is, the water density at a given 

pixel i depends on the state of its 4 neighbors—which is essentially a convolution operation—and 

the convergence condition is set as 1/𝑁( ∑ (𝜌"
(�01) − 𝜌"

(�))" < 1091*  between two consecutive 

loop t and t+1. 𝜌i is calculated at each RH for RH = 0-to-100% with an increment dRH (here, dRH 

= 2.5%). Initially, the equilibrium 𝜌i = 0 when RH = 0. At each increment K, the equilibrium water 

density values {𝜌i}Kth at RH = K × dRH serve as starting configuration to calculate {𝜌i}K+1 at the 

subsequent step K+1 by iteratively applying Eq. (6-2) until a convergence in the {𝜌"} values is 

obtained. Finally, the water sorption isotherm {𝜌�}1×/* is obtained by calculating the average pore 

water density 𝜌� = 〈𝜌"〉 = 1/𝑁(∑ (𝜌")"  at each of the 40 RH increments. More detailed 

descriptions of LDFT of sorption can be found in Ref. [28]. 

 

6.2.2 End-to-end differentiable implementation of LDFT 

For a sequence of RH = 0-to-100% with an increment dRH = 2.5%, the numerical 

simulation of sorption at each of the 40 RH increments can be briefly described as an iterative loop 

of Eq. (6-2) until convergence. Then the key aspect to implement a differentiable simulation lies 

in decomposing Eq. (6-2) into a series of mathematical operations that can be implemented as 

differentiable computation layers in TensorFlow (see Fig. 6-1b). Here, we decompose Eq. (6-2) 

into three layers, namely, (i) the input layer, (ii) the convolution layer, and (iii) the output layer. 

The input layer consists of three parallel layers associated with three input matrices, respectively, 

where one input matrix {𝜂"}Y×Y is fed into the output layer, and the other two matrices {𝜌"}Y×Y 
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and {1 − 𝜂"}Y×Y are fed into two parallel convolution layers. Then the two convolution layers 

conduct the convolution operation ∑ [𝑤zz𝜌#]#/"  and ∑ [𝑤6z(1 − 𝜂#)]#/" , respectively, wherein j/i 

indicates 4 neighbors of pixel i (note that, to avoid any surface effect, periodic boundary conditions 

are applied [28]). Finally, the two convolution outcomes (denoted as C1 and C2) together with the 

input matrix {𝜂"}Y×Y  is fed into the output layer that conducts the remaining mathematical 

operation of Eq. (6-2), namely, 𝜌" =
�&

10C�{���c��L}/(��)
. Importantly, since all layers share the 

feature of automatic differentiation in TensorFlow, the gradient of each layer can back propagate 

to enable end-to-end differentiation. At a given RH, we repeat the block (i.e., the decomposed 

layers of Eq. (6-2)) for M times in series (here, M = 100), which is equivalent to iteratively solving 

Eq. (6-2) until a convergence in the water density is achieved. 

 

6.2.3 Structure of the generator-simulator pipeline 

The generator is designed as a dual, parallel deconvolution-block structures (see Fig. 6-

2a), where each block is fed with half of the input sorption isotherm {𝜌�}1×/*. In detail, the low- 

and high-RH block is fed with the first and second half of the input {𝜌�}1×/*, i.e., a 1-by-20 array 

each. Then the two blocks show the same structure, which consists of 4 layers in series, that is, (i) 

a fully connected dense neural layer (DENSE) that contains 20 × 20 × 64 = 25600 neurons and 

outputs a 1-by-25600 array; (ii) a reshape layer (RESHAPE) that transforms the one dimensional 

1-by-25600 array into a three dimensional 20-by-20-by-64 array; (iii) a deconvolution layer 

(DECONV) that contains 64 channels with a 20×20 filter size and outputs a three dimensional 20-

by-20-by-64 array; (iv) a convolution layer (CONV) that contains 1 channel with a 3×3 filter size 

and outputs a two-dimensional 20-by-20 array. The activation function of each layer is set as 

“ReLU” function, and batch normalization has been applied to the output of each layer to 
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accelerate the training process [29]. Finally, the two 20-by-20 array obtained from the low- and 

high-RH block—which are denoted here as low- and high-RH activation, respectively—are 

concatenated in parallel and are fed into the generator’s output layer, namely, a convolution layer 

that contains 1 channel, uses a 3×3 filter size and a “binary sigmoid” activation function, and 

outputs a 20-by-20 prediction gird {𝜂"}(*×(*. The generator output {𝜂"}(*×(* is then fed into the 

differentiable simulator for validation. This configuration would go through M = 100 consecutive 

blocks of TensorFlow-based layers (i.e., the decomposed operations of Eq. (6-2) programmed in 

TensorFlow, see last section) at each of the 40 RH increments to obtain the output sorption 

isotherm {𝜌�}1×/*. 

 

6.2.4 Preparation of training and test sets 

The training set contains 6,400,000 target sorption curves. These curves are generated 

automatically from a self-defined generative function. This function aims to produce as many as 

possible curves that are monotonically non-decreasing but vary differently in terms of trend, 

convexity, and value. Although this generative curve are not real sorption isotherms, they possess 

most important features of real sorption curves and cover all possible variations of real sorption 

isotherms. There are different ways to define the generative function. Here we propose one type 

of generative function that satisfy the above requirements. This function generates 20% “stepwise” 

curves and 80% “anchor-based” curves. By discretizing the curve as a one dimensional 1-by-40 

array {𝜌�}1×/*, the “stepwise” curves are designed as an array where the first n elements = 0 and 

the last (40 – n) elements = 1, where the integer n is uniformly randomized from 1 to 39. The 

“anchor-based” curves are designed by first defining an “anchor” element from the 1-by-40 array, 

where the anchor is the n-th element, and we uniformly randomize its index n from 1 to 39 and its 
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value A from 0 to 1. Then, regarding all the elements before the anchor, the increment D of their 

value between two consecutive elements can be expressed as 𝐷 = 𝑒x/∑ 𝑒xd × 𝐴, where R is a 

random number sampled from a normal distribution with a zero mean and a standard deviation of 

𝜎 (here, 𝜎 = 4). Similarly, regarding all the elements after the anchor, the increment D of their 

value between two consecutive elements can be expressed as 𝐷 = 𝑒x/∑ 𝑒x/*9d × (1 − 𝐴). Both 

the “stepwise” and “anchor-based” curves can be generated efficiently to create a large training 

set covering a diverse population of sorption curves. Finally, the test set are real sorption curves 

to evaluate the generator’s prediction accuracy. Here, we create a test set that contains 8769 real 

curves. These curves are generated by the sorption simulator using a large set of grids (see Fig. 6-

1c-ii), which includes 8769 diverse and random grid patterns. 

 

6.2.5 Training of the generator-simulator pipeline 

In the training process, we first set the grid size N = 20 and the batch size = 64. Then we 

train the pipeline for 100 epochs and each epoch contains 1000 batches. The loss function used 

herein is the percentage loss L between the forward output and the reference target curve (see Fig. 

6-2b), that is, the area between the forward curve and the reference curve. It is worthwhile to point 

out that, since both the solid phase and pore phase in a porous matrix shows some continuity within 

their phase, some regularization term can be applied to the training process to simultaneously 

accelerate the training and improve the prediction accuracy [29]. Here, the regularization term 

designed for the generator output is defined as ∑ ∑ ¯𝜂" − 𝜂#¯#/"
YL
" 4𝑁(⁄ , which panelizes a solid 

site neighbored by a pore, or vice versa. In other words, the generator’s output gird would favor 

continuous solid phase or continuous pore phase. Then we select the Stochastic Gradient Descent 

(SGD) optimizer to minimize the loss function [29]. The momentum is set as 0.9 to accelerate 
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gradient descent [20]. The learning rate is initially set as 10-2 and gradually decays by a factor of 

0.1 after a patience of 10 epochs [20]. Finally, a validation step is applied to the pipeline after each 

training epoch using the test set of 8769 sorption curves (see Fig. 6-2c). 

 

6.3 Results 

6.3.1 End-to-end differentiable simulator 

We first focus on the end-to-end differentiable implementation of water sorption simulation 

for a target porous matrix. We consider as a toy model a square N-by-N lattice, wherein each pixel 

i of the grid can be filled with solid or be a pore (see Figure 6-1a). Initially empty pixel can then 

be filled with water upon increasing relative humidity (RH). In a given configuration, the state of 

each pixel i is given by the knowledge of (𝜂i, 𝜌i), where 𝜂i = 0 and 1 indicate that the pixel is filled 

with solid or is a pore, respectively, and 𝜌i  is the density of water in the pore (𝜌i  = 0 and 1 denote 

that the pore is fully empty or saturated with water, respectively). The equilibrium fraction of water 

in each pore at given temperature T and RH is then solved by lattice density functional theory 

(LDFT) [27,28]. Based on this formalism, the water density 𝜌i at a given pixel i is given by Eq. 

(6-2), which is essentially a convolution operation (see Methods section). At fixed RH, the 

equilibrium fraction of water is then determined by iteratively applying Eq. (6-2) on each pixel 

until a convergence in the {𝜌"} values is obtained. The sorption of water in the porous matrix is 

then iteratively simulated by computing the equilibrium values of {𝜌"} for RH = 0-to-100% with 

an increment dRH. At each increment K, the equilibrium water density values {𝜌i}Kth at RH = K × 

dRH serve as starting configuration to calculate {𝜌i}K+1 at the subsequent step K+1. More details 

of the numerical simulations can be found in the Methods section. 
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Such (LDFT) simulations are traditionally not differentiable. Here, to address this 

limitation, we decompose Eq. (6-2) into a series of mathematical operations that can be 

implemented as differentiable computation layers in TensorFlow (Figure 6-1b). For instance, the 

CONV layer represents the convolution operation in Eq. (6-2)—i.e., one of the operations that can 

be efficiently performed by TPUs. This block is then repeated into M convolutional layers, which 

is equivalent to iteratively solving Eq. (6-2) until a convergence in the water density is achieved. 

More details of the differentiable simulations can be found in the Methods section. 

We now evaluate the accuracy of differentiable simulator with respect to the conventional 

(ground-truth but undifferentiable) simulator. Figure 6-1c-i shows a comparison between sorption 

curve computed by the ground-truth simulator and by the differentiable counterpart for the porous 

matrix shown in Figure 6-1a, where the accuracy of differentiable simulator is characterized by 

the percentage loss L of sorption curve obtained from differentiable simulator, that is, the area 

between this curve and the ground-truth reference curve. We then evaluate the average percentage 

loss of the differentiable simulator by using a large validation set of porous matrices. The 

validation set contains 8769 grids associated with a diverse population of reference sorption curves 

(see Figure 6-1c-ii), as characterized by a wide distribution of the sinuosity index of reference 

curve Sr, where Sr is calculated as the ratio of the curvilinear length along the curve over the 

straight-line length between end points of the curve. Using this validation set, Figure 6-1c-iii shows 

the accuracy of the TensorFlow-based simulator as a function of the number of convolution layers 

M. We find that a larger M value helps the convergence of water density and thus improves the 

simulation accuracy, and in our case, M = 100 offers satisfactory accuracy. Finally, Figure 6-1c-

iv provides the average percentage loss ⟨L⟩ as a function of Sr at M = 100. We find that ⟨L⟩ for all 

ranges of Sr is around 0.36%, illustrating the differentiable simulators is as accurate as the ground-
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truth simulator. Overall, by reformulating the LDFT simulation into a succession of convolutional 

layers, this approach enables end-to-end differentiability and TPU acceleration. 

 

Figure 6-1: End-to-end differentiable simulation of water adsorption in porous materials. (a) 

Illustration of the numerical water sorption simulation for a target porous matrix. The porous 

matrix is represented by a N-by-N grid, wherein each pixel i of the grid can be filled with solid 

(𝜂i = 0) or be a pore (𝜂i = 1). 𝜌i is the density of water in the pore. 𝜌i  = 0 and 1 denote that the 

pore is fully empty or saturated with water, respectively. 𝜌i is calculated at each relative 

humidity (RH) for RH = 0-to-100% with an increment dRH. At each increment K, the 

equilibrium water density values {𝜌i}Kth at RH = K × dRH serve as starting configuration to 

calculate {𝜌i}K+1 at the subsequent step K+1, where the equilibrium fraction of water is 

determined by iteratively applying Eq. (6-2) on each pixel until a convergence in the {𝜌"} 
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values is obtained. (b) End-to-end differentiable reformation of the sorption simulation as a 

series of differentiable computation layers in TensorFlow. Each layer is a mathematical 

operation by decomposing Eq. (6-2), where CONV layer represents the convolution operation 

in Eq. (6-2). This block is then repeated into M convolutional layers, which is equivalent to 

iteratively solving Eq. (6-2) until a convergence in the water density is achieved. (c-i) 

Comparison between the sorption curve ground-truth (undifferentiable) sorption simulator and 

its reformulated differentiable counterpart for the porous matrix shown in panel (a), which 

defines the percentage loss L. (c-ii) Distribution of the sinuosity index of reference curve (i.e., 

ground-truth sorption curve) Sr for 8769 validation grids. Sr is calculated as the ratio of the 

curvilinear length along the curve over the straight-line length between end points of the 

curve. (c-iii) Average percentage loss as a function of the number of convolution layers M. 

The grey window (M ≥ 100) indicates the range where the differentiable simulator is as 

accurate as the ground-truth simulator. (c-iv) Average percentage loss ⟨L⟩ as a function of Sr at 

M = 100. The blue line represents the average percentage loss for 8769 validation grids. 

 

6.3.2 Architecture of the generator-simulator pipeline 

Now we are in the stage to train a generative model directly from the end-to-end 

differentiable simulator presented above. We first present the architecture of our generative model 

and its integration with the differentiable simulator. Figure 6-2a shows the architecture of the 

generator-simulator pipeline. In detail, the training pipeline takes as inputs the sorption isotherm 

curves of the training set, which are transformed into porous matrices by the generator. The 

generated grids are then fed to the differentiable simulator to compute the “real” sorption curve of 

the generated porous matrices. In detail, the generator is designed as a dual, parallel deconvolution-
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block structure, where each block is fed with half of the input curve to decrease the generator 

complexity. These two blocks aim to specifically generate small and large pores, which are 

saturated with water at low and large RH, respectively. More details about the architecture of the 

generator-simulator pipeline are provided in the Methods section. Since each layer of the pipeline 

is differentiable, the generator can then be optimized by gradient backpropagation in TensorFlow 

so as to minimize the difference between the input and output sorption curves. Note that, here, the 

convolutional layers of the simulator are hard-coded with fixed weights and, hence, are not 

optimized. This is key advantage of our approach since it avoids difficulties arising from the 

simultaneous optimization of the generator and predictor in traditional implementations of 

generative pipelines. 

 

6.3.3 Training acceleration by Tensor Processing Unit computing 

In this section, we focus on the training of the generator-simulator pipeline to minimize the 

difference between input and output sorption curve, i.e., the loss function L (see Fig. 6-2b). During 

the training process, a grid size of 20×20 yields about 7 million parameters to be optimized for the 

generator, while the simulator comprises about 4000 convolution layers to compute. Here, the 

generator is trained based on a training set of 6,400,000 sorption isotherm curves and then 

subsequently evaluated based on a test set of 8,769 curves. More details of the training and test 

sets can be found in the Methods section. Figure 6-2c shows the evolution of the test set loss 

function L as a function of the number of training epochs, wherein the batch size is set as 64 and 

each epoch contain 1000 batches. We find that the accuracy of the generator plateaus after 50 

epochs (which corresponds to a training size of 3,200,000). Figure 6-2d further shows the average 

loss function as a function of the sinuosity index of reference curve (i.e., input sorption curve) Sr 
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in test set at epoch = 100. We find that the generator exhibits an average prediction loss of 3%, 

which is here considered very good (see below). 

Considering the large depth of the simulator and the number of parameters to be optimized 

in the generator, the training process comes with a significant computational cost. To mitigate this 

issue, as a pioneering experiment, the training is conducted on TPUs [26]. TPU is a family of 

dedicated chips that assemble different computing units for machine learning applications [30]. 

Figure 6-2e-i shows a schematic of the TPU computing system composed of both software and 

hardware architecture, where TensorFlow is a software used to compile program ready for TPU 

computing on TPU chip. In contrast to general purposes processors (i.e., CPUs and GPUs), TPUs 

are specifically designed as matrix processors thanks to their matrix unit (MXU) [31,32]. Although 

TPUs have been extensively used for deep learning, their application to numerical simulations has 

thus far remained limited an Ising model [33]. However, TPUs exhibit enough flexibility to have 

the potential to accelerate a broader range of computations. Figure 6-2e-ii show the training time 

per batch as a function of both grid size and batch size on a TPU-v2 chip with 8 cores and 64 GB 

memory [26]. The computational performance is compared with the training time yielded by a 

NVIDIA TITAN X GPU. All benchmarks are conducted on Google Colab using the same 

TensorFlow code and single precision (float32). Figure 6-2e-iii further describes the TPU and GPU 

training time as a function of batch size for grid size N = 20 and 80. We find that, especially for 

large grid size and batch size, the deliciated TPU hardware results in a training time that is several 

times faster than that offered by the GPU hardware considered herein (more than 6× faster, see 

Fig. 6-2e-iv). These results highlight the exciting, largely untapped potential of TPU computing in 

accelerating computationally-intensive scientific simulations (i.e., besides traditional deep 

learning applications). More details of the pipeline training can be found the Methods section. 
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Figure 6-2: Training of the generative model by differentiable simulation and tensor 

processing unit (TPU) computing. (a) General architecture of the generator-simulator training 

pipeline. The generator is designed as a dual, parallel deconvolution-block structure, where 

each block is fed with half of the input curve {𝜌w,K } that represents low- and high-RH range 

signal, respectively. The associated porous matrix {𝜂i } predicted by the generator is 

subsequently fed to the differentiable simulator for validation. The forward output of the 

simulator is then compared with the targeted output—which is the same as generator input 

{𝜌w,K }—to calculate the loss function used for backward training on TensorFlow. (b) Loss 

function L (grey area) for a target output (blue line). (c) Evolution of the test set loss function 

as a function of the number of training epochs. The test set contains 8769 validation curves 
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(see Fig. 6-1c-ii). The plateau in the grey window indicates the generator reaches optimal 

prediction performance. (d) Average test set loss function as a function of the sinuosity index 

of reference curve (i.e., target output) Sr at epoch = 100. (e-i) Schematic of the TPU computing 

system composed of both software and hardware architecture, where TensorFlow is a software 

used to compile program ready for TPU computing on TPU chip. TPU chip is an assembly of 

different computing units specific for machine learning, where the main computing power 

arises from the matrix unit (MXU) capable of 128 × 128 multiply-accumulate operation. (e-ii) 

Comparison of the training time per batch as a function of the grid size and batch size offered 

by Google’s TPU-v2 and an NVIDIA TITAN X GPU. All benchmarks are conducted on 

Google Colab using the same TensorFlow code and single precision (float32). (e-iii) Detailed 

comparison of the training time per batch between TPU and GPU as a function of batch size 

for grid size N = 20 and 80. (e-iv) TPU acceleration ratio (defined as GPU time / TPU time) as 

a function of batch size for grid size N = 20 and 80. 

 

6.3.4 Accuracy of the generator 

Finally, we evaluate the accuracy of the trained generator on the test set (which comprises 

more than 8000 target sorption isotherms). After training, we find that the generator exhibits an 

average prediction loss of 3% (see Figure 6-2d), which is here considered very good. Figure 6-3a 

offers an illustration of three porous matrices that are generated so as to present three archetypical 

sorption isotherms wherein: (i) full water saturation occurs at very low RH (which arises in the 

presence of very small pores), (ii) water saturation is delayed and occurs at very large RH (which 

is a consequence of large pores), and (iii) an intermediate case (with medium-size pores). Overall, 

we find that the generator model is able to predict realistic porous matrices, with expected length 
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scales for the pores. Importantly, the simulated sorption curves of the generated porous structures 

exhibit all the features (in terms of trend, convexity, and value) as the target sorption curves. 

 

Figure 6-3: Accuracy of the generative model. (a) Illustration of three porous matrices that are 

generated so as to present three archetypical sorption isotherms associated with small, 

medium, and large pores. (b) Porous matrix generated for a target sorption curve y = x. The 

activation pattern of low- and high-RH block is also provided. 
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1) pores, which present a limited number of possible solutions. Once again, we find that the 

generator yields a very realistic generated porous matrix, which, as expected, exhibits a 

combination of small, medium, and large pores (see Fig. 6-3b). Notably, the real sorption curve 

(computed by the simulator) of the generated porous matrix indeed exhibit a very close match with 

the y = x target. This confirms that the generative model has learned the basic physical rules 

governing water sorption in porous media (e.g., small and large pores get saturated as low and high 

RH, etc.) and can successfully predict new unknown porous structures featuring tailored arbitrary 

sorption curves. In that regard, the fact that the generator is directly trained based on the simulator 

(rather than on surrogate model that approximates reality by learning from finite training set 

examples) is key to ensure that the generator is not limited by the accuracy of the predictor, or its 

ability to extrapolate predictions to grids it has never been exposed to during its training. 

 

6.4 Discussion 

By designing as a dual, parallel-block structure (see Fig. 6-2a), the generator shows not 

only high prediction accuracy but also enough simplicity and interpretability (as compared to a 

single, giant-block structure). After training, we find these two blocks can specifically generate 

small and large pores that are saturated with water at low and large RH, respectively (see Fig. 6-

3b), in agreement with the basic physics of fluid sorption that small and large pores exhibit early 

and delayed condensation behavior, respectively [27,28]. These results a posterior demonstrate 

that the physics-informed machine learning framework would simultaneously ensure both the 

model simplicity and the prediction accuracy [34]. 

This research has several scientific and societal implications. First, this work illustrates the 

benefits of integrating differentiable simulations in machine learning pipelines—which is key to 
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accelerate the discovery of new materials. Second, our results establish TPU computing as a 

promising route to accelerate scientific simulations, which are ubiquitous in various applications 

(drug discovery by molecular dynamics, architectural design by finite element method, weather 

forecast predictions, etc.) [1–3]. Finally, the ability to design new porous structures with tailored 

sorption isotherms could leapfrog several important applications, including for CO2 capture [35,36] 

and gas separation [37,38]. In addition, designing new porous structures featuring a smooth, 

continuous sorption isotherm (i.e., as close as possible to the y = x target used herein) is important 

for drug delivery applications, to ensure that drugs are continuously released at a constant rate in 

a given environment [39,40]. 

 

6.5 Conclusions 

Overall, this work establishes a robust pipeline to enable the inverse design of materials by 

leveraging an end-to-end differentiable simulation as predictor. The fact that the generator is 

directly trained based on a simulator rather than on a surrogate machine learning model is key to 

ensure that the generator is not limited by the accuracy or extrapolation ability of the predictor. As 

a key enabler of this approach, we adopt TPUs to accelerate the training of the generator by 

gradient backpropagation in TensorFlow. This illustrates the exciting possibilities of TPU 

computing to accelerate scientific numerical simulations. 
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Chapter 7. Parameterization of Empirical Forcefields for Glassy 

Silica Using Machine Learning 

7.1 Introduction 

Classical molecular dynamics (MD) simulation is an effective tool to access the atomic 

structure of glass, which usually remains invisible from traditional experimental techniques [1–3]. 

In turn, better understanding the atomic structure of glasses is key to decipher their genome, that 

is, to understand how their composition and structure control their engineering properties [4]. 

However, the accuracy of glass modeling based on MD simulations largely depends on the 

reliability of the underlying empirical forcefield, i.e., the two-body (and sometimes three-body or 

more) interatomic potential [3,5]. Although ab initio molecular dynamics (AIMD) can, in theory, 

overcome these limitations, the high computational cost of this technique renders challenging glass 

simulations—which typically require large systems for statistical averaging and long timescales to 

slowly quench a melt down to the glassy state [3,6,7]. The development of new, improved 

empirical forcefields presently represents a bottleneck in glass modeling [8–10]. 

Empirical forcefields are typically based on functionals that depend on several parameters 

(e.g., partial atomic charges, etc.), which need to be properly optimized in order to minimize a 

given cost function [11,12]. One option is to define the cost function in terms of the difference 

between the structure or properties of the simulated system and available experimental data. 

However, such an optimization method may not yield a realistic forcefield in the case of glassy 

materials, since simulated and experimental glasses are prepared with significantly different 

cooling rate and, hence, their direct comparison may not be meaningful [6,13]. Although this 

problem can be partially overcome by conducting the optimization based on crystals rather than 

glasses, crystal-based potentials do not always properly describe the structure and properties of 
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disordered, out-of-equilibrium glasses [12]. Alternatively, empirical forcefield can be 

parameterized based on AIMD simulations [9,14,15]. However, directly optimizing the forcefield 

in order to match with the interatomic forces or energy derived from AIMD sometimes results in 

unrealistic structures for the simulated glasses [9,11,16]. Recently, Kob, Huang et al. proposed a 

new optimization scheme, wherein the optimization cost function is defined based on the 

difference between the structure of a simulated liquid and that obtained by AIMD simulations in 

similar conditions [9,11,15]. However, such cost functions are very “rough,” that is, they exhibit 

a large number of local minima (i.e., several sets of parameters yield similar, competitive results). 

This is a challenge as conventional gradient-based optimization methods (e.g., steepest descent or 

conjugate gradient) are highly inefficient to explore rough functions and are likely to yield a local 

minimum rather than the global one [17]. Due to this issue, conventional optimization methods are 

often biased, that is, their outcomes strongly depend on the starting point. 

As an alternative route to conventional “intuition-based” forcefield parameterization, 

artificial intelligence and machine learning (ML) techniques have the potential to offer some 

efficient, non-biased optimization schemes [18,19]. To this end, several ML-based forcefields have 

been proposed [8,20,21]. However, although such forcefields can approach the accuracy of AIMD 

at a fraction of computing cost, their parametrization remains tedious and the complex form of the 

resulting forcefields render challenging their physical interpretation and their implementation 

[10,20–22]. For these reasons, ML-based forcefields have thus far mostly been limited to simple 

systems (e.g., comprising only one element at a time [10,23]), which does not yet offer a realistic 

path toward the simulation of complex multi-component glasses. 

Here, we present a new less accurate, but more pragmatic approach to efficiently 

parametrize forcefields based on ML-based optimization. Our method is based on a predefined 
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empirical potential form, wherein the parameters are optimized vs. AIMD simulations by Gaussian 

Process Regression and Bayesian optimization. We illustrate our new method by taking the 

example of glassy silica (g-SiO2), an archetypal model for complex silicate glasses. Our method 

yields a new interatomic forcefield for g-SiO2 that offers an unprecedented agreement with ab 

initio simulations. We demonstrate that, compared with traditional optimization methods, our ML-

based optimization scheme is more efficient and non-biased. Overall, this work provides a realistic 

pathway toward the accurate, yet computationally efficient simulation of non-equilibrium 

disordered materials. 

This paper is organized as follows. First, Sec. 7.2 describes the technical details of the 

simulations and parameterization strategy. The application of our method to glassy silica is then 

presented in Sec. 7.3. We then discuss the advantage of our approach over conventional 

optimization methods in Sec. 7.4. Finally, some conclusions are given in Sec. 7.5. 

 

7.2 Methods 

7.2.1 Reference ab initio simulations 

A “reference” structure of a liquid silica system is first prepared by Car-Parrinello 

molecular dynamics (CPMD) [24]. The simulated system comprises 38 SiO2 units (114 atoms) in 

a periodic cubic simulation box of length 11.982 Å—in accordance with the experimental density 

of 2.2 g/cm3 [25]. The electronic structure is described with the framework of density functional 

theory and the choice of pseudopotentials for silicon and oxygen, exchange and correlation 

functions, and the plane-wave cutoff (70 Ry) are based on previous CPMD simulations of glassy 

silica [9,15]. A timestep of 0.0725 fs and a fictitious electronic mass of 600 atomic units are used. 

An initial liquid configuration is first prepared by conducting a classical MD run at 3600 K using 
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the well-established van Beest–Kramer–van Santen (BKS) potential (see Sec. 7.2.2) [14]. The 

obtained configuration is then relaxed via CPMD at 3600 K for 3.5 ps at constant volume. Such 

duration is long enough considering the small relaxation time of the system at such elevated 

temperature. A subsequent dynamics of 16 ps is then used for statistical averaging and to compute 

the Si–Si, Si–O, and O–O partial pair distribution functions (PDFs) of the simulated liquid system. 

More details can be found in Ref. [9,15]. 

 

7.2.2 Classical molecular dynamics simulations 

A new empirical forcefield for g-SiO2 is then parameterized by conducting some classical 

MD simulations. The simulated system comprises 1000 SiO2 units (3000 atoms) in a periodic cubic 

simulation box of length 35.661 Å, which corresponds to the experimental density of 2.2 g/cm3 

[25]. An initial configuration is first prepared by relaxing the system for 10 ps at 3600 K in the 

NVT ensemble. The partial PDFs of the simulated systems are then computed based on a 

subsequent NVT dynamics of 10 ps. A timestep of 1 fs is used for all simulations. 

The interatomic potential energy between each pair of atom i, j is here described by 

adopting the Buckingham form [9,14]: 

              Eq. (7-1) 

where rij is the distance between each pair of atoms, qi is the partial charge of each atom (qO for 

oxygen, qSi for silicon, so that qO = –qSi/2), ε0 is the dielectric constant, and the parameters Aij, ρij, 

Cij, and Dij describe the short-range interactions. A cutoff of 8 Å is used for the short-range 

interactions. The long-range coulombic interactions are evaluated by damped shifted force (dsf) 

model [26] with a damping parameter of 0.25 and a cutoff of 8 Å. The last term serves as to add a 

Uij =
qiq j
4πε0rij

+ Aij exp(−
rij
ρij
)−
Cij
rij
6 +

Dij
rij
24
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strong repulsion at short distance to prevent the “Buckingham catastrophe” [9]. Since this term 

only aims to prevent any atomic overlap, the Dij parameters are not included in the present 

optimization and their value is fixed based on Ref. [9] (viz., Dij = 113, 29, and 3423200 eV·Å24 

for O–O, Si–O, and Si–Si interactions, respectively). Note that this Buckingham formulation is 

chosen as it typically provides a good description of ionocovalent systems and has been shown to 

offer an improved description of g-SiO2 as compared to alternative forms (e.g., Morse formulation) 

[11]. 

 

7.2.3 Optimization cost function 

In total, the parametrization of this potential (Eq. (7-1)) requires the optimization of 10 

independent parameters, namely, the partial charge qSi and the short-range parameters {Aij, ρij, Cij} 

for each of the three atomic pairs (Si–O, O–O, and Si–Si). This set of parameters is denoted Ξ 

thereafter. Following Kob and Huang et al., we define the optimization cost function Rχ as follows 

[9,11,15]:  

            Eq. (7-2) 

where the  terms capture the level of agreement between the partial PDFs obtained by classical 

MD and AIMD [27]: 

              Eq. (7-3) 

where  and  are the partial PDFs for each pair of atoms α–β.  

Although additional properties (e.g., energy, stiffness, etc.) could be included, we herein 

restrict the cost function to the difference between AIMD and MD partial PDFs. This choice is 

Rχ =
χSiO
2 + χOO

2 + χSiSi
2

3

χαβ
2

χαβ
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[gαβ
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motivated by the following facts. (i) Although other structural descriptors could be used to describe 

the structure of the simulated glasses, the PDF offers a convenient description of the short-range 

environment around each atom [9,15] and, hence, capture some important features of the atomic 

structure. (ii) We purposely exclude from the training set any properties of glassy SiO2 (e.g., 

experimental density or stiffness) as such properties are not uniquely defined and depend on the 

cooling rate. (iii) Including some additional properties (i.e., besides the PDFs) in the cost function 

would raise the question of which weight to attribute to each property—which would render the 

parameterization of the forcefield biased to this arbitrary choice. 

 

7.2.4 Forcefield optimization by machine learning 

We now describe the ML-based optimization scheme used herein to parametrize the 

forcefield. An overview of the parametrization process is presented in Fig. 7-1. First, we create an 

initial dataset comprising some “known points,” that is, the values of the cost function Rχ for select 

sets of parameters Ξ. Gaussian Process Regression (GPR) [28,29] is then used to interpolate the 

known points and assess the interpolation uncertainty over the entire parameter space. The 

Bayesian Optimization (BO) based on expected improvement (EI) method [28] is then used to 

predict an optimal set of parameters Ξ that offers the best “exploration vs. exploitation trade-off,” 

that is, the best balance between (i) exploring the parameter space and reducing the model 

uncertainty and (ii) finding the global minimum of the cost function. The cost function Rχ{Ξ} 

associated with the set of parameters predicted by BO is subsequently calculated by conducting a 

classical MD simulation and comparing the structure of the simulated liquid with that of the 

reference AIMD configuration (see Sec. 7.2.3). This new datapoint Rχ{Ξ} is then added to the 

dataset. The new dataset is then used to refine the GPR-based interpolation and predict a new 
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optimal set of parameters by BO. This cycle is iteratively repeated until a satisfactory minimum in 

the cost function is obtained (i.e., after about 600 iterations in this work). Finally, the global 

minimum predicted by BO is further refined by conducting a conjugate gradient (CG) optimization 

[17]. 

 

Figure 7-1: Flowchart diagram summarizing our parametrization strategy. 

 

7.3 Results 

7.3.1 New interatomic forcefield for glassy silica 

We conduct the optimization of the forcefield while keeping the Si–Si interaction energy 

term as being zero (that is, ASiSi = CSiSi = 0 and ρSiSi = 1 Å). This choice is motivated by the fact 

that the original BKS potential does not comprise any Si–Si interaction energy terms, which 

suggests that the addition of these terms may not be necessary. In turn, decreasing the number of 

variable parameters allows us to increase the efficiency of the optimization. In addition, decreasing 

the complexity of the forcefield limits the risk of overfitting, which, in turn, is likely to increase 

the transferability of the new forcefield to new systems that are not considered during its training. 

The effect of the complexity of the forcefield (and of Si–Si terms) is further discussed in Ref. [30]. 

The forcefield parameters obtained after the BO and CG optimization steps are listed in 

Tab. 7-1. The performance of our forcefield (as quantified in terms of the final cost function Rχ) is 
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compared with that of select alternative potentials in Tab. 7-2. We find that our new ML forcefield 

yields an Rχ of 8.77%. This constitutes a significant improvement with respect to the well-

established BKS potential (for which Rχ is about 17%) [14,31]. Our new potential is also found to 

be slightly better than the CHIK potential parameterized by Kob et al. [15]. This is not surprising 

as the CHIK potential was obtained based on the optimization of a slightly different cost function 

[15]. However, it is worth noting that our new potential exhibits a lower complexity than the CHIK 

parametrization (which comprises 3 extra parameters for the Si–Si interactions).  

 

Table 7-1. Parameters of our new interatomic potential “ML” (see Eq. (7-1)). The partial charges 

are indicated as subscripts for each pair of atoms. 

Atomic pairs A (eV) ρ (Å) C (eV·Å6) 

Si+1.955 – O-0.9775 20453.601 0.191735 93.496 

O-0.9775 – O-0.9775 1003.387 0.356855 81.491 

Si+1.955 – Si+1.955 0 1 0 

 

In details, we find that the parameters of our ML forcefield are significantly different from 

those of the original BKS potential—which illustrates the roughness of the cost function. 

Interestingly, we find that our ML potential relies on a partial charge for Si atoms that is 

significantly smaller than that of the BKS potential (+1.955 vs. +2.4 for BKS). In turn, this value 

is close to that of the CHIK (+1.91 [15]) and Wang–Bauchy potential (+1.89 [12]). This suggests 

that “soft potentials” (i.e., which relies on lower partial charges) appear to consistently perform 

better than the stiffer ones, e.g., BKS. The cost function Rχ associated with each interatomic pair 
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(see Eq. (7-3)) is also provided in Tab. 7-2. Overall, we note that our ML potential consistently 

offers an improved description of the interatomic structural order for each pair of atoms. 

 

Table 7-2. Comparison of our new “ML” forcefield with select alternative classical potentials, 

namely, “BKS” [14] and “CHIK” [15]. 

Forcefield RχSiO (%) RχOO (%) RχSiSi (%) Global Rχ (%) 

ML 7.35 3.58 12.80 8.77  0.25 

BKS 21.45 12.90 15.54 17.01  0.25 

CHIK 12.29 6.09 11.76 10.43  0.25 

 

7.3.2 Partial pair distribution functions 

We now further analyze the structure of the simulated SiO2 liquid (i.e., at 3600 K). Fig. 7-

2 shows the partial PDFs predicted by our new ML forcefield. The data are compared with the 

reference ab initio partial PDFs used for the training of the potential [15] as well as those predicted 

by the BKS potential [14]. Overall, we find that our ML forcefield offers an excellent agreement 

with AIMD simulations—although this is not surprising as our forcefield is specifically trained to 

match these data. Nevertheless, these results show that the Buckingham formulation adopted 

herein is appropriate for the SiO2 system and further supports the ability of our optimization 

method to offer a robust parametrization. We note that the average Si–Si distance predicted by our 

potential is slightly shifted with respect to that obtained in AIMD simulations (see Fig. 7-2(c)). 

This may arise from a general limitation of the Buckingham formulation. Nevertheless, our ML 

forcefield offers a significant improvement with respect to the BKS potential, especially in the 

case of the Si–O and O–O partial PDFs (see also Tab 7-2). We note that our ML forcefield 

±

±

±
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systematically predicts some PDF peaks that are broader than those predicted by BKS, which 

suggests that our forcefield yields a slightly more disordered structure. This may be linked with 

the fact that our potential relies on lower partial charge values (i.e., softer Coulombic interactions). 

   

(a) (b) (c) 

Figure 7-2: (a) Si–O, (b) O–O, and (c) Si–Si partial pair distribution functions (PDFs) in 

liquid silica (at T = 3600 K) predicted by our new “ML” forcefield and compared with the ab 

initio reference [15]. The partial PDFs predicted by the BKS potential are added for 

comparison [14]. 

 

7.3.3 Partial bond angle distributions 

We now focus on the angular environment around each atom. To this end, Fig. 7-3 shows 

the O–Si–O and Si–O–Si partial bond angle distributions (PBADs) predicted by our ML forcefield 

for the liquid silica system (at T = 3600 K). The data are compared with those obtained by ab initio 

simulations [15] and predicted by the BKS potential [14]. Overall, we observe that the PBADs 

predicted by our ML forcefield are in very good agreement with those obtained by ab initio 

simulations—with a significant improvement with respect to the BKS potential. This is significant 

as the PBADs are not explicitly included in the cost function used herein and such 3-body 
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correlations are not fully encoded in 2-body correlations (i.e., as captured by the partial PDFs). As 

such, these results offer a strong a posteriori validation of the performance of our new ML 

forcefield. 

  

(a) (b) 

Figure 7-3: (a) O–Si–O and (b) Si–O–Si partial bond angle distributions (PBADs) in liquid 

silica (at T = 3600 K) predicted by our new “ML” forcefield and compared with the ab initio 

reference [15]. The PBADs predicted by the BKS potential are added for comparison [14]. 

 

As expected, our forcefield yields a tetrahedral environment for Si atoms (with an average 

O–Si–O angle of about 109°). However, we note that the O–Si–O PBAD predicted by our ML 

forcefield is broader than that obtained with BKS, which suggests that our potential yields a 

slightly more disordered angular environment around Si atoms. Again, this may be linked with the 

fact that our potential relies on lower fictive charges than BKS (see Sec. 7.3.2). In contrast, we 

observe that our forcefield slightly overestimates the value of Si–O–Si angle with respect to AIMD 

simulations. This is likely linked with the fact that our potential overestimates the Si–Si average 

distance (see Sec. 7.3.2), which appears to be a general limitation of the two-body Buckingham 
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formulation. Nevertheless, the Si–O–Si PBAD yielded by our forcefield is significantly improved 

with that obtained by BKS (which tends to largely overestimate the average Si–O–Si angle). 

 

7.4 Discussion 

7.4.1 Comparison between gradient-based and machine-learning-based optimization 

We now discuss the performance of our ML-based optimization method by comparing its 

ability to identify the global minimum of the cost function with that of the conjugate gradient 

method. Here, for illustrative purposes, only two parameters (qSi and ASiO) are optimized in both 

cases, while the other 8 forcefield parameters are kept fixed and equal to those found in the original 

BKS potential [14]. As shown in Fig. 7-4(a), the cost function Rχ shows a very rough dependence 

on the forcefield parameters—wherein the level of roughness appears to increase when upon 

zooming on the fine details of the landscape (see Fig. 7-4(b)). The pathways explored (starting 

from the same initial point) upon the ML-based and CG-based optimizations in the (qSi, ASiO) space 

is shown in Fig. 7-4(a). We observe that the ML-based optimization quickly converges toward the 

global minimum of the cost function after only 5 iterations, after which the cost function Rχ shows 

a plateau around 10% (see Fig. 7-4(c)). This illustrates the efficiency of our optimization technique. 

In contrast with our ML optimization method, the CG optimization quickly gets “stuck” in a local 

minimum of the cost function (see Fig. 7-4(c)) and does not succeed at identifying the global 

minimum. This highlights the fact that traditional gradient-based optimization methods are not 

appropriate in the case of such high-roughness function and, hence, are highly biased based on the 

chosen starting point. Although the efficiency of the CG method could certainly be improved by 

adjusting some parameters (e.g., the learning rate and step length [17]), such fine-tuning 
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necessarily requires some level of intuition or trial-and-error optimization, which is a clear 

advantage of the present ML approach. 

  
 

(a) (b) (c) 

Figure 7-4: Comparison between machine learning and conjugate gradient optimization. Only 

the partial charge of the Si atoms qSi and the parameter ASiO are here optimized, while the other 

8 forcefield parameters are kept fixed. (a) Contour plot showing the cost function Rχ as a 

function of qSi and ASiO. The red and black circles indicate the path explored upon machine 

learning and conjugate gradient optimization, respectively. Panel (b) is a zoom of the data 

presented in panel (a) to better observe the path explored upon conjugate gradient 

optimization. (c) Evolution of the cost function Rχ during the machine learning and conjugate 

gradient optimizations. The inset is a zoom on data obtained in the case of conjugate gradient 

optimization.  

 

7.4.2 Lessons from the BKS potential 

It worth further focusing on the BKS potential [14] to establish some general conclusions 

regarding the development of interatomic forcefields for glassy materials. The well-established 

BKS potential was parameterized by sequentially optimizing the O–O and Si–O energy terms so 
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as to an isolated SiO4 cluster (saturated by 4 H atoms) matches with ab initio simulations. Si–Si 

energy terms were forced to be zero. In addition, the experimental elastic constants of silica were 

used to discriminate several competing sets of parameters. This suggests that the BKS potential is 

specifically trained to offer an excellent description of the interatomic potential in the vicinity of 

its equilibrium position. In details, the position of the minima of each energy terms is encoded in 

the geometry of the isolated SiO4 cluster (i.e., the average interatomic distances), while the 

curvature of the potential energy at the vicinity of the equilibrium position is encoded in the elastic 

constant. Nevertheless, as detailed in Sec. 7.3, this optimization scheme tends to overestimate the 

radial and angular order around Si atoms (see Figs. 7-2 and 7-3). This suggests that optimization 

schemes placing a strong emphasis on describing the shape of the forcefield in the very close 

vicinity of the equilibrium position may not be appropriate to describe the disordered structure of 

glasses, which are intrinsically out-of-equilibrium and wherein the atoms are not exactly located 

at their minimum-energy positions. For instance, the degree of asymmetry of the forcefield is likely 

to play a key role in governing the structure of disordered materials and may not be efficiently 

trained by considering only equilibrium structures (e.g., crystals or isolated clusters). This suggests 

that parametrization methods based on liquid structures (as the present one) may be more 

appropriate to develop new improved forcefields for complex glasses. 

 

7.5 Conclusions 

Overall, this study establishes a general and versatile framework to accelerate the 

parametrization of new, improved empirical forcefields for disordered materials. As shown herein 

with the example of silica, our method makes it possible to quickly reoptimize previous well-

established potentials (e.g., the BKS forcefield). By using as a reference some liquid structures 
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prepared by ab initio molecular dynamics simulations, our parametrization scheme is better suited 

for glass modeling than alternative methods based on equilibrium crystal or isolated atomic 

clusters. Importantly, the use of machine learning rather than alternative traditional optimization 

methods (e.g., conjugate gradient) (i) drastically improves the efficiency of the parametrization 

procedure, (ii) suppresses the risk of bias resulting from arbitrary choices regarding the starting 

point of the optimization, and (iii) significantly reduces the role played by “personal intuition” 

during the parametrization. As a key advantage over alternative conventional method, the present 

ML-based parametrization method is highly scalable and, hence, can be used to parametrize multi-

component systems (i.e., many forcefield parameters can be optimized simultaneously). Overall, 

this work establishes an efficient, pragmatic method to develop new improved forcefields for the 

simulation of complex “real-world” materials—which addresses an immediate concern since more 

accurate ML-based forcefields that do rely on a predefined functional are unlikely to be available 

for complex multi-component systems in the near future. 
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Chapter 8. Balance between Accuracy and Simplicity in Empirical 

Forcefields for Glass Modeling: Insights from Machine Learning 

8.1 Introduction 

The development of accurate, yet transferable empirical forcefields is key to model 

multicomponent glasses by molecular dynamics (MD) or Monte Carlo simulations [1,2]. To this 

end, several forms of empirical potentials are available, ranging from very simple (e.g., Lennard 

Jones potential) to very complex (e.g., ReaxFF potential [3–5]). The degree of complexity of 

empirical forcefields mostly depends on the number of parameters that need to be parameterized, 

which can range from 2 (for Lennard Jones potentials) to hundreds (for ReaxFF) of parameters for 

pairs of elements. As such, the parameterization of a new forcefield typically follows two steps: 

(i) selecting an appropriate analytical form and degree of complexity and (ii) optimizing the value 

of the forcefield parameters [2,6,7]. 

The second step has been extensively addressed, as several methods have been proposed 

to optimize the parameters of a given forcefield formulation to properly describe the structure and 

properties of a given system. The parameterization of a forcefield can usually be described as an 

optimization problem, wherein a given cost function needs to be minimized. On the one hand, the 

cost function can be defined based on the difference between the structure or properties of 

simulated and experimental glasses. However, this approach can be problematic as the cooling 

rates used in MD simulations and experiments are dramatically different, which renders 

challenging a meaningful comparison between simulated and experimental glasses [8–10]. On the 

other hand, for a given system, the cost function can be defined based on the difference between 

the outcomes of classical and ab initio molecular dynamics (AIMD) simulations [11–13]. Kob, 

Huang et al. have recently proposed a new forcefield parameterization strategy that consists in 
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defining the cost function in terms of the difference between the pair distribution function of a 

liquid simulated by AIMD and classical MD (i.e., as predicted by the forcefield that is to be trained) 

[11,14,15]. However, this cost function is very “rough,” that is, it exhibits many local minima—

i.e., the parametrization can yield several forcefields with different parameters, yet competitive 

accuracy [11,15]. As such, the outcome of the parameterization strongly depends on the starting 

point that is used [16]—so that the parameterization of the potential requires some level of 

“intuition.” 

In contrast, the first step of forcefield parameterization (i.e., selecting an appropriate degree 

of complexity) has received very little attention and often remains entirely based on “intuition” or 

“previous experience.” However, selecting the right level of complexity is key to obtain accurate, 

yet transferable potentials. In details, forcefields that are too simple may not properly describe 

complex systems—for instance, Lennard Jones only rely on two parameters and, hence, are usually 

unable to properly predict at the same time the molar volume, molar energy, and stiffness of even 

simple systems (e.g., perfect gas). In contrast, forcefields that are too complex may offer an 

extremely accurate description of a targeted system, but offer very poor predictions when applied 

to systems that were not explicitly accounted for during the training of the forcefield (i.e., low 

transferability to new systems). In general, this competition between accuracy, transferability, and 

simplicity is known as a balance between “underfitting” and “overfitting.” 

Here, we report a new forcefield parametrization method that is based on machine learning 

(ML), which aims to reduce/suppress the need for intuition when (i) selecting the appropriate level 

of complexity for a forcefield and (ii) optimizing the value of the forcefield parameters. To 

illustrate this method, we take the examples of glassy silica as a system and of a Buckingham 

formulation for the forcefield. Our method allows us to quickly and robustly identify some optimal 
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forcefield parameters for different degrees of forcefield complexity and, based on these results, to 

identify the optimal balance between forcefield accuracy and simplicity. Overall, our method could 

greatly accelerate the development of new accurate, yet transferable forcefield for the modeling of 

silicate glasses. 

This paper is organized as follows. First, Sec. 8.2 describes the forcefield formulation (and 

complexity thereof) that is adopted herein and offers a detailed description of our ML-based 

parameterization strategy. We then investigate the influence of the forcefield complexity in Sec. 

8.3 and 8.4. Finally, some conclusions are given in Sec. 8.5. 

 

8.2 Methods 

8.2.1 Empirical forcefields of different complexity 

Glassy silica (g-SiO2) is an archetypal ionocovalent system—whose interatomic potential 

energy can be well described by the Buckingham form relying only on two-body interactions 

between each pair of atom i, j [6,11,12]: 

𝑈"# =
�&�'

/��w%&'
+ 𝐴"#exp H−

%&'
]&'
I − P&'

%&'
� +

E&'
%&'
L�                   Eq. (8-1) 

where 𝑟"# is the distance between each pair of atoms, qi are the partial charges of each atom (𝑞� 

for oxygen, 𝑞ij for silicon, so that 𝑞� =	– 𝑞ij/2), 𝜀* is the dielectric constant, and the parameters 

𝐴"#, 𝜌"#, 𝐶"#, and 𝐷"#  describe the short-range interactions. A cutoff of 8 Å is here consistently 

used for the short-range interactions. The long-range coulombic interactions are evaluated by 

damped shifted force (dsf) model [17] with a damping parameter of 0.25 and a cutoff of 8 Å. Here, 

the last term is added as a strong repulsion at short-distance to avoid the “Buckingham catastrophe” 

[11], wherein the 𝐷"# parameter is fixed to prevent any atomic overlap based on Ref. [11] (viz., 𝐷"# 

= 113, 29, and 3423200 eV·Å24 for O–O, Si–O, and Si–Si interactions, respectively). In total, 10 
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independent parameters need to be parameterized for this forcefield formulation (Eq. (8-1)), 

namely, the partial charge 𝑞�" and the short-range parameters {𝐴"#, 𝜌"#, 𝐶"#} for each of the three 

atomic pairs (Si–O, O–O, and Si–Si). This set of parameters is denoted Ξ thereafter. 

In the present case, the degree of complexity of this forcefield can be quantified by the 

number of parameters that are non-zero (out of the 10 independent parameters). For instance, 

although they are both based on the same Buckingham formulation, the well-established van 

Beest–Kramer–van Santen (BKS) [12] potential does not comprise any Si–Si energy terms, 

whereas such terms are present within the Carré–Horbach–Ipsas–Kob (CHIK) potential [11]. Here, 

to assess the influence of the potential complexity, we parameterize via a novel ML approach three 

potentials featuring an increasing level of complexity, namely (i) ML-SiO, wherein only Si–O 

interaction energy terms are considered (i.e., 4 non-zero parameters in Ξ), (ii) ML, wherein only 

Si–O and O–O interaction energy terms are considered (i.e., 7 non-zero parameters in Ξ), and (iii) 

ML-ALL, wherein all the Si–O, O–O, and Si–Si interaction energy terms are considered (i.e., 10 

non-zero parameters in Ξ). 

 

8.2.2 Forcefield parameterization from ab initio simulation 

Following Kob and Huang et al., the determination of the optimal parameters Ξ  is 

conducted by minimizing the difference between the outcomes of classical MD and AIMD while 

simulating an equilibrium silica liquid [11,14,15]. To this end, we define the cost function 𝑅� as 

follows: 

𝑅� = U��r�
L 0���

L 0��r�r
L

+
                               Eq. (8-2) 
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where the 𝜒)K(  terms capture the level of agreement between the partial pair distribution functions 

(PDFs) obtained by classical MD and AIMD [18]: 

𝜒)K( =
∑ [2-M

����(%)92-M
��(%)]L 

∑ [2-M
����(%)]L 

                          Eq. (8-3) 

where 𝑔)Kl¡¢£(𝑟) and 𝑔)K¢£(𝑟) are the partial PDFs for each pair of atoms 𝛼–𝛽. Note that, among 

potential alternative structural metric describing the structure of the simulated glasses or liquids, 

the PDF offers a convenient description of the short-range environment around each atom 

[11,14,19]. We purposely exclude from the training set any of the properties of glassy SiO2 (e.g., 

experimental density or stiffness) as such properties are not uniquely defined and depend on the 

cooling rate. This training scheme is motivated by the fact that Buckingham-type potentials have 

been shown to properly describe (i) the temperature-dependence of glass and liquid properties and 

(ii) the dependence of glass properties on the cooling rate (see Refs. [8–10]), so that training the 

system for a fixed temperature should yield a good description of its behavior as a function of 

temperature, including in the glassy state. A similar approach was used in Refs. [11,14]. The 

technical details of MD and AIMD simulations are provided below. 

(i) Reference AIMD simulations 

The “reference” liquid silica structure is prepared by Car-Parrinello molecular dynamics 

(CPMD) [20]. 38 SiO2 units (114 atoms) are placed within a periodic cubic simulation box of 

length 11.982 Å to match the experimental density of 2.2 g/cm3 [21]. The electronic structure of 

the atoms is described within the framework of density functional theory. The choice of 

pseudopotentials for each atom-type, exchange and correlation functions, and the plane-wave 

cutoff (70 Ry) are based on previous CPMD simulations of glassy silica [11,14]. A timestep of 

0.0725 fs and a fictitious electronic mass of 600 atomic units are used. A liquid configuration 

obtained by classical MD simulation at 3600 K using the well-established BKS potential is used 
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an initial configuration (see Sec. 8.2.1) [12]. This configuration is then relaxed via CPMD at 3600 

K and constant volume for 3.5 ps—which duration is long enough due to the small relaxation time 

of the system at such elevated temperature. A subsequent dynamics of 16 ps is then used for 

statistical averaging and to compute the Si–Si, Si–O, and O–O PDFs of the simulated liquid 

system. Note that, although certain properties strongly depend on the system size (e.g., ring size 

distribution, vibrational properties, transport properties, etc.), partial PDFs have been shown to be 

fairly unaffected by the system size (as long as it is larger than 100 atoms, see Refs. [13,22]). More 

details on the CPMD simulations can be found in Ref. [11,14]. 

(ii) Classical MD simulation 

For each set of forcefield parameters Ξ considered herein, we conduct a classical MD 

simulation of the same liquid silica system. The simulated system comprises 1000 SiO2 units (3000 

atoms) placed in a periodic cubic simulation box of length 35.661 Å—in accordance with the 

experimental density of 2.2 g/cm3 [21]. The configuration is first fully relaxed for 10 ps at 3600 K 

in the NVT ensemble. The partial PDFs of the simulated systems are then computed based on 

statistical averaging in a subsequent NVT dynamics of 10 ps. A timestep of 1 fs is consistently used 

for all simulations. 

 

8.2.3 Machine learning forcefield optimization 

We now introduce the ML-based optimization scheme that is used to minimize the cost 

function and, thereby, parametrize the three forcefields considered herein (i.e., with different level 

of complexity). Fig. 8-1 shows an overview of the parametrization process. First, we construct an 

initial dataset containing some “known points,” that is, the values of the cost function 𝑅� for select 

sets of parameters Ξ. This dataset serves as a training set for the machine learning algorithm, which 
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is able to “learn by example” the relationship between the parameters Ξ and the cost function 𝑅�. 

To this end, we use Gaussian Process Regression (GPR) [23,24] to interpolate the known points 

(and assess the uncertainty of the interpolation) over the entire parameter space. The Bayesian 

Optimization (BO) method [23] is then used to analyze the interpolated function and its uncertainty 

in order to predict an optimal set of parameters Ξ—which offers the best “exploration vs. 

exploitation trade-off”, that is, the best balance between (i) exploring the parameter space and 

reducing the model uncertainty and (ii) exploiting the present apparent minimum and finding the 

global minimum of the cost function. The “true” cost function 𝑅�{Ξ} associated with the set of 

parameters predicted by BO is subsequently calculated by conducting a classical MD simulation 

and comparing the simulated structure with the reference AIMD configuration (see Sec. 8.2.2). 

This new datapoint 𝑅�{Ξ} is then added to the dataset. The new dataset is then used to refine the 

GPR-based interpolation and predict a new optimal set of parameters by BO. This cycle is 

iteratively repeated until a satisfactory minimum in the cost function is obtained, that is, when 𝑅� 

does not decrease any further. Finally, the global minimum predicted by BO is further refined by 

conducting a conjugate gradient (CG) optimization [16]. Each of these steps is further described 

in the following. 

(i) Initial dataset 

As a starting point for our optimization method, we construct an initial dataset, which 

contains as inputs a selection of potential parameters Ξ and as outputs the associated cost function 

𝑅�. Each of these datapoints is obtained by an independent MD simulation (see Secs. 8.2.2). This 

initial dataset offers an ensemble of known values for the cost function in 10-dimensional 

parameter space (i.e., for the 10 components in Ξ), which is used as a starting point for the iterative 

interpolation/exploration process described in the following. These initial values of Ξ are chosen 
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so as to uniformly span the targeted range of parameters (chosen based on previously available 

forcefield). In the case of wide target ranges, we divide the target range into several small pitches 

for fast exploration. The initial dataset comprises about 1000 known points, which corresponds to 

a minuscule fraction of the parameter space. For instance, with 10 independent parameters, 

considering only two values for each parameter would yield 210 = 1024 possible combinations. 

Each known point is obtained by conducting an MD simulation that takes about 1 minute of 

computation using 16 CPU cores. Overall, it takes about 17 hours to establish the initial dataset. 

 

Figure 8-1: Flow-chart of the machine-learning-based parametrization strategy. 

 

(ii) Interpolation by Gaussian Process Regression 

The basic principle of GPR is to infer the (Gaussian-type) probability distribution of the 

values of the function that is interpolated based on a set of known points [23,24]. The interpolation 

process follows the following expression: 
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(a) (b) 

Figure 8-2: Illustration of the Bayesian optimization approach used herein. Only the partial 

charge of the Si atoms 𝑞ij is here optimized, while the other 9 forcefield parameters are kept 

fixed. (a) Interpolation of the cost function (Rχ, see Eq. (8-2)) offered by Gaussian Process 

Regression (red line) as a function of the qSi. The prediction is based on an initial training set 

comprising 5 datapoints (i.e., known points, black symbols). The grey area indicates the 

uncertainty (95% confidence interval) of the prediction. (b) Expected Improvement (EI) 

function yielded by the Bayesian optimization method, which predicts the set of parameters 

(here, qSi) that offers the best tradeoff between “exploration” (i.e., minimizing the uncertainty 

of the model presented in panel (a)) and “exploitation” (i.e., minimizing the cost function Rχ). 
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{𝑅�(Ξ1), 𝑅�(Ξ(), ⋯ 𝑅�(Ξd)}, as denoted as ´𝑅�(Ξ¥W4¦W)µ. The conditional probability of 

𝑅�(Ξ∗)  is calculated using multivariate Gaussian distribution [25], where 𝜇*(∙)  is the mean 

operation and Σ*(∙) is the covariance operation. There are many possible choices for the function-

type of 𝜇*(∙)  and Σ*(∙)  and most can offer a reasonable extrapolation in the framework of 

multivariate Gaussian distribution [25]. Here, we adopt the Matern-type kernel for 𝜇*(∙) and Σ*(∙) 

[24,25]. In addition, to add some white-noise background during the interpolation [23], we also 

checked the intrinsic uncertainty of the cost function values yielded by the MD simulations by 

conducting a series of 10 independent MD simulations while keeping the same set of parameters 

Ξ and calculating the standard deviation of the associated cost functions 𝑅� . We find that the 

computed cost function values have a relative uncertainty of about 2% when 𝑅� < 100% (i.e., for 

realistic forcefields) and can increase up to 10% for higher values of 𝑅� (i.e., for fairly unrealistic 

forcefields). This level of noise is not expected to significantly affect the shape of interpolation 

around the minimum positions of the cost function 𝑅�. 

Fig. 8-2(a) shows an example of the outcome of a GPR-based interpolation. For illustration 

purposes, only the partial charge of the Si atoms 𝑞ij is here optimized, while the other 9 forcefield 

parameters are kept fixed and equal to those found in the original BKS potential [12]. A dataset 

comprising the values of the cost function 𝑅� for 5 values of 𝑞ij ranging from 1.6-to-3.2 is first 

constructed. The interpolated function and the uncertainty thereof (95% confidence interval) 

predicted by GPR is shown in Fig. 8-2(a). As expected, we observe that the interpolated function 

exhibits a minimum with respect to 𝑞ij (note that the 𝑞ij value used in the BKS potential is 2.4). 

Unsurprisingly, the uncertainty of the prediction is low at the vicinity of the known points and 

increases in between them. 
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(a) (b) 

Figure 8-3: Illustration of the iterative optimization approach used herein. Only the partial 

charge of the Si atoms 𝑞ij and the parameter ASiO are here optimized, while the other 8 

forcefield parameters are kept fixed. (a) Contour plot showing the cost function Rχ as a 

function of 𝑞ij and ASiO. The white dashed line indicates the path explored by the Bayesian 

optimization method until the global minimum in the cost function Rχ is identified. (b) 

Evolution of the cost function Rχ of the best-tradeoff position predicted by the Bayesian 

optimization during the optimization process. 

 

(iii) Minimum exploration by Bayesian optimization 

Based on the interpolated function 𝑅�(Ξ) and uncertainty 𝜎(Ξ) thereof predicted by GPR, 

the BO method is used to determine the next optimal set of parameters Ξ to try based on an 

acquisition function that depends on 𝑅�(Ξ) and 𝜎(Ξ). Here, we adopt the expected improvement 

(EI) function, which is commonly used as acquisition function [23]: 

𝐸𝐼(Ξ) = É¨𝑅�DΞ
ÊE − 𝑅�(Ξ)©Φ(𝑍) + 𝜎(Ξ)𝜙(𝑍) if	𝜎(Ξ) > 0

0 if	𝜎(Ξ) = 0
                  Eq. (8-5) 
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where 𝑍  = [𝑅�DΞÊE − 𝑅�(Ξ)]/𝜎(Ξ), 𝑅�DΞÊE is the current minimum value of 𝑅�  among all the 

known points (in other words, ΞÊ is the current optimal set of parameters), and Φ(𝑍) and 𝜙(𝑍) are 

the cumulative distribution and probability density function of the standard normal distribution, 

respectively. By construction, the value of 𝐸𝐼(Ξ) is high (i) when the expected value of 𝑅�(Ξ) is 

smaller than the current best value 𝑅�DΞÊE or (ii) when the uncertainty 𝜎(Ξ) around the point ΞÊ  is 

high. Therefore, the maximum position of 𝐸𝐼(Ξ)  indicates either a point for which a better 

minimum position of 𝑅� than the current one is expected or a point belonging to a region of 𝑅� 

that has not been explored yet (i.e., 𝜎(Ξ) is high). Namely, the maximum position of 𝐸𝐼(Ξ) offers 

the best tradeoff between “exploration” (i.e., minimizing the uncertainty 𝜎(Ξ)) and “exploitation” 

(i.e., minimizing the cost function 𝑅�(Ξ)). 

As an illustration of the BO approach, Fig. 8-2(b) shows the computed expected 

improvement function based on the interpolated function and uncertainty thereof shown in Fig. 8-

2(a). As mentioned above, only the partial charge of the Si atoms 𝑞ij is here optimized, while the 

other 9 forcefield parameters are kept fixed and equal to those found in the original BKS potential 

[12]. As expected, we observe a noticeable maximum in the expected improvement function where 

the interpolated function 𝑅� is minimum (exploitation). Some secondary peaks are also observed 

in the high-uncertainty regions of the function in the vicinity of the minimum position. 

(iv) Iterative refinement of the forcefield 

Finally, at each step of our iterative optimization scheme, the set of parameters Ξ 

corresponding to the maximum of the expected improvement function is used to conduct an MD 

simulation and calculate the associated cost function value 𝑅�. In turn, this new datapoint is added 

to the dataset. This enhances the accuracy of the GPR interpolation, which contributes to further 

refine the sampling of the cost function 𝑅� at the vicinity of its minimum positions. This iterative 
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scheme is repeated until convergence is achieved, that is, until the cost function reaches a plateau 

and does not further decrease within 100 iterations. 

This iterative refinement method is illustrated in Fig. 8-3. Here, for illustrative purposes, 

only two parameters (qSi and ASiO) are optimized, while the other 8 forcefield parameters are kept 

fixed and equal to those found in the original BKS potential [12]. Figure 8-3(a) shows a contour 

plot of the cost function 𝑅� as a function of the two free parameters used in the optimization. We 

observe that, even in the case of only two free parameters, the cost function shows a rough 

dependence on the parameters and exhibits two distinct minima (i.e., the dark blue domains in Fig. 

8-3(a)). Figure 8-3(a) also shows the pathway that is explored by the optimization algorithm in the 

(qSi, ASiO) space, that is, the set of parameters for which the expected improvement function is 

maximum after each step. We observe that the optimization quickly converges toward the global 

minimum of the cost function after only 5 iterations, after which the cost function 𝑅� shows a 

plateau around 10% (see Fig. 8-3(b)). This illustrates the efficiency of our optimization technique. 

 

8.2.4 Final refinement by conjugate gradient (CG) 

Finally, the minimum identified by the iterative BO scheme is further refined by the CG 

method. Indeed, although the BO method can quickly identify the vicinity of the global minimum 

of a rough function, the CG method is more efficient to pinpoint the minimum position in a local 

basin of the cost function. Here, we adopt the nonlinear CG algorithm detailed in Ref [16]. In short, 

we first use the secant method to construct a quadratic interpolation of 𝑅�(Ξ) at the vicinity of the 

minimum identified by the iterative BO scheme and determine the new minimum predicted by the 

CG interpolation. We then repeat the quadratic construction (i.e., the linear search) around this 

new minimum position. This is used to approximate the minimum position of 𝑅� along the CG 
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direction (i.e., the search direction). The maximum number of iterations of linear search in a search 

direction is set as 3. Then, starting from the identified new minimum position, we calculate the 

local gradient and find a new search direction based on Polak-Ribiere formula [16]. A new search 

direction is then determined from this starting point to identify a new minimum position. The 

iterative scheme is repeated until convergence, that is, when the new minimum position largely 

overlaps with the last minimum position, 𝑅� shows a plateau, and the squared sum of the local 

gradient converges toward zero and remains lower than the “zero” threshold (taken as 5 herein) 

within 10 iterations. 

   

(a) (b) (c) 

Figure 8-4: Illustration of the final conjugate gradient optimization. Only the partial charge of 

the Si atoms 𝑞ij and the parameter ASiO are here optimized, while the other 8 forcefield 

parameters are kept fixed. (a) Contour plot showing the cost function Rχ as a function of 𝑞ij 

and ASiO. The white dashed line indicates the path explored by the conjugate gradient 

optimization method until the minimum in the cost function Rχ is identified. (b) Evolution of 

the cost function Rχ during the conjugate gradient optimization process. (c) Evolution of the 

squared-sum of the local gradient d during the conjugate gradient optimization process. 
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Figure 8-4 shows an illustration of the CG refinement step—starting from the minimum 

identified by the BO iterative scheme illustrated in Fig. 8-3. By exploring “downhill” the local 

minimum of the cost function (Fig. 8-4(a)), the CG allows us to further refine the position of the 

minimum—the cost function decreasing from 10% to about 9% (see Fig. 8-4(b)). As expected, the 

local gradient converges toward zero as the CG optimization proceeds (see Fig. 8-4(c)). Note that, 

due to the high roughness of the cost function, CG optimization alone cannot yield a satisfactory 

minimum for the cost function as it easily gets stuck in local minima [26]. 

 

8.3 Results 

8.3.1 Accuracy of the forcefields 

We now assess how the degree of complexity of the forcefield controls its accuracy. To 

this end, we compare the outcomes of our ML-based parametrization method for three forcefields 

featuring increasing degrees of complexity (see Sec. 8.2.1), namely, (i) ML-SiO, which only 

comprises Si–O energy terms, (ii) ML, which comprises Si–O and O–O energy terms (i.e., like the 

well-established BKS potential [12,27]), and (iii) ML-ALL, which comprises Si–O, O–O, and Si–

Si energy terms (i.e., like the CHIK potential [11]). Note that, in all cases, the Coulombic 

interactions are computed for all the pairs of atoms—so that only the “Buckingham” contribution 

of these three potentials is varied. In order of increasing complexity, the three potentials comprise 

4, 7, and 10 variable parameters, respectively (i.e., 3 parameters per interatomic pair and the Si 

partial charge). From a physical viewpoint, this analysis allows us (i) to investigate whether 

accounting for O–O interaction terms (i.e., besides the Coulombic repulsion) is truly necessary to 

predict a realistic structure for glassy silica and (ii) to assess the extent to which incorporating Si–

Si energy terms can improve the performance of the forcefield. More generally, this analysis is 
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conducted to identify the right level of complexity, that is, to develop a forcefield that is neither 

underfitted nor overfitted. 

The parameters obtained for the ML potential are listed in Tab. 8-1, whereas those obtained 

for the ML-SiO and ML-ALL potentials are listed in Tab. 8-2 and 8-3. Overall, we find that the 

parameters of the ML-SiO forcefield significantly differ from those of the ML forcefield. In 

particular, we obtain a very small Si partial charge of +1.484. In contrast, we note that the 

parameters of the ML-ALL forcefield are largely similar to those of the ML potential—with a 

partial charge for Si atoms that is around 1.955. This value is fairly close to that of the CHIK 

(+1.91 [14]) and Wang–Bauchy potentials (+1.89 [6]). 

Figure 8-5 presents a comparison of the accuracy of the three forcefields (as quantified in 

terms of the final cost function 𝑅�). We note that the low-complexity ML-SiO potential offers a 

very poor description of the structure of silica (i.e., high final 𝑅� value—note that a threshold of 

10% is typically used to discriminate “good” from “bad” forcefields [18]). This confirms that, as 

expected, the O–O interactions play a key role in predicting a realistic SiO2 structure and that the 

ML-SiO model is clearly underfitted. In contrast, as shown in Fig. 8-5, the high-complexity ML-

ALL potential offers a slight improvement in the description of the structure of silica with respect 

to that predicted by ML potential, which manifests itself by a slight decrease in 𝑅� from 8.77% to 

7.20%. Although this improvement is higher than the level of uncertainty in the 𝑅�  values, it 

remains small as compared to the difference between the 𝑅� values yielded by the ML and ML-

SiO forcefields. This suggests that Si–Si interactions only play a minor role in controlling the 

structure of silica. In turn, this small improvement comes with a significantly higher degree of 

complexity (i.e., 3 extra parameters), which suggests that the ML-ALL potential may be overfitted. 
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Table 8-1. Parameters of the optimized potential “ML” (see Eq. (8-1)). The partial charges are 

indicated as superscripts for each pair of atoms. 

Atomic pairs Si+1.955 – O-0.9775 O-0.9775 – O-0.9775 Si+1.955 – Si+1.955 

A (eV) 20453.6 ± 0.2 1003.4 ± 0.2 0 

ρ (Å) 0.191735 ± 0.000005 0.356855 ± 0.000005 1 

C (eV·Å6) 93.5 ± 0.5 81.5 ± 0.5 0 

 

Table 8-2. Parameters of the interatomic potential “ML-SiO” (which only considers Si–O 

interactions). The partial charges are indicated as superscripts for each pair of atoms. 

Atomic pairs Si+1.484 – O-0.742 O-0.742 – O-0.742 Si+1.484 – Si+1.484 

A (eV) 3968.5 ± 0.2 0 0 

ρ (Å) 0.187600 ± 0.000005 1 1 

C (eV·Å6) 0.7 ± 0.5 0 0 

 

Table 8-3. Parameters of the interatomic potential “ML-ALL” (which includes Si–Si 

interactions). The partial charges are indicated as superscripts for each pair of atoms. 

Atomic pairs Si+1.955 – O-0.9775 O-0.9775 – O-0.9775 Si+1.955 – Si+1.955 

A (eV) 20453.6 ± 0.2 1003.4 ± 0.2 2643.1 ± 0.2 

ρ (Å) 0.191735 ± 0.000005 0.356855 ± 0.000005 0.303616 ± 0.000005 

C (eV·Å6) 93.5 ± 0.5 81.5 ± 0.5 232.0 ± 0.5 
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Figure 8-5: Comparison of the final cost function values Rχ obtained by including, in order of 

increasing complexity: (i) only Si–O interactions (“ML-SiO” potential), (ii) both Si–O and O–

O interactions (“ML” potential), and (iii) Si–O, O–O, and Si–Si interactions (“ML-ALL” 

potential). The relative uncertainty in the Rχ values is ±0.5%, ±0.25%, and ±0.25% for the 

ML-SiO, ML, and ML-ALL forcefields, respectively. 

 

8.3.2 Partial pair distribution functions 

We now further investigate the effect of the complexity of the forcefield on the structure 

of the simulated liquid silica system (i.e., at 3600 K). To this end, Fig. 8-6 shows a comparison of 

the partial PDFs obtained by each of the three potentials. The data are compared with the reference 

ab initio partial PDFs used for the training of the potentials. We first focus on the ML potential 

(i.e., which exhibits the same level of complexity as the BKS potential). Overall, we find that the 

ML potential provides an excellent agreement with AIMD simulations— although this is not 

surprising as our forcefield is specifically trained to match these data. Nevertheless, these results 

illustrate that the Buckingham formulation (see Eq. (8-1)) is adequate to describe the SiO2 system. 

This result also further supports the ability of our ML-based optimization method to offer a robust 

parametrization. We note that the average Si–Si distance predicted by ML potential is slightly 

ML-SiO ML ML-ALL
0

10

20

30

40

R x (%
)

35.51

8.77
7.20



 200 

shifted compared with AIMD simulations (see Fig. 8-6(c)). This may arise from a general 

limitation of the Buckingham formulation. 

   

(a) (b) (c) 

Figure 8-6: (a) Si–O, (b) O–O, and (c) Si–Si partial pair distribution functions in liquid silica 

(at 3600 K) predicted by the different forcefields parameterized herein. The data are compared 

with the ab initio reference [14]. 
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remains overestimated with respect to that predicted by AIMD. This further suggests that this 

discrepancy is an intrinsic limitation of the two-body Buckingham formulation used herein. 

Although the inclusion of 3-body energy terms could overcome this limitation, this would come 

with a significant increase in computing cost and model complexity. Overall, these results confirm 

that the ML parametrization presented in Tab. 8-1 yields an excellent description of the structure 

of silica and offers the best balance between accuracy and model simplicity. 

 

8.3.3 Partial bond angle distributions 

We now investigate the effect of the forcefield complexity on the partial bond angle 

distributions (PBADs). Note that, the PBADs are not explicitly included in the cost function (see 

Eq. (8-2)) and that such 3-body correlations are not fully encoded in the 2-body correlations (i.e., 

as captured by the partial PDFs). As such, the PBADs allow us to assess the accuracy of the 

forcefield by comparing their predictions to a structural quantity that is unknown during the 

training of the forcefields. In that sense, the PBADs acts as a “test set,” that is, a group of data that 

is deliberately kept invisible to the model during parametrization and can then be used to a 

posteriori assess the ability of the model to offer realistic predictions for unknown data. In addition, 

this analysis allows us to better understand the influence of the O–O and Si–Si interactions in 

controlling the angular environment of the Si and O atoms. 

Figure 8-7 shows the O–Si–O and Si–O–Si PBADs predicted by the three potentials for 

the liquid silica system (at T = 3600 K). The data are compared with those obtained by ab initio 

simulations [14]. We first focus on the ML potential (i.e., which exhibits the same level of 

complexity as the BKS potential). Overall, we observe that the PBADs predicted by the ML 

potential offer a very good agreement with ab initio simulations. As expected, the ML potential 
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yields a tetrahedral environment for Si atoms (with an average O–Si–O angle of about 109°). 

Nevertheless, we observe that the ML potential slightly overestimates the value of Si–O–Si angles 

with respect to AIMD simulations, which appears to be a general limitation of the 2-body 

Buckingham formulation adopted herein and is likely related to the fact that our potential 

overestimates the Si–Si average distance (see Sec. 8.3.2). 

  

(a) (b) 

Figure 8-7: (a) O–Si–O and (b) Si–O–Si partial bond angle distributions (PBADs) in liquid 

silica (at T = 3600 K) predicted by the different ML-based forcefields parameterized herein. 

The data are compared with the ab initio reference [14]. 
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In contrast, we find that the PBADs predicted by the ML-ALL forcefield are fairly similar 

to those offered by the ML potential, which indicates that accounting for the Si–Si interactions 

may not be necessary to properly model the angular environment of the Si and O atoms. Further, 

a more detailed comparison of the PBADs predicted by the ML and ML-ALL potentials with the 

reference AIMD data reveals that the O–Si–O PBAD predicted by the ML potential is slightly 

better than that offered by the more complex ML-ALL potential (see Fig. 8-7(a)). Further, we note 

that, thanks to the addition of Si–Si energy terms, the ML-ALL offers a better description of the 

average value of the Si–O–Si angle. However, in turn, the Si–O–Si PBAD predicted by the ML-

ALL potential exhibit a large degree of asymmetry that is not supported by the AIMD simulations 

(see Fig. 8-6(c)). This suggests that the fact of capturing all the fine details of the partial PDFs 

used during the training (as permitted by the high-complexity of the ML-ALL forcefield) results 

in some overfitting, which, in turn, manifests itself by a decrease in the ability of the potential to 

properly predict structural metrics that are not explicitly included in the training set. In contrast, 

due to its higher degree of simplicity, the ML potential only captures the essential features of the 

partials PDFs and, hence, offers more robust predictions for structural data that are kept invisible 

during training. This suggests that the ML potential (i.e., which relies on Si–O and O–O energy 

terms only) presents the best balance between under- and overfitting and, thereby, offers the most 

accurate overall description of the structure of glassy silica. 

 

8.4 Discussion 

8.4.1 Dependence on the initial training set 

We now discuss the ability of our ML-based optimization scheme to yield a proper optimal 

set of forcefield parameters (i.e., to identify a proper minimum in the cost function) regardless of 
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the choice of the initial training set, that is, the parameter space used as a starting point for the 

optimization (see Sec. 8.2.3). In particular, it is critical for the parameterization method to be able 

to yield a minimum in the cost function that is far from the initial training set. Indeed, this is key 

as we aim to develop a non-biased parameterization scheme that do not rely on “intuition” 

regarding the range of promising forcefield parameters. 

  

(a) (b) 

Figure 8-8: Illustration of the iterative optimization approach used herein in the case of the 

global minimum is far from the initial training set. Only the partial charge of the Si atoms 𝑞ij 

and the parameter ASiO are here optimized, while the other 8 forcefield parameters are kept 

fixed. In both cases, the contour plot shows the value of the cost function Rχ as a function of 

𝑞ij and ASiO. The white dashed line indicates the path explored by the Bayesian optimization 

method until the global minimum in the cost function Rχ is identified. Panel (a) highlight in 

white the parameter space region that is purposely excluded from the initial training set, while 

panel (b) shows the value of cost function over the entire domain to highlight the fact that the 

global minimum is indeed identified at the end of the optimization. 
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Figure 8-8 shows an illustration of the ability of our ML-based method to efficiently 

explore the parameter space—even far away from the initial training set—to yield a proper 

minimum in the cost function. Here, for illustrative purposes, only two parameters (qSi and ASiO) 

are optimized, while the other 8 forcefield parameters are kept fixed and equal to those found in 

the original BKS potential [12]. Figure 8-8(a) shows a contour plot of the cost function 𝑅� as a 

function of the two free parameters used in the optimization. In this case, we purposely restrict the 

region of the initial training set to qSi > 2.4 (i.e., the colored region in Fig. 8-8(a)), which does not 

comprise the targeted global minimum position of 𝑅� . We observe that our iterative learning 

model is able to quickly explore the qSi < 2.4 and identify the global minimum around qSi = 2 

despite this position being far from the initial training set (see Fig. 8-8(b)). This signals that the 

iterative Bayesian optimization is able to “learn” by itself that the global minimum of 𝑅� does not 

belong to the initial training set. Overall, these results strongly support the ability of our approach 

to yield optimal forcefield parameters regardless of the choice of the initial training set considered 

at the beginning of the parameterization. 

 

8.4.2 Comparison of the ML-based forcefield with previous Buckingham potentials 

Finally, we discuss how our new ML potential (i.e., that featuring the optimal degree of 

complexity) compares with select previous SiO2 forcefields relying on the Buckingham form. 

Specifically, we focus on (i) the BKS potential [12], which presents the same complexity as our 

new ML potential but relies on a different parametrization method and (ii) the CHIK potential 

[14], which presents a higher complexity (i.e., as it comprises Si–Si energy terms).  

Figure 8-9 shows a comparison of the partial PDFs predicted by our new ML forcefield 

with those predicted by the BKS and CHIK potentials. The data are also compared with the 
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reference ab initio partial PDFs. We observe that both the ML and CHIK potentials offer a clear 

improvement with respect to the classic BKS potential. Since the ML and BKS forcefield relies on 

the same formulation and same degree of complexity, these results clearly demonstrate the 

superiority of our  ML-based parametrization method over that used for the BKS potential—which 

relies on ab initio calculations performed on small SiO4 clusters and the incorporation of some 

bulk properties during training [12]. On the other hand, we find that our new ML forcefield offers 

a slightly more accurate prediction of the partial PDFs as compared to the CHIK potential while 

relying on a lower number of parameters (i.e., lower complexity). This confirms once again that 

Si–Si interactions are not playing a critical role in governing the structure of glassy SiO2 and that, 

in turn, using Si–Si interactions as free parameters during the training of the forcefield can result 

in some degree of overfitting. 

   

(a) (b) (c) 

Figure 8-9: (a) Si–O, (b) O–O, and (c) Si–Si partial pair distribution functions (PDFs) in 

liquid silica (at T = 3600 K) predicted by our new “ML” forcefield and compared with the ab 

initio reference [14]. The partial PDFs predicted by the BKS potential [12] and CHIK potential 

[14] are added for comparison. 
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Table 8-4. Unit cell parameters and elastic constants of 𝛼-quartz measured by experiments and 

offered by different Buckingham potentials. 

Observable Experiments [28–30] BKS CHIK ML 

V(Å3) 112.93 119.30 ± 0.06 125.18 ± 0.05 128.8 ± 0.3 

a (Å) 4.9124 5.026 ± 0.001 5.1166 ± 0.0008 5.1593 ± 0.0007 

c (Å) 5.4039 5.4526 ± 0.0006 5.5212 ± 0.0006 5.5862 ± 0.0005 

C11 (GPa) 86.8 90.9 ± 3.1 98.4 ± 0.6 89.2 ± 5.6 

C33 (GPa) 105.8 116.3 ± 0.6 91.1 ± 0.9 67.0 ± 4.3 

C44 (GPa) 58.2 48.6 ± 0.9 50.3 ± 0.5 46.1 ± 0.4 

C66 (GPa) 39.9 46.0 ± 0.6 43.7 ± 1.1 23.9 ± 4.5 

C12 (GPa) 7.0 –4.0 ± 1.3 –0.2 ± 0.7 –2.8 ± 9.3 

C13 (GPa) 19.1 12.8 ± 0.3 16.8 ± 0.9 8.7 ± 3.6 

C14 (GPa) –18.0 –0.3 ± 0.1 –0.1 ± 0.2 –0.3 ± 1.0 

 

Finally, we assess whether our new ML forcefield offers a good transferability to 𝛼-

quartz—that is, whether it can properly describe the structure and stiffness of 𝛼-quartz without 

being explicitly trained for this system. To this end, we compute the unit cell parameters at 300 K 

and elastic constants at 0 K of 𝛼-quartz using our potential (see Tab. 8-4) and compare these values 

to available experimental data [28–30]. These data are also compared with the values offered by 

the BKS and CHIK potentials. Overall, we find that our potential reproduces experimental data 

with a degree of accuracy that is comparable to that offered by previous potentials based on the 

Buckingham formulation (i.e., BKS and CHIK). This is notable as (i) 𝛼-quartz is not part of the 

training set used for the present ML forcefield and (ii) our forcefield was not explicitly trained to 
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reproduce any stiffness data. This demonstrates that the pair distribution function (used to train the 

ML forcefield) contains enough details about the simulated system to offer a realistic description 

of the curvature of the interatomic potential (which largely controls stiffness). More generally, this 

shows that our new ML potential shows a satisfactory transferability to new phases (i.e., 𝛼-quartz) 

that are not explicitly considered during training. 

 

8.5 Conclusions 

Overall, this study establishes a general and versatile framework to facilitate the 

development of accurate, yet transferable empirical forcefields for the modeling of disordered 

materials. By taking the example of silica, our method is able to quickly parameterize forcefields 

featuring different degrees of complexity in a non-biased fashion. This robust method allows us to 

meaningfully assess the optimal degree of complexity for the forcefield, that is, for which an 

optimal balance between accuracy and simplicity is achieved. The assessment of the role of the 

complexity of forcefields is key to avoid any overfitting, which would likely decrease the 

transferability of the potential to new systems that are not explicitly included during training. More 

generally, we expect that the use of ML will decrease the importance of intuition for the 

parametrization of future potentials for multicomponent silicate glasses. 

 

  



 209 

8.6 References 

[1] L. Huang, J. Kieffer, Challenges in Modeling Mixed Ionic-Covalent Glass Formers, in: 
C. Massobrio, J. Du, M. Bernasconi, P.S. Salmon (Eds.), Molecular Dynamics 
Simulations of Disordered Materials: From Network Glasses to Phase-Change Memory 
Alloys, Springer International Publishing, Cham, 2015: pp. 87–112. doi:10.1007/978-3-
319-15675-0_4. 

[2] J. Du, Challenges in Molecular Dynamics Simulations of Multicomponent Oxide 
Glasses, in: C. Massobrio, J. Du, M. Bernasconi, P.S. Salmon (Eds.), Molecular 
Dynamics Simulations of Disordered Materials, Springer International Publishing, 2015: 
pp. 157–180. 

[3] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF:  A Reactive Force 
Field for Hydrocarbons, J. Phys. Chem. A. 105 (2001) 9396–9409. 
doi:10.1021/jp004368u. 

[4] Y. Yu, B. Wang, M. Wang, G. Sant, M. Bauchy, Revisiting silica with ReaxFF: Towards 
improved predictions of glass structure and properties via reactive molecular dynamics, 
Journal of Non-Crystalline Solids. 443 (2016) 148–154. 
doi:10.1016/j.jnoncrysol.2016.03.026. 

[5] Y. Yu, B. Wang, M. Wang, G. Sant, M. Bauchy, Reactive Molecular Dynamics 
Simulations of Sodium Silicate Glasses — Toward an Improved Understanding of the 
Structure, Int J Appl Glass Sci. 8 (2017) 276–284. doi:10.1111/ijag.12248. 

[6] M. Wang, N.M. Anoop Krishnan, B. Wang, M.M. Smedskjaer, J.C. Mauro, M. Bauchy, 
A new transferable interatomic potential for molecular dynamics simulations of 
borosilicate glasses, Journal of Non-Crystalline Solids. 498 (2018) 294–304. 
doi:10.1016/j.jnoncrysol.2018.04.063. 

[7] L. Deng, J. Du, Development of boron oxide potentials for computer simulations of 
multicomponent oxide glasses, Journal of the American Ceramic Society. (2018) 1–24. 
doi:10.1111/jace.16082. 

[8] X. Li, W. Song, K. Yang, N.M.A. Krishnan, B. Wang, M.M. Smedskjaer, J.C. Mauro, G. 
Sant, M. Balonis, M. Bauchy, Cooling rate effects in sodium silicate glasses: Bridging the 
gap between molecular dynamics simulations and experiments, The Journal of Chemical 
Physics. 147 (2017) 074501. doi:10.1063/1.4998611. 

[9] J.M.D. Lane, Cooling rate and stress relaxation in silica melts and glasses via 
microsecond molecular dynamics, Physical Review E. 92 (2015). 
doi:10.1103/PhysRevE.92.012320. 

[10] K. Vollmayr, W. Kob, K. Binder, Cooling-rate effects in amorphous silica: A computer-
simulation study, Physical Review B. 54 (1996) 15808–15827. 
doi:10.1103/PhysRevB.54.15808. 



 210 

[11] A. Carré, S. Ispas, J. Horbach, W. Kob, Developing empirical potentials from ab initio 
simulations: The case of amorphous silica, Computational Materials Science. 124 (2016) 
323–334. doi:10.1016/j.commatsci.2016.07.041. 

[12] B.W.H. van Beest, G.J. Kramer, R.A. van Santen, Force fields for silicas and 
aluminophosphates based on ab initio calculations, Physical Review Letters. 64 (1990) 
1955–1958. doi:10.1103/PhysRevLett.64.1955. 

[13] P. Ganster, M. Benoit, J.-M. Delaye, W. Kob, Structural and vibrational properties of a 
calcium aluminosilicate glass: classical force-fields vs. first-principles, Molecular 
Simulation. 33 (2007) 1093–1103. doi:10.1080/08927020701541006. 

[14] A. Carré, J. Horbach, S. Ispas, W. Kob, New fitting scheme to obtain effective potential 
from Car-Parrinello molecular-dynamics simulations: Application to silica, EPL. 82 
(2008) 17001. doi:10.1209/0295-5075/82/17001. 

[15] S. Sundararaman, L. Huang, S. Ispas, W. Kob, New optimization scheme to obtain 
interaction potentials for oxide glasses, J. Chem. Phys. 148 (2018) 194504. 
doi:10.1063/1.5023707. 

[16] J.R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the 
Agonizing Pain, Carnegie Mellon University, 1994. 

[17] C.J. Fennell, J.D. Gezelter, Is the Ewald summation still necessary? Pairwise alternatives 
to the accepted standard for long-range electrostatics, The Journal of Chemical Physics. 
124 (2006) 234104. doi:10.1063/1.2206581. 

[18] A.C. Wright, The comparison of molecular dynamics simulations with diffraction 
experiments, Journal of Non-Crystalline Solids. 159 (1993) 264–268. doi:10.1016/0022-
3093(93)90232-M. 

[19] J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids: with Applications to Soft 
Matter, Academic Press, 2013. 

[20] R. Car, M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional 
Theory, Physical Review Letters. 55 (1985) 2471–2474. 
doi:10.1103/PhysRevLett.55.2471. 

[21] N.P. Bansal, R.H. Doremus, Handbook of Glass Properties, Elsevier, 2013. 

[22] P. Ganster, M. Benoit, W. Kob, J.-M. Delaye, Structural properties of a calcium 
aluminosilicate glass from molecular-dynamics simulations: A finite size effects study, J. 
Chem. Phys. 120 (2004) 10172–10181. doi:10.1063/1.1724815. 

[23] P.I. Frazier, J. Wang, Bayesian Optimization for Materials Design, in: Information 
Science for Materials Discovery and Design, Springer, Cham, 2016: pp. 45–75. 
doi:10.1007/978-3-319-23871-5_3. 



 211 

[24] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, MIT Press, 
Cambridge, 2008. 

[25] Y.L. Tong, The Multivariate Normal Distribution, Springer-Verlag, New York, 1990.  

[26] H. Liu, Z. Fu, K. Yang, X. Xu, M. Bauchy, Parameterization of Empirical Forcefields for 
Glassy Silica using Machine Learning, MRS Communications. (2019). 

[27] B. Wang, Y. Yu, Y.J. Lee, M. Bauchy, Intrinsic Nano-Ductility of Glasses: The Critical 
Role of Composition, Front. Mater. 2 (2015) 11. doi:10.3389/fmats.2015.00011. 

[28] G. Will, M. Bellotto, W. Parrish, M. Hart, Crystal structures of quartz and magnesium 
germanate by profile analysis of synchrotron-radiation high-resolution powder data, 
Journal of Applied Crystallography. 21 (1988) 182–191. 
doi:10.1107/S0021889887011567. 

[29] L. Levien, C.T. Prewitt, D.J. Weidner, Structure and elastic properties of quartz at 
pressure, American Mineralogist. 65 (1980) 920–930. 

[30] H.J. McSkimin, P. Andreatch, R.N. Thurston, Elastic Moduli of Quartz versus 
Hydrostatic Pressure at 25° and − 195.8°C, Journal of Applied Physics. 36 (1965) 1624–
1632. doi:10.1063/1.1703099. 

 

  



 212 

Chapter 9. Exploring the Landscape of Buckingham Potentials for 

Silica by Machine Learning: Soft vs Hard Interatomic Forcefields 

9.1 Introduction 

Molecular dynamics (MD) simulations are now routinely used to access the atomic 

structure of glasses, which is key to decode the relationship between their composition and 

properties [1–4]. Starting from an initial configuration, classical MD simulations predict the 

trajectory of the atoms by numerically solving the Newton’s law of motion [1]. Assuming that the 

timestep is low enough to avoid any spurious effects arising from the numerical integration, the 

accuracy of classical MD simulation is essentially controlled by that of the empirical interatomic 

forcefield that is used [5,6]. 

In general, traditional empirical forcefields are an attempt to simplify the quantum 

mechanical reality into simpler analytical functions describing interatomic interactions [7,8]—

wherein forcefields are optimized in order to maximize the level of agreement between the 

simulation and given references (e.g., experimental properties or first principle calculations). This 

process can be rationalized as an optimization process, wherein a given cost function capturing the 

difference between simulation and references is minimized by adjusting the parameters of these 

analytical functions [9]. 

Nevertheless, developing forcefields is a tedious process as such cost functions often 

feature several, competing minima, that is, several sets of parameters can yield comparable 

forcefield accuracies [10]. This difficulty can be discussed in terms of the topography of the 

“landscape of a forcefield,” wherein the landscape represents the evolution of the overall forcefield 

accuracy (i.e., the value of the cost function) as a function of the value of the forcefield parameters. 

Forcefields landscapes are often non-parabolic and can be multistable, that is, the landscape 
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features several valleys [11]. Such roughness in forcefield landscapes is a natural consequence of 

their empirical, partially non-physical nature and can result from the existence of mutually-

dependent parameters or counterbalancing effects between parameters. Multistable forcefield 

landscapes present unique challenges during their parameterization, since the outcome of the 

parameterization often depends on the choice of the initial parameters (i.e., the initial position in 

the landscape). This often renders the process of forcefield optimization biased [12]—so that 

forcefield parameterization is sometimes referred as art rather than science [8,13]. In that regard, 

special effort has been placed in developing accurate forcefields for glassy silica (SiO2)—an 

archetypal model for more complex modified silicate glasses [10,14–19]. It is nevertheless 

interesting to point out that, despite the apparent simplicity of this system, glassy silica often acts 

as an outlier and, quite surprisingly, is sometimes more challenging to accurately model as 

compared to its modified silicate counterparts [6,18,20,21]. 

Many empirical forcefields have been developed to model silicate glasses—each of them 

focusing on distinct structure features and properties [14,15,17,10,18,19,22,23]. As ionocovalent 

systems, silicate phases are typically well described by combining short-range Buckingham-form 

potentials (see Eq. (9-1) below) with long-range coulombic interactions with fixed charges [16,24–

29]. Although early simulations typically adopted formal charges charge (e.g., +4 and –2 for Si 

and O atoms, respectively), they usually required the use of additional angular 3-body energy terms 

to properly describe the tetrahedral structure of the SiO4 units [5,6,30]. However, it is now 

recognized that the use of 3-body terms can be avoided by relying on partial (rather than formal) 

charges [5,6,14,15]. Although such partial charges are primarily an additional fitting parameter, 

they capture underlying charge transfer (due to the partially covalent nature of Si–O bonds) and 

polarization effects in interatomic bonds [14,15]. Importantly, this development has facilitated 
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simulations of large-scale systems over extended timescales—since angular 3-body terms are 

significantly more computationally expensive to compute than radial 2-body terms [31]. 

In the case of silicate systems, Buckingham forcefields relying on partial charges can be 

classified as “soft” or “hard” potentials based on the value of partial charge qSi attributed to Si 

atoms—wherein soft forcefields rely on fairly small partial charges (typically qSi ≈ 2) whereas hard 

forcefields use higher charges (typically qSi ≥ 2.4) [14,16,25–27]. Note that the partial charges of 

the other atoms are then determined to ensure electronic neutrality, for instance, qO = – qSi/2. 

Although both soft and strong forcefields have been shown to offer a fairly good representation of 

silicate glasses [14–16], the exact role played by the value of the partial charges in describing the 

structure and properties of silicate glasses remains poorly understood. This partially arises from 

the fact that no systematic exploration of the accuracy of Buckingham forcefields as a function of 

the partial charge value has been conducted thus far. 

Here, for the first time, we systematically explore the landscape of Buckingham forcefields 

with fixed partial charges for silica. Such a systematic exploration is made possible by benefiting 

from our recently-developed machine-learning-based forcefield parameterization method, which 

allows us to efficiently parameterize interatomic forcefields in an unbiased fashion [10,12,32]. We 

observe that, overall, forcefields relying on partial charges offer an improved accuracy as 

compared to those based on formal charges. Interestingly, we find that soft and hard forcefields 

correspond to two distinct, yet competitive local minima in the landscape of Buckingham 

forcefields for silica. We show that both soft and hard potentials yield an equally accurate 

description of the short-range order structure of liquid silica. However, we find that soft potentials 

offer an enhanced description of the medium-range order structure as compared to hard potentials. 
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9.2 Methods 

9.2.1 Buckingham potential 

We focus here on the pairwise Buckingham-form empirical potential—a formulation that 

relies on partial charges and typically provides a good description of ionocovalent systems 

[14,16,17,22]. The interatomic energy between atoms i and j is expressed as: 

𝑈"# =
�&�'

/��w%&'
+ 𝐴"#exp H−

%&'
]&'
I − P&'

%&'
� +

E&'
%&'
L�            Eq. (9-1) 

where rij is the distance between each pair of atoms, qi is the partial charge of each atom (qO and 

qSi for O and Si atoms, respectively—note that qO = –qSi/2), ε0 is the dielectric constant, and Aij, 

ρij, Cij, and Dij are some parameters describing the short-range interactions. A cutoff of 8 Å is 

consistently used for the short-range interactions. The long-range coulombic interactions are 

calculated by damped shifted force (dsf) model [33] with a damping parameter of 0.25 and a cutoff 

of 8 Å. The last term of Eq. (9-1) is artificially added to ensure a strong repulsion at short distance, 

thereby preventing any atomic overlap known as “Buckingham catastrophe” [16]. The value of the 

Dij parameters are fixed based on Ref. [16] (viz., Dij = 113, 29, and 3423200 eV·Å24 for O–O, Si–

O, and Si–Si interactions, respectively). 

 

9.2.2 Cost function for forcefield optimization 

The parametrization of this potential (Eq. (9-1)) consists in optimizing 10 independent 

parameters, namely, the partial charge qSi and the short-range parameters {Aij, ρij, Cij} for each of 

the three atomic pairs (Si–O, O–O, and Si–Si). This set of parameters is denoted Ξ thereafter. Note 

that, here, we do not consider any Si–Si interaction energy term (besides their mutual coulombic 

repulsion), since such terms were found to result in the overfitting of the forcefield [12]. Following 

Kob and Huang et al., we define the optimization cost function Rχ as the squared difference 
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between the total pair distribution function (PDF) g(r) obtained by classical MD simulation and a 

fixed reference ab initio MD (AIMD) simulation [15–17]:  

𝑅� = U∑ [2��(%)92����(%)]L 
∑ [2����(%)]L 

                           Eq. (9-2) 

The technical details of the MD and AIMD simulations are provided below. 

(i) Classical MD simulation: 

Given a set of forcefield parameters Ξ, a classical MD simulation is conducted on the same 

liquid silica system using the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) code [34]. The simulated system comprises 1000 SiO2 units (3000 atoms) placed in a 

periodic cubic simulation box of length 35.661 Å—in accordance with the experimental glass 

density of 2.2 g/cm3 [35]. We first fully relaxed the configuration for 10 ps at 3600 K in the 

canonical (NVT) ensemble. The total PDF of the simulated systems is then computed based on 

statistical averaging in a subsequent NVT dynamics of 10 ps. A Nosé-Hoover thermostat [36] and 

a timestep of 1 fs are consistently used for all simulations. 

(ii) Reference AIMD simulation: 

The “reference” liquid silica structure is prepared by conducting a AIMD run in the NVT 

ensemble with the Nose-Hoover thermostat using the Vienna Ab initio Simulation Package (VASP) 

[36,37]. 67 SiO2 units (201 atoms) are placed in a periodic cubic simulation box of length 14.4839 

Å to match the experimental glass density of 2.2 g/cm3 [35]. The electronic structure of the atoms 

is described within the framework of density functional theory. The choice of pseudopotentials for 

each atom-type, and exchange and correlation functions, are based on the projector augmented 

wave (PAW) method along with the Perdew-Burke-Ernzerhof (PBE) correlation energy functional 

[38,39]. A timestep of 0.5 fs and a plane-wave cutoff of 520 eV are used to ensure accurate 

evaluation of system energy evolution. The initial configuration is a liquid configuration obtained 
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by classical MD simulation at 3600 K using the well-established van Beest–Kramer–van Santen 

(BKS) potential [14]. This configuration is then relaxed via AIMD at 3600 K and constant volume 

for 6 ps [40]—which duration is long enough due to the small relaxation time of the system at such 

elevated temperature. A subsequent run of 16 ps is then used for statistical averaging, during which 

we compute relevant structural features. 

Both the MD and AIMD simulations serve to compute the total PDF, bond angle 

distributions, and ring size distribution of the simulated liquid system. Note that, in the case of the 

ring size distribution, the number of atoms in classical MD is reduced to match that of the AIMD 

simulation to avoid any spurious size effect. In both cases, the ring size distribution is calculated 

by enumerating irreducible primitive rings using the RINGS package [41]. 

 

9.2.3 Machine learning optimization 

We use our recently-developed machine learning (ML) parameterization approach 

[10,12,32] to identify optimal sets of forcefield parameters Ξ that minimize the cost function 

Rχ{Ξ}. This approach is based on combining  Gaussian process regression (GPR) [42] and 

Bayesian optimization (BO) [43], wherein (i) a GPR model is trained to interpolate the evolution 

of the cost function Rχ as a function of the forcefield parameters Ξ, (ii) BO is used to “explore and 

exploit” the function Rχ{Ξ} so as to pinpoint the locations Ξ wherein Rχ is minimum, and (iii) the 

“true” cost function Rχ associated with the forcefield parameters Ξ predicted by BO are computed 

by MD and subsequently added to the training set to refine the GPR model. This process is 

iteratively repeated until convergence. More technical details can be found in Refs. [10] and [12]. 

Here, we adopt this method to explore the “landscape” of Rχ{Ξ}, that is, the series of forcefield 

parameters Ξ wherein the cost function Rχ exhibits a local (or global) minimum. 
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9.3 Results and Discussion 

We now explore the topography of the landscape of Buckingham forcefields for silica, that 

is, how the accuracy of the forcefield (as captured by the cost function Rχ) depends on the value of 

the forcefield parameters Ξ. As shown in our previous work [10], we emphasize that the landscape 

of the Rχ{Ξ} is extremely rough, that is, the Rχ{Ξ} function exhibits various local minima that are 

separated from each other by some barriers. Such roughness renders largely inefficient and biased 

traditional optimization methods, since such methods (e.g., conjugate gradient) can easily get stuck 

in local minima—so that the outcome of the minimization depends on the chosen starting point. 

Each of these local minima corresponds to an optimal set of forcefield parameters Ξ that offers a 

local maximum in accuracy. 

Notably, we find that several sets of forcefield parameters Ξ offer a fairly competitive 

description of the pair distribution of liquid silica (that is, a competitively small value for Rχ). 

Figure 9-1(a) shows an unfolded “landscape” of the cost function R𝜒 as a function of the partial 

charge attributed to Si atoms qSi. Note that each point in Fig. 9-1(a) corresponds to a local 

minimum of Rχ{Ξ} identified by our Bayesian optimization approach and that the other parameters 

of the forcefield {Aij, ρij, Cij} are different for each point. In particular, we find that several sets of 

parameters yield to a local minimum featuring R𝜒 < 10%, which Is typically considered as a 

threshold value to discriminate “good” from “bad” forcefields [44]. This high number of 

competitive local minima is a manifestation of the rough nature of the landscape of Buckingham 

forcefields for silica and explains why so many forcefields featuring different parameters (and, in 

particular, different partial charges) have been shown to offer a good description of the structure 

of silica systems. It is worth pointing out that, overall, the forcefield that is based on formal charges 
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(i.e., qSi = 4) offers the lowest level of accuracy, which further demonstrates the superiority of 

forcefields relying on partial charges for silicate systems. 

Interestingly, we observe that the landscape exhibits two main basins, which are centered 

around qSi ≈ 2 and 3, respectively. These results offer for the first time a quantitative foundation 

behind the soft vs. hard classification of Buckingham forcefields for silicates. In the following, we 

refer to “soft” and “hard” forcefields those that are characterized by qSi < 2.4 (i.e., weak coulombic 

interactions) and qSi > 2.4 (i.e., strong coulombic interactions), respectively. Specifically, we focus 

in the following on the two soft and hard forcefield parameterizations offering maximum accuracy, 

that is, for qSi = 2.094 (“soft potential,” see Tab. 9-1) and qSi = 2.883 (“hard potential,” see Tab. 9-

2) to further investigate the nature of the structural signatures (if any) behind the soft vs. hard 

classification. 

Figure 9-1(b) shows the total PDFs of silica liquids generated by the soft and hard 

forcefields. Each PDF is compared to the same ab initio reference PDF to assess their accuracy. 

Overall, we find that both families of forcefield yield a PDF that is an excellent agreement with 

the AIMD reference PDF, that is, featuring R𝜒 = 4.30% (soft) and 7.52% (hard), respectively. 

Nevertheless, in both cases, we observed some slight discrepancies. To finely characterize the level 

of accuracy offered by soft and hard forcefields, Fig. 9-1(c) shows as a contour plot of the absolute 

error between (i) the PDF generated by classical MD g(r) (for each of the parameterizations 

presented in Fig. 9-1(a)) and (ii) the same AIMD reference PDF gref(r) as a function of the 

correlation distance r (x-axis) and Si partial charge (y-axis). We observe the existence of “islands” 

wherein the inaccuracy of the forcefield is locally maximum, which signals that the error 

associated to different forcefields are mostly concentrated around select correlation distances. 
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(a) (b) (c) 

Figure 9-1: (a) Cost function R𝜒 yielded by select Buckingham forcefields for liquid silica as a 

function of the partial charge of Si atoms qSi. The black line is to guide the eye. The grey and 

white windows (qSi < 2.4 and qSi > 2.4) herein defines the soft and hard forcefield regimes, 

respectively. The arrows indicate the minimum position of R𝜒 in the soft and hard forcefield 

regimes (i.e., qSi = 2.094 and 2.883, respectively), defining the soft and hard potentials used 

the following. (b) Total pair distribution function (PDF) g(r) of liquid silica at 3600 K 

generated by the soft and hard potentials offering minimum R𝜒. These two PDFs are compared 

to that generated by ab initio molecular dynamics. The blue dashed line (r = 2.1 Å) indicates 

the boundary between the first and second coordination shells, which is in the following used 

as a threshold distance to define the “short-range order” (r < 2.1 Å) and the “higher-range 

order” (r > 2.1 Å). (c) Contour plot showing the absolute error between the total PDF g(r) 

generated by the classical forcefields presented in panel (a) and the ab initio reference PDF 

gref(r) as a function of the correlation distance r (x-axis) and Si partial charge (y-axis). The 

horizonal white lines indicate the position of the soft (qSi = 2.094) and hard potentials (qSi = 

2.883). The vertical red lines indicate the values of the average Si–O (r = 1.635 Å), O–O (r = 

2.715 Å), and Si–Si (r = 3.115 Å) interatomic bond distances. 
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Table 9-1. Parameters of the soft potential. Partial charges are indicated as superscripts for each 

atom. 

Atomic pairs Si+2.094 – O-1.047 O-1.047 – O-1.047 Si+2.094 – Si+2.094 

A (eV) 17471.7 ± 0.2 1386.9 ± 0.2 0 

ρ (Å) 0.205205 ± 0.000005 0.362319 ± 0.000005 1 

C (eV·Å6) 133.4 ± 0.5 174.8 ± 0.5 0 

 

Table 9-2. Parameters of the hard potential. Partial charges are indicated as superscripts for each 

atom. 

Atomic pairs Si+2.883 – O-1.4415 O-1.4415 – O-1.4415 Si+2.883 – Si+2.883 

A (eV) 5353.6 ± 0.2 1245.4 ± 0.2 0 

ρ (Å) 0.237123 ± 0.000005 0.322535 ± 0.000005 1 

C (eV·Å6) 62.2 ± 0.5 60.0 ± 0.5 0 

 

We first note that the forcefield based on formal charges (i.e., qSi = 4) crosses several error 

islands. In particular, we observe that this potential yields a significant error around r = 1.6 Å, that 

is, around the average Si–O bond distance. This signals that the forcefield based on formal charges 

is intrinsically unable to offer a good description of the short-range structural order around Si 

atoms. This confirms that Buckingham potentials relying on formal charges require the use of 3-

body angular terms to properly describe the structure of SiO4 tetrahedra [5,14,15,30]. 

At lower partial charges (qSi < 4), we observe that most of the error islands are located in 

between the coordination shells, that is, at distances that are slightly lower or higher than the 

average Si–O, O–O, and Si–Si bond distances (see vertical red dashed lines in Fig. 9-1(c)). This 
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indicates that, although forcefields relying on partial charges are in general able to properly predict 

the average positions of the peaks in the total PDF, some level of inaccuracy is observed on each 

edge of these peaks. This signals that, although the average bond length is a structural feature that 

is easily reproduced by all forcefields, the shape of each PDF peak (broadness, degree of 

asymmetry, etc.) is a more sensitive structural feature that can be used to discriminate “good” from 

“less good” forcefields. It is also noticeable that most of the error islands are located at short 

distance (around the average Si–O bond length) in the soft regime (qSi < 2.4), whereas additional 

error islands are found at larger distance (around the average O–O and Si–Si bond lengths) in the 

hard regime (qSi > 2.4). Importantly, we find that both the soft and strong forcefields offering 

maximum accuracy (indicated by white lines in Fig. 9-1(c)) largely avoid any error island, which 

explains why these two potentials correspond to two distinct local minima in the landscape of 

Buckingham forcefields for silica. 

 

Figure 9-2: Cost function R𝜒 calculated over the short-range (r < 2.1 Å) and higher-range 

orders (r > 2.1 Å) yielded by select Buckingham forcefields for liquid silica as a function of 

the partial charge of Si atoms qSi. The solid line is to guide the eye. The grey and white 

windows (qSi < 2.4 and qSi > 2.4) represent the soft and hard forcefield regimes, respectively. 

 

1.0 2.0 3.0 4.0
Silicon charge qSi  (e)

0

10

20

30

40

C
os

t f
un

ct
io

n 
R χ

 (%
)

Short-range order
Higher-range order

Soft Hard



 223 

We now further compare the ability of soft and hard potentials to properly describe the 

structure of silica at different scales. Based on the location of the error islands in Fig. 9-1(c), we 

define the “short-range order” (r < 2.1 Å) and the “higher-range order” (r > 2.1 Å) as being the 

ranges of correlation distances that are lower or higher than the boundary between the first and 

second coordination shells, respectively (see Fig. 9-1(b)). Figure 9-2 shows the partial cost 

function R𝜒 calculated over the short-range and higher-range correlation distance domains (rather 

than the entire distance domain in Fig. 9-1(a)) as a function of the Si partial charge qSi. Interestingly, 

we find that the short- and higher-range R𝜒 metrics exhibit a significantly different trend as a 

function of qSi. First, we observe that the short-range R𝜒 metric shows two distinct minima in the 

soft and hard domains. In this range of distances, the soft and hard forcefields offer a competitive 

accuracy. This result suggests that both soft and hard potentials relaying on partial charges are able 

to yield an accurate description at short-range order within the SiO4 units. In contrast, we observe 

that the higher-range R𝜒 metric monotonically increases with increasing qSi, which indicates that, 

in general, soft potentials offer a more accurate description of higher-distance structural correlation 

as compared to hard potentials. This finding echoes the fact that the recently proposed Carré–

Horbach–Ispas–Kob (CHIK) potential (i.e., a soft Buckingham potential with qSi = 1.91 [15,16]) 

offers an improved description of liquid silica as compared to the traditional BKS potential (i.e., a 

fairly hard Buckingham potential with qSi = 2.4 [14]). Overall, these results show that the structural 

order at distance larger than the first coordination shell is more sensitive to the quality of the 

forcefield than the short-range structural order. This also suggests that forcefield parameterization 

methods relying only on short-range order information (e.g., isolated clusters) may not be 

appropriate to properly describe the structure of silicate glasses. 
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(a) (b) 

Figure 9-3: (a) Si–O–Si partial bond angle distributions (PBADs) PSi–O–Si(𝜃) generated by the 

soft (qSi = 2.094) and hard potentials (qSi = 2.883). The data are compared with the reference 

PBAD yielded by ab initio molecular dynamics. (b) Si–O–Si angular peak position 𝜃Si–O–Si as 

a function of the Si partial charge qSi. The black line is to guide the eye. The blue dashed line 

(𝜃Si–O–Si = 136.25°) indicate the ab initio reference value. The grey and white windows (qSi < 

2.4 and qSi > 2.4) represent the soft and hard forcefield regimes, respectively. 
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fact that harder forcefields tend to favor the opening of the Si–O–Si angle due to the more intense 

Si–Si columbic repulsion. Overall, we find that, when compared with AIMD data (𝜃Si–O–Si = 

136.25°), hard potentials tend to overestimate the degree of opening of the Si–O–Si angle—which 

explains the improved ability of soft potentials to describe high-distance structural correlations in 

silica (see Fig. 9-2).  

Finally, we investigate how the Si partial charge affects the medium-range order structure 

of silica, which is captured by the ring size distribution. Figure 9-4(a) shows the ring size 

distribution generated by the soft and hard potentials, wherein the size of each ring represents the 

number of Si the ring is made of. Both distributions are compared with that obtained by AIMD. 

Overall, we find that both the soft and hard forcefields offer a reasonable description of the ring 

size distribution. However, we note that the ring distribution generated by the hard potential is 

sharper and centered around lower ring size as compared to the reference AIMD data. In detail, 

Fig. 9-4(b) shows the average ring size predicted by each forcefield as a function of the Si partial 

charge qSi. We observe that the average ring size decreases upon increasing qSi—that is, a trend 

that is opposite to that observed for the average Si–O–Si angle (see Fig. 9-3). This can be 

understood as follows. At constant Si–O bond length and constant ring size (in terms of number 

of Si atoms), the increase in the average Si–O–Si angle upon increasing qSi would result in an 

increase in the average ring diameter (since the average distance in between pairs of Si atoms 

increases). Since the density is here fixed, this increase in the average ring diameter upon 

increasing qSi at fixed ring size must be compensated by a decrease in ring size—so that the 

volumic density of Si atoms remains constant. Overall, we find that, when compared with AIMD 

data (average ring size = 7.35), very hard potentials tend to underestimate the average ring size, 

whereas, in contrast, very soft potentials tend to overestimate the average ring size. Altogether, 
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moderately soft potentials (qSi ≈ 2) offer the best description of the reference ring size distribution 

predicted by AIMD—which suggests that moderately soft potentials exhibit an optimal ability to 

properly describe the medium-range order structure of silica. 

  

(a) (b) 

 Figure 9-4: (a) Ring size distribution generated by the soft (qSi = 2.094) and hard potentials 

(qSi = 2.883). The data are compared with the reference data yielded by ab initio molecular 

dynamics. The lines are to guide the eye. (b) Average ring size as a function of the Si partial 

charge qSi. The solid line is to guide the eye. The blue dashed line (average ring size of 7.35) 

indicates the reference value yielded by ab initio molecular dynamics. The grey and white 

windows (qSi < 2.4 and qSi > 2.4) represent the soft and hard forcefield regimes, respectively. 

 

We further assess the ability of the hard and soft potentials to properly describe the 

medium-range order structure of SiO2 by computing the neutron structure factor [45]. Indeed, 

although the structure factor contains the same information as the pair distribution function, it 

places more emphasis on the medium-range order. Figure 9-5 shows the neutron structure factor 

S(Q) offered by the soft and hard potentials. Both data are compared with the reference neutron 

structure factor yielded by ab initio molecular dynamics. We observe that, in the short-range order 

(i.e., high-Q range, Q > 3 Å-1), both the soft and hard potentials present a very good agreement 
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with the ab initio reference. However, we find that the soft potential features a notably improved 

description of the medium-range order (i.e., low-Q range, Q < 3 Å-1) as compared to the hard 

potential. Overall, these results further demonstrate that, although both the soft and hard potentials 

present a competitive ability to describe the short-range order structure of silica, the soft potential 

offers a more realistic description of its medium-range order structure. 

 

Figure 9-5: Neutron structure factors S(Q) yielded by the soft (qSi = 2.094) and hard potentials 

(qSi = 2.883). The data are compared with the reference S(Q) obtained from ab initio molecular 

dynamics. 

 

Finally, we discuss the potential origin of the “bistability” observed herein in the forcefield 

landscape, namely, the fact that the landscape features two distinct, yet fairly competitive minima 

(see Fig. 9-1(a)). First, we note that, in the present case, the parameters of the Buckingham 

potential are not mutually dependent. The two optimal parameterizations identified herein (i.e., 

hard and soft) yield two distinct overall potential shapes—that is, the landscape bistability cannot 

be understood in terms of counterbalancing effect between parameters. This is a consequence of 

the fact that, due to their significantly different shapes, variations in the short-range Buckingham 

interactions (i.e., exponential and van der Waals terms) cannot be fully counterbalanced by some 
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variations in the Coulombic term. Rather, we hypothesize that the present bistability arises from 

the simple 2-body formulation of the Buckingham potential. 

Indeed, an accurate forcefield for SiO2 must yield accurate values for the O–Si–O and Si–

O–Si angles. In the case of a 2-body potential like the present one, these angles are not directly 

constrained but, rather, their value is fixed via a combination of 2-body interactions. Although the 

average value of the O–Si–O intratetrahedral angle (i.e., 109°) is easily fixed from the strong 

mutual Coulombic repulsion between the O neighbors, the average value of the intertetrahedral 

Si–O–Si angle is more sensitive to the quality of the potential. The average value of the Si–O–Si 

angle is governed by a subtle competition between Si–Si Coulombic repulsion and Si–O long-

range attraction (i.e., in between neighboring SiO4 tetrahedra). Based on this competition, an 

accurate forcefield must exhibit an optimal balance between its abilities (i) to properly describe 

the short-range structure of SiO4 tetrahedra and (ii) to offer a realistic description of longer-range 

intertetrahedra interactions. The fact that the Buckingham potential relies on a fixed analytical 

form does not make it possible to independently tune short- and longer-range interactions, which 

may explain the fact that several sets of parameters will offer competitive accuracies—that is, by 

achieving different balances between the abilities to properly describe the short- and medium-

range structure of SiO2. Based on this idea, we hypothesize that the “degeneracy” in the forcefield 

parameterization could be overcome by inserting some additional 3-body terms, which would offer 

an additional degree of freedom to independently tune intra- and inter-SiO4 tetrahedra interactions. 

Nevertheless, the insertion of additional forcefield terms comes with a cost, since it necessarily 

increases the complexity of the forcefield and associated computing burden, and can also result in 

a risk of overfitting—which, in turn, can impact the transferability of the forcefield [12]. 

Additional studies are clearly needed to rigorously explore these hypotheses. 
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9.4 Conclusions 

Overall, these results further confirm that, in the absence of any 3-body angular energy 

terms, empirical forcefields relying on partial charges offer an improved description of the atomic 

structure of silica as compared to forcefields relying on formal charges—so that the use of partial 

charges offers a critical degree of freedom to parameterize accurate interatomic forcefields for 

silicate systems. To this end, our machine-learning-based parameterization approach offers an 

efficient route to systematically sample the landscape of Buckingham potentials with fixed partial 

charges for silica. As a major outcome of this work, we find that such potentials can be formally 

divided into soft and hard based on the value of the partial charges—wherein these two families 

of forcefield occupy two distinct basins in the landscape of Buckingham potentials for silica. 

Although, when properly parameterized, soft and hard potentials offer a competitive description 

of the short-range order structure, we argue that soft potentials feature an enhanced ability to 

realistically describe the medium-range order of silica. 

 

  



 230 

9.5 References 

[1] C. Massobrio, ed., Molecular dynamics simulations of disordered materials: from 
network glasses to phase-change memory allyos, Springer, Cham Heidelberg, 2015. 

[2] H. Liu, Z. Fu, K. Yang, X. Xu, M. Bauchy, Machine learning for glass science and 
engineering: A review, Journal of Non-Crystalline Solids: X. 4 (2019) 100036. 
https://doi.org/10.1016/j.nocx.2019.100036. 

[3] J.C. Mauro, Decoding the glass genome, Current Opinion in Solid State and Materials 
Science. 22 (2018) 58–64. https://doi.org/10.1016/j.cossms.2017.09.001. 

[4] M. Bauchy, Deciphering the atomic genome of glasses by topological constraint theory 
and molecular dynamics: A review, Computational Materials Science. 159 (2019) 95–
102. https://doi.org/10.1016/j.commatsci.2018.12.004. 

[5] J. Du, Challenges in Molecular Dynamics Simulations of Multicomponent Oxide 
Glasses, in: C. Massobrio, J. Du, M. Bernasconi, P.S. Salmon (Eds.), Molecular 
Dynamics Simulations of Disordered Materials: From Network Glasses to Phase-Change 
Memory Alloys, Springer International Publishing, Cham, 2015: pp. 157–180. 
https://doi.org/10.1007/978-3-319-15675-0_7. 

[6] L. Huang, J. Kieffer, Challenges in Modeling Mixed Ionic-Covalent Glass Formers, in: 
C. Massobrio, J. Du, M. Bernasconi, P.S. Salmon (Eds.), Molecular Dynamics 
Simulations of Disordered Materials: From Network Glasses to Phase-Change Memory 
Alloys, Springer International Publishing, Cham, 2015: pp. 87–112. 
https://doi.org/10.1007/978-3-319-15675-0_4. 

[7] J.A. Harrison, J.D. Schall, S. Maskey, P.T. Mikulski, M.T. Knippenberg, B.H. Morrow, 
Review of force fields and intermolecular potentials used in atomistic computational 
materials research, Applied Physics Reviews. 5 (2018) 031104. 
https://doi.org/10.1063/1.5020808. 

[8] D.W. Brenner, The Art and Science of an Analytic Potential, Physica Status Solidi (b). 
217 (2000) 23–40. https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<23::AID-
PSSB23>3.0.CO;2-N. 

[9] P. Comba, R. Remenyi, Inorganic and bioinorganic molecular mechanics modeling—the 
problem of the force field parameterization, Coordination Chemistry Reviews. 238–239 
(2003) 9–20. https://doi.org/10.1016/S0010-8545(02)00286-2. 

[10] H. Liu, Z. Fu, Y. Li, N.F.A. Sabri, M. Bauchy, Parameterization of empirical forcefields 
for glassy silica using machine learning, MRS Communications. (2019) 1–7. 
https://doi.org/10.1557/mrc.2019.47. 

[11] E. Iype, M. Hütter, A.P.J. Jansen, S.V. Nedea, C.C.M. Rindt, Parameterization of a 
reactive force field using a Monte Carlo algorithm, Journal of Computational Chemistry. 
34 (2013) 1143–1154. https://doi.org/10.1002/jcc.23246. 



 231 

[12] H. Liu, Z. Fu, Y. Li, N.F.A. Sabri, M. Bauchy, Balance between accuracy and simplicity 
in empirical forcefields for glass modeling: Insights from machine learning, Journal of 
Non-Crystalline Solids. 515 (2019) 133–142. 
https://doi.org/10.1016/j.jnoncrysol.2019.04.020. 

[13] J. Wang, P.A. Kollman, Automatic parameterization of force field by systematic search 
and genetic algorithms, Journal of Computational Chemistry. 22 (2001) 1219–1228. 
https://doi.org/10.1002/jcc.1079. 

[14] B.W.H. van Beest, G.J. Kramer, R.A. van Santen, Force fields for silicas and 
aluminophosphates based on ab initio calculations, Physical Review Letters. 64 (1990) 
1955–1958. https://doi.org/10.1103/PhysRevLett.64.1955. 

[15] A. Carré, J. Horbach, S. Ispas, W. Kob, New fitting scheme to obtain effective potential 
from Car-Parrinello molecular-dynamics simulations: Application to silica, EPL. 82 
(2008) 17001. https://doi.org/10.1209/0295-5075/82/17001. 

[16] A. Carré, S. Ispas, J. Horbach, W. Kob, Developing empirical potentials from ab initio 
simulations: The case of amorphous silica, Computational Materials Science. 124 (2016) 
323–334. https://doi.org/10.1016/j.commatsci.2016.07.041. 

[17] S. Sundararaman, L. Huang, S. Ispas, W. Kob, New optimization scheme to obtain 
interaction potentials for oxide glasses, J. Chem. Phys. 148 (2018) 194504. 
https://doi.org/10.1063/1.5023707. 

[18] S. Izvekov, B.M. Rice, A new parameter-free soft-core potential for silica and its 
application to simulation of silica anomalies, The Journal of Chemical Physics. 143 
(2015) 244506. https://doi.org/10.1063/1.4937394. 

[19] Y. Yu, B. Wang, M. Wang, G. Sant, M. Bauchy, Revisiting silica with ReaxFF: Towards 
improved predictions of glass structure and properties via reactive molecular dynamics, 
Journal of Non-Crystalline Solids. 443 (2016) 148–154. 
https://doi.org/10.1016/j.jnoncrysol.2016.03.026. 

[20] L. Huang, J. Kieffer, Amorphous-amorphous transitions in silica glass. I. Reversible 
transitions and thermomechanical anomalies, Phys. Rev. B. 69 (2004) 224203. 
https://doi.org/10.1103/PhysRevB.69.224203. 

[21] M.S. Shell, P.G. Debenedetti, A.Z. Panagiotopoulos, Molecular structural order and 
anomalies in liquid silica, Phys. Rev. E. 66 (2002) 011202. 
https://doi.org/10.1103/PhysRevE.66.011202. 

[22] M. Wang, N.M.A. Krishnan, B. Wang, M.M. Smedskjaer, J.C. Mauro, M. Bauchy, A 
new transferable interatomic potential for molecular dynamics simulations of borosilicate 
glasses, Journal of Non-Crystalline Solids. 498 (2018) 294–304. 
https://doi.org/10.1016/j.jnoncrysol.2018.04.063. 



 232 

[23] A. Pedone, G. Malavasi, M.C. Menziani, A.N. Cormack, U. Segre, A New Self-
Consistent Empirical Interatomic Potential Model for Oxides, Silicates, and Silica-Based 
Glasses, J. Phys. Chem. B. 110 (2006) 11780–11795. https://doi.org/10.1021/jp0611018. 

[24] L. Deng, J. Du, Development of boron oxide potentials for computer simulations of 
multicomponent oxide glasses, Journal of the American Ceramic Society. 102 (2019) 
2482–2505. https://doi.org/10.1111/jace.16082. 

[25] O. Gedeon, Molecular dynamics of vitreous silica — Variations in potentials and 
simulation regimes, Journal of Non-Crystalline Solids. 426 (2015) 103–109. 
https://doi.org/10.1016/j.jnoncrysol.2015.07.006. 

[26] A. Takada, P. Richet, C.R.A. Catlow, G.D. Price, Molecular dynamics simulations of 
vitreous silica structures, Journal of Non-Crystalline Solids. 345–346 (2004) 224–229. 
https://doi.org/10.1016/j.jnoncrysol.2004.08.247. 

[27] T.F. Soules, G.H. Gilmer, M.J. Matthews, J.S. Stolken, M.D. Feit, Silica molecular 
dynamic force fields—A practical assessment, Journal of Non-Crystalline Solids. 357 
(2011) 1564–1573. https://doi.org/10.1016/j.jnoncrysol.2011.01.009. 

[28] B.J. Cowen, M.S. El-Genk, On force fields for molecular dynamics simulations of 
crystalline silica, Computational Materials Science. 107 (2015) 88–101. 
https://doi.org/10.1016/j.commatsci.2015.05.018. 

[29] J. Du, A.N. Cormack, The medium range structure of sodium silicate glasses: a molecular 
dynamics simulation, Journal of Non-Crystalline Solids. 349 (2004) 66–79. 
https://doi.org/10.1016/j.jnoncrysol.2004.08.264. 

[30] L.V. Woodcock, C.A. Angell, P. Cheeseman, Molecular dynamics studies of the vitreous 
state: Simple ionic systems and silica, The Journal of Chemical Physics. 65 (1976) 1565–
1577. https://doi.org/10.1063/1.433213. 

[31] A. Yaseen, H. Ji, Y. Li, A load-balancing workload distribution scheme for three-body 
interaction computation on Graphics Processing Units (GPU), Journal of Parallel and 
Distributed Computing. 87 (2016) 91–101. https://doi.org/10.1016/j.jpdc.2015.10.003. 

[32] H. Liu, Z. Fu, Y. Li, N.F.A. Sabri, M. Bauchy, Machine Learning Forcefield for Silicate 
Glasses, ArXiv:1902.03486 [Cond-Mat]. (2019). http://arxiv.org/abs/1902.03486 
(accessed March 3, 2019). 

[33] C.J. Fennell, J.D. Gezelter, Is the Ewald summation still necessary? Pairwise alternatives 
to the accepted standard for long-range electrostatics, The Journal of Chemical Physics. 
124 (2006) 234104. https://doi.org/10.1063/1.2206581. 

[34] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of 
Computational Physics. 117 (1995) 1–19. https://doi.org/10.1006/jcph.1995.1039. 

[35] N.P. Bansal, R.H. Doremus, Handbook of Glass Properties, Elsevier, 2013. 



 233 

[36] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, 
J. Chem. Phys. 81 (1984) 511–519. https://doi.org/10.1063/1.447334. 

[37] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy 
calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169–11186. 
https://doi.org/10.1103/PhysRevB.54.11169. 

[38] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave 
method, Phys. Rev. B. 59 (1999) 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758. 

[39] D. Hobbs, G. Kresse, J. Hafner, Fully unconstrained noncollinear magnetism within the 
projector augmented-wave method, Phys. Rev. B. 62 (2000) 11556–11570. 
https://doi.org/10.1103/PhysRevB.62.11556. 

[40] R.M. Van Ginhoven, H. Jónsson, L.R. Corrales, Silica glass structure generation for ab 
initio calculations using small samples of amorphous silica, Phys. Rev. B. 71 (2005) 
024208. https://doi.org/10.1103/PhysRevB.71.024208. 

[41] S. Le Roux, P. Jund, Ring statistics analysis of topological networks: New approach and 
application to amorphous GeS2 and SiO2 systems, Computational Materials Science. 49 
(2010) 70–83. https://doi.org/10.1016/j.commatsci.2010.04.023. 

[42] C.E. Rasmussen, C.K.I. Williams, Gaussian processes for machine learning, 3. print, MIT 
Press, Cambridge, Mass., 2008. 

[43] P.I. Frazier, J. Wang, Bayesian Optimization for Materials Design, in: Information 
Science for Materials Discovery and Design, Springer, Cham, 2016: pp. 45–75. 
https://doi.org/10.1007/978-3-319-23871-5_3. 

[44] A.C. Wright, The comparison of molecular dynamics simulations with diffraction 
experiments, Journal of Non-Crystalline Solids. 159 (1993) 264–268. 
https://doi.org/10.1016/0022-3093(93)90232-M. 

[45] M. Bauchy, Structural, vibrational, and elastic properties of a calcium aluminosilicate 
glass from molecular dynamics simulations: The role of the potential, The Journal of 
Chemical Physics. 141 (2014) 024507. https://doi.org/10.1063/1.4886421. 

 

  



 234 

 

 

 

 

Section C. Integration of Machine Learning and Simulations: 

Toward Next-Generation Materials Modeling 

 

 

C3. Gain New Physics Knowledge: Deciphering Complex Simulation 

Data by Machine Learning 

 

  



 235 

Chapter 10. Finding Needles in Haystacks: Deciphering a Structural 

Signature of Glass Dynamics by Machine Learning 

10.1 Introduction 

The origin and nature of glass dynamics—i.e., the dynamic motion of the atoms in the 

glassy state—have remained mysterious for centuries [1–3]. A prominent example of this mystery 

is manifested as the ubiquitous-yet-indefinite relaxation behaviors of glasses at room temperature 

[4–6]. Indeed, the dynamics of the atoms governs various dynamical and transport properties of 

the glass [7,8], including viscosity [9,10], thermal conductivity [11,12], ion diffusivity [13,14], etc. 

In that regard, understanding the key structural features that control atom dynamics would 

facilitate the rational design of “tailored” glasses [15,16]. However, due to the complex and 

disordered nature of glass structures [17,18], pinpointing which structural features (if any) govern 

dynamics is essentially a “needle-in-a-haystack” problem [19–21], since intuitive structural 

metrics (e.g., local packing or coordination number) are often only weakly correlated with 

dynamics [22–24]. As a result, a long-standing debate exists in whether glass dynamics is in some 

way encoded in the static glass structure[25]. 

As an emergent thrust to discover hidden patterns in complex, multidimensional data [26–

28], machine learning (ML) has become a new paradigm to unveil the nature of the linkages 

between glass dynamics and its static structure—without the need for any prerequisite intuition 

regarding which structural feature(s) could be influential [25,29–31]. In particular, Cubuk et al. 

recently used classification-based ML to extract a non-intuitive structural fingerprint (named 

“softness”), which is strongly correlated with the probability of a particle to exhibit some 

rearrangement upon loading or spontaneous relaxation [31–34]. Nevertheless, due to the intrinsic 

complexity of the ML model, our understanding of how glass dynamics is controlled by its static 
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structure is still limited [25,31]. Specifically, although a few studies revealed that more “liquid-

like” local neighborhoods tend to enhance atom mobility [24,31,33], it remains elusive what types 

of structural features is key to determine its “liquid-like” level and therefore control atom mobility 

in glasses[35–38]. Moreover, as the ML approach has thus far been applied to only some simple 

and small glass systems that may not capture the complex chemistry of more realistic ionocovalent 

oxide glasses[39–42], little is known about the level of correlation between glass dynamics and its 

static structure in more complex real-world glasses [30–32]. 

Here, inspired by the softness approach [31–33], we introduce a slightly revised definition 

for softness (relying on logistic regression and radial features, see below)—which we recently 

proposed to successfully predict creep dynamics of silicate gels from their static structure [43]—

and apply it to investigate ion mobility in sodium silicate glasses, an archetypal glass with 

relevance in various fields such as household window [1,2], display screen [16,44], magmatic rock 

[10], and battery electrolyte [45,46]. It is worth to mention that, by conducting million-atom 

molecular dynamics simulations, we pioneeringly extend the softness approach to investigate a 

more realistic and larger glass system than ever before (< 104 atoms) [32,35,39]. Indeed, we find 

that the Na atom mobility is largely encoded in its initial softness, where softer Na atom exhibits 

higher mobility. Importantly, the use of logistic regression allows us to interpret the machine-

learned softness metric. By decoding the softness, we conclude that the sodium ion mobility is 

highly controlled by the local density of defect oxygen neighbors that are located in between the 

first and second coordination shells. 
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10.2 Methods 

To establish our conclusions, we simulate the spontaneous relaxation process of a 

(Na2O)30(SiO2)70 glass. First, we construct a large configuration that contains 1 million atoms (i.e., 

205,800 Na atoms) in a cubic box with periodic boundary conditions and a side length of 241 Å, 

in agreement with the experimental density (2.466 g/cm3) [47]. The interatomic potential adopted 

herein is the well-established Teter potential [14,47,48], which has been demonstrated to offer an 

accurate description of various structural, dynamical, and thermodynamical properties of silicate 

glasses [10,12,47,49]. The NVT ensemble is applied in all simulations, and the timestep is fixed as 

1 fs. The system is initially melted at 4000 K for 100 picoseconds. The glass is prepared by melt 

quenching from 4000 K to 700 K with a cooling rate of 1 K/ps. Finally, we conduct the relaxation 

simulation of the glass at 700 K for 50 picoseconds and track the location of atoms (Na) over time. 

This temperature is large enough to activate the motion of Na atom but simultaneously low enough 

to ensure that Si and O network-forming atoms remain largely immobile within the time of the 

simulation. All simulations are performed by using the LAMMPS code [50]. 

 

10.3 Results and Discussion 

Figure 10-1 shows the distribution of the Na atoms’ displacement D at the end of the 

relaxation simulation. D is calculated as the distance between the atom’s initial and final position 

during the relaxation. Notably, the distribution profile features two peaks associated with two atom 

ensembles—namely, the ensemble of immobile (D < D0) and mobile (D ≥ D0) Na atoms, 

respectively, wherein D0 is the threshold displacement that distinguishably separate the two peaks 

(herein, D0 = 2 Å, i.e., the local minimum between the two peaks), and the two ensembles represent 

the populations of Na atoms that are (i) simply vibrating while being remaining trapped in their 
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local pocket and (ii) Na atoms that have jumped to another pocket during the time of the simulation, 

respectively [13]. In the following, we use this threshold D0 to classify Na atoms as immobile (low 

displacement) or mobile (high displacement). Based on this threshold, about 39.7% Na atoms are 

classified as mobile during the relaxation. Note, however, that the following analysis is largely 

insensitive to small variations of the selected threshold and does not significantly depend on the 

arbitrary choice of this threshold displacement. 

 

Figure 10-1: Distribution of the Na atoms’ displacement D in a (Na2O)30(SiO2)70 glass at the 

end of the relaxation simulation. The system contains 205,800 Na atoms and is relaxed at a 

constant temperature (700 K) and volume for 50 picoseconds. The green dash refers to a 

selected threshold displacement D0 = 2 Å that discriminates mobile Na atoms from immobile 

Na atoms. The inset is a colormap of the Na atoms’ displacement in the bonded silicate 

network.  
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following the example of the softness approach [31–33], we construct by machine learning a 

structural quantity that is correlated with the mobility of Na atoms during the relaxation process. 

Briefly, based on the present simulation, we first build a dataset that contains 205,800 Na atoms 

from the large (Na2O)30(SiO2)70 glass configuration simulated herein, where 70% of the Na atoms 

serve as training set. Note that the size of the training set has been proved to be large enough to 

eliminate the risk of sample deficiency for the ML model training. Then, all Na atoms are labeled 

as mobile (D ≥ D0) or immobile (D < D0) by comparing their displacement D with the threshold 

displacement D0 at the end of the relaxation simulation. We then train a classifier to identify an 

optimal classification hyperplane that separates mobile from immobile Na atoms in a standardized 

Nr-dimensional classification space, as illustrated in Fig. 10-2a. Here, the Nr input features (i.e., 

the classification space) of the classifier is constructed by computing (based on the initial static 

structure, before the relaxation simulation) a series of Nr radial order parameters G(i; r) that 

describe the local oxygen density of each Na atom i at different distances r [33,43]: 

𝐺(𝑖; 𝑟) = ∑ 𝑒9(x&'9%)L §L⁄
#                              Eq. (10-1) 

where j refers to the neighbor O atom of Na atom i within a cutoff distance RG (here, RG = 8 Å 

[33,51]), Rij is the distance between the atom i and j, and L is the standard deviation of the Gaussian 

functions centered around r (here, L = 0.2 Å [33,51]). Overall, we calculate for each Na atom a 

series of G(i; r) ranging from r = 1.6 Å to r = 6.4 Å with an increment of 0.3 Å [33,51], and the 

ensemble of these metrics offers an unbiased fingerprint of the local radial order around each Na 

atom. 
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(a) (b) (c) 

Figure 10-2: (a) Schematic of the classification model used to separate mobile Na atoms (red 

circle) from immobile Na atoms (blue square) using a classification hyperplane (green line). 

The input features are constructed by a series of Nr structural order parameters G(i; r) that 

describe the local oxygen density of each Na atom i at different distances r (see Eq. (10-1)). 

For illustration purpose, here, two input features associated with the distances r1 = 2.36 Å and 

r2 = 4.68 Å (i.e., the average distance of the first and second coordination shell, respectively) 

are selected to represent the Nr-dimensional feature space. The hyperplane is identified by 

logistic regression. (b) Distribution density of the Na atoms’ final displacement D and initial 

softness S. The softness S is defined as the orthogonal distance between the atom and the 

hyperplane in classification space (see panel (a)). Mobile and immobile atoms correspond to 

positive and negative S, respectively. The dataset contains 205,800 Na atoms from a large 

(Na2O)30(SiO2)70 configuration with 39.7% mobile Na (D ≥ D0) and is randomly divided into 

the training (70%) and test sets (30%). (c) Final average Na atom displacement ‹D› of the 

training and test sets as a function of their initial softness S. The blue line is a power fit to 

guide the eye. 
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Unlike the original softness approach that uses as inputs both radial and angular order 

features [31–33], we here solely focus on radial features capturing 2-body correlations around each 

Na atom. This is key to ensure that the new softness metric remains highly interpretable (see 

below). Note that, since the Na–O interaction is nondirectional, incorporating angular 3-body order 

parameters does not notably increase the classification accuracy, in agreement with previous 

studies in Lennard-Jones systems [31,34]. In that regard, limiting the number of input features also 

ensures that the model does not become overfitted. Moreover, as an alternative to the support 

vector machine-based classifying technique adopted by the original softness approach [31–33], we 

use logistic regression to build the classifier [52], which offers great model simplicity, accuracy, 

and interpretability [43,52]. Indeed, logistic regression directly provides the probability of a given 

atom to be mobile or immobile. In addition, it embeds regularization to limit the risk of overfitting. 

Importantly, the classification hyperplane determined by logistic regression is linear, which makes 

it possible to easily assess the importance of each feature. We also expect that the linear nature of 

the hyperplane is key to enhance the extrapolability of the classification model. 

We now analyze the outcome of the classification. For each Na atom, we extract a synthetic, 

local structural quantity “softness” from the classifier, where the softness S is defined as the 

orthogonal distance between the atom and the hyperplane in classification space (see Fig. 10-2a), 

and mobile and immobile atoms correspond to positive and negative values of S, respectively. 

Figure 10-2b shows the distribution density of the Na atoms’ final displacement D and initial 

softness S. We find that the softness sign (S > 0 or S < 0) can properly separate mobile (D ≥ D0) 

and immobile (D < D0) Na atoms with a decent classification accuracy of ~63% for both the 

training and test sets. Note that the accuracy remains limited as a large number of soft Na atoms 

(S > 0) remain trapped in the “cage effect” (D < D0) under the fairly low relaxation temperature 
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selected herein [13]. It should be pointed out that, in contrast, at elevated temperature, the static 

structure tends to lose its predictivity of the long-time glass dynamics as the system quickly loses 

the memory of its initial structure [25]. Further, Figure 10-2c shows the final average Na atom 

displacement ‹D› of both the training and test sets as a function of their initial softness S. 

Interestingly, we find that the magnitude of Na atom displacement features a power-law 

dependance on softness, where softer Na atoms exhibits larger displacement during the relaxation, 

and vice versa. This power-law correlation is likely rooted in an intimate link between Na atom 

softness and the energy barrier for the atom to rearrange during relaxation (see below), which 

echoes recent studies that reveal a generic power-law relationship between particle displacement 

and the associated energy barrier to overcome in disordered materials [53,54]. 

For Na atoms belonging to the test set, it is notable that the degree of correlation remains 

high between their softness and dynamics. Figure 10-3a shows a snapshot of the predicted Na atom 

softness in a new 3000-atom (Na2O)30(SiO2)70 glass that is simulated herein as a fully independent 

test set. The distribution of softness (both for all Na atoms and for mobile Na atoms in the glass) 

is provided in Fig. 10-3b. We find that the classification accuracy is satisfactory as ~64% of the 

mobile Na atoms indeed exhibit a positive softness (S > 0). Further, we calculate the probability 

PR(S) of a Na atom to rearrange (D ≥ D0) as a function of its initial softness S (Fig. 10-3c). 

Interestingly, we find that PR(S) exhibits an exponential dependance on S, as following an activated 

process [55,56]: 

𝑃x(𝑆) = 𝑃*exp(𝛽𝑆)                                         Eq. (10-2) 

where 𝑃*  and 𝛽  are some fitting parameters. In accordance with the power-law correlation 

between the Na atoms’ final displacement D and initial softness S (see Fig. 10-2c), this exponential 

correlation between PR(S) and S suggests that the structural quantity S is closely related to (and 
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might be indicative of) the energy barrier associated with Na atom rearrangement [31,42,57], as 

suggested in a recent study of the creep dynamics of gels [43]. Note that softness is calculated 

based on the sole knowledge of the initial structure, whereas the Na atom displacement is computed 

at the end of the relaxation simulation. The high degree of correlation between initial softness and 

final displacement clearly illustrates the intimate link between glass dynamics and its initial static 

structure. 

   

(a) (b) (c) 

Figure 10-3: (a) Snapshot of the predicted Na atom softness S for a new, independent test 

(Na2O)30(SiO2)70 glass. The system contains 600 Na atoms as a test set. (b) Distribution of the 

softness of all Na atoms (black) and mobile Na atoms (red) in the glass. The orange area 

represents the properly predicted soft Na atoms (S > 0) within the mobile Na atoms. (c) 

Logarithm of the probability log(PR(S)) of a Na atom to rearrange (D ≥ D0) as a function of its 

initial softness S. The red line is an exponential fit following Eq. (10-2). 
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wherein w(r) and b are the coefficients and the bias of the logistic regression model, respectively. 

Note that, all input features G(i; r) have been standardized (before training) so that the coefficients 

are directly indicative of the relative importance of each feature in the classification. Namely, a 

large absolute value for w(r) refers to a fairly orthogonal hyperplane to the axis associated with 

the corresponding feature G(i; r). In addition, the positive and negative sign of the coefficients w(r) 

is informative as it indicates that increasing values of the feature G(i; r) tend to result in increased 

and decreased softness values, respectively. 

Figure 10-4a shows the coefficients w(r) of the logistic regression classifier as a function 

of the distance r, wherein the absolute value of w(r) denotes how influential the feature G(i; r) is 

on determining the atom softness. We find that the most influential feature is associated with the 

distance rm that corresponds to the region that is located between the peak positions r1 and r2 of, 

respectively, the 1st and 2nd coordination shells of the Na–O partial pair distribution function gNa–

O(r) (see the upper panel of Fig. 10-4). Note that w(r) is negative at the distance rm as well as at all 

other distances. Although the absolute values of w(r) at other distances are smaller and approaches 

zero when r is larger than r2, we notice that the features G(i; r) that are associated with distances r 

that are close to rm (in between r1 and r2) contribute significantly more than other features to 

determine softness (see the grey window in Fig. 10-4). Namely, a “defect” oxygen neighbor 

located in this extent of distances (i.e., in between the first and second coordination shells) tends 

to greatly reduce the Na atom’s mobility (see blue particle in Fig. 10-4a), although all oxygen 

neighbors within the first two coordination shells synergically reduce the mobility of the central 

Na atom. The key role played by the “defect” oxygen neighbors at the inter-shell region is to 

occupy those potential empty jumping sites around the central Na atom so as to block the Na 

atom’s motion within the displacement threshold (D < D0).  
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(a) (b) 

Figure 10-4: (a) Weight coefficient w(r) of the classification hyperplane (see Fig. 10-2a) at 

different distances r. The red line is to guide the eyes. The partial Na–O pair distribution 

function gNa–O(r) of the glass is added in the top panel as reference. The distance r1 and r2 are 

associated with the peak position of the 1st and 2nd coordination shell of gNa–O(r), respectively. 

The grey window indicates the range of large weights. The inset illustrates the local oxygen 

(purple sphere) environments around (i) a soft Na atom (red sphere) and (ii) a “harder” Na 

atom (blue sphere) with an extra O atom (gold sphere) in between the 1st and 2nd coordination 

shells (green halo). (b) Na atom softness S as a function of their Voronoi volume V and 

coordination number CN. The color coding is based on a linear interpolation between the 

datapoints in the Na atom dataset. 
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around them, which promotes Na atom mobility (see red particle in Fig. 10-4a). Further, Figure 

10-4b illustrates the dependance of Na atoms’ softness S on their Voronoi volume V and 

coordination number CN. Overall, larger CN and smaller V values tend to favor smaller softness. 

However, we nevertheless observe that softness is a complex, nonmonotonic function of CN and 

V. Indeed, we find that the classifier trained by the sole knowledge of the Na atom Voronoi volume 

offers a very limited accuracy of ~50% as compared to that offered by the softness metric (~63% 

accuracy). Similarly, training a classifier based on the sole knowledge of the Na atom coordination 

number yields an accuracy of ~52%, wherein both low and high-coordination atoms are very likely 

to be classified as soft. This indicates that, although they offer an intuitive interpretation of the 

origin of Na mobility, the coordination number and Voronoi volume metrics do not fully capture 

the propensity of Na to reorganize. This exemplifies the benefit of using an unbiased machine 

learning approach to build the set of input features, since intuitive structural features show only 

limited correlation with dynamical properties. 

 

10.4 Conclusions 

Overall, these results highlight the ability of machine learning to analyze large amounts of 

complex data and decode previously hidden correlations—here, between the dynamics of a glass 

and its initial static structure. It is notable that our approach allows us to predict the dynamics of a 

realistic, complex oxide glass based on the sole knowledge of the machine-learned softness metric. 

The interpretation of the softness metric defined herein (see Fig. 10-4a) suggests that the mobility 

of sodium atoms in silicate glasses is strongly anticorrelated with the local density of defect oxygen 

neighbors that are located in between the 1st and 2nd coordination shells. Machine learning 
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therefore offers a promising route to decode the complex relationship between structure and 

properties in disordered, out-of-equilibrium phases. 
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Chapter 11. Predicting the Early-Stage Creep Dynamics of Gels 

from Their Static Structure by Machine Learning 

11.1 Introduction 

When subjected to a sustained load, disordered solids (e.g., glasses, granular materials, or 

gels) tend to exhibit delayed, time-dependent creep deformations [1–3]. Although creep can occur 

in many types of materials (e.g., metals or ceramics, primarily at high temperature [4,5]), it is 

especially pronounced in soft matter, e.g., colloidal gels [3,6,7]. In that regard, the viscoplastic 

deformation of calcium–silicate–hydrate gels (C–S–H, the binding phase of concrete) under 

constant load plays a key role in the built environment since it is responsible for concrete’s creep 

[7–10]. 

Despite the important, often detrimental role of creep in colloidal gels, its nanoscale origin, 

driving force, and mechanism remain debated [3,6,8]. In particular, it remains unclear whether the 

propensity of a disordered solid to creep could in some way be encoded in its static, unloaded 

structure [11]. This question is a manifestation of a more general gap in our understanding of how 

structure controls dynamics in disordered phases [6,11,12]. Indeed, due to the complex, disordered 

structure of glasses or gels [13,14], pinpointing which structural features govern dynamics is 

essentially a “needle-in-a-haystack” problem [15–17], since intuitive structural metrics (e.g., local 

packing or coordination number) are often only weakly correlated with dynamics [18,19]. 

Owing to its ability to discover relevant patterns in complex, multidimensional data, 

machine learning (ML) offers a new opportunity to revisit the nature of the linkages between 

structure and dynamics in disordered phases—without the need for any prerequisite intuition 

regarding which structural feature(s) could be influential [20,21]. In particular, Cubuk et al. 

recently extracted by ML a non-intuitive structural fingerprint (named “softness”), which is 
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strongly correlated with the probability of a particle to exhibit some rearrangement upon loading 

or spontaneous relaxation [12,15,22–26]. However, although softness has been shown to be 

correlated with near-future particle rearrangements, it has thus far been unable to offer insights 

into the long-time dynamics of disordered phases [11]. This has prevented the use of this approach 

to study creep, which can extend over several years [9]. 

Here, inspired by this softness approach, we introduce a slightly revised definition for 

softness (relying on a linear logistic regression model and radial features) and use this machine-

learned structural fingerprint to interrogate the existence of a causal link between structure and 

long-time creep. This approach reveals that the propensity of a colloidal gel to creep is encoded in 

its instantaneous, static structure. Importantly, we find that the softness metric captures the 

effective average energy barrier that the particles need to overcome to rearrange during creep—

which suggests that the softness metric offers a structural fingerprint of the topography of the 

energy landscape. Finally, the use of linear logistic regression allows us to offer a structural 

interpretation of this machine-learned predictor. 

 

11.2 Methods 

11.2.1 Archetypical gel model 

To establish our conclusions, we simulate an archetypical mesoscale model of a colloidal 

C–S–H gel [10,27,28]. The model gel is comprised of an ensemble of monodisperse spherical 

particles of 5 nm. The interaction between particles is described by a generalized Lennard-Jones 

potential with a minimum at distance 𝜎 = √2c� × 5 nm, which corresponds to the effective particle 

diameter. In detail, the potential is descried as [27]:  

𝑈"#D𝑟"#E = 4𝜀 GH$w
%&'
I
()
− H$w

%&'
I
)
K           Eq. (11-1) 
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where 𝜎* is the particle diameter (5 nm here), 𝛼 a parameter that controls the narrowness of the 

potential well (here, 𝛼 = 14), 𝑟"# the distance between the centers of a pair of particles 𝑖 and 𝑗, and 

𝜀  the depth of the potential energy well and 𝜀 = 𝐴*𝜎*+ , where 𝐴* = 𝑘𝐸  is a prefactor that is 

proportional to the Young’s modulus 𝐸  of a bulk C–S–H grain (here, 𝐸 = 63.6 GPa and 𝑘 =

0.002324). The potential defined in Eq. (11-1) exhibits a minimum at 𝑟, = √2- 𝜎* so that the 

effective diameter of a particle 𝑖 is here defined as 𝜎 = √2- 𝜎*. This model has been extensively 

studied and has been shown to offer a realistic description of the structure and mechanical 

properties of C–S–H gels [8,10,27–31]. 

 

11.2.2 Preparation of the gel configurations 

The gel configurations are generated by grand canonical Monte Carlo (GCMC) simulations, 

wherein particles are iteratively inserted until saturation into an initially empty cubic box of 600 

Å length with periodic boundary. Each GCMC step comprises of 5 attempts of particle insertions 

or deletions, followed by 500 attempts of random displacement of an existing particle. The 

temperature is fixed at T = 300 K and the excess chemical potential, controlling the probability of 

acceptance of the insertion attempts, is set to –2kBT. In detail, the probability of acceptance of the 

attempt is given by min{1, exp[−(Δ𝑈 − 𝜇𝛿) 𝑘B𝑇⁄ ]}, where 𝑘B is the Boltzmann constant, T the 

temperature, Δ𝑈 the variation in potential energy caused by the trial move, µ the chemical potential 

(fixed at –2𝑘B𝑇 based on Refs. [8,10,27–31], which ensures the formation of a realistic packed 

final structure within a reasonable simulation time), and 𝛿 the variation in the number of C–S–H 

grains [8,28,29]. The saturated configurations are then relaxed by molecular dynamics (MD) 

simulations with a timestep of 50 fs in the isothermal-isobaric (NPT) ensemble at 300 K and zero 

stress for 50 ns to release the macroscopic tensile pressure formed during the GCMC simulation. 
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Finally, the configurations are subjected to an energy minimization to reach their inherent structure. 

Note that the GCMC ensemble adopted herein aims to mimic the precipitation process of colloidal 

C–S–H gels and has been shown to offer a realistic description of the structure and packing density 

of disordered C–S–H gels [8,10,27–31]. Based on the system size considered herein, we typically 

get a number of particles np ≈ 1700 at saturation, which corresponds to a packing density 𝜑 ≈ 0.63. 

Using this methodology, we simulate 10 independent configurations for statistical averaging. All 

simulations are performed by using the Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) code [32]. 

 

11.2.3 Accelerated creep simulations 

Since a direct MD simulation of the creep of colloidal gels is out of reach considering its 

extended timescale, we adopt herein a recently introduced accelerated simulation technique 

[33,34], which has been shown to successfully model the creep of disordered phases [2,8]. This 

accelerated method relies on the application of small stress perturbations to accelerate relaxation 

[2,33,34]. In detail, we first apply a constant, sustained shear stress 𝜏* (here 𝜏* = 100 MPa) to 

induce a creep response within the gel. The creep response of the gel is simply a linear function of 

𝜏* , as long as 𝜏*  remains lower than the yield stress of the gel [8]. Small, cyclic shear stress 

perturbations ±∆τ (here ∆τ = 30 MPa) are then applied to accelerate the creep dynamics [8]. At 

each stress cycle, a constant-stress minimization of the energy is performed, wherein the system 

can adjust its shape and volume in order to reach the target stress. Effectively, this method mimics 

the accelerated relaxation exhibited by granular materials when subjected to vibrations [35]. The 

resulting acceleration of the dynamics arises from the fact that each stress perturbation slightly 

deforms the local energy landscape, which, in turn, can reduce the height of some energy barriers 
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that are locally accessible to the particles. This allows the system to jump over these barriers, 

thereby reaching a new energy basin within the landscape in an accelerated fashion [2,33,36]. Such 

particle reorganizations make it possible for the gel to exhibit some macroscopic viscoplastic 

deformation (i.e., creep) in order to accommodate the external sustained shear stress. Note that the 

average stress 𝜏* of 100 MPa used herein is notably lower than the yield stress of the system (~600 

MPa), so that no macroscopic flow of particles is observed. In addition, the stress perturbation 

amplitude ∆τ (± 30 MPa) is chosen to be large enough to accelerate the creep simulation, but low 

enough to avoid any rejuvenation [8]. The resulting creep modulus was shown to be independent 

of the specific value of this stress perturbation amplitude ∆τ [8]. Since the particle rearrangements 

induced by the stress perturbations are limited, the modeled gel remains in the primary creep stage 

(i.e., wherein the creep rate decays over time) without entering into the secondary steady-state 

stage (i.e., constant creep rate) or the final avalanche stage (i.e., acceleration of creep rate) [37,38].  

It should also be noted that the monodisperse colloidal gel considered herein is out-of-equilibrium 

and tends to easily crystalize at finite temperature. Nevertheless, no crystallization is observed 

during the creep simulations. All simulations are performed by using the LAMMPS code [32]. 

 

11.2.4 Non-affine squared displacement of the particles 

We calculate, for each particle i, the normalized non-affine squared displacement D2min/𝜎2 

at the Nth stress perturbation cycle (here, N = 106) with respect to the initial reference configuration 

(here, Nref = 1) using Eq. (11-2) [22,39]: 

𝐷min( 𝜎(⁄ (𝑖, 𝑁, 𝑁@?z) =
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                        Eq. (11-2) 

where Rij is the distance between particle i and j, particle j represents the neighbor of particle i 

within a cutoff distance Rc (here, Rc = 2𝜎 [39]), and ni is the total number of neighbor particles 
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within the range of Rc for each particle i. The quantity is minimized over choices of the local strain 

tensor Λi of particle i. Note that the quantity 𝛬"𝑅"#(𝑁@?z) represents the distance between particles 

i and j after an affine deformation resulting from the application of a local strain Λi to the initial 

interparticle distance 𝑅"#(𝑁@?z) . This consists in computing the L2-norm of the matrix 

multiplication between the local strain tensor Λi and the distance vector 𝑅"#(𝑁@?z)  between 

particles i and j at the Nrefth cycle: 

𝛬"𝑅"#(𝑁@?z) = ÓÔ
𝜆ee 𝜆ef 𝜆e±
𝜆fe 𝜆ff 𝜆f±
𝜆±e 𝜆±f 𝜆±±

Õ [𝑟e 𝑟f 𝑟±]²Ó

(

                        Eq. (11-3) 

where 𝜆ef is the strain component of Λi in the xy-axis plane and 𝑟e is the projection of the distance 

vector 𝑅"#(𝑁@?z) along the x-axis. The calculation of non-affine squared displacement D2min is 

implemented by using the OVITO software [40]. 

 

11.2.5 Average energy barrier of the particles 

To explore the topography of the potential energy landscape (PEL) of the initial static gel 

configuration (before any stress is applied), we adopt the activation-relaxation technique nouveau 

(ARTn) method [41]. Starting from a local minimum of PEL, the ARTn algorithm systematically 

searches for the saddle points and transition pathways that are accessible from this minimum. This 

allows us to compute the distribution of the energy barriers (i.e., difference of energy between the 

saddle point and the original local minimum) that are locally accessible to each particle. In detail, 

starting from the initial gel configuration (located in a local minimum of the PEL), the target 

particle and the first-coordination neighbors thereof are first activated with a random displacement 

so as to identify a direction of negative curvature that denotes the presence of a nearby saddle point 

within the energy landscape. The activated system is then relaxed toward the saddle point by 
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following the direction of the negative energy curvature until the curvature is smaller than a given 

threshold (0.1 𝜀 𝜎(⁄  herein). Finally, we compute the energy barrier associated with the target 

particle’s rearrangement by subtracting the energy of the saddle point with the initial minimum 

energy. As such, the ARTn method restricts its search of particle rearrangements to those going 

through well-defined saddle points and, hence, focuses on the tiny fraction of the configurational 

space that is physically accessible to the system. To estimate the local distribution of energy 

barriers that are accessible to each particle, we conduct 20 independent saddle point searches for 

each particle— which is here found to be large enough to ensure the convergence of the energy 

barrier distribution [42]. Based on this analysis, we then compute the average value Eave of the 

energy barriers that are accessible to each particle [43]. 

 

11.3 Results 

11.3.1 Long-time creep dynamics 

We adopt an accelerated simulation technique based on stress perturbations to simulate the 

long-time creep behavior of colloidal gels subjected to a sustained shear stress 𝜏* [33,34]. Details 

regarding the creep simulation can be found in the Methods section and in Ref. [8]. Figure 11-1a 

shows an example of shear strain 𝛾 evolution as a function of the number of stress perturbation 

cycles N. In agreement with previous works [8,9], our simulation predicts a logarithmic creep, 

which follows: 

𝛾(𝑁) = (𝜏* 𝐶⁄ )log(1 + 𝑁 𝑁*⁄ )                           Eq. (11-4) 

where C, the creep modulus, is a material constant [8] and N0 is a fitting parameter that is analog 

to a typical relaxation time [2,8]. Importantly, the creep modulus obtained from this method was 

shown to match experimental data obtained on C–S–H gels—which confirms that the creep 
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deformation induced by our accelerated method is similar to the one that would spontaneously 

occur over time [8]. 

  

(a) (b) 

Figure 11-1: (a) Shear strain 𝛾 as a function of the number of stress perturbation cycles of a 

colloidal C–S–H gel subjected to a constant shear stress 𝜏0. The dashed line is a logarithmic fit 

following Eq. (11-4). (b) Distribution of the normalized non-affine squared displacement 

D2min/𝜎2 for a shear strain 𝛾 = 1%. The red area highlights the tail of the distribution, i.e., its 

deviation from a Gaussian distribution (in grey). The inset shows the corresponding gel 

configuration, wherein the color of the particles denotes their D2min/𝜎2 value. The green dash 

line indicates the threshold (D2min,0/𝜎2) that is used herein to discriminate immobile (low 

displacement) from mobile (high displacement) particles. 

 

Since the present simulation successfully reproduces the macroscopic creep of C–S–H gels, 

we now further analyze the simulated trajectories to explore the particle-scale mechanism of 

creep—which is typically hidden from conventional experiments [8,9]. To this end, we compute 

the normalized non-affine squared displacement D2min/𝜎2 of each particle [22,39]—a metric that 

has been widely used to identify particle reorganizations under stress [12,44,45]. Details regarding 

the calculation of D2min/𝜎2 can be found in the Methods section. Figure 11-1b shows the 
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distribution of the D2min/𝜎2 values for a shear strain 𝛾 = 1%. We observe that the distribution is 

centered around a low displacement value (i.e., D2min/𝜎2 = 0.005), which corresponds to the 

population of particles that do not exhibit significant reorganizations upon creep. However, we 

note that the distribution also exhibits a long tail toward large displacement values, suggesting that 

a few select particles feature some significant reorganizations. In the following, we use a threshold 

normalized non-affine squared displacement of D2min,0/𝜎2 = 0.014 (corresponding to a 

displacement of about 12% of 𝜎) to classify particles as immobile (low displacement) or mobile 

(high displacement). Based on this threshold, about 7% of the particles are classified as mobile 

during the creep process. Note, however, that the following analysis does not significantly depend 

on the arbitrary choice of this threshold displacement. 

 

11.3.2 Particle mobility classification by machine learning 

We now investigate whether the propensity of a particle to be mobile or immobile (i.e., a 

dynamic property) could in some ways be encoded in its static initial structure (before loading). 

To this end, following the example of the softness approach [12,22], we construct by machine 

learning a structural quantity that is correlated to the propensity of a particle to exhibit a local 

rearrangement upon creep deformation. Briefly, we first construct a dataset composed of ~17,000 

particles obtained from 10 independent creep simulations (with 10 distinct initial configurations). 

Each system exhibits a similar distribution of D2min/𝜎2 at the end of creep simulation. From this 

dataset, 7 configurations serve as training set, while the remaining 3 configurations are used as test 

set. Each particle is classified as mobile (D2min/𝜎2 ≥ D2min,0/𝜎2) or immobile (D2min/𝜎2 < D2min,0/𝜎2) 

based on its final normalized non-affine squared displacement (at the end of the creep simulation). 

We then calculate a series of structural features for each particle based on the initial static structure 
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(before any stress is applied). In detail, we calculate for each particle i a series of Nr radial order 

parameters G(i; r) associated with different distances r: 

𝐺(𝑖; 𝑟) = ∑ 𝑒9(x&'9%)L §L⁄
#                             Eq. (11-5) 

where j refers to the neighbor particles of i within a cutoff distance RG (here, RG = 6𝜎 [22]), Rij is 

the distance between the particles i and j, and L is the standard deviation of the Gaussian functions 

centered around r (here, L = 0.04𝜎 [22]). In short, this metric is related to the local density of 

neighbors at a distance r from the central particle i, as averaged over a shell with a typical thickness 

L. We calculate for each particle i these Nr order parameters for varying r distances (ranging from 

0.6𝜎 to 3𝜎 with an increment of 0.04𝜎 [22]). All these features are standardized prior to any 

training [46]. Altogether, the ensemble of these metrics offers an unbiased fingerprint of the local 

radial order around each individual particle. We then train a classifier to identify the optimal 

hyperplane separating mobile from immobile particles within the Nr-dimensional space associated 

with the values of the Nr radial order parameters.  

In contrast to the original softness approach that uses both radial and angular order 

parameters as input features [12,22], we solely focus on features capturing radial 2-body 

correlations around each particle. This is key to ensure that the new softness metric remains highly 

interpretable (see Sec. 11.4.1). Note that, since the particles are monodisperse and do not exhibit 

any bond directionality, the incorporation of angular 3-body order parameters does not notably 

increase the accuracy of the classification model. In that regard, limiting the number of input 

features also allows us to ensure that the model does not become overfitted. Moreover, unlike the 

original softness approach based on the Support Vector Machine (SVM) classifier [12,22], we 

adopt logistic regression to build the classifier [46]. This classifying technique offers great model 

simplicity, accuracy, and interpretability. Indeed, logistic regression directly provides the 
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probability of a given particle to be mobile or immobile. In addition, it embeds regularization to 

limit the risk of overfitting. Importantly, the classification hyperplane determined by logistic 

regression is linear, which makes it possible to easily assess the importance of each feature. We 

also expect that the linear nature of the hyperplane is key to enhance the extrapolability of the 

classification model. 

Figure 11-2a illustrates the outcome of the classification, where we select as horizonal and 

vertical axis the two most influential features of the classification model (see Sec. 11.4.1) in order 

to illustrate a two-dimensional projection of the positions of the particles in the Nr-dimensional 

feature space. Each particle is then colored based on its relative non-affine squared displacement. 

Finally, Fig. 11-2a shows the hyperplane identified by logistic regression, which effectively 

discriminates mobile from immobile particles. Notably, we find that, based on the knowledge of 

the structural features, this classifier properly classifies particles as mobile or immobile with an 

accuracy of 75% and 70% for the training and test sets, respectively. Interestingly, this signals that 

the propensity for particles to dynamically rearrange during the long-time creep of the gel is largely 

encoded in its initial static structure (before any stress is applied). 

 

11.3.3 Machine-learned structural metric governing particles’ dynamics 

The softness S of each particle is then defined as the orthogonal distance from the 

hyperplane to its position in the Nr-dimensional feature space, wherein mobile (soft) and immobile 

(hard) particles are associated with positive and negative values of S, respectively. Figure 11-2b 

shows the distribution density of the particles’ normalized non-affine squared displacement 

D2min/𝜎2 (at the end of the creep simulation) and their initial softness S (at the beginning of the 

simulation, before any stress is applied). We find that, based on the softness sign (S > 0 or S < 0), 
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the mobile particles (D2min/𝜎2 ≥ D2min,0/𝜎2) can be well discriminated from the immobile particle 

(D2min/𝜎2 < D2min,0/𝜎2). Further, Figure 11-2c shows the final average normalized non-affine 

squared displacement ‹D2min/𝜎2› of the particles as a function of their softness S, both for the 

training and test sets. We find that the normalized non-affine squared displacement of the particles 

features a power-law dependence on softness. Namely, in addition of properly discriminating 

mobile from immobile particles, the softness metric also offers some information on the magnitude 

of the displacement—that is, the particles that exhibit the largest reorganization upon creep are 

associated with the largest softness values, and vice versa. This power-law correlation is likely to 

be rooted in the fact the particle dynamics is encoded in the topography of energy landscape of the 

initial static gel structure (see Sec. 11.4.3). 

Notably, the degree of correlation between softness and particle dynamics during creep 

remains high for particles belonging to the test set. Figure 11-3a offers a snapshot of the predicted 

softness of an initial static gel configuration in the test set. The distribution of softness (both for 

all particles and for mobile particles in the gel) is provided in Fig. 11-3b. We find that the 

classification accuracy is satisfactory as ~76% of the mobile particles indeed exhibit a positive 

softness (S > 0). We then calculate the probability of a particle to rearrange PR(S) as a function of 

its initial softness S in the gel (see Fig. 11-3c). Interestingly, we find that PR(S) exhibits an 

exponential dependance on the softness metric S, wherein the larger the softness is, the more likely 

the particle is to rearrange. This relationship can be formulated as an Arrhenius-like behavior in 

Eq. (11-6) [47]: 

𝑃x(𝑆) = 𝑃*exp(𝛽𝑆)                                Eq. (11-6) 
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(a) (b) (c) 

Figure 11-2: (a) Illustration of the classifier model, wherein the position of each particle is 

determined from the values of the two most influential structural features used for the 

classification, i.e., the order parameters G(i; r) calculated at r0 = 1.00𝜎 and r1 = 1.14𝜎. The 

color of each particle denotes its relative non-affine squared displacement (D2min/𝜎2). The 

black line represents the projection of the hyperplane identified by logistic regression in this 2-

dimensional space. (b) Distribution density of the particles’ normalized non-affine square 

displacement (D2min/𝜎2) (at the end of the creep simulation) and initial softness (S), wherein 

the softness of each particle is defined as the orthogonal distance from the hyperplane to its 

position in the Nr-dimensional feature space (see panel a). The dataset consists of 10 creep 

simulations (~1700 particles and ~7% mobile particles per configuration), wherein 7 final 

configurations serve as training set and the rest 3 configurations are test set. The green dash 

line indicates the threshold (D2min,0/𝜎2) of particle rearrangement. For illustration purposes, the 

density of mobile particles is rescaled to ensure balance with the number of immobile 

particles. (c) Final average normalized non-affine squared displacement ‹D2min/𝜎2› of the 

particles of the training and test sets (at the end of the creep simulation) as a function of their 

initial softness. The blue line is a power fit to guide the eye. 
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where 𝑃* and 𝛽 are some fitting parameters. This exponential relationship between PR(S) and S 

suggests that the structural quantity S is closely related to (and might be indicative of) the energy 

barrier associated with particle rearrangements [23,26] (see Sec. 11.4.4). Note that softness is 

calculated based on the sole knowledge of the initial structure, whereas the normalized non-affine 

squared displacement is computed at the end of the simulation (i.e., after the gel has creeped to 

exhibit a shear strain of about 1%). The high degree of correlation between initial softness and 

final normalized non-affine squared displacement clearly illustrates the intimate link between the 

initial static structure of the gel and its long-time creep dynamics. 

   

(a) (b) (c) 

Figure 11-3: (a) Snapshot of the predicted particles’ softness of an initial static gel (shear 

strain 𝛾 = 0) in the test set. (b) Distribution of the softness of all particles (black) and mobile 

particles (red) in the gel. The orange area represents the fraction of properly predicted soft 

particles (S > 0) within the mobile particles. (c) Logarithm of the probability of a particle to 

rearrange upon creep (D2min/𝜎2 ≥ D2min,0/𝜎2) log(PR(S)) as a function of its initial softness S in 

the initial gel structure. The red line is an exponential fit following Eq. (11-6). 
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We now discuss the structural interpretation of the machine-learned softness metric. As a 

key advantage of our approach, using the radial order parameters G(i; r) as sole features of the 

classifier and adopting logistic regression make the softness metric that is constructed herein 

highly interpretable. Indeed, the hyperplane created by logistic regression can be expressed as a 

linear equation of each of the features as (see Fig. 11-2a): 

𝚺rw(r)G(i; r) = b                                                 Eq. (11-7) 

wherein w(r) and b are the coefficients and the bias of the logistic regression model, respectively. 

Since the features G(i; r) are standardized, the coefficients are directly indicative of the relative 

importance of each feature in the classification. Namely, a large absolute value for w(r) denotes 

that the hyperplane is fairly orthogonal to the axis associated with the corresponding feature G(i; 

r).  In addition, the sign of the coefficients is informative, since positive and negative values for 

w(r) indicate that increasing values of the feature G(i; r) tend to result in increased and decreased 

softness values, respectively.  

Figure 11-4a shows the coefficients w(r) of the logistic regression classifier as a function 

of the distance r, wherein the absolute value of w(r) denotes how influential the feature G(i; r) is. 

We find that the two most influential features are associated with the distances r0 = 𝜎 and r1 = 

1.14𝜎. A visual inspection of the pair distribution function of the gel (see the upper panel of Fig. 

11-4a) reveals that r0 represents the average interparticle bond distance (i.e., equilibrium position 

of particle interaction energy), while r1 represents a distance between the 1st and the 2nd 

coordination shells. This indicates that the local density of neighbors centered around these 

distances plays a critical role in discriminating mobile from immobile particles. On the one hand, 

the local density of atoms at r = r0 is related to the coordination number (CN) of the central particle 

when the neighbors are in contact with the central particle (see blue particle in Fig. 11-4a). The 
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fact that w(r0) < 0 indicates that large CNs tend to result in lower softness values. On the other 

hand, we interpret the distance r1 as that wherein neighbors are located when there is coordination 

mismatch around the central particle (e.g., an excess of neighbors, see red particle in Fig. 11-4a). 

The fact that w(r1) > 0 indicates that the presence of such coordination mismatch tends to result in 

higher softness values. These results are consistent with free volume theory (FVT) [8,9]. Indeed, 

closed-packed structures with a large number of atoms at r = r0 are associated with low local free 

volume, wherein the atoms exhibit very limited mobility. In contrast, more disordered structures 

exhibiting notable coordination mismatch tend to show larger local free volume (see red particle 

in Fig. 11-4a), which facilitates particle mobility. 

The absolute values of the coefficients w(r) associated with other distances are notably 

lower and, hence, the local density of neighbors at such distance has a smaller influence on the 

outcome of the classification. The features associated with these other distances are nevertheless 

important for the accuracy of the classifier. Indeed, we find that, even though our results suggest 

that the local free volume plays an important role in creep dynamics, the classification model 

trained based on the sole knowledge of the particle Voronoi volume offers a limited accuracy of 

~60% as compared to that offered by the softness metric (~75% accuracy). Figure 11-4b illustrates 

the dependence of softness on the particles’ coordination number CN and Voronoi volume V. 

Overall, larger CN and smaller V values tend to favor smaller softness. However, we nevertheless 

observe that softness is a complex, nonmonotonic function of CN and V. We note that training a 

classifier based on the sole knowledge of the particles’ CN only yields an accuracy of ~55%, 

wherein both low and high-coordination particles are very likely to be classified as soft particles, 

so that the soft vs. hard nature of particles cannot simply be inferred based on Maxwell criterion 

on stability [48,49]. Similarly, only using G(i; r0) and G(i; r1) as input features yields a very limited 
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accuracy of ~50%. This exemplifies the benefit of using an unbiased machine learning approach 

to build the set of input features, since intuitive structural features show only limited correlation 

with dynamical properties. 

  
(a) (b) 

Figure 11-4: (a) Weight coefficient w(r) of classification hyperplane (see Fig. 11-2(a)) at 

different normalized distances r/𝜎. The red line is to guide the eyes. The pair distribution 

function g(r) of the gel is added in the top panel as reference. The distances r0 = 1.00𝜎 and r1 = 

1.14𝜎 are associated with the most influential input features of the classifier, i.e., the w(r) 

coefficients showing maximum absolute value. The inset illustrates the local environments 

around (i) “hard” particles (blue), wherein the neighbors are located at r0 = 1.00𝜎 and (ii) 

“soft” particles (red), wherein the neighbors are located at r1 = 1.14𝜎. (b) Particle softness S as 

a function of their normalized particle Voronoi volume V/𝜎3 and coordination number CN. 

The color coding is based on a linear interpolation between the datapoints in the particle 

dataset. 
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softness ‹S› of the system—i.e., as averaged over all the particles—and assess how this quantity is 

evolving as the gel gradually undergoes creep (see the inset of Fig. 11-5). We find that ‹S› exhibits 

a logarithmic decay upon creep, which echoes the logarithmic increase of the macroscopic strain 

of the gel upon creep (see Fig. 11-1a). In fact, as shown in Fig. 11-5, we observe that the 

macroscopic creep rate �̇� of the gel exhibits an exponential dependence on ‹S› as: 

�̇� = �̇�*exp(𝛼〈𝑆〉)                                              Eq. (11-8) 

where �̇�* and 𝛼 are some fitting parameters. Note that this exponential relationship is not affected 

by the system size. This indicates that the dynamics of creep at the macroscopic scale is closely 

related to the variation in softness at the particle level. This can be understood as follows. The 

gradual decay of softness indicates that, upon creep, particles reorganize from “soft” (i.e., high S) 

to “harder” (i.e., lower S) local environments (see the schematics in Fig. 11-4a). In turn, as the 

softness of a particle decreases, so does its propensity to exhibit any further reorganization. This 

process explains why the creep rate gradually slows down—since the particles gradually become 

harder and harder and, hence, less prone to reorganizations. It is worthwhile to point out that, 

although our softness results illustrate a strong correlation between the initial static structure and 

the early-stage creep dynamics, it remains unclear whether the softness approach presented herein 

could describe longer-term effects (e.g., final avalanche) based on the static initial structure since 

the system tends to lose the memory of its initial configuration after experiencing significant 

deformations [11,37,38,50]. Here, the exponential dependence of the creep rate on the average 

softness is a macroscopic manifestation of the particle-level exponential dependence of particle 

dynamics on its softness in Eq. (11-6) (see Fig. 11-3c), which suggests that ‹S› (or, more accurately, 

the opposite thereof) captures an effective average energy barrier for creep [2,8]—wherein low ‹S› 
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values (i.e., “hard” structures) are indicative of high energy barriers for particle rearrangements, 

and vice versa (see below) [23,26]. 

 

Figure 11-5: Macroscopic creep rate �̇� of the gel as a function of the average softness ‹S› of 

the particles. The red line is an exponential fit following Eq. (11-8). The inset shows the 

evolution of ‹S› in the gel upon creep. 

 

11.4.3 The energy landscape governs the particle dynamics during creep 

Since the results shown in Fig. 11-5 suggest that softness may be capturing the effective 

energy barrier that is accessible to the particles during creep, we now further investigate the linkage 

between creep dynamics and potential energy landscape (PEL) topography [47]. Figure 11-6a 

offers a schematic of the local PEL that is accessible to an initial static gel (before any stress is 

applied). The initial configuration is located at a local minimum of the PEL. Starting from this 

initial position, the ARTn algorithm searches for saddle points around the local minimum, which 

are associated with physically-meaningful rearrangements for a target particle [41]. This allows us 

to compute the distribution of the energy barriers that are locally accessible to each particle (i.e., 

the energy difference between the identified saddle point and initial minimum, see Sec. 11.2.5). 

Based on this analysis, we then calculate, for each particle, the average value Eave of the energy 

barriers that are accessible to this particle. 
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(a) (b) (c) 

  
(d) (e) 

Figure 11-6: (a) Schematic illustrating the local potential energy landscape (PEL) of an initial 

static gel. The gel is initially located at a local minimum of the PEL. Starting from this 

minimum position, the activation-relaxation nouveau (ARTn) algorithm searches the saddle 

points that are locally accessible to target particles [41] (see Methods section for details). Eave 

is the average value of the energy barriers that are accessible to a given particle. (b) 

Distribution of the normalized average energy barrier Eave/𝜀 of the particles in the initial static 

gel (before any stress is applied). The inset shows the associated gel configuration, wherein the 

color of the particles denotes Eave/𝜀. (c) Distribution density of the particles’ normalized non-

affine square displacement (D2min/𝜎2) (at the end of the creep simulation) and initial 

normalized average energy barrier (Eave/𝜀). (d) Final average normalized non-affine squared 

displacement ‹D2min/𝜎2› of the particles in the gel (at the end of the creep simulation) as a 

function of their initial normalized average energy barrier (Eave/𝜀). The red line is a power-law 

fit. (e) Logarithm of the probability of a particle to rearrange upon creep (D2min/𝜎2 ≥ D2min,0/𝜎2) 
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log(PR(Eave)) as a function of its initial normalized average energy barrier Eave/𝜀 in the gel. The 

red line is an exponential fit following Eq. (11-9). 

 

Figure 11-6b shows the distribution of the normalized average energy barrier Eave/𝜀 of the 

particles in the initial static gel. We find that the distribution decreases with increasing energy 

barrier value and exhibits a long tail toward high energy barriers. Figure 11-6c shows the 

distribution density of the particles’ normalized non-affine squared displacement D2min/𝜎2 (at the 

end of the creep simulation) and initial normalized average energy barrier Eave/𝜀. We observe the 

existence of an anticorrelation between displacement and average energy barrier—which is a 

natural consequence of the fact that particles that are surrounded only by large energy barriers (i.e., 

rough local energy landscape) are trapped around their local minimum and unable to reorganize 

[47]. However, for low Eave/𝜀 values, we find that only a small fraction of the particles tends to 

exhibit a large displacement (i.e., to be mobile). This can be explained based on the spatial 

heterogeneity of the D2min/𝜎2 and Eave/𝜀 fields in the gel (see discussion on the point in Sec. 11.4.4). 

Figure 11-6d shows the final average normalized non-affine squared displacement 

‹D2min/𝜎2› of the particles in the gel (at the end of the creep simulation) as a function of their 

normalized average energy barrier Eave/𝜀 (in the initial configuration, before any stress is applied). 

Interestingly, we find the existence of a power-law relationship between ‹D2min/𝜎2› and Eave/𝜀, 

wherein larger Eave/𝜀 tend to result in smaller D2min/𝜎2 values, and vice versa (see Fig. 11-6d). This 

result echoes the power-law relationship between ‹D2min/𝜎2› and softness S previously highlighted 

in Fig. 11-2c. The harmony between these trends suggests the existence of a potential causal 

relationship between softness S and average energy barrier Eave (see Sec. 11.4.4). In addition, these 

results also echo findings from a recent study, which reported the existence of a power-law 
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relationship between particle dynamics and energy barrier in metallic glasses [42,43]. This 

suggests that this power-law relationship between particle dynamics and energy barrier (or particle 

softness) might be a generic feature of disordered systems, independently of whether the particle 

reorganizations are caused by creep or not. 

Finally, we evaluate the probability of a particle to rearrange PR(Eave) as a function of its 

initial average energy barrier Eave (see Fig. 11-6e). We find PR(Eave) follows an Arrhenius-like 

exponential dependence on Eave as [47]: 

𝑃x(𝐸7³?) = 𝑃v exp(−𝛽v𝐸7³?)                        Eq. (11-9) 

where 𝑃v and 𝛽v are some fitting parameters. Namely, the larger the average energy barrier is, the 

less likely the particle is to reorganize. Overall, these results indicate that the dynamics of a gel 

upon creep is largely encoded in the topography of its initial energy landscape, before any load is 

applied. The harmony between Eqs. (11-6) and (11-9)—which both exhibit an Arrhenius form—

suggests a strong correlation between the softness S and average energy barrier Eave fields (see 

below). 

 

11.4.4 Mapping “particle softness” to energy barrier 

Finally, we interrogate the existence of a causal correlation between softness S and average 

energy barrier Eave. Figure 11-7a illustrates the spatial correlation between the fields of interest 

herein: (i) the final non-affine squared displacement (D2min), (ii) the initial softness (S), and (iii) 

the initial average energy barrier (Eave). We find that the three fields—i.e., the dynamics field 

(D2min), the structural field (S), and the local potential energy landscape field (Eave)—all show a 

strong degree of spatial heterogeneity, but are fairly correlated to each other. Namely, the regions 

associated with low mobility tend to match with those presenting high energy barriers and low 

softness, and vice versa. 
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Figure 11-7b shows the distribution density of the particles’ initial normalized average 

energy barrier (Eave/𝜀) and initial softness (S). Overall, we observe that the particles associated 

high softness values (i.e., “soft” mobile particles, S > 0) tend to exhibit fairly low average energy 

barriers. However, we note that the correlation between softness and average energy barriers is not 

as strong as that observed between softness and displacement, or energy barriers and displacement 

(see Figs. 11-2b and 11-6c). Nevertheless, a stronger correlation between softness and energy 

landscape emerges when averaging these fields over groups of particles featuring fairly similar 

softness. To this end, Fig. 11-7c shows the initial average normalized energy barrier ‹Eave/𝜀› of the 

particles in the gel (before any stress is applied) as a function of their initial softness S. Interestingly, 

we find that ‹Eave/𝜀› is linearly related to the opposite of softness (–S, or “hardness” H) as: 

𝐸7³?(𝐻) = 𝑘𝐻 + 𝑏                                  Eq. (11-10) 

where k and b are some fitting parameters. This shows that the topography of the energy landscape 

is largely encoded in the structure of the gel. Importantly, these results demonstrate that, when 

averaged over groups of particles, the average softness indeed offers a purely structural metric that 

successfully captures the average height of the energy barriers that are locally accessible, which, 

in turn, controls the particles’ propensity to reorganize upon creep [23,26]. It is notable that the 

softness metric is able to successfully capture a structural fingerprint for the topography of the 

potential energy landscape since this machine-learned quantity is not trained for that purpose (that 

is, the model is never exposed to the energy barriers during its training). As such, the correlation 

between softness and average energy barrier offers an independent validation of the soundness of 

this approach—and suggests that the softness metric that is extracted herein indeed shows a “real” 

physical meaning. 
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(a) (b) 

  
(c)  (d) 

Figure 11-7: (a) Illustration of the spatial correlation between the fields of the final non-affine 

squared displacement (D2min), the initial softness (S), and the initial average energy barrier 

(Eave). The particles are colored based on their standardized value in the corresponding field. 

(b) Distribution density of the particles’ initial normalized average energy barrier (Eave/𝜀) and 

initial softness (S). (c) Initial average normalized energy barrier (‹Eave/𝜀›) of the particles in the 

gel (before any stress is applied) as a function of their initial hardness (H = –S). The red line is 

a linear fit following Eq. (11-10). (d) Spatial correlation function ‹C(0)C(r)› of the 

displacement field (D2min, black), the softness field (S, red), and the energy barrier field (Eave, 

blue) in the gel. Note that the field value C (i.e., D2min, S, Eave) is standardized for the 

calculation. The lines are exponential fits following exp(-r/ξ), where ξ is the characteristic 

correlation length. 
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Note that, in this analogy between softness and energy barriers, the energy barriers that are 

captured by softness are not overcome by thermal effects, but by the applied stress—which 

provides an elastic energy that enables particles to jump over these barriers [2,8]. An interesting 

atomic picture behind the link between energy landscape topography, applied external stress (or 

strain), and resulting particle hoping is offered by the trap model from Barrat et al.—which 

describes the energy landscape as a landscape of “traps,” wherein an external stress can facilitate 

particle hopping from trap to trap by deforming the local landscape [47]. In that regard, our results 

suggest that softness might serve as a proxy for the average height of the energy barriers that 

separate the traps within the energy landscape. 

To further explore the degree of spatial heterogeneity in the three fields considered herein, 

we compute the spatial correlation function ‹C(0)C(r)› for each field (see Fig. 11-7d), where C(r) 

is the normalized fluctuation in the field, i.e., the standardized field value (D2min, S, and Eave) of a 

particle at distance r from a central particle. The spatial correlation function ‹C(0)C(r)› is computed 

by averaging over all particles separated by a distance r. We then infer the characteristic correlation 

length ξ associated with each field by fitting the spatial correlation function as [24]: 

< C(0)C(𝑟) >	= 𝐶*exp	(−𝑟/𝜉)                                   Eq. (11-11) 

where C0 is a fitting coefficient. We find that both the softness field and the energy barrier field 

show a similar correlation length ξ that is close to 1 (i.e., the typical radius of the first coordination 

shell). This harmony further supports the close relationship between softness and energy barriers. 

In contrast, the dynamics field shows a correlation length of ξ ≈ 0.5 (i.e., the typical radius of a 

particle). This indicates that the typical lengthscale associated with particle displacements is 

notably lower as compared to that associated with the softness/energy barriers fields. The fact that 

the lenthscale associated with displacements is lower than that of the energy barrier field likely 
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explains why only a small fraction of the particles showing low Eave/𝜀 values also feature large 

displacements (see Fig. 11-6c). This partial decorrelation between the spatial distributions of 

displacement and energy barriers (or softness) may be a consequence of the fact that, here, 

displacement is induced by stress rather than being fully spontaneous. Consequently, “soft” 

particles that have access to low energy barriers may nevertheless not exhibit any notable 

displacement if the direction of the imposed stress does not match with any of the accessible low-

energy saddle point pathways. 

 

11.5 Conclusions 

Overall, these results highlight the close correlation between (i) static structure (as captured 

by softness), (ii) static potential energy landscape topography (as captured by the average height 

of the energy barriers that are accessible to the particles), (iii) particle dynamics (as captured by 

the non-affine squared displacement), and (iv) macroscopic deformation (as captured by the creep 

rate). It is notable that our approach allows us to predict the long-time dynamics of the particles 

upon long-term creep deformations while solely relying on the knowledge of the initial static 

structure before any stress is applied. The accessible interpretation of the softness metric defined 

herein (see Fig. 11-4a) suggests that the degree of structural disorder—and especially the existence 

of coordination mismatches—plays a key role in governing the creep dynamics of gels. This 

indicates that order-disorder engineering of gel structures offers a potential path to develop new 

gel formulations with tailored creep response under sustained load. 
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Chapter 12. Summary and Outlook 

12.1 Summary of the Thesis 

Overall, owing to its low computation cost and high prediction accuracy, materials 

modeling has become an efficient alternative to traditional experiments to interrogate materials 

structure-property relationship and discover new materials [1–3]. Figure 12-1 summarizes the 

different paradigms for materials discovery [4,5], including Edisonian trial-and-error method (see 

Sec. 1.1.2), high-throughput virtual screening (see Sec. 1.1.3), machine learning using 

experimental data (see Sec. 1.3.2), and integration of machine learning and simulations (see Sec. 

1.4.1). Clearly, materials modeling is revolutionizing materials discovery paradigms through 

rationalizing the exploration of vast material design space [4,5]. However, the state-of-the-art 

materials modeling is facing two grand challenges, i.e., (i) the high complexity of physics laws 

that govern materials properties (see Sec. 1.3.1), and (ii) the low informativity of experimental 

dataset (see Sec. 1.3.2) [6,7]. 

In order to address the two grand challenges facing materials modeling, next-generation 

materials modeling aims to (i) make the physics simple to facilitate physics-driven modeling (see 

Chapter 2-4) [8–10], and (ii) make the data informative to facilitate data-driven modeling (see 

Chapter 5) [7]. In this thesis, I highlight the predictive power of integrating data-driven machine 

learning (ML) and physics-driven computational simulations to unlock a new era for materials 

discovery and for next-generation materials modeling (see Chapter 6-11) [11–16]. In detail, on the 

one hand, simulation can generate large amounts of high-fidelity data that can be used to train 

machine learning models, which, in turn, can be validated by simulations (Chapter 6) [11]. On the 

other hand, ML can assist in (i) developing empirical forcefields for accurate and computationally-

efficient MD simulations (Chapter 7-9) [12–14], and (ii) “separating the wheat from the chaff” in 
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large amounts of complex simulation data to gain new insights or generate new knowledge of the 

underlying physics governing materials behaviors (Chapter 10-11) [15,16]. 

 

Figure 12-1: Summary of different paradigms for materials discovery, including (a) Edisonian 

trial-and-error method, (b) high-throughput virtual screening, (c) machine learning using 

experimental data, and (d) integration of machine learning and simulations. The color coding 

represents the target property in the material design space, and the red star denotes the optimal 

material exhibiting optimal property. The grey circles are the present datapoints explored by 

the method, and the red arrow shows the machine learning search path. 

 

12.2 Future Opportunities in Modeling of Disordered Materials 

As a future opportunity, I envision that smart closed-loop integrations of ML modeling and 

simulations will leapfrog materials modeling (see Fig. 12-2). Example of such opportunities are 

listed in the following: 

(i) Machine learning forcefields. Machine-learned forcefields adopt ML regression 

models to fit the system’s potential energy landscape (PEL) as a function of the atom positions, 
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without the need to rely on any physical or chemical intuition to define a functional format of the 

empirical forcefield [17,18]. In contrast to empirical forcefields relying on a fixed analytical form, 

machine-learned forcefields offer a promising pathway to develop new complex forcefields that 

rely on an ML model to map a given atomic configuration to its potential energy. The promise of 

machine-learned forcefields is to approach the accuracy of ab initio simulations with a 

computational burden that is more comparable to (although typically higher than) that of classical 

empirical forcefields [17,18]. 

(ii) Deciphering complex simulation data by machine learning. Atomic trajectories 

generated by MD simulations contains all the structural information that govern glassy materials’ 

properties [19]. However, due to the complex, disordered nature of glassy structures [20], it is 

challenging to “separate the wheat from the chaff,” that is, to pinpoint the key structural features 

that govern materials properties [21]. In that regard, owing to its ability to discover hidden pattern 

in complex, multi-dimensional data [22], machine learning (ML)—e.g., the recently developed 

softness approach based on classification-based ML [23]—offers a new opportunity to identify 

relevant structural patterns in simulated glassy structures [24]. 

(iii) Combining simulations and machine learning for materials’ inverse design. Owing 

to its economical nature as compared to systematic experiments, high-throughput virtual screening 

(HTVS, that is, the systematic simulation of a large number of materials) offers an efficient route 

to identify in silico an optimal material featuring an optimal characteristic within a given design 

space [25]. However, although simulations excel at predicting the properties of a given material as 

a function of its structure (i.e., “forward prediction”), their application to “inverse design” 

problems (that is, given an optimal property target, find the best material structure) remains limited 

by their high computational cost—which prevents the systematic exploration of large design 
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spaces [11]. To address this issue, machine learning (ML) offers an ideal companion to 

simulations—since an ML model can learn from a series of simulations and, based on this, 

recommend what should be next material structure to simulate [26,27]. Such closed-loop 

integrations of simulation and ML modeling could greatly accelerate the discovery of novel 

materials featuring desirable properties or functionalities [1–3]. 

(iv) Leveraging differentiable programming platforms. When integrating simulations and 

machine learning (ML) models within unified pipelines, different programming languages can 

present a communication barrier between ML and simulation packages, which often rely on Python 

and C++/Fortran, respectively [28,29]. In addition, most simulation packages are still rooted in 

fairly ancient computing paradigms (e.g., with no automated differentiation), which is reminiscent 

of the state of machine learning before automatic hardware acceleration and differentiation became 

popular [30–32]. To overcome these frictions, automatic differentiable (auto-diff) programming 

platforms (e.g., Python JAX [33]) have been recently developed to seamlessly integrate ML and 

simulations within unified pipelines [11,31]. In contrast to traditional programming platforms that 

rely on handwritten derivatives (e.g., C++), auto-diff platforms excel at computing on-the-fly the 

backward gradient of any quantities with no additional computation burden associated with 

differentiation—an operation that comes with a notable computing time in traditional simulators 

(e.g., force calculation in MD simulations) [34]. Moreover, simulations built on auto-diff platforms 

gain backward differentiability, which makes it possible to use their outcomes to directly train 

machine learning models using for gradient backpropagation. This create new opportunities to 

train a ML model directly based on differentiable physical knowledge rather than on data [31]. 

Finally, the auto-diff platforms generally enable native “just-in-time” compilation on high-

performance dedicated hardware accelerators, such as graphics processing units (GPU) and tensor 
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processing units (TPU) [33,35]. Specifically, TPUs are specifically designed as matrix processors 

and, thanks to their tailored architecture, offer unparalleled performances in deep learning 

problems (up to 200X faster than GPUs) [35–38]. This could greatly accelerate MD simulations 

relying on artificial neural networks potentials. 

(v) Replacing slow simulations by faster surrogate machine learning simulation engines. 

Although the development of auto-diff platforms enables differentiable simulations and native 

hardware acceleration, the computational efficiency of numerical simulations is still limited by the 

intrinsic computation cost associated with the underlying numerical algorithms (e.g., Newton’s 

law of motion in MD simulations) [39]. The numerical algorithms behind scientific numerical 

simulations are likely to remain their bottleneck. To mitigate this issue, surrogate machine learning 

(ML) simulation engines offer a unique, largely untapped opportunity to replace slow simulations 

so as to accelerate their execution without compromising accuracy [40,41]. Surrogate ML engines 

can be implemented as artificial neural network (ANN) models, such as convolutional neural 

network (CNN) [41] or graph neural network (GNN) [42]. 

Overall, I envision that the “fusion” of simulations and machine learning (ML) models (see 

Fig. 12-2) will unlock a new era in materials modeling—wherein traditional boundaries between 

physics and empirical models, knowledge and data, forward and inverse predictions, or 

experimental and simulation data would eventually fade. I hope that the present thesis will 

modestly contribute to stimulating new developments in that direction. 
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Figure 12-2: Schematic summarizing future opportunities for materials modeling offered by 

the mutual integration of simulations and machine learning (ML). On the one hand, ML can 

assist in (i) developing empirical forcefields for accurate and computationally-efficient 

simulations, (ii) “separating the wheat from the chaff” in large amounts of complex simulation 

data to gain new insights or generate new knowledge of the underlying physics governing 

glases, and (iii) accelerating simulations by surrogate machine learning engines. On the other 

hand, simulation can generate large amounts of high-fidelity data that can be used to train 

machine learning models, which, in turn, can be validated by simulations. Both simulations 

and their integration pipeline with ML can be accelerated by leveraging automated 

differentiable programming engines (e.g., Python JAX) and hardware accelerators (e.g., 

graphics processing unit (GPU) and tensor processing unit (TPU)). Image adopted from ref. 

[43] 

 

  



 290 

12.3 References 

[1] J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer, Accelerating the 
Design of Functional Glasses through Modeling, Chem. Mater. 28 (2016) 4267–4277. 
https://doi.org/10.1021/acs.chemmater.6b01054. 

[2] J.C. Mauro, Decoding the glass genome, Current Opinion in Solid State and Materials 
Science. 22 (2018) 58–64. https://doi.org/10.1016/j.cossms.2017.09.001. 

[3] H. Liu, Z. Fu, K. Yang, X. Xu, M. Bauchy, Machine learning for glass science and 
engineering: A review, Journal of Non-Crystalline Solids: X. 4 (2019) 100036. 
https://doi.org/10.1016/j.nocx.2019.100036. 

[4] A. Agrawal, A. Choudhary, Perspective: Materials informatics and big data: Realization 
of the “fourth paradigm” of science in materials science, APL Materials. 4 (2016) 
053208. https://doi.org/10.1063/1.4946894. 

[5] R. Jose, S. Ramakrishna, Materials 4.0: Materials big data enabled materials discovery, 
Applied Materials Today. 10 (2018) 127–132. 
https://doi.org/10.1016/j.apmt.2017.12.015. 

[6] K. Yang, X. Xu, B. Yang, B. Cook, H. Ramos, N.M.A. Krishnan, M.M. Smedskjaer, C. 
Hoover, M. Bauchy, Predicting the Young’s Modulus of Silicate Glasses using High-
Throughput Molecular Dynamics Simulations and Machine Learning, Sci Rep. 9 (2019) 
1–11. https://doi.org/10.1038/s41598-019-45344-3. 

[7] H. Liu, T. Zhang, N.M.A. Krishnan, M.M. Smedskjaer, J.V. Ryan, S. Gin, M. Bauchy, 
Predicting the dissolution kinetics of silicate glasses by topology-informed machine 
learning, Npj Mater Degrad. 3 (2019) 1–12. https://doi.org/10.1038/s41529-019-0094-1. 

[8] H. Liu, L. Tang, N.M.A. Krishnan, G. Sant, M. Bauchy, Structural percolation controls 
the precipitation kinetics of colloidal calcium–silicate–hydrate gels, J. Phys. D: Appl. 
Phys. 52 (2019) 315301. https://doi.org/10.1088/1361-6463/ab217b. 

[9] H. Liu, S. Dong, L. Tang, N.M.A. Krishnan, G. Sant, M. Bauchy, Effects of 
polydispersity and disorder on the mechanical properties of hydrated silicate gels, Journal 
of the Mechanics and Physics of Solids. 122 (2019) 555–565. 
https://doi.org/10.1016/j.jmps.2018.10.003. 

[10] H. Liu, S. Dong, N.M.A. Krishnan, E. Masoero, G. Sant, M. Bauchy, Long-term creep 
deformations in colloidal calcium–silicate–hydrate gels by accelerated aging simulations, 
Journal of Colloid and Interface Science. 542 (2019) 339–346. 
https://doi.org/10.1016/j.jcis.2019.02.022. 

[11] H. Liu, Y. Liu, Z. Zhao, M. Bauchy, S.S. Schoenholz, E.D. Cubuk, End-to-End 
Differentiability and Tensor Processing Unit Computing to Accelerate Materials’ Inverse 
Design, in: 2020. 



 291 

[12] H. Liu, Z. Fu, Y. Li, N.F.A. Sabri, M. Bauchy, Parameterization of empirical forcefields 
for glassy silica using machine learning, MRS Communications. (2019) 1–7. 
https://doi.org/10.1557/mrc.2019.47. 

[13] H. Liu, Z. Fu, Y. Li, N.F.A. Sabri, M. Bauchy, Balance between accuracy and simplicity 
in empirical forcefields for glass modeling: Insights from machine learning, Journal of 
Non-Crystalline Solids. 515 (2019) 133–142. 
https://doi.org/10.1016/j.jnoncrysol.2019.04.020. 

[14] H. Liu, Y. Li, Z. Fu, K. Li, M. Bauchy, Exploring the landscape of Buckingham 
potentials for silica by machine learning: Soft vs hard interatomic forcefields, J. Chem. 
Phys. 152 (2020) 051101. https://doi.org/10.1063/1.5136041. 

[15] H. Liu, E. Li, E.D. Cubuk, S.S. Schoenholz, S. Xiao, C. Yang, G. Sant, M.M. 
Smedskjaer, M. Bauchy, Deciphering a Structural Signature of Glass Dynamics by 
Machine Learning, Physical Review B. (2021). 

[16] H. Liu, S. Xiao, L. Tang, E. Bao, E. Li, C. Yang, Z. Zhao, G. Sant, M.M. Smedskjaer, L. 
Guo, M. Bauchy, Predicting the early-stage creep dynamics of gels from their static 
structure by machine learning, Acta Materialia. 210 (2021) 116817. 
https://doi.org/10.1016/j.actamat.2021.116817. 

[17] S. Chmiela, H.E. Sauceda, K.-R. Müller, A. Tkatchenko, Towards exact molecular 
dynamics simulations with machine-learned force fields, Nat Commun. 9 (2018) 3887. 
https://doi.org/10.1038/s41467-018-06169-2. 

[18] P. Friederich, F. Häse, J. Proppe, A. Aspuru-Guzik, Machine-learned potentials for next-
generation matter simulations, Nature Materials. 20 (2021) 750–761. 
https://doi.org/10.1038/s41563-020-0777-6. 

[19] C. Massobrio, ed., Molecular dynamics simulations of disordered materials: from 
network glasses to phase-change memory allyos, Springer, Cham Heidelberg, 2015. 

[20] K. Binder, W. Kob, Glassy Materials and Disordered Solids: An Introduction to Their 
Statistical Mechanics, World Scientific, 2011. 

[21] E.D. Cubuk, R.J.S. Ivancic, S.S. Schoenholz, D.J. Strickland, A. Basu, Z.S. Davidson, J. 
Fontaine, J.L. Hor, Y.-R. Huang, Y. Jiang, N.C. Keim, K.D. Koshigan, J.A. Lefever, T. 
Liu, X.-G. Ma, D.J. Magagnosc, E. Morrow, C.P. Ortiz, J.M. Rieser, A. Shavit, T. Still, 
Y. Xu, Y. Zhang, K.N. Nordstrom, P.E. Arratia, R.W. Carpick, D.J. Durian, Z. Fakhraai, 
D.J. Jerolmack, D. Lee, J. Li, R. Riggleman, K.T. Turner, A.G. Yodh, D.S. Gianola, A.J. 
Liu, Structure-property relationships from universal signatures of plasticity in disordered 
solids, Science. 358 (2017) 1033–1037. https://doi.org/10.1126/science.aai8830. 

[22] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006. 

[23] E.D. Cubuk, S.S. Schoenholz, J.M. Rieser, B.D. Malone, J. Rottler, D.J. Durian, E. 
Kaxiras, A.J. Liu, Identifying Structural Flow Defects in Disordered Solids Using 



 292 

Machine-Learning Methods, Physical Review Letters. 114 (2015). 
https://doi.org/10.1103/PhysRevLett.114.108001. 

[24] S.S. Schoenholz, E.D. Cubuk, D.M. Sussman, E. Kaxiras, A.J. Liu, A structural approach 
to relaxation in glassy liquids, Nature Physics. 12 (2016) 469–471. 
https://doi.org/10.1038/nphys3644. 

[25] E.O. Pyzer-Knapp, C. Suh, R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, A. Aspuru-
Guzik, What Is High-Throughput Virtual Screening? A Perspective from Organic 
Materials Discovery, Annual Review of Materials Research. 45 (2015) 195–216. 
https://doi.org/10.1146/annurev-matsci-070214-020823. 

[26] T.W. Liao, G. Li, Metaheuristic-based inverse design of materials – A survey, Journal of 
Materiomics. 6 (2020) 414–430. https://doi.org/10.1016/j.jmat.2020.02.011. 

[27] B. Sanchez-Lengeling, A. Aspuru-Guzik, Inverse molecular design using machine 
learning: Generative models for matter engineering, Science. 361 (2018) 360–365. 
https://doi.org/10.1126/science.aat2663. 

[28] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of 
Computational Physics. 117 (1995) 1–19. https://doi.org/10.1006/jcph.1995.1039. 

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, 
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, Scikit-
learn: Machine Learning in Python, Journal of Machine Learning Research. 12 (2011) 
2825–2830. 

[30] G. Corliss, C. Faure, A. Griewank, L. Hascoet, U. Naumann, Automatic Differentiation 
of Algorithms: From Simulation to Optimization, Springer Science & Business Media, 
2013. 

[31] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, J.Z. Kolter, End-to-End 
Differentiable Physics for Learning and Control, in: S. Bengio, H. Wallach, H. 
Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural 
Information Processing Systems 31, Curran Associates, Inc., 2018: pp. 7178–7189. 
http://papers.nips.cc/paper/7948-end-to-end-differentiable-physics-for-learning-and-
control.pdf. 

[32] J. Degrave, M. Hermans, J. Dambre, F. Wyffels, A Differentiable Physics Engine for 
Deep Learning in Robotics, Front. Neurorobot. 13 (2019). 
https://doi.org/10.3389/fnbot.2019.00006. 

[33] J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. 
Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: composable 
transformations of Python+NumPy programs, 2018. http://github.com/google/jax. 

[34] S. Schoenholz, E.D. Cubuk, JAX MD: A Framework for Differentiable Physics, 
Advances in Neural Information Processing Systems. 33 (2020) 11428–11441. 



 293 

[35] K. Yang, Y.-F. Chen, G. Roumpos, C. Colby, J. Anderson, High performance Monte 
Carlo simulation of ising model on TPU clusters, in: Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis, ACM, 
Denver Colorado, 2019: pp. 1–15. https://doi.org/10.1145/3295500.3356149. 

[36] F. Huot, Y.-F. Chen, R. Clapp, C. Boneti, J. Anderson, High-resolution imaging on 
TPUs, ArXiv:1912.08063 [Physics]. (2019). http://arxiv.org/abs/1912.08063. 

[37] T. Lu, Y.-F. Chen, B. Hechtman, T. Wang, J. Anderson, Large-Scale Discrete Fourier 
Transform on TPUs, ArXiv:2002.03260 [Cs]. (2020). http://arxiv.org/abs/2002.03260. 

[38] Y.E. Wang, G.-Y. Wei, D. Brooks, Benchmarking TPU, GPU, and CPU Platforms for 
Deep Learning, (2019). https://arxiv.org/abs/1907.10701v4. 

[39] H. Liu, Z. Huang, Y. Sun, W. Wang, E.D. Cubuk, S.S. Schoenholz, Z. Zhao, R. Chen, M. 
Bauchy, Toward algorithm-free molecular dynamics by graph networks, (2021). 

[40] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, P.W. Battaglia, 
Learning to Simulate Complex Physics with Graph Networks, ArXiv:2002.09405 
[Physics, Stat]. (2020). http://arxiv.org/abs/2002.09405. 

[41] D. Kochkov, J.A. Smith, A. Alieva, Q. Wang, M.P. Brenner, S. Hoyer, Machine learning 
accelerated computational fluid dynamics, ArXiv:2102.01010 [Physics]. (2021). 
http://arxiv.org/abs/2102.01010. 

[42] V. Bapst, T. Keck, A. Grabska-Barwińska, C. Donner, E.D. Cubuk, S.S. Schoenholz, A. 
Obika, A.W.R. Nelson, T. Back, D. Hassabis, P. Kohli, Unveiling the predictive power of 
static structure in glassy systems, Nat. Phys. 16 (2020) 448–454. 
https://doi.org/10.1038/s41567-020-0842-8. 

[43] H. Liu, Z. Zhao, Q. Zhou, R. Chen, K. Yang, Z. Wang, L. Tang, M. Bauchy, Present 
Challenges and Future Developments in Atomistic Modeling of Glasses: A Review, 
Comptes Rendus Geoscience. (2021). 

 




