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Presented at the International Conference on Survey Nonresponse, October 28-31, 1999 Portland, OR.  To
appear in Survey Nonresponse, New York: Wiley.

Modeling non-ignorable attrition and measurement error in panel surveys: an application
to travel demand modeling

David Brownstone (dbrownst@uci.edu) and Thomas F. Golob
University of California, Irvine

Camilla Kazimi
San Diego State University

1 Introduction

Modern panel surveys frequently suffer from high and likely non-ignorable attrition, and
transportation surveys suffer from poor travel time estimates.  This paper examines new methods for
adjusting forecasts and model estimates to account for these problems. The methods we describe are
illustrated using a new panel survey of 1500 commuters in San Diego, California.  These data are being
collected to evaluate a federally-funded “Congestion Pricing” experiment investigating the impacts of
allowing solo drivers to pay to use freeway carpool lanes.  The panel survey, begun in Fall 1997, collects
data on travel behavior and attitudes at six-month intervals through telephone interviews.  The panel
sample is refreshed with new respondents at each wave to counteract the attrition between waves.  Both
the original and refreshment samples are stratified on commuters’ mode choice (solo drive in free lanes,
pay to solo drive in the carpool lanes, or carpool for free in carpool lanes) to insure sufficient sample size
for estimating our models.

We illustrate this methodology using a standard conditional logit model of commuters’ mode
choice (solo drive in free lanes, pay to solo drive in the carpool lanes, or carpool for free in carpool lanes).
The basic model is documented in Kazimi et al. (2000), and it is summarized in Sections 2 and 6 of this
chapter.  Our model is calibrated from the third wave of the panel study which was collected in Fall,
1998.  We use data from the second wave to estimate an attrition model and then use this model to predict
attrition probabilities as described in Section 5.  We expect non-ignorable attrition because commuters
who use the carpool lanes are more interested in the survey questions.  It turns out that attrition does not
significantly bias key parameter estimates even though there is some indication that it is non-ignorable.

We also have potentially non-ignorable measurement error in the time saved by using the carpool
lane.  Objective measurements of time savings are available from two types of data on speeds.  First,
floating car observations were obtained by driving cars down the corridor at frequent intervals and
recording the actual travel times. During wave 3 of the panel survey, these floating car measurements
were carried out for 5 days, but the panel survey data collection involved reported travel behavior over
two months.  Second, point speeds derived from magnetic loop detectors placed along the corridor for
general traffic counting purposes were available during the entire data collection period, but these data are
subject to significant errors as described in Section 4.

We have built a model that predicts the floating car data from the loop detector data.  This model fits
well (R-squared of .9), and we use it to predict the actual time savings faced by each survey respondent as
a function of the date and time they entered the corridor.  We use multiple imputations to account for the
component of error in our estimates and predictions from this imputation model.  Correcting for
measurement error leads to significant differences in key model estimates as reported in Section 6.

We view measurement error as formally equivalent to nonresponse for the true key time savings
variable.  Since we have external data, we can model the measurement error process and use multiple
imputations (which was originally devised to handle non-response) to correct for the problems caused by
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measurement error.  In our nonlinear model, measurement error in any independent variable causes all of
the parameter estimates to be inconsistent.  Even if measurement error doesn’t bias some mean estimates
in simpler models, it almost always biases inferences unless some corrections are made.  In our
application, the measurement error occurs in engineering data, but measurement errors are endemic in
survey samples. (see Biemer, et al., 1991, Groves, 1989, and Lessler and Kalsbeek, 1992).  Fuller (1987)
and Carroll, et al. (1995) review methods for modeling measurement error and correcting its effect on
inference.

This chapter examines the impact of a number of common survey problems (non-random sampling,
panel attrition, and measurement error) on estimates from a nonlinear model.  Although only one of these
problems (measurement error) led to significant biases, there is no way to know without carefully
analyzing the impacts of all possible problems.

2 The San Diego Congestion Pricing Project

The pricing demonstration project (referred to as FasTrak) allows solo drivers to pay to use an eight-
mile stretch of reversible high occupancy vehicle (HOV) lanes along Interstate Route 15 (I-15).  The
combination of free HOV use and priced solo driver use is generally referred to as high occupancy toll
(HOT) lanes.  The HOT Lanes are about eight miles long and are operated in the southbound (inbound to
San Diego) direction for four hours in the morning and in the northbound (outbound) direction for four
hours in the afternoon and evenings.  The per-trip fee for solo drivers is posted on changeable message
signs upstream from the entrance to the lanes, and may be adjusted every six minutes to maintain free-
flowing traffic conditions in the HOT lanes.  Solo drivers who subscribe to the FasTrak program are
issued windshield-mounted transponders used for automatic vehicle identification.  Each time they use the
lanes, their accounts are automatically debited the per-trip fee.  This is a dynamic form of voluntary
congestion pricing, where solo drivers can choose to pay to reduce their travel time, and the payment is
related to the level of congestion.

2.1 The Panel Survey
The panel survey consists of three samples of approximately equal size: 1) FasTrak program

subscribers and former subscribers, 2) other I-15 users, and 3) a control group of users of another freeway
corridor (I-8) in the San Diego Area.  The analysis in this paper excludes the I-8 control group.  The first
wave of the panel was conducted prior to per-trip pricing.  The second wave of the panel was conducted
in spring 1998, during the first few months of dynamic pricing.  For the purposes of this analysis, we
focus primarily on program subscribers and other I-15 users in the third wave of panel data, collected
during the fall of 1998 (October through November).  During this time period, dynamic per-trip
congestion pricing was well established.

FasTrak subscribers were picked at random from a list maintained by the billing agency, and the
remaining respondents were recruited using random digit dialing (RDD) of residential areas along the
respective corridors.  In the initial wave of the panel, a partial quota sampling procedure was used to
increase the number of carpoolers in non-subscriber parts of the sample.  Panel attrition is about 33% per
wave, and the sample is refreshed at each wave with a new random sample of FasTrak subscribers as well
as I-15 and I-8 commuters recruited using RDD sampling.  The partial quota sampling procedure implies
that the resulting sample is choice-based and weights are needed to represent the population of regular I-
15 corridor users.  We estimated sampling weights from traffic counts carried out during the survey
period.

Survey respondents were queried for detailed information about their most recent inbound trip
along I-15 if that trip was made during the hours of operation of the HOT facility and covered the portion
of I-15 corresponding to the facility.  By design, trip lengths must be at least eight miles long (the length
of the facility).  There were 699 I-15 respondents with full information on morning peak-period inbound
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trips, divided into three modes: 1) 304 solo drivers in the main lanes, 2) 279 solo drivers using FasTrak
transponders to travel in the HOT facility, and 3) 116 carpoolers who also travel the HOT facility for free.

2.2 Dynamic Per-Trip Tolls
Solo drivers face tolls that are a function of arrival time at the HOT facility.  The level of

congestion in the HOT facility determines the toll (i.e. tolls increase to avoid exceeding preset capacity
constraints).  While program subscribers are provided with a profile of maximum tolls that vary by time-
of-day, actual tolls may be less than the maximum tolls depending upon usage of the facility.

In October and November 1998 (excluding Thursday and Friday of Thanksgiving weekend), the
actual maximum toll by time of day is flat at $0.50 before 6:30, rising in an approximately linear fashion
to $4.00 over the 6:30 to 7:30 period.  It stays at $4.00 in the 7:30 to 8:30 period, then falls back down to
$1.00 by about 8:45 and $0.75 by about 9:30.  The average actual toll paid by the survey respondents who
chose FasTrak varies by time of day in a similar manner from $0.50 to a maximum of approximately
$3.50 in 7:45 to 8:00 period.  Average tolls are remarkably similar across the days of the week. (Kazimi
et. al., 2000).

Based on the estimated arrival time at the HOT lanes, each survey respondent is assigned a toll
price for that specific arrival time and date of travel.  For respondents who choose to drive alone in the
HOT lanes, this represents actual price paid.  For solo drivers in the regular lanes and those who carpool,
this represents the price they would have paid had they chosen to use FasTrak.

Arrival time at the HOT lanes is determined using a combination of information from the panel
survey and speed estimates for the upstream portion of I-15.  The panel survey queried respondents for
onramp used in the morning commute and arrival time at that onramp.  Travel time from the onramp to
the beginning of the HOT lanes is estimated using time-of-day point speeds calculated from California
Department of Transportation (CALTRANS) loop detectors embedded in the roadway.  These loop
detector data are computed  every six minutes. Point speeds at loop detector locations are converted into
speeds on intervening roadway segments using an algorithm that assumes that the point speed at the
beginning of the segment applies to the first half of the segment and the point speed at the end applies to
the second half of the segment (van Grol, 1997).  Since loop detectors are placed near onramps, the
freeway is effectively broken into segments traveling from onramp to onramp.

2.3 Time Savings From HOT Lane Use
For mode choice modeling, we must determine possible time saving from travel on the HOT lanes

for all respondents regardless of mode choice.  Time saving is defined as the difference in travel time on
the HOT lanes and travel time on the parallel main lanes.  Both are a function of when commuters arrive
at the facility, speeds along the HOT lanes, and speeds in the main lanes.  Speed on the HOT facility is
assumed to be 70 miles per hour based on several days of floating car experiments.  Speeds on the main
lanes are estimated every six minutes during the entire survey period using the loop detector data.  These
speeds were also estimated by driving along the roadway every fifteen minutes for one week in the
middle of the survey period (referred to as floating car measurements).  Section 6 shows results using the
loop detector speeds and using a combination of loop detector speeds and floating car speeds.

The median time saving, based solely on loop detector speed measurements by time of arrival at
the HOT facility, peaks at about seven minutes at the same time period (7:30-8:00 AM) that average tolls
peak at four dollars.  Considerable variation occurs within each half-hour time period as indicated by the
divergence between median, 90th percentile, and 10th percentile time savings.  Ten percent of the time,
peak time saving exceeds twelve minutes.  Details are provided in Kazimi, et al., (2000).

Those entering I-15 at one particular onramp (the Ted Williams Parkway onramp at the north end
of the HOT Lanes) may also benefit from a special dedicated entrance to the HOT facility that avoids a
congested main-lane onramp with a ramp-meter traffic signal.  We estimated this additional time savings
for each time interval from floating car observation of queuing times, and added it to the estimated time
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savings from use of the HOT lanes for those respondents entering I-15 at this location (approximately 36
percent of the sample).  These additional time savings ranged up to five minutes  (Kazimi, et al., 2000).

3 Mode Choice and Value of Time

The key ingredient in evaluating projects designed to reduce travel time is commuters’ willingness to
pay for these reductions.  If commuters value time saved from congestion reduction highly, then it may be
worthwhile to make costly investments in new transportation infrastructure.  This section reviews the
model structure and estimation methods that transportation economists use to estimate value of time
(VOT) from reducing travel delays.

3.1 Conditional Logit Mode Choice Models
Suppose that respondent n faces a choice of three modes for travel to work indexed by j.  In this

paper the modes are drive alone, pay to drive alone in the HOT lanes (FasTrak), or carpool in the HOT
lanes.  In most previous studies the modes are automobile, bus, or subway.  The Conditional Logit model
assumes that the probability that respondent n takes mode j conditional on observed variables xjn is given
by:

( )
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= 3
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The value of time saved (VOT) is given by the increase in cost required to keep Pjn constant after a
small decrease in travel time.  If time and cost only enter as linear terms in x, then the VOT is just given
by ttime cosθθ .

Small (1992) and Wardman (1998) provide comprehensive reviews of VOT studies, and
Gonzalez (1997) provides a review of the theory of consumer choice and its connection to value of time
and mode choice modeling.  Based on his review, Small (1992) suggests that 50 percent of gross wage
rate is a reasonable value of time estimate.  On the higher end of previous studies, Cambridge Systematics
(1977) estimate that VOT for commuters in Los Angeles is 72 per cent of gross hourly wage.  These
previous studies are based upon mode choice models that consider differences between transit and
automobile travel, and to the extent that differences between transit and private automobiles are not
captured, the results will be biased.  In more recent work, Calfee and Winston (1998) attempt to avoid this
problem by using stated preference data that only considers the tradeoff between travel by automobile in
slower, free lanes and travel by automobile in faster, priced lanes.  Their results indicate that commuters
have a lower VOT than previously estimated (roughly $3.50 to $5.00 per hour or 15 to 25 percent of
hourly wage).  Calfee and Winston rely upon stated preference data because they lack revealed preference
data for the choices involved with congestion pricing.  Our results are not subject to the same potential
biases associated with stated preference data as we use revealed preference data.

Given a random sample of N commuters, the model in equation (1) is typically estimated by
maximizing the likelihood function
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where Din=1 if respondent n chooses mode i and zero otherwise.  This likelihood function is globally
concave and therefore easy to maximize using standard algorithms.  See Train (1986) for more
information about this model and its application to transportation problems.

3.2 Choice-base Sampling
It is very common for one mode to have a very low market share, which makes collecting a random

sample with a reasonable sample size for each mode very expensive.  For example, in the I-15 corridor
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the FasTrak users account for only 3.5 percent of the inbound peak period trips.  To reduce data collection
costs most transportation surveys stratify on mode choice, which results in a non-ignorable sampling
scheme.

Maximizing a random-sample likelihood function as in equation (2) with a choice-based sample
will generally yield inconsistent parameter estimates.  McFadden (see proof in Manski and Lerman, 1977)
shows that for the conditional logit model with a full set of mode-specific constants only the parameters
associated with these mode-specific constants are inconsistent.  Scott and Wild (1986) provide similar
results and give links to case-control sampling schemes.  These results imply that we can use unweighted
maximum likelihood for our conditional logit model.  However, it is useful to consider alternative
estimators that are consistent for more general choice models such as the Nested Logit Model (see Train,
1986).

A relatively simple estimator which yields consistent estimates under choice-based sampling was
developed by Manski and Lerman (1977).  Their Weighted Exogenous Sample Maximum Likelihood
Estimator (WESMLE) is the maximand of the weighted likelihood function:

 ,)x,(L nnnn θω∑ (3)

where Ln is the log likelihood function for the nth observation and the sampling weight, nω , is the inverse of

the probability that the nth observation (individual) would be chosen from a completely random sample of
the population.  This estimator is also known as the “pseudo maximum likelihood estimator in the survey
sampling literature (Skinner, 1989).  If the sampling scheme were completely random, then all of the
sampling weights would be equal and the WESMLE would simply be the usual maximum likelihood
estimator.  The WESMLE is inefficient, but Imbens (1992) gives an efficient method of moments estimator
for choice-based samples.

4 Measurement Model

The loop detector data described in Section 2.3 can give inaccurate estimates of the actual time
savings commuters get from taking the HOT lanes.  Depending on the traffic flows between the loop
detectors (which are miles apart on the I-15 corridor), actual speeds can be either over or under-predicted.
Since these measurement errors will generally be larger when the road is congested, the measurement
errors in time savings are likely to be larger for FasTrak and carpool lane users.  Since time saved using
the HOT lanes is a key independent variable in the choice models in Section 6, this measurement error
will bias key parameter estimates.

We use the five days during the survey period where we have both floating car and loop detector
data available to fit a model which we use to predict floating car travel time for the other seven weeks of
the survey period.  These predicted floating car data are then used to fit mode choice models in Section 6.
This approach assumes that the floating car data are correct, and we will use multiple imputations to
correct for the measurement error caused by imperfect predictions.

The floating car data are collected at 15 minute intervals while the loop detector data are at 6
minute intervals.  To make these data compatible, we interpolated the floating car data into 6 minute
intervals.  The floating car estimates over the morning commutes from October 26 through October 30,
1998 are generally more than twice as large as the loop detector time savings.  The median floating car
time savings is 8.5 minutes, while the median loop detector time savings is 2.2 minutes.  Obviously the
loop detector estimates are badly biased for this corridor.

Table 1 shows the best fitting linear regression model for predicting floating car HOT lane time
savings. To avoid unreasonable predictions we first transform both time savings measures to keep them
bounded between zero and 35 minutes, which is the maximum observed loop detector time savings.  The
exact transformation for both time savings variables is given by the following transformed logit:
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We tried a number of different specifications including higher order terms in loop detector time savings
and toll variables, but none of them significantly improved the fit of the model.  Since the purpose of this
model is accurate prediction, we are looking for the most parsimonious model with the best fit.  Although
including the main effect is traditional when including interactions in a regression model, including the
logit of loop detector time savings results in a coefficient of .06 with a standard error of .22.  Since no
other coefficients were changed, we deleted the main effect to avoid inflating the variance of the model’s
predictions. We also experimented with lagged values, but the cubic polynomial in time effectively
removes the autocorrelation in the time savings measures (residual first-order autocorrelation is .08).

Although the variables involving the tolls are not individually significant, they are jointly
significantly different from zero at the one percent level.  If they are excluded from the model, then the R2

drops slightly to .89.  However, excluding the loop detector data reduces the R2 to .82 and increases the
MSE of the residuals to .46.

There are two general approaches for estimating a behavioral model with measurement error in
the explanatory variables: joint maximum likelihood of the behavioral and measurement models, or
Rubin’s multiple imputation approach.  Joint maximum likelihood would be very difficult for the model
in Section 6 since the actual explanatory variables are complicated non-differentiable transformations of
the variable explained by the measurement model in Table 1.  We will therefore implement the multiple
imputation approach as given in Rubin (1987 and 1996).  Brownstone (1998) gives more detail using the
same notation as this section.  Rubin developed his methodology for missing data, and in our application
floating car time savings are missing for approximately 80 percent of our respondents.

Suppose we are interested in estimating an unknown parameter vector θ.  If no data are missing,

then we would use the estimator 
~
θ and its associated covariance estimator 

~
Ω .  If we have a model for

predicting the missing values conditional on all observed data, then we can use this model to make
independent simulated draws for the missing data.  If m independent sets of missing data are drawn and m

corresponding parameter and covariance estimators,  
~θj  and  

~Ω j , are computed for each of these imputed

data sets, then Rubin's Multiple imputation estimators are given by :

$ ~
θ θ= ∑ jj=1

m
m

(5)

( )$ ,Σ = U m B+ 1 + - 1  where (6)

( ) ( ) ( )B m
m

= − −
′

−∑ ~ $ ~ $ 1
=1

θ θ θ θjj j (7)

U m
m

= ∑ ~
.Ω jj=1

(8)

Note that B is an estimate of the covariance among the m parameter estimates for each independent
simulated draw for the missing data, and U is an estimate of the covariance of the estimated parameters
given a particular draw.  B can also be interpreted as a measure of the covariance caused by the nonresponse
(or measurement error) process.
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Table 1.  Imputation Model for Floating Car HOT Lane Time Savings
Dependent Variable: Logit of Floating

Car Time Savings
R2 = 0.90

Root MSE = 0.36
Independent Variables: Coef. Std. Err. t-Stat.
Logit of Loop Detector Time Savings ×

Minutes Past 5:00 A.M.
0.0029 0.00031 9.3

Minutes Past 5:00 A.M. 0.222 0.0149 14.8
(Minutes Past 5:00 A.M.)2 -0.00138 0.000121 -11.4
(Minutes Past 5:00 A.M.)3 2.73E-06 2.91E-07 9.38
Toll -0.229 0.188 -1.22
Toll × Minutes Past 5:00 A.M. 0.00222 0.00126 1.77
Constant -11.4 0.52 -22.1

Rubin (1987) shows that for a fixed number of draws, m ≥ 2, $θ  is a consistent estimator for θ and
$Σ  is a consistent estimator of the covariance of $θ .  Of course B will be better estimated if the number of

draws is large, and the factor (1 + m-1) in equation (6) compensates for the effects of small m.  Rubin (1987)

shows that as m gets large, then the Wald test statistic for the null hypothesis that θ = θ0 ,

( ) ( )θ θ θ θ−
′

−−0 1 0$ ,Σ  (9)

is asymptotically distributed according to an F distribution with K (the number of elements in θ) and ν
degrees of freedom.  The value of ν is given by:

ν = (m - 1)(1 + rm
-1)2 and

rm = (1 + m-1) Trace(BU-1)/K (10)
This suggests increasing m until ν is large enough (e.g. 100) so that the standard asymptotic Chi-squared
distribution of Wald test statistics applies.  We used this stopping rule and found that the models in Section
6.2 required m=20 multiple imputations.  Although this is more than the 4-5 multiple imputations used in
most applications, recall that the proportion of missing floating car data is 80 percent in our application.
Meng and Rubin (1992) show how to perform likelihood ratio tests with multiply-imputed data.  Their
procedures are useful in high-dimensional problems where it may be impractical to compute and store the
complete covariance matrices required for the Wald test statistic (equation 9).

To draw one set of imputed values for the missing floating car data, first draw one set of slope
and residual variance parameters from the asymptotic distribution of the linear regression estimators from
Table 1.  The slope parameters are drawn from the joint normal distribution centered at the parameter

estimates with covariance given by the usual least squares formula ( ( ) 12 −′XXs ).  The residual variance,
2
*σ , is drawn by dividing the residual sum of squares by a draw from an independent 2

dχ  distribution,

where d is the residual degrees of freedom.  An imputed residual vector is then drawn from independent

normal distributions with mean zero and variance equal to 2
*σ .  The imputed values are then computed by

adding this imputed residual to the predicted value from the regression using the imputed slope
parameters.  Additional sets of imputed values are drawn the same way beginning with independent draws
of the slope and residual variance parameters.  Observations where floating car data are observed are
fixed at these observed values across all imputations.  This imputation method, which Schenker and
Welsh (1988) call the “full normal imputation” procedure, is equivalent to drawing from the Bayesian
predictive posterior distribution when the dependent variable and the regressors follow a joint normal
distribution with standard uninformative priors.

For each imputed value we add the mean time savings for those respondents entering the I-15 at
Ted Williams Parkway.  The medians and 90th percentiles across each month are computed for each 6-
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minute time interval.  These medians and the difference between the 90th percentiles and the medians are
then used to estimate the parameters of the choice model in Section 6.2.  The multiple imputation
procedure described here has been implemented in STATA, and it could be programmed in most modern
statistical packages.

5 Attrition Model

The 39% attrition rate between Waves 2 and 3 of our panel is not unusual for transportation panel
surveys (Raimond and Hensher, 1997).  The high attrition might be due to the required detailed questions
about the commute trip which respondents find difficult to answer and/or intrusive.  Although new
respondents (the refreshment sample) are recruited each wave to maintain sample size, it is crucial to
account for attrition when analyzing these data.  Once the data are collected there is nothing to be done
about the loss of efficiency due to the decreased sample size, but there are flexible modeling techniques to
identify and correct for non-ignorable attrition.

The simplest approach is to compare the panel sample with the refreshment sample.  There do not
appear to be striking differences in the distribution of key variables across these samples, but the panel
sample exhibits slightly higher income and longer commute distance.  Since the samples are
approximately equal size, it is also possible to fit the choice model in Section 6.1 separately for each
sample.  The hypothesis that attrition is ignorable is then equivalent to the hypothesis that the coefficients
of the choice model are equal across the samples.  A standard likelihood ratio test shows that this
hypothesis cannot be rejected at any reasonable significance level for these data.

If there is no reasonable size refreshment sample, or if the data are used for dynamic analysis,
then the attrition process can be modeled using the initial wave of the panel.  The results from fitting a
binomial logit attrition model show that the only significant predictors of attrition are refusal to disclose
income, distance, and proportion of FasTrak use during the previous week.  Commute distance enters as a
quadratic term that has a maximum negative effect on attrition at 42 miles.  This implies that for the
relevant range of the data longer distance commuters are less likely to attrite.  Proportion of FasTrak use
is an endogenous variable in our choice models, so its significance in the attrition model implies that the
attrition process is non-ignorable.  The higher attrition of FasTrak users might be related to the substantial
number of additional survey questions administered to this group.

Unless there are significant interactions between the dependent variable and other independent
variables, the attrition process described above is just another form of choice-based sampling.  Therefore
unweighted maximum likelihood estimates of the conditional logit model will be consistent except for the
alternative-specific constants.  In our application, there are no significant interactions in the attrition
model, so we will base our estimates in Section 6 on unweighted estimates.  If there are significant
interactions, then Brownstone (1998) and Brownstone and Chu (1997) show that the WESMLE estimator
can be used with multiply imputed weights from the attrition model to get consistent inference.

6 Choice Model Results

Sections 6.1 and 6.2 compare mode choice model estimates using uncorrected loop detector data and
correcting for measurement error.  We use a model derived from the specification in Kazimi et al. (2000).
The main difference in the specifications is that here we include a variable identifying sample respondents
who do not pay their own tolls.  Any teenager knows that if someone else is paying (here, typically the
employer), then they will be less sensitive to the price.

In addition to the parameter estimates, we also report value of time (VOT) estimates for the models
in Sections 6.1 and 6.2.  Since toll enters the specification both linearly and interacted with variability (the
difference between the 90th percentile and the median of time saved by taking the HOT lane over the
month), the VOT in dollars per hour saved is given by:
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Since VOT varies across respondents, we give the distribution across respondents weighted by the choice-
base sampling weights to match the population of morning commuters.  We also give this VOT evaluated
at the weighted mean of Variability.  This latter quantity is useful for comparison with other studies that
typically do not report the variable in equation (11).  Our definition of variability is based on the notion
that commuters are much more concerned about unexpected delays than about unexpected speedy trips.

6.1 Loop Detector Time Savings
The left panel of Table 2 gives parameter estimates for the mode choice model using loop detector

time savings.  High-income, home-owning, middle-aged females with a graduate degree are the most
likely group to pay for FasTrak.  Large households with more workers than cars are most likely to
carpool.  Both carpoolers and FasTrak users have similar positive coefficients for time savings, but the
reduction in Variability from HOT lane use is not significant.  However, if Variability is removed from
the model then the toll coefficient drops and becomes insignificant.  Relative to solo driving, commute
trip drivers are more likely to choose FasTrak and non-commute trip drivers are more likely to carpool.

The middle column of Table 3 gives various VOT estimates (computed from equation 11) from the
model using loop detector data.  Note that the distribution is skewed and there is substantial variance
across the population.  The median values are much higher than Calfee and Winston’s (1998) estimates,
and they are on the high end of the estimates reviewed in Small (1992).  These medians are similar to
equation (11) evaluated at the weighted sample mean variability (labeled “VOT at Mean Variability”).
This is the number typically presented in studies where VOT varies according to observed variables.
Since this is just a scalar, it is straightforward to estimate the standard error of this estimate (caused by
parameter estimation error) using the delta method.  Although this estimate is significantly different from
zero, the standard error is large enough to include almost all previous estimates.  Calfee and Winston do
not report standard errors for their VOT estimate of $5.00, but the $26/hour estimate in Table 3 is more
than two standard errors away from their point estimate.

6.2 Predicted Floating Car Time Savings
The right panel of Table 2 gives the results of estimating the choice model using the predicted

floating car data and multiple imputation algorithm described in Section 4.  The coefficient estimates are
roughly similar to the uncorrected loop detector estimates, but the key coefficients of toll and time
savings for commuters are reduced in magnitude and significance.  Overall the standard errors are
considerably larger than the uncorrected loop detector estimates.  This is due to the component of error
caused by the error in the prediction model used to generate the predictions.

Since the floating car time savings are generally larger than the corresponding loop detector
measures, we would expect that the value of time estimates would drop relative to the uncorrected loop
detector estimates.  The third column of Table 3 confirms this and shows that the VOT estimates have
dropped $5 - $7.  While this change is quite significant from a policy perspective, it is not statistically
significant given the large standard errors of these measures.

If the error in the prediction model is ignored and only one set of imputed floating car time savings is
used, then the standard errors are downward biased by over 50 percent for this model.  Even though the
prediction model fits very well, the prediction error is still an important component of the total estimation
error.

7 Conclusion

This paper reviews techniques for handling attrition, choice-based sampling, and measurement error
in panel surveys.  Although we concentrate on commuter surveys and value of time measurement, the
techniques are general and can be applied in other settings.  It turns out that only measurement error is a
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serious problem in our application, although there is no way to know this without first carefully modeling
the attrition and sampling process.

Section 4 shows that measurement error in travel time is a serious problem for mode-choice
models.  The relatively cheap measures, loop detectors and respondents’ perceptions of time savings, are
both badly biased.  When we collect additional data on all respondents’ perceptions, then we can add
these perceptions to our imputation models.  In any case the multiple imputations approach used here to
integrate the measurement error and choice models is a good general tool for these sorts of problems.
Ignoring the component of error in the choice model parameters caused by the prediction model leads to
serious underestimates of the precision of the choice model parameters.

Table 2. Conditional Logit Mode Choice Model Estimates

Loop Detector Data Corrected Data
Number of obs. = 699 Pseudo R2 =  0.21 Pseudo R2 =  0.20

Log likelihood = -606.56 Log likelihood = -611.27
FasTrak choice Coef. Std. Err. t-Stat. Coef. Std. Err. t-Stat.
Constant -5.978 1.994 -3.00 -7.179 3.342 -2.15
Income ≥ $100K + Refused

to answer*
0.855 0.183 4.68 0.830 0.271 3.06

Income < $40K* -0.621 0.505 -1.23 -0.591 0.536 -1.10
Female* 0.730 0.183 3.98 0.704 0.251 2.81
Age between 35 & 45* 0.423 0.179 2.36 0.445 0.210 2.12
Has Graduate Degree* 0.741 0.195 3.80 0.747 0.266 2.81
Household owns home* 0.754 0.293 2.57 0.812 0.355 2.29
Distance (miles) 0.019 0.010 1.86 0.015 0.011 1.39
Toll paid by someone else* 1.747 0.454 3.85 1.816 0.633 2.87
Toll ($/trip) -0.787 0.220 -3.58 -0.600 0.387 -1.55
Median total time savings

for commuters
0.182 0.047 3.87 0.074 0.037 2.04

Median total time savings
for non-commuters

0.417 0.216 1.93 0.297 0.200 1.49

Toll × Variability 0.135 0.035 3.83 0.090 0.053 1.69
Commute trip* 3.395 1.939 1.75 4.495 3.004 1.50
Carpool Choice
Constant -2.265 1.006 -2.25 -2.139 1.145 -1.87
Workers per vehicle 1.005 0.366 2.74 0.982 0.435 2.26
Distance (miles) 0.102 0.056 1.82 0.099 0.060 1.64
Distance squared -0.001 0.001 -1.27 -0.001 0.001 -1.23
Single worker household* -0.973 0.350 -2.78 -1.005 0.426 -2.36
Two worker household* -0.522 0.289 -1.81 -0.548 0.318 -1.72
Commute trip* -1.762 0.414 -4.25 -1.747 0.588 -2.97
Median total time savings 0.144 0.045 3.19 0.056 0.033 1.71
Carpool ramp bypass* 0.556 0.278 2.00 0.634 0.315 2.01
Variability of solo drive

time
0.098 0.076 1.29 0.039 0.076 0.51

* These are dummy variables defined to equal one if the condition is true and zero otherwise.
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Table 3.  Value of Time Saved Estimates

Value of Time (VOT) ($/hour) Loop Detector Corrected
90th Percentile 73.63 72.12
50th Percentile 23.37 18.71
10th Percentile 14.43 -20.72

Mean 32.64 25.63
Std. Dev 94.29 74.75

VOT at Mean Variability 25.96 18.63
Std. Dev. Of VOT at Mean Variability 7.70 13.88

The substantive conclusions from the models in Section 6 are largely negative.  We cannot estimate
value of travel time reduction accurately enough to resolve current controversies.  In particular, the
confidence bands from our estimates cover most existing estimates, and the differences between these
estimates are important for planning new transportation infrastructure investments. Additional work is
required to combine perceived time savings, loop detector time savings, and floating car time savings
using data from more recent waves of the I-15 panel. Stated preference questions have also been added to
the survey so that we can jointly model responses to hypothetical and real situations.  Hopefully the
enhanced models will shed more light on the problem of evaluating time savings.
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