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ABSTRACT OF THE THESIS

Novel approach for characterizing properties of nerve fiber bundles in Central
Nervous System

By

Yash Shashank Vakilna

Master of Science in Biomedical Engineering

University of California, Irvine, 2018

Professor Frithjof Kruggel, Chair

Spherical Mean technique (SMT) is a novel method of quantifying the diffusion prop-

erties of the nerve fibers bundles in the central nervous system. It does this by

calculating the spherical mean of the diffusion signal and fitting it to a parametric

equation to obtain per voxel diffusion coefficients. We used Expectation - Maximiza-

tion to obtain Gaussian Mixture Models (GMM) to find distinct clusters in per voxel

coefficient space. We found that the diffusion properties of all the white matter fibers

were clustered into a single Gaussian distribution in 867 brain volume samples. This

implies that the diffusion properties of the white matter fibers are relatively homoge-

neous. Then, we checked this result by comparing the clusters obtained using GMM

with tissue classification outputs obtained by clustering Fractional Anisotropy (ob-

tained using Diffusion Tensor modeling), T1 weighted image intensity and B0 image

intensity for 867 brain volume samples; we observed that the specific clusters of per

voxel diffusion coefficients obtained using GMM represent specific tissue types (grey

matter fibers, white matter fibers, cerebrospinal fluid). Since the parameters derived

from SMT represent the physical diffusion properties that are independent of micro-

viii



scopic fiber orientation and the distribution of diffusion coefficients of white matter

can be modeled by a single Gaussian distribution, we can conclude that the diffusion

properties of all white matter fiber are homogeneous.
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Chapter 1

Introduction

Since its discovery in 1968 by Stejskal and Tanner [35], Diffusion Weighted Imaging

(DWI) has been used extensively as a tool to reveal properties of white matter fibers.

Advanced computational methods were developed to use this information to elucidate

structural connectivity in the brain. DWI is a Magnetic Resonance Imaging (MRI)

modality that sensitizes the acquired signal to the Brownian motion of the water

molecules undergoing diffusion. The diffusion of water molecules is hindered by cel-

lular structures such as myelin, cell membranes, intra-cellular organelles, which cause

them to diffuse non-uniformly in certain directions. This phenomenon, called diffu-

sion anisotropy, gives us valuable information about diagnostically relevant features

such as cell size, shape and density.

In this study, we characterized the nerve fibers by calculating their per voxel diffusion

coefficients. This problem is highly relevant in numerous clinical applications areas

such as clinical neurology [37]. Changes in white diffusivity can be used to differ-

entiate tumor grades [40] and quantify aging processes. Also, it helps in evaluating
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neuronal damage following cardiac arrest or traumatic brain injury and also in lesion

localization [38].

Over the years, numerous image and data processing techniques have been devised to

extract relevant information from diffusion weighted signal. Diffusion Tensor Imaging

(DTI) is the most widely used technique in a clinical setting. Quantitative measures,

such as Fractional Anisotropy (FA) and Apparent Diffusion Coefficient (ADC), de-

rived from tensor modeling are widely used for diagnostic purposes. However, the

principal problem encountered by these measures is that they assume that all the

fibers in a voxel are aligned in the same direction. Therefore, the diffusion tensor

model works well in the region consisting of only one fiber bundle. However, it is un-

reliable in regions with several populations which are aligned along intersecting axes

[7, 19, 11]. Several strategies were proposed to fix this problem. Newer signal acquisi-

tion methods, such as High Angular Resolution Diffusion Imaging (HARDI) [7], and

increasingly complex biophysical models, such as Diffusion Spectrum Imaging, Q-Ball

Imaging [37], spherical deconvolution representation [16], etc., were proposed. Unfor-

tunately, all these novel data processing schemes require unusually high acquisition

time, or complex gradient sequences which makes their adoption in clinical setting

significantly harder [19]. Therefore, we are using parameters derived from Spherical

Mean Technique (SMT). The advantages of using this technique are twofold. First,

the per voxel diffusion coefficients estimated by SMT do not require information about

intra-voxel parameters such fiber microanatomy, inter-fiber space inside the voxel, or

the degree of myelination [19]. Second, this technique utilizes conventional pulse se-

quences and the only requirement is multiple acquisition with at least two b-values.

As a result, it can be easily adopted in a clinical setting.

This study is an attempt to characterize nerve fibers using per voxel diffusion coeffi-
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cients derived using SMT. These parameters are clustered into GM or WM and this

classification was tested against tissue type classification obtained using DT mod-

eling. This dissertation is organized as follows. The next chapter provides basic

theoretical concepts necessary for understanding this technique. Additionally, it also

describes popular alternative techniques for processing diffusion weighted data. The

subsequent chapter elaborates on the methodology of data processing and focuses on

details of implementation such as pre-processing, optimization parameters, and clus-

tering algorithms, namely Gaussian Mixture Modeling and K-means clustering. The

next chapter describes the results of the data processing algorithms, along with the

tests performed to validate the output of this scheme. Finally, the thesis concludes

by summarizing the work and provides future direction for further study in this area.
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Chapter 2

Background

2.1 Magnetic Resonance Imaging

Nuclear Magnetic Resonance (NMR) was first observed by Isidor Rabi in 1940. It

quickly became one of the most popular analytical tools to study the molecular struc-

ture in chemistry and biochemistry. In early 1970, researchers realized that magnetic

field gradients can be used to localize NMR signals and to generate images displaying

the magnetic properties of protons [29]. This discovery, coupled with the development

of body-sized magnets and advances in computed tomography, sparked a significant

interest among clinicians to use NMR to image the human body to detect pathological

findings inside the body non-invasively.

Magnetic Resonance (MR) imaging utilizes the presence of atoms with unary protons

in the form of water molecules in the human body. These protons have an intrinsic

magnetic moment which, under normal ambient conditions, cancels each other’s mag-
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Figure 2.1: A. Magnetic moments are randomly oriented in absence of magnetic field.
B. Magnetic moments align in the direction of external magnetic field [29]

netic moments resulting in net zero magnetic moment. During MR image acquisition

a strong, uniform, external magnetic field aligns these magnetic moments in an either

parallel or anti-parallel direction with respect to the magnetic field (Fig.2.1). This

alignment is perturbed by inducing oscillation in the protons by application of radio

frequency pulse resonant to the Larmor frequency, given by Eqn. (2.1).

ωLarmor = γB0 (2.1)

where B0 is the external magnetic field.

These oscillations are short lived and decay quickly. This decay gives information

about the medium in which these protons are oscillating. There are two time scales

associated with the decay of these oscillations, T1 and T2

• T1 (longitudinal relaxation times) is the time constant associated with rate at

which excited protons return to equilibrium. It is a measure of the time taken for

spinning protons to realign with the external magnetic field. This phenomenon
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is called spin-lattice relaxation and can be expressed mathematically as:

Mz = M0

(
1− e−t/T1

)
(2.2)

where Mz is the longitudinal magnetization at time t for a sample and T1 is

the time needed for the recovery of 1− 1
e

fraction of Mz. The modality of MRI

which is sensitive to the T1 time constants is called T1-weighted imaging.

• T2 (longitudinal relaxation time) is the time constant that determines the rate

of dephasing of the excited protons caused due to the Brownian motion of

water molecules. This dephasing, called free induction decay, is a key physical

phenomenon that gives us significant information about the medium. It can be

expressed mathematically as:

Mxy = M0e
−t/T2 (2.3)

where Mxy is the transverse magnetic moment at time t for a sample with M0

transverse magnetic moment at t = 0. T2 is the time when Mxy = 1
e
M0. The

modality of MRI which relies on different T2 time constants as contrast is called

T2-weighted imaging.

2.2 Diffusion Weighted Imaging

Diffusion can be described as the tendency of molecules to travel along the concentra-

tion gradient. However, Einstein realized that the molecules undergo random Brow-
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nian motion even in the absence of any concentration gradient. The phenomenon,

called self-diffusion, involves a linear time dependence of the mean squared displace-

ment of a particle:

〈r2〉 = 6Dt (2.4)

where, 〈r2〉 is the mean squared displacement of the molecule in three dimensions,

D is the diffusion coefficient and t is the diffusion time. This results in the proba-

bility distribution function p(r, t) of motion a freely diffusing molecules that follows

Gaussian distribution, as shown in Eqn. (2.5).

p(r, t) =
1√

(4πt)3D
exp

(
−rTr

4tD

)
(2.5)

where, D is the diffusion coefficient, r signifies the displacement of the molecule from

the origin in time t.

In 1965, Stejskal and Tanner realized that an MRI artifact, which results in slight

dephasing of spins caused by the Brownian motion of molecules, can be used to

quantify the motion of water molecules inside a tissue sample. In their seminal paper,

they introduced Diffusion weighted imaging (DWI) [35].

The diffusion of water molecules is dependent on their surroundings. For example, in

the axons the water molecules can readily diffuse in the direction parallel to the axons,

as compared to the perpendicular direction. As a result, diffusion weighted imaging

can be used to track the nerve fiber bundles in the brain and is widely used to study

the structural connectivity and fiber tractography [23]. Consequently, DWI is used

to detect early identification of acute ischemia, several types of brain tumors, white

7



matter diseases, breast cancer, hepato-biliary pancreatic cancers, bowel disorders, and

genito-urinary diseases [14].

For diffusion weighted MR signal acquisition, the homogeneity of the magnetic field

is varied linearly by a pulsed field gradient. Since the Larmor precession frequency is

proportional to the magnet strength, the protons begin to precess at different rates,

resulting in dephasing and signal loss. This is followed by refocusing pulse of the

same magnitude but with opposite direction. This refocusing will not be perfect for

the protons that have moved during the time interval between the pulses, which leads

to signal attenuation. This attenuation of the signal due to the diffusion process is

governed by the following equation.

S

S0

= exp

(
−γ2G2δ2

(
∆− δ

3

))
= exp(−bD) (2.6)

where γ is the gyromagnetic ratio, G is the strength of the gradient pulse, δ is the du-

ration of the pulse, ∆ is the time between the two pulse, D is the diffusion coefficient,

and b is the b-value of signal acquisition [6]. The above equation can be modified to

calculate the Apparent Diffusion Coefficient (ADC) [21].

D = −1

b
ln
S

S0

(2.7)

One of the limitations of acquiring diffusion weighted MR signal is that diffusion is

measured only in the direction parallel to DWI gradient, which necessitates multiple

3-D image acquisitions. Over the years, numerous mathematical procedures have

been proposed to increase the accuracy of determining diffusion characteristics per

voxel from the 3-D brain volumes.
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2.2.1 Scalar Model and Apparent Diffusion Coefficient

The scalar model is the simplest extension of Eqn. (2.6). Three diffusion images (Sx,

Sy, Sz) are acquired and so three ADC (ADCx, ADCy, ADCz) are calculated along

the three orthogonal directions by solving the equation three times followed by taking

the geometric average to obtain pseudo ADC [6].

〈ADC〉 =
ADCx + ADCy + ADCz

3
(2.8)

This is model is computationally extremely efficient and is still a part of the portfolio

of MRI used in clinical emergency [7, 22]. However, it is clear that diffusion is a

3D phenomenon and a mathematical framework is required to perform 3D diffusion

imaging independent of (x, y, z) axes.

2.2.2 Diffusion Tensor Imaging (DTI)

The Gaussian distribution in Eqn. (2.5) describes the motion of water molecules

in the absence of any hindrance. However, the water molecules in nerve fibre bun-

dles encounter several barriers in the form of cellular structures structures such as

organelles and cell membrane. This causes three dimensional direction dependent

diffusion of the molecules which cannot be described using a scalar ADC. As a result

the scalar model in Eqn. (2.6) is extended by replacing ADC with Diffusion Tensor

(DT) to capture the anisotropy of diffusion of the water diffusion [3, 4]. DT is a 3×3,

9



Figure 2.2: The diffusion tensor model models diffusion with ellipsoids [7]
.

symmetric positive semi-definite matrix.

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (2.9)

By multiplying g, the unit gradient direction, with each side of the tensor, we obtain

Eqn. (2.10).
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gTDg =

(
gx, gy, gz

)
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz



gx

gy

gz


= Dxxgx

2 +Dyygy
2 +Dzzgz

2 + 2Dxygxgy + 2Dxzgxgz + 2Dyzgygz (2.10)

The above equation represents an ellipse in 3-D as illustrated in Fig. 2.2, signifying

that the diffusion process in each voxel is modeled as a single Gaussian distribution.

Using this model to extend Eqn (2.6), we get:

S(g, b) = S0 exp(−bgTDg) (2.11)

The above equation contains six unknown coefficients and therefore requires six dif-

fusion weighted image volumes to compute. We can obtain the three eigenvalues

(λ1 ≥ λ2 ≥ λ3) and three eigenvectors (e1, e2, e3) by performing singular value de-

composition on DT. These eigenvalues and eigenvectors fully describe the geometric

and diffusion properties of the tensor [7]. e1 gives the principal direction of DT, and

along with the other two eigenvectors, span the orthogonal planes. Several rotation-

ally invariant scalar values that quantify diffusion characteristics, can be extracted

from this model; following equations describe some such examples:

Fractional Anisotropy (FA) :
3

2
.

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ2)2

(λ1)
2 + (λ2)

2 + (λ3)
2 (2.12)

Mean Diffusivity (MD):
(λ1) + (λ2) + (λ3)

3
(2.13)
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Radial Diffusivity (RD) =
λ2 + λ3

2
(2.14)

Since diffusion characteristics arise from constrained diffusion of water molecules due

to intact cellular structures such as cell membrane and myelin sheath [5], change

in these diffusion characteristics is indicative of a structural abnormality. There-

fore, these quantities are widely used in the clinical settings to diagnose structural

abnormalities such as ischemic brain injury, adult stroke, and inflammation [10]. Ad-

vantages of DTI is its short acquisition time and its availability in all existing clinical

systems. However, for voxels which have multiple fiber populations, the Gaussian

diffusion model assumption is violated. This means, in the worst case, DTI does not

accurately measure the diffusion process for 66% of the voxels [7] .

2.2.3 Diffusion Spectrum Imaging and Q-ball imaging

In conventional MRI (T1 or T2 weighted), the MR signal is phase and frequency

encoded by applying gradients in specific directions and intensities and at specific

times. As a result, the raw image acquired is in the spatial frequency domain, which

can be explained mathematically as [27]:

S =

∫∫∫
f(r). exp (−j2π(kTx))dx (2.15)

where, f(x) is the spatio-temporally varying MR signal, and dx is the differential

volume element in the patient and j =
√
−1. A Fourier transform is applied to the

12



raw image to obtain a processed human readable image. A similar idea is used in

diffusion weighted imaging wherein diffusion data is acquired in q-space

S(q, t) = S0

∫
R3

p(r, t). exp(−j2πqTr)dr (2.16)

where, p(r, t) is called diffusion propagator, and q is the wave vector.

For every voxel, q-space represents this 3D coordinate system, which upon Fourier

transform, yields a probability distribution function, which is called diffusion propa-

gator. This mathematical model of measuring diffusion is called q-space imaging.

Diffusion Spectrum Imaging (DSI) is an implementation of q-space imaging in

3-D using the Cartesian sampling of a large number of q-space points as seen in

Fig. 2.3. It does not rely on any particular model or hypothesis and therefore, is

only limited by the resolution of data acquisition in q-space. However, this type

of imaging is clinically not feasible as the time required for acquiring an image is

too long. Q-ball imaging (QBI) tries to combine the best of both model free and

model driven strategies. A voxel is assumed to have the compartment inside voxel

roughly resembling a pin cushion, consisting of a set of straight and thin pipes with

impermeable walls [11]. The diffusion orientation probability distribution (dODF) is

estimated using only a single shell sampling of q-space as demonstrated in Fig. 2.3.

dODF captures the angular content of the diffusion propagator.

ψ(θ, φ) =

∫ ∞
0

p(r, θ,Φ)r2dr (2.17)

where ψ is the dODF, p is the diffusion propagator. r, θ, φ are the spherical coor-

dinates, where (θ,φ) obey the physics convention (θ ∈ [0, π] is the polar angle and

13



Figure 2.3: Sampling scheme in q-space. (a) Cartesian sampling dedicated to diffusion
DSI. (b) Single-shell spherical sampling dedicated to Q-ball imaging. (c) Multiple
shell spherical sampling scheme dedicated to SMT [7]

.

φ ∈ [0, 2π) is the azimuthal angle).

dODF is estimated by using a mathematical technique called Funk-Radon transform.

Intuitively, the Funk-Radon transform at a given spherical point can be understood

as computing the great circle integral of the diffusion signal on the sphere defined by

the plane through the origin perpendicular to the point of evaluation as demonstrated

in Fig. 2.4.

As mentioned in the previous section, DTI is unable to resolve intra-voxel orienta-

tional heterogeneity, such as, nerve fiber crossing, bending, or twisting. This is be-

cause it assumes a single diffusion compartment per voxel, and therefore it can have

one maximum only. Since QBI does not require the diffusion process in a voxel to

be Gaussian or multi-Gaussian distributed, it can resolve the intra-voxel orientation

heterogeneity.

14



Figure 2.4: Funk-Radon transform. Great circle integrals are computed from the
measured signal [7]

2.2.4 Spherical Deconvolution Technique

Just as Fourier series form a complete orthonormal basis in Cartesian space, spher-

ical harmonics form a complete orthonormal basis set for all the functions over a

sphere. Therefore, the spherical harmonic functions can be used to represent any

bounded function over a sphere [36]. Similarly, rotational harmonics form a complete

orthonormal basis over the space of pure rotations.

Using these basis sets, spherical deconvolution is performed as an ensemble of rota-

tions acting on the function defined over a sphere. Spherical convolution works under

the assumption that the measured diffusion (S) signal is the result of convolution

between the distribution of fiber orientations (R) and the single-fiber response func-

tion (F ) [7]. As shown in Fig. 2.5, nth order spherical harmonic decomposition is

15



formulated as:

Sn = RnF n (2.18)

The single-fiber response function is estimated empirically by using voxels with an

FA value above 0.7 [7] using DTI model [36], e.g., as found in the corpus callosum.

Once R is known, F can be calculated by inverting each Rn to recover F n.

F n = (RTR)
−1
Sn (2.19)

Since spherical deconvolution requires a deconvolution kernel, it cannot be considered

as a model-free technique. Since the technique does not assume any model of diffusion,

it does not suffer from problems which are encountered by DTI. However, the linear

solution to the spherical deconvolution suffers from significant instability at the higher

harmonic order which leads to negative fiber orientation values and spurious peaks

[7]. Hence, spherical deconvolution is constrained by using nonlinear methods to deal

with this instability.
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Figure 2.5: Spherical deconvolution technique. Model formulation in q-space and real
space [7]
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Chapter 3

Methodology

3.1 Overview of Data Processing

In this study, we used a pipeline of data processing steps on the acquired MRI data.

These processes can be roughly divided into following categories:

• Preprocessing: Cleaning the data for the purpose of analysis so that the artifacts

acquired during data generation do not affect the results. Following steps were

implemented during preprocessing:

1. B0 intensity normalization.

2. Distortion correction due to eddy currents and subject motion.

3. Registration of B0 to T1 weighted images.

4. Removal of Rician noise and brain volume extraction.

• Spherical mean estimation: Extracting meaningful parameters using parametric
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Figure 3.1: Graphical representation of the data processing protocol

equations.

• Clustering: Generating meaningful insights from the data by processing them

using unsupervised clustering methods.

This section starts with detailing the acquisition DWI data used for this study; this

is followed by explanation of the methods used for its preprocessing. The details of

T2 weighted imaging acquisition and preprocessing are explained in the Appendix.

This is followed by description of Spherical Mean Technique (SMT) and calculation

of per voxel diffusion coefficient. The chapters ends with an explanation of clustering

methods used here.

3.2 Data Overview

Data were provided by the Human Connectome Project (HCP), WU-Minn Consor-

tium (available online at https://humanconnectome.org). The datasets were acquired
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using Siemens 3 Tesla Skyra scanner equipped with a 32 channel phased array head

coil and a customized SC72 insert with gradient strength up to 100 mT/m.

The diffusion datasets had three b-shells of 1000, 2000, and 3000 s/mm2 with 90 gra-

dient directions each, which were acquired using Stejskal–Tanner sequence. Echo time

(TE) of 89 ms and repetition time (TR) of 5.5 s were matched across all the shells,

which were interleaved during acquisition. A pair of apodized sinc RF pulses was used

for excitation and refocusing, with flip angles empirically set to 78 and 160 degrees,

respectively, with a multiband factor of three. The diffusion data was acquired with

phase encoding in both right-to-left and left-to-right directions. Additionally, six im-

ages with zero diffusion weighting (B0) were acquired, which were evenly distributed

across the experiment. The brain volume was divided into 111 slices as the data was

acquired; each in the form of a 144 × 168 image matrix with a field of view (FOV)

210 × 180 mm2 [13].

3.3 Preprocessing

The raw image acquired by the MRI machine is known to have low anatomical ac-

curacy and internal consistency. The causes for the distortions are varied and may

include magnetic field inhomogeneity caused due to magnetic susceptibility (explained

in details later), eddy currents induced due to rapidly changing magnetic field [2], sub-

ject motion and many more. Therefore, preprocessing of the data is necessary before

analysis.

In order to remove these distortions, we employed a diffusion preprocessing pipeline,

published by the Human Connectome Project (HCP) [8]. Next, we used custom
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C++ algorithms to remove distortions due to noise, as explained in [19], to mask the

background and extract the brain from the image.

3.3.1 HCP Preprocessing Pipelines

These tools are implemented in the form of bash scripts that interact with the FMRIB

Software Library (FSL).

3.3.1.1 Intensity normalization and susceptibility induced distortions re-

moval

Diffusion images were acquired using Echo Planar Imaging (EPI), and therefore,

are sensitive to non-zero off-resonance magnetic fields. Such fields are the result of

susceptibility distribution of the subject’s head and of eddy currents generated due

to rapid switching of the diffusion gradients. Here, susceptibility is a measure of the

extent to which a substance gets magnetized when placed in magnetic field.

The “topup” tool calculates the induced susceptibility field. It uses two images with

opposite phase encoding direction and estimates the field that when applied to the

two volumes (of opposite phases encoding direction) will maximize the similarity of

the un-warped volume. In the pipeline, “topup” normalizes the intensity of mean B0

image across six diffusion volumes.
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3.3.1.2 Eddy current induced field inhomogeneity and head motion cor-

rection

This tool simultaneously calculates the effects of diffusion eddy currents and move-

ment of the head. It does this by modeling the diffusion signal as a Gaussian process.

All the field distortions, including the distortion calculated by “topup”, are fed to a

Gaussian process predictor and the corrections are applied in a single resampling step

[2].

3.3.1.3 Registration to T1 weighted image

During the final step, the pipeline calculates the transform between the diffusion and

the structural space. The B0 image is registered to the T1 weighted image using

translation and rotation. This is done using FMRIB’s Linear Image Registration

Tool (FLIRT) using Boundary Based Registration (BBR) cost function .

3.3.2 Change of Format

Further analysis of the data was performed using BRIAN 3.0.0 Signal and Image pro-

cessing libraries implemented in C++. Therefore, we had to convert the images from

the Neuroimaging Informatics Technology Initiative (NIfTI) format to the BRIAN

format [20].
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Figure 3.2: Representative example of preprocessing

3.3.3 De-noising

The noise of the MRI signal conforms to a Rician distribution R(E, ς) [9]. So, in

order to minimize the potential effect of noise induced bias, the following correction

was made:

Ê = arg min
E≥0

(
S −

√
πς2

2
L1/2

(
−E

2

2ς2

))2

(3.1)

where, Ê is the adjusted signal. The second term on the right-hand side stands for

the mean of the Rician distribution, and Ln denotes the nth Laguerre polynomial.

ς is estimated by computing the median of the noise level estimated voxel by voxel

from the B0 images using a maximum-likelihood approach [33].
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3.3.4 Remove Background

Following steps were taken to remove the background of the image [34]:

1. The image was binarized using an empirical threshold at the 65th percentile of

intensities of B0 image.

2. First, morphological opening operation was applied, which was followed by ap-

plying morphological closing operation.

3. Selecting the biggest component of the binarized image using C18 face and edge

connectivity as a mask.

4. Removing all the voxels of DW image outside the mask.

3.4 Spherical Mean Technique

The macroscopic diffusion weighted MR signal is primarily impacted by two biophys-

ical effects – the microfiber orientation and microscopic anisotropy inside a voxel.

One of the major aims of current diffusion MRI research is to disentangle the impact

of these two effects [18]. The major insight of SMT is that the spherical mean of

diffusion MR signal only depends on the b-value of acquisition and is independent

of the fiber orientation distribution. Moreover, it has an additional advantage that

it does not involve complex gradient waveform or magic-angle spinning, which are

currently unavailable in clinical setting, it simply requires conventional pulse gradi-

ent sequence featuring two or more b-shells [19]. Consider two axons with different

24



diffusion properties; the result signal can be calculated using Eqn. (2.11):

S(b,g) = S0(a1 exp(−bgTD1g + a2 exp(−bgTD2g)) (3.2)

where Dn is the diffusion tensor and an is the volume fraction of the nth axon. Now,

for axially symmetric volumes the diffusion tensor can be written as:

Dn =


λ⊥ 0 0

0 λ⊥ 0

0 0 λ‖

 (3.3)

where λ⊥and λ‖ are the eigenvalue for the eigenvector parallel and perpendicular to

the nth axon, respectively, with the assumption that 0 ≤ λ⊥ ≤ λ‖ ≤ λfree, where

the free water diffusion λfree is about 3.05 µm2/ms at 37◦C [28]. These are often

referred to as transverse and longitudinal diffusion coefficients, respectively. Using

Eqn. (3.3), diffusion measured at a particular direction (in the diagonal coordinate

system with coordinates (α, ψ)) relative to an arbitrary reference direction in the

plane perpendicular to the axon, we get (3.4).

D(α, ψ) =

(
sinα cosψ sinα sinψ cosα

)
λ⊥ 0 0

0 λ⊥ 0

0 0 λ‖




sinα cosψ

sinα sinψ

cosα


= sin2 αλ⊥ + cos2 αλ‖

= λ⊥ + cos2 α(λ‖ − λ⊥) (3.4)

where α is the polar angle and ψ is the azimuthal angle.
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Assuming both the axons in Eqn. (3.2) have the same longitudinal and transverse dif-

fusion coefficients (λ⊥,λ‖) but different fiber axes, the signal measured at an arbitrary

point becomes

S(b,g) = S0(exp (−bλ⊥)(a1 exp (λ‖ − λ⊥) cos2 α1 +a2 exp (λ‖ − λ⊥) cos2 α2)) (3.5)

where αn is the angle between the diffusion gradient direction and the nth axon.

The above result can be generalized easily for an arbitrary angular distribution of

fibers P (θ′, φ′) as shown in Eqn. (3.6).

S(b, θ, φ) = S0 exp (−bλ⊥)

∫
0

2π∫
0

π

P (θ′, φ′) exp(−b(λ‖ − λ⊥) cos2 αRR′) sin θ′ dθ′ dφ′

(3.6)

where θ′ and φ′ are the polar and azimuthal angle, respectively, of the axon in axis

direction R’. Similarly, θ and φ are the polar and azimuthal angles of the diffusion

gradient direction R, and αRR′ is the angle between R and R’ as shown in Eqn. (3.6).

This can be interpreted as S(θ, φ) being proportional to the convolution of P (θ, φ)

with the kernel

exp(−bθ⊥) exp(−b(λ‖ − λ⊥) cos2 α)

which is the impulse response of a single fiber [1]. Transforming Eqn. (3.6) into
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spherical harmonics space as shown in Eqn. (3.7) and Eqn. (3.8), we get:

S(θ, φ) =
∞∑
l=0

l∑
m=−l

slmYlm(θ, φ) (3.7)

P (θ′, φ′) =
∞∑
l=0

l∑
m=−l

plmYlm(θ′, φ′) (3.8)

where,

slm =

∫ 2π

0

∫ π

0

Y ∗lm(θ, φ)S(θ, φ) sin θdθdφ (3.9)

plm =

∫ 2π

0

∫ π

0

Y ∗lm(θ′, φ′)P (θ′, φ′) sin θ′dθ′dφ′ (3.10)

As a result, we get simple relation,

slm = S0 cl plm (3.11)

Now in order to calculate plm, let us substitute l = m = 0 in Eqn. (3.10) [1]:

p00 =
1√
4π

∫ 2π

0

∫ π

0

P (θ′, φ′) sin θ′ dθ′ dφ′

=
1√
4π

(3.12)
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Similarly,

s00 =
1√
4π

∫ 2π

0

∫ π

0

S(θ, φ) sin θ dθ dφ

=
√

4π S (3.13)

c0 = 2π3/2 erf(
√
b(λ‖ − λ⊥))√
b(λ‖ − λ⊥)

exp (−bλ⊥) (3.14)

After substituting Eqs. (3.12), (3.13), and (3.14) into Eqn. (3.11) for l = 0, we get

eb(λ‖, λ⊥) =
S(b, λ‖, λ⊥)

S0

= exp (−bλ⊥)
erf(
√
b(λ‖ − λ⊥))

2
√
b(λ‖ − λ⊥)

(3.15)

Since Eqn.(3.15) has two unknowns, we require at least two DW images with different

b values. The image acquisition is similar to Fig. 2.3.

Now λ‖ and λ⊥ are determined by performing constrained least-squares optimization

[19] .

min
0≤λ⊥≤λ‖≤λfree

n∑
i=1

(êbi − ēbi(λ‖, λ⊥))2 (3.16)

Fractional Anistropy can be used as a metric to calculate anisotropy and can be

calculated using longitudinal and transverse diffusion coefficients as shown in Eqn.

(3.17).

FA =

√√√√3

2

(λ⊥ − λ̂)2 + 2(λ⊥ − λ̂)
2

λ‖
2 + 2λ⊥

2 (3.17)
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3.5 Unsupervised Clustering

Unsupervised machine learning are sets of algorithms that deduce a function that

describes the structure of the unlabeled data. Clustering algorithms is a subset of

unsupervised machine learning algorithms, which infer the structure of data by group-

ing sets of objects based on a specific notion of similarity. This technique is often used

in exploratory data analysis in various fields such as pattern recognition, information

retrieval, bioinformatics, data compression, and computer graphics.

Since we did not have access to any labeled data sets relevant to our problem, we

used unsupervised clustering methods – K-means clustering (K-means) and Gaussian

mixture Modeling (GMM) using Expectation-Maximization (E-M) approach. The

motivation behind choosing GMM is that quantities that are expected to be the sum

of number independent processes often have distributions that are nearly Gaussian

[25] and the human brain, being a biological system, is expected to have various

independent processes that might influence diffusion weighted MR signal. K-means

clustering was chosen because of its simplicity and speed.

3.5.1 K-Means Clustering

K-means clustering is used to partition a set of observed data into K disjoint clusters.

Consider a set of N observations {x1, · · ·xN}, each an instance of a D dimensional

Euclidean variable x. These observations are to be divided into K disjoint clusters.

Each cluster can be intuitively thought of as a subset of observed points which are

closer to each other than to other observed points. The closeness is quantified by

small distances between points within a cluster. Each cluster is represented by a
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representative point from the cluster, µk. K-means clustering finds a grouping of

points into K clusters such that the sum of the distance of each point xn from the

representative point for its assigned cluster is minimized.

Let rnk be binary variable which is 1 if the point xn is assigned to cluster k and is

0 otherwise. The objective function to be minimized, J , can then be expressed as

follows.

J =
N∑
n=1

K∑
k=1

rnk||xn − µk||2 (3.18)

Here ||xn − µk||2 represents the Euclidean distance between xn and µk.

This function, called the distortion function, represents the sum of squares of distances

of each observed point from the representative point of its assigned cluster, µk. The

goal is to find values of rnk and µk which minimize the value of J .

K-means clustering proceeds through several iterations of two steps, after an initializa-

tion step. In the initialization step, initial values for µk are chosen for k ∈ {1, · · ·K}.

1. The distortion function J is minimized with respect to the binary variables rnk

for k ∈ {1, · · ·K} and n ∈ {1, · · ·N}, keeping the values of µk fixed.

2. The distortion function is minimized with respect to the representative points

µk for k ∈ {1, · · ·K} keeping rnk fixed.

These steps are repeated until convergence, e.g., when cluster assignments do not

change anymore.
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3.5.2 Gaussian Mixture Modeling using Expectation Maxi-

mization

Gaussian mixture modeling is used to fit a linear combination (or ‘mixture’) of differ-

ent Gaussian distribution to observed data. The probability distribution for a mixture

of K Gaussian distributions can be written as a linear superposition of Gaussian dis-

tributions of the following form:

p(x) =
K∑
k=1

wk

(
1

(2π)D/2|σk|1/2
exp

(
−1

2
(x− µk)

Tσ−1k (x− µk)
))

(3.19)

Here wk represents the weight of the kth Gaussian distribution. These weights are

typically unknown. Therefore it is useful to introduce a latent, unobserved variable,

z, drawn from a Dirichlet process. zn is a K dimensional binary random variable with

znk = 1 if xn is drawn from the kth Gaussian distribution and znk = 0 otherwise.

The values of zn satisfy znk ∈ {0, 1} and
∑
k

zkn = 1. The joint distribution p(x, z) is

expressed using the marginal distribution p(z) and a conditional distribution p(x|z).

The marginal distribution p(z) is defined to be equal to the mixing weights.

p(zk = 1) = wk (3.20)

These weights satisfy 0 ≤ wk ≤ 1 and
∑
k

wk = 1. Thus, the marginal distribution

p(z) can be written as follows.

p(z) =
K∏
k=1

(wk)
zk (3.21)
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Moreover, the conditional distribution p(x|z) can be written as follows.

p(x|z) =
K∏
k=1

(
1

(2π)D/2|σk|1/2
exp

(
−1

2
(x− µk)

Tσ−1k (x− µk)
))zk

(3.22)

The joint distribution p(x, z) is the product of the marginal p(z) and the conditional

p(x|z). The marginal distribution for x, p(x) can be obtained by summing over z as

follows.

p(x) =
∑
z

p(z)p(x|z) =
K∑
k=1

wk

(
1

(2π)D/2|σk|1/2
exp

(
−1

2
(x− µk)

Tσ−1k (x− µk)
))

(3.23)

Consider now N observations of D dimensional Euclidean variable x. Let X be a

N ×D dimensional vector representing all the observations. Estimating the param-

eters wk,µk,σk which maximize the likelihood of observing these points is done by

maximizing the likelihood function, which represents the conditional probability of

observing the data X given the parameters of the model w,µ,σ

p(X|w,µ,σ) =
N∑
n=1

K∑
k=1

wk

(
1

(2π)D/2|σk|1/2
exp

(
−1

2
(x− µk)

Tσ−1k (x− µk)
))

(3.24)

In practice, it is useful to maximize the log of this function, that is the log of the

likelihood ln (p(X|w,µ,σ)) with respect to parameters w,µ,σ. This is done through

the Expectation-Maximization algorithm, which involves two steps, similar to the K-

means algorithm. Initial values for µk and σk are chosen and the following two steps

are repeated.
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1. In the Expectation step, the values of wk are determined to maximize the log

likelihood function for fixed values of µk and σk.

2. In the Maximization step, the values of µk and σk are determined to maximize

the log of the likelihood function for fixed values of wk.

These steps are repeated until convergence, e.g., when the log likelihood function

reaches a steady value.
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Chapter 4

Experiments

Now, we describe the implementation details of calculating per voxel diffusion coef-

ficient using SMT and clustering them to obtain a classification into homogeneous

compartments. Afterwards, these tissue classifications were compared against tissue

classifications found by clustering Fractional Anisotropy (FA) calculated using DT

modeling the diffusion process, the T2 weighted image intensity and B0 image.

Next, we describe the output of SMT by demonstrating a representative example and

calculating a 2D histogram of the per voxel diffusion coefficients. Then, we cluster the

diffusion coefficients and compare the performance of K-means clustering and GMM

against the output obtained by clustering FA, B0 image intensity and T2 weighted

image intensity. We accomplished this by creating a probability map that describes

the probability of each voxel being in gray matter or white matter.
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4.1 Calculating per Voxel Diffusion Coefficients us-

ing SMT

After preprocessing, per voxel longitudinal and transverse diffusion coefficients were

estimated by using the following recipe:

1. The input array of the diffusion weighted brain volumes were segregated ac-

cording to their b-values.

2. For every b shell, the average of signal intensity corresponding to all the direc-

tion was computed to find the expected spherical mean (eb) .

3. A thousand random samples of longitudinal and transverse diffusion coefficients

were generated by randomly sampling uniformly in the ranges 0 ≤ λ⊥ ≤ λ‖ ≤

λfree. These per voxel diffusion coefficients were used to calculate spherical mean

according to Eqn. (3.15).

4. Constrained least-square minimization was performed as described in Eqn. (3.16).

This minimization was implemented using Monte Carlo method by computing

spherical mean estimates from the 1,000 samples of per voxel diffusion coef-

ficients that were randomly sampled, as explained in step three. The error

between expected and estimated spherical mean (
∑
b

(êb − ēb)2) was computed.

Consequently, the longitudinal and transverse diffusion coefficients correspond-

ing to the spherical mean estimate with minimum error were chosen.

The output of SMT was obtained in the form of two (longitudinal and transverse

diffusion coefficient) images. The recipe described above was implemented using
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custom C++ programs while making use of an existing library of functions (BRIAN

3.0.0 -Signal and Image processing tools [20]). Initially, the program took about

90 minutes per patient on an Intel Core i7 processor 4500U (two cores running at

1.8 GHz). In order to decrease this computation time, a look up table was pre-

computed for the function erf(
√
b(x))/

√
b(x) for a precision of 10−6, which reduced

the processing time to about 15 min.

4.2 Clustering

Gaussian Mixture Modeling (GMM) and K-means clustering [26] were implemented

after computing the log transform of the transverse diffusion coefficients. As explained

in the previous section, the Expectation-Maximization algorithm was used to estimate

the model parameters. K-means clustering is a straightforward technique, though it is

sensitive to its starting points. Therefore, clustering was performed 20 times using 20

randomly chosen starting points. In both the cases, we chose the number of clusters to

be four, based on evaluating the 2-D histogram of the per axon diffusion coefficients.

Exploratory data analysis was performed using the R statistical system. Cluster-

ing methods were implemented using libraries - “fpc” (K-means) [12] and “mclust”

(GMM) [32]. The package “ggplot2” was used for visualization [39]. However, C++

programs were used to speed up the clustering process. The implementation of these

algorithm made use of existing functions in BRIAN 3.0.0 library [20].
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4.3 Comparison with DTI

In order to test the output of clustering of per voxel diffusion coefficients obtained

using SMT, the compartments containing gray matter (GM), white matter (WM),

and cerebro-spinal fluid (CSF) were identified. This was achieved by modeling the

microscopic diffusion process as Diffusion Tensor (DT). Implementation details are

as follows:

1. Fractional Anisotropy (FA) was obtained for all the voxels by performing calcu-

lations based on Eqn. (2.12) using eigenvalues obtained by performing Singular

Value Decomposition (SVD) on DT .

2. T2 weighted image was registered to DW image with no diffusion gradient (B0

image) because of difference in resolution.

3. Brain volume was clustered using GMM (number of cluster = 4) on a vec-

tor containing T2-weighted image intensity, B0 image intensity and FA for all

voxels.

4. The clusters were sorted in increasing order of their mean FA values. The first

cluster was labeled as CSF, the second as GM and third and fourth as WM.

The tissue classifications obtained using this method are henceforth referred to as

output obtained using DT modeling.
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Chapter 5

Results

Fig. 5.1 shows a representative example of the output of SMT. The top and bottom

row represent longitudinal and transverse per voxel diffusion coefficients, respectively,

in the axial, coronal, and sagittal planes. After collecting the distribution of per voxel

diffusion coefficients in a joint histogram (Fig. 5.2 (a)), we can identify the presence

of certain data clusters. In order to check the consistency of this observation, we

analyzed 867 brain volumes. Fig.5.2 (b) represents the average distribution of these

per voxel coefficients across these volumes and allows us to identify the data cluster

of the per voxel coefficients at locations similar to Fig. 5.3 (a).

Next, we explored the clustering of per voxel diffusion coefficients to classify into

compartments gray matter, white matter and cerebro-spinal fluid.

Fig. 5.3 illustrates the output of the clustering of per voxel diffusion coefficients.

The left and right panels show the output of Gaussian Mixture Model and K-means

clustering, respectively, in a representative example. Each color represents a specific
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Figure 5.1: The upper row maps the longitudinal microscopic diffusion coefficients
λ‖ and the bottom row map the microscopic transverse diffusion coefficients λ⊥of the
axons, shown in the axial, coronal, and sagittal plane (from left to right).

Figure 5.2: (a) Histogram of per-voxel diffusion coefficients of the brain volume shown
in Fig. 5.1. The red line represents isotropic microscopic diffusion with λ⊥ = λ‖. (b)
Histogram of per voxel diffusion coefficients averaged across 867 brain volumes. The
red line represents isotropic microscopic diffusion with λ⊥ = λ‖.
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cluster across all the images. The lower panel shows the parameter distribution of

longitudinal and transverse coefficients in relation to cluster boundaries. From the

figure we can identify the first cluster as CSF, the second as GM and the fourth as

WM and the third as voxels containing a mixture of GM and CSF (PVE).

Compartment classifications were compared with results obtained from DT modeling.

Fig. 5.4 shows that the tissue classifications obtained using DT modeling resembles

more closely to the tissue classifications identified by clustering per voxel coefficients

obtained using GMM than they do to the tissue classifications obtained using K-

means.

Fig. 5.6 and Fig. 5.5 represent the likelihood of each voxel in brain volume space being

in GM and WM, respectively. The probability maps were generated by averaging 867

tissue classifications output, similar to Fig. 5.4. The result obtained by comparing

the probability maps supports the result obtained by comparing the representative

example, i.e., the tissue classification outputs generated by using DT modeling resem-

ble more closely to the tissue classification outputs generated by performing GMM on

the per voxel diffusion coefficients than they do to the output generated by perform-

ing K-means clustering on per voxel diffusion coefficients. Therefore, we can conclude

that white matter tissue classification obtained using GMM is accurate. Also a sig-

nificant observation is that all the diffusion coefficients obtained from all the white

matter bundles can be fit into a single Gaussian distribution. Therefore, we can also

conclude that diffusion properties of white matter bundles are homogeneous.

K-means clustering performs a hard assignment of each point to a cluster, whereas

Gaussian Mixture Modeling performs a soft assignment of each point to a cluster. In

GMM, each point has a weight of membership to each cluster during every iteration.
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Figure 5.3: Output of Gaussian Mixture Model (left) and K-means clustering (right).
Voxels in blue, green, red, yellow represent white matter (WM), gray matter (GM),
cerebro-spinal fluid (CSF), and voxels with partial volume effect (PVE), respectively.
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Figure 5.4: Comparison between the outputs of clustering per-axon diffusion coeffi-
cients obtained using SMT and tissue classifications using DTI. Axial, coronal, and
sagittal sections (from left to right) of tissue classification obtained from SMT using
GMM ((a)-(c)), K-means((d)-(f)) and DT modeling ((g)-(i)).
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Figure 5.5: Probability maps comparing the likelihood of a voxel being in GM ob-
tained by averaging the clusters of per-axon diffusion coefficients obtained using SMT
and tissue classifications using DTI. Axial, coronal, and sagittal sections (from left to
right) of tissue classification obtained from SMT using GMM ((a)-(c)), K-means((d)-
(f)) and DT modeling ((g)-(i)).

In K-means, each point is on only cluster in every iteration. Furthermore, GMM has

more parameters to fit the observed data than K-Means. Therefore GMM provides a

more sophisticated model of the observed data. Since the biological data arises from

various independent complex processes, GMM is better equipped to handle such data.
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Figure 5.6: Probability maps comparing the likelihood of a voxel being in WM ob-
tained by averaging the clusters of per-axon diffusion coefficients obtained using SMT
and tissue classifications using DTI. Axial, coronal, and sagittal sections (from left to
right) of tissue classification obtained from SMT using GMM ((a)-(c)), K-means((d)-
(f)) and DT modeling ((g)-(i)).
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Chapter 6

Summary

In this study, we characterized the diffusion properties of the nerve fibers in the cen-

tral nervous system by calculating per voxel measures, namely, the longitudinal and

transverse diffusion coefficients. These coefficients were estimated using the Spherical

Mean Technique (SMT) from diffusion weighted images. We found that these coeffi-

cients are relatively homogeneous across white matter tracts and within gray matter.

This was established by clustering per voxel diffusion coefficients (using Expectation -

Maximization to fit Gaussian Mixture models) to obtain compartment classifications

(WM, GM or CSF). Classification results were compared against those obtained by

clustering FA values calculated from Diffusion Tensor modeling, T1 and B0 image in-

tensity. This comparison was implemented by comparing probability maps obtained

by averaging the tissue classification outputs of 867 subject data sets.

Looking at the 2D histogram containing GM and WM clusters reveals that WM

clusters (mean values (µ(λ‖), µ(λ⊥)) = (2.70, 0.108) µm2/ms ) have higher anisotropy

than GM cluster (mean values (µ(λ‖), µ(λ⊥)) = (2.110, 0.280) µm2/ms ). This is
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consistent with the observations found in numerous other publications (e.g., [24, 5]).

Higher anisotropy of WM could be a result of WM mostly containing axonal tract

that interconnects cortical and neuronal cell bodies [30]. These structures could be

considered akin to long cylinders, and therefore cause anisotropic diffusion of water.

Conversely, GM primarily contain cell bodies and synapses, these structures do not

contribute to anisotropy. We observed larger variance of per voxel diffusion coefficients

of WM, as compares to that of G. This difference in diffusion coefficients, and therefore

anisotropy, is known to primarily arise due to large range of axon calibers in WM [5].

Since per voxel diffusion coefficients do not have large difference across WM bundles

in a healthy subject (standard deviations (σ(λ‖), σ(λ⊥)) = (0.263, 0.0473) µm2/ms)

and across healthy subjects (standard deviations (σ(λ‖), σ(λ⊥)) = (0.225, 0.0499)

µm2/ms), these coefficients have a potential to be a robust diagnostic markers for

structural damages to WM fibers. Also, as SMT does not assume any specific model

of microscopic diffusion and is independent of microfiber architecture inside the voxel,

compartments calculated by clustering of per voxel diffusion coefficients yield more ac-

curate results than those obtained by DTI modeling, which is used more commonly in

clinical settings. Moreover, SMT does not require any complicated non-conventional

pulse sequence during acquisition, it can easily be adopted in clinical setting [19].

However, more research is required to test the sensitivity and diagnostic capability

of per voxel diffusion coefficients. A future research direction could be testing the

algorithm on data sets with diseased brain volume samples, and characterize their

diffusion property. Moreover, we observed a significant number of voxels that could

not be classified as either GM or WM due to the partial volume effect. Further re-

search may focus on eliminating signal due to CSF by using fluid attenuated inversion

recovery (FLAIR) sequence.
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Appendix A

Appendix Title

A.1 T2-Weighted Image Acquisition and Prepro-

cessing

T2 weighted imaging datasets were acquired using the variable flip angle turbo spin-

echo sequence (Siemens SPACE) with 0.7mm isotropic resolution. The acquisitions

were performed using TR=3200 ms, TE=565 ms, BW=744 Hz per pixel, no fat

suppression pulse, phase encoding undersampling factor GRAPPA=2, total turbo

factor=314, FOV=224 mm, matrix=320, 256 sagittal slices in a single slab [8].

The HCP minimal preprocessing pipeline named PreFreesurfer was applied to T2

weighted images and the data processing protocol involved following steps.

1. MR gradient nonlinearity-induced distortion was corrected using using cus-

tomized version of the gradient nonlin unwarp package available in Freesurfer
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[17]. It is based on calculating warpfield that represents the spatial distortion

of the image using a proprietary Siemens gradient coefficient file.

2. Any repeated runs of images were averaged after they were aligned with a 6

degrees of freedom (DOF) rigid body transformation using FMRIB Software

Library (FSL)s FMRIB’s Linear Image Registration Tool (FLIRT) [15].

3. The Montreal Neurological Institute(MNI) space template was used to align T1

weighted and T2 weighted images using a rigid 6 DOF transform, derived from

a 12 DOF affine registration.

4. The brain is extracted using an initial linear and non-linear registration of the

image to the MNI template [34].

5. The T2 weighted image is crossmodally registered to the T1 weighted image

using FLIRTs boundary-based registration (BBR) cost function.

6. The intensity inhomogeneity correction approach was used to correct for B1

bias and some B1+ bias [31].
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