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Abstract

Computing makes up a large and growing component of data science and statistics
courses. Many of those courses, especially when taught by faculty who are statisti-
cians by training, teach R as the programming language. A number of instructors have
opted to build much of their teaching around use of the tidyverse. The tidyverse,
in the words of its developers, “is a collection of R packages that share a high-level
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design philosophy and low-level grammar and data structures, so that learning one
package makes it easier to learn the next” (Wickham et al. 2019). These shared prin-
ciples have led to the widespread adoption of the tidyverse ecosystem. A large part of
this usage is because the tidyverse tools have been intentionally designed to ease the
learning process and make it easier for users to learn new functions as they engage
with additional pieces of the larger ecosystem. Moreover, the functionality offered by
the packages within the tidyverse spans the entire data science cycle, which includes
data import, visualisation, wrangling, modeling, and communication. We believe the
tidyverse provides an effective and efficient pathway for undergraduate students at
all levels and majors to gain computational skills and thinking needed throughout
the data science cycle. In this paper, we introduce the tidyverse from an educator’s
perspective. We provide a brief introduction to the tidyverse, demonstrate how foun-
dational statistics and data science tasks are accomplished with the tidyverse, and
discuss the strengths of the tidyverse, particularly in the context of teaching and
learning.

Keywords: R language, teaching, data science, statistics education, statistical computing
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1 Introduction

Computing has a fundamental and growing role in the statistics and data science cur-

riculum (Horton & Hardin 2021, Nolan & Temple Lang 2010). The revised Guidelines

for Assessment and Instruction in Statistics Education (GAISE) College report notes the

importance of technology and states: “ideally, students should be given numerous opportu-

nities to analyze data with the best available technology (preferably, statistical software)”

(Carver et al. (2016), page 11). In both statistics and data science courses, we believe it is

important to teach tools that are used by practitioners of these disciplines (i.e., authentic

tools).

When it comes to an authentic tool, McNamara (2019) argues that a modern statistical

computing tool “should be accessible, provide easy entry, privilege data as a first-order

object, support exploratory and confirmatory analysis, allow for flexible plot creation,

support randomization, be interactive, include inherent documentation, support narrative,

publishing, and reproducibility, and be flexible to extensions” (page 1). Such tools ideally

allow new users and professionals to “reach across the gap” between tools for teaching

and tools for doing to foster continued learning (McNamara 2015). R exhibits all of these

attributes, particularly with careful curation and thoughts toward pedagogy. It is also

flexible, powerful, and open-source. As a result, many instructors at the undergraduate

level, particularly those with a background in statistics, have chosen R (R Core Team 2021)

for their teaching.

There are many pedagogical decisions that emerge when an instructor chooses to teach

with a particular computational platform or tool. We describe how the tidyverse, a col-

lection of packages intended to provide a consistent interface in R, reduces friction for both

the instructor and the student across the entire data analysis cycle, which is foundational

to both statistics and data science. Like many other instructors, we have opted to build

much of our teaching around use of the tidyverse. This paper is a synthesis of the reason-

ing for our choice, along with benefits and challenges associated with teaching (with) the

tidyverse.

We begin with a description of the tidyverse (“what”) in Section 2, including the design

principles that guide its development and promote ease of learning. Section 3 follows with
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examples of “how” the tidyverse works, including comparisons of the tidyverse approach

with base R approaches and an outline of core packages and functions. Section 4 articulates

“why” one might teach using this approach: namely because it is consistent, scalable, user-

centered, readable, and popular. Section 5 provides closing thoughts and discussion.

This paper focuses primarily on undergraduate introductory statistics and data science

courses. However, we will also comment on how gaining an introduction to R and the

tidyverse in these courses may help prepare a student for success in higher level courses at

the undergraduate and graduate levels, as well as in industry.

There are several popular, free, open-source, programming languages that can be used

in introductory statistics and data science, including R (R Core Team 2021), Python

(Van Rossum & Drake Jr 1995), and Julia (McNicholas & Tait 2019). These languages also

display many attributes promulgated by McNamara (2019). We note that the influential

Data 8 course at the University of California, Berkeley (as well as the follow-up Data 100

course) are taught in Python, with a significant portion of the instruction centered around

a course-specific Python library. We affirm that students benefit from developing literacy

in multiple languages and argue that the “tidy data” (Wickham 2014) approach central to

the tidyverse is programming language independent, with notable implementations in the

three languages mentioned above as well as domain specific languages like SQL (see Section

4.6). We have chosen to focus our attention on R, in part because there are good models

for teaching statistics and data science with reproducible computing practices—even at the

introductory level (Baumer et al. 2014, Beckman et al. 2021).

Instructors teaching R face a pedagogical decision about how to teach it. Some instruc-

tors use the “I’ll just teach it how I learned it” approach, which we assert is not sound

pedagogical reasoning. Chances are that many things have changed since the time you first

learned R. All the authors have seen major changes to R over their careers, even the most

junior among us. As with the need to keep up with all curricular and pedagogical changes

in statistics (Zieffler et al. 2008), Nolan & Temple Lang (2010) highlight the importance

of workshops or other modes for providing instructors with the skills to teach modern

statistical computing. One of the exciting, albeit challenging, aspects of teaching R (or

any computing language or tool) is that the landscape is continuously evolving. While a
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Concept Description

Consistency Syntax, function interfaces, argument names and orders follow
patterns

Mixability Ability to use base and other functions within tidyverse syntax

Scalability Unified approach to data wrangling and visualization works for
datasets of a wide range of types and sizes

User-centered design Function interfaces designed with users in mind

Readability Interfaces that are designed to produce readable code

Community Large, active, welcoming community of users and resources

Transferability Data manipulation verbs inherit from SQL’s query syntax

Table 1: Summary of pedagogical benefits of the tidyverse discussed in this paper.

changing landscape means instructors need to continue learning, it also means that R has

become more user-friendly and student-friendly over time. Recent developments, perhaps

most notably the tidyverse, have helped to round off rough edges and make R interfaces and

syntax more coherent and consistent. It is important for educators to periodically reeval-

uate their teaching in light of what is most widely used, what is more user-friendly, what

has better documentation, what has better learning resources, what has better community

support, etc.

Based on all of these considerations (and more that we will articulate below), and de-

spite the need to incorporate additional learning outcomes into our classes, we recommend

teaching with the tidyverse as a way to further integrate computation into our courses

and programs. While we recommend the use of the RStudio integrated development envi-

ronment (IDE; RStudio Team (2020)), our arguments for the tidyverse also stand outside

the RStudio IDE. Others have focused on how using R to teach statistics can decrease

the cognitive load (amount of information needed at once) of the class (Pruim et al. 2017,

Guzman et al. 2019, Tucker et al. 2021), which we affirm from our personal teaching expe-

riences. Here, we focus on the many different pedagogical advantages of using the tidyverse

and the specific benefits they bring to the statistics and data science classroom. Table 1

summarizes our arguments.
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Figure 1: Data science cycle and the core tidyverse packages that address each phase.
Image credit: Wickham & Grolemund (2016).

2 Principles of the tidyverse

The tidyverse package is a meta R package that loads eight core packages when invoked, and

also bundles numerous other packages upon installation (as suggested dependencies). These

packages all share a design philosophy as well as common grammar and data structures.

The core packages and the phases of the data science cycle they address are shown in Figure

1.

Wickham (2021d) outlines the design principles of the packages in the tidyverse as the

following:

� human-centered design: The tidyverse is designed specifically to support the activities

of a human data analyst.

� consistency: The functions in tidyverse packages are designed with a consistent in-

terface, which allows the user to apply what they learned in one function to another

and minimizes the number of special cases one needs to remember.

� composability: The tidyverse functions allow users to solve complex problems by

breaking them down into small pieces, many of which can be combined using the

“pipe” operator (or a “+” operator for ggplot2). They support iterative exploratory

analysis to find the best solution.

� inclusivity: In addition to the packages and functions themselves, the tidyverse also

refers to the community of people who use the packages. The packages, their docu-
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mentation, and the community support all emphasize inclusivity.

Central to the tidyverse is the notion of tidy data, which Wickham (2014) defines as

“easy to manipulate, model and visualize, and have a specific structure: each variable is a

column, each observation is a row, and each type of observational unit is a table” (page 1).

Many of the core packages in the tidyverse were originally developed independently to

address specific phases of the data science cycle, and subsequently came together under

the tidyverse umbrella in 2016 (Smith 2016). All of the core tidyverse packages are under

active development, as the authors iterate to improve functionality.

Many, though not all, of the developers of the tidyverse packages are funded by RStudio,

PBC and work full-time on their open-source development. The packages are co-developed

with community contributors and released under the open source MIT license. Thus, while

development of the tidyverse is funded by RStudio, the packages do not belong to RStudio.

2.1 Starting with a (tidy) data frame

In R, data often live in a data frame whose columns represent variables that we want

to analyze. While the simple data frame structure is fundamental to understanding data

science and statistics, working with it can be challenging for new learners.

When such a dataset is loaded into R, it is available as an object called a data frame.

When using base R the variables in that data frame are commonly accessed with the $

operator (e.g., loans$loan amount to access the variable called loan amount in the data

frame loans). Often, students are tempted to access the loan amount variable in this

example by referring to it simply as loan amount and not specifying the name of the

data frame in which it lives. This results in a frustrating error: object 'loan amount'

not found. Students experience this misconception when they think about variables as

stand-alone objects as opposed to components of the data frame in which they live.

One approach to addressing the data frame versus variable challenge in base R is using

the attach() function, which makes the variables in a data frame available in the global

environment. Copying variables into the global environment is not recommended practice

(Google 2021) as it can cause name collisions when data frames with identically named
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variables are attached in the same environment (e.g., if you also had a car loans data

frame that also happened to have a variable called loan amount attached). Additionally,

using attach() to include a data frame’s columns in the global namespace can muddle

understanding of connections between the dataset and the variable within it. Pedagogically,

we want students to understand how observations and variables are linked to a structured

dataset.

A second approach to working with variables in base R is using the with() function,

which evaluates an expression within a specified environment (e.g., with(loans full schema,

loan amount) instead of loans full schema$loan amount). Using with() avoids the

name collision problem introduced by attach() but it is more verbose and requires under-

standing how a new function works just to access a variable in a data frame.

In the tidyverse, the first argument of each function, whether for data wrangling, visual-

ization, or any of the more complex tasks that can be introduced later, is almost always a

data frame. Tidyverse functions allow access to variables in the data frame without having

to re-specify the name of the data frame (e.g., arrange(loans, loan amount) will arrange

the rows of the loans data frame based on the value of loan amount). By forcing users

to work with tidy data, the tidyverse emphasizes the connection between data frames and

variables, helping to underscore fundamental data science and statistics concepts while also

simplifying the syntax for routine data analysis tasks.

The tidyverse strongly encourages the use of the pipe operator to construct readable,

vertical data pipelines, whether it’s for data wrangling or visualization. Beginning with R

4.1.0, the previous arrange() code would be written as loans |> arrange(loan amount)

using the pipe operator (|>) to pipe the data frame (or any result from the preceding

step of the pipeline) into the subsequent function as its first argument (see Section 3.1

for more details on using the pipe operator in the tidyverse).1 Pipe operators exist as a

common feature across a number of other programming languages (e.g., the UNIX shell,

JavaScript, etc.) and were introduced into the R ecosystem by the magrittr package

(Bache & Wickham 2020) package. The widespread community adoption of the tidyverse

1In versions of R earlier than 4.1.0, the magrittr pipe (%>%) must be used in place of the native pipe

(|>). When using the base R pipe, note that all students must be running R version 4.1 or newer).
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(and the corresponding improved error recovery) led to the introduction of a pipe operator

into the base language2 in early 2021 with R version 4.1.0.

Like the lm() function, or systems such as SAS (which feature a common interface with

a DATA = statement), tidyverse functions take a data argument that allows them to localize

computations inside the specified data frame. The tidyverse approach is attractive because

it does not muddy the concept of what is in the current environment (always the data as a

data frame, never a variable as a vector) while making it easy for variables in a data frame

to be accessed without the use of an additional function (like with()) or even quotation

marks. Furthermore, unlike lm(), functions in the tidyverse almost always take a data

frame as their first argument and return a data frame. The consistent structure of data

frames and variables makes it easier to get started with data analysis tasks without getting

bogged down by language details or using more complicated programming practices.

We note that data frames within the tidyverse are stored as tibbles which have class

tbl df in addition to data.frame. tibbles act similarly to all other data.frames with less

transformation of input (e.g., character vectors are not coerced to factors, column names

are not modified). Additionally, when printed, by default only the first ten rows and as

many columns as fit into the current console or document are shown, and the rest of the

rows and columns are summarized. Conversely, when data.frames are printed all rows

and columns are shown regardless of how large (width or length-wise) the data are.

2.2 Consistent grammar and vocabulary

Hermans & Aldewereld (2017) used the metaphor of programming as writing, and we

extend their reasoning to assert that R is a programming language with many syntaxes

(or flavors/“dialects”). Different R packages can use different syntaxes for the same idiom.

Even packages included in the distribution of base R do not all have a consistent grammar

and vocabulary. As stated in its design philosophy, the tidyverse strives for consistency

2See, for example, Luke Tierney’s talk at the 2020 R Core useR! event, in which he states that the R

Core Team is considering adding a pipe operator to base R because because “magrittr is very popular”

and “a number of other languages are adding pipes.”
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across packages (Wickham 2021d). This makes the tidyverse syntactically different from

base R for doing certain tasks, which might lead to learners of the tidyverse being less

familiar with base R code, and vice versa.

Tidyverse users tend to use particular vocabulary (e.g., pipes, tibbles, verbs) compared

to base R users who are more likely to speak in terms of matrices, dollar signs ($), and

square brackets ([]). A third commonly used approach is the formula syntax (Pruim et al.

2017), which is characterized by the use of tildes (~). The notion of a “grammar” in R

code is well-established for both graphics (Wilkinson 2012, Wickham, Chang, Henry, Ped-

ersen, Takahashi, Wilke, Woo, Yutani & Dunnington 2021) and data wrangling (Wickham,

François, Henry & Müller 2021a). In Section 4.4, we develop notions of pronunciation. In

spoken language, the word ‘dialect’ refers to a variety of language with distinct vocabulary,

grammar, and pronunciation, so we could consider the tidyverse as a dialect among users

who read and write R code.

No matter which approach or tool you use, you should strive to be consistent in the

classroom whenever possible. Our choice of the tidyverse offers consistency, something we

believe to be of the utmost importance, allowing students to move knowledge about function

arguments to their long-term memory (McNamara et al. 2021). From our experience,

switching between tools can lead to confusion for students, and switching between syntaxes

creates similar difficulties. Others have highlighted the benefits of using a consistent and

well-named syntax (Pruim et al. 2017, Gehrke et al. 2021).

One complication of teaching consistently is that Google and StackOverflow can be less

useful for students who are taught in only a single modality. Searching online for answers is

an important skill to learn, but because of the variety of extant R syntaxes, searches can lead

students to patterns that are unfamiliar. Students should be explicitly taught how to search

online and sift through results, emphasizing the fact they are learning a specific syntax and

only responses in that syntax will make sense to them. Better searches will include the

names of specific tidyverse packages to each search query. Being transparent and clear about

the use of a syntax will help students situate their knowledge—and misunderstandings—in

the broader R ecosystem.

One obvious counter-proposition is that you should teach all (or multiple) syntaxes at
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once. We strongly disagree. Trying to teach two (or more!) syntaxes at once will slow

the pace of the course, introduce unnecessary syntactic confusion, and make it harder for

students to complete their work. In keeping with the “let them eat cake first” approach

(Çetinkaya-Rundel & Ellison 2021, Wang et al. 2017), students benefit from seeing the

powerful things that they can do with R first. Deeper discussions about syntax and under-

the-hood programming concepts can occur in subsequent courses after students are already

invested in using R. The approach we recommend is not tidyverse instead of base R, but

tidyverse (mostly) before base R.

We typically espouse a policy of being disciplined in what we teach, liberal in what

we accept (Postel 1980). In this paradigm, instructors are careful about what they teach

but choose an appropriate level of flexibility in the code that students may submit. One

might adopt a policy that any code that works is acceptable. Another might insist that

only tidyverse patterns are acceptable. To continue the analogy with language, a writing

instructor might reasonably accept papers written in any vernacular, or they might insist

on a particular writing style for a particular assignment.

3 Teaching foundational topics with the tidyverse

In this section we provide comparative examples of data wrangling and visualization tasks

completed with the two most common R syntaxes: base R and the tidyverse. The two

tasks are essential to introductory data science and introductory statistics courses as well

as for data practitioners. We believe that using the tidyverse makes these tasks more

straightforward than other approaches with R. Our approach is similar to those presented

in Kleinman & Horton (2009) for comparison of SAS and R syntax; McNamara (2021a)

for comparison of base R, tidyverse, and formula syntaxes in R; and Dierker (2021) for

comparisons across multiple statistical software programs.
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3.1 Data wrangling

Data wrangling is a major component of data acumen (National Academies of Science,

Engineering, and Medicine 2018) that often takes up a majority of the data analysis cycle.

The tidyverse includes a set of common idioms for data wrangling that work in a consistent

manner via the dplyr and tidyr packages.

� filter(): select rows

� select(): select columns

� arrange(): order rows

� mutate(): add new or redefine existing columns

� group by(): create partitions of rows

� summarize(): aggregate (or “roll up”) across rows

� * join(): merge tables

� pivot *(): reshape tables

While equivalents for each of these exist in base R and have been used for decades,

the base routines were developed independently over time and do not share a common

interface. In contrast, these functions always take a data frame as a first argument, return

a data frame, and use a consistent naming convention for arguments.

To highlight some of our arguments, we will use the loans full schema dataset from

the openintro package for code examples (Çetinkaya-Rundel et al. 2021). The dataset

represents thousands of loans made through the Lending Club platform, which allows

individuals to lend to other individuals. The dataset contains information on the applicants

and their financial history. In Example 3.1, a small amount of data wrangling has been

done to set the dataset up for analyses throughout the paper. A fully reproducible version

of this paper, including the R code for reproducing all examples, can be found on GitHub

at https://github.com/mine-cetinkaya-rundel/educators-perspective-tidyverse.

library(tidyverse)

loans <- openintro::loans full schema |>
mutate(

homeownership = str to title(homeownership),

bankruptcy = if else(public record bankrupt >= 1, "Yes", "No")
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) |>
filter(annual income >= 10)

Example 3.1: The loans dataset from the openintro package.

Example 3.1 provides a pipeline for: accessing a data frame within the openintro package,

creating two new variables using the mutate() function, excluding incomes below $10, and

storing the result in a new tibble called loans.

Suppose we want to compute the average income of applicants based on their home own-

ership status. In the tidyverse, we could use the following pipeline shown in Example 3.2.

loans |>
group by(homeownership) |>
summarize(

num applicants = n(),

avg loan amount = mean(loan amount)

) |>
arrange(desc(avg loan amount))

## # A tibble: 3 x 3

## homeownership num_applicants avg_loan_amount

## <chr> <int> <dbl>

## 1 Mortgage 4778 18132.

## 2 Own 1350 15665.

## 3 Rent 3848 14396.

Example 3.2: Using the tidyverse to count applicants and compute the average loan
amount from the loans data, sorted by average loan amount.

The tidyverse syntax expresses the sequential process of the computation. The pipe oper-

ator (|>) brings the object from the left of the pipe into the function on the right of the pipe

as the first argument; we pronounce the pipe function as “and then.” First, we start with the

data frame that contains all the data. And then, we group the data according to the unique

values of the homeownership variable. And then, for each unique value of homeownership,

we compute both the number of rows (calling the result num applicants) and the average

loan amount in US Dollars (avg loan amount). And then, we arrange the rows of the

resulting data frame in descending order according to the value of avg loan amount.
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In base R, we might perform the same task with a computation similar to the one in

Example 3.3.

res1 <- aggregate(loan amount ~ homeownership, data = loans, FUN = length)

names(res1)[2] <- "num applicants"

res2 <- aggregate(loan amount ~ homeownership, data = loans, FUN = mean)

names(res2)[2] <- "avg loan amount"

res <- merge(res1, res2)

res[order(res$avg loan amount, decreasing = TRUE), ]

## homeownership num_applicants avg_loan_amount

## 1 Mortgage 4778 18132.45

## 2 Own 1350 15665.44

## 3 Rent 3848 14396.44

Example 3.3: Using base R to count applicants and compute the average loan
amount from the loans data, sorted by average loan amount.

We find the base R code harder to read and less expressive of the logical process of the

computation (i.e., more cryptic). It requires storing intermediate objects (res1, res2, and

res) that might not otherwise be useful. It uses the ~, $, and [ operators. It uses a magic

number (2) to hard-code the second variable. It creates two data frames that need to be

merged together. It passes the name of a function as an argument to a function. In Section

4.2, we argue that the base R syntax for the task at hand does not scale well for additional

summary statistics. And in light of Section 4.4, the base R syntax is quite challenging to

read aloud.

A different base R pattern, shown in Example 3.4, is more compact, and avoids some

of the pitfalls listed above, but returns a vector. This named vector makes the result easy

to read. However, it makes it cumbersome to include the second variable indicating the

number of people.

sort(tapply(loans$loan amount, loans$homeownership, mean), decreasing = TRUE)

## Mortgage Own Rent

## 18132.45 15665.44 14396.44

Example 3.4: Using tapply() within base R to count applicants and compute the
average loan amount from the loans data, sorted by average loan amount.
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Piping can simplify the code, as seen in Example 3.5 (equivalent results with the native

pipe not shown).

tapply(loans$loan amount, loans$homeownership, mean) |>
sort(decreasing = TRUE)

Example 3.5: Using the pipe and tapply() to count applicants and compute the
average loan amount from the loans data, sorted by average loan amount.

3.2 Data visualization

The process of teaching and learning data visualization is challenging (Nolan & Perrett

2016). Students are asked to engage with multiple interrelated steps: (1) the conceptual-

ization and design of the visualization, (2) the translation of the design into the specific

syntax of the plotting tool or library, and (3) the cleaning, conversion, and transformation

of the data that will be represented in the visualization. It is for the latter two tasks we

believe the tidyverse substantially improves on base R’s functionality, particularly when it

comes to new learners.

Base R plotting is very powerful and flexible, but that flexibility leads to idiosyncratic

behavior and confusion. Take, for example, the creation of a basic scatterplot of the

variables x and y stored in a data frame d. All of the following would produce the same

plot: plot(d), plot(y~x, d), plot(d$x, d$y), with(d, plot(x,y)), and so on. This

flexibility, made possible by the S3 object system, is useful but can be overwhelming for

new learners. The difficulty is particularly apparent when students get stuck and search for

terms like “scatterplot in R” and come across solutions which use an approach that differs

substantially from their instructor’s preferred method (e.g., using the formula method when

they have only been shown $ for column access).

The issue of student confusion caused by idiosyncratic behavior gets worse as needs

expand beyond the most basic plotting primitives. Students can easily use custom plot-

ting methods (e.g., density(x)), functions for more specific plotting primitives (e.g.,

boxplot(y~x)), and methods combining both (e.g., hist(x)) without building a higher-

level understanding of how to create a complex plot. That is, while all the plotting tools
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are usable, it is hard for students to develop a mental model of their commonalities without

first having a deeper understanding of R as a programming language, specifically around

generic functions, basic data structures, and classes.

As mentioned previously, most of base R’s plotting functionality is built around S3

specializations of plot() and similar high-level plotting functions. In some cases, the plot

types are relatively easy to identify by name (e.g., hist(), barplot(), boxplot()) while

others are less obvious (e.g., abline(), image(), or par()). The base R plotting functions

are part of the graphics package, which is loaded automatically by all R sessions.

To visualize using tidyverse principles, we use one of the core tidyverse packages: ggplot2.

In ggplot2, different plot types are implemented using geometry functions (prefixed with

geom ) which map variables in the data to various aesthetic properties (e.g., horizontal

and vertical position, size, color, etc.) of the plots. One of the immediate advantages of

using geom *() functions for plotting is the reduction in the search space of possible plotting

functions. The prefix works effectively to organize the search space to the possible functions

and their associated documentation. The narrowing is true whether within an IDE (using

tab-completion), in the documentation (looking just in the g section), or searching online.

In contrast, standard base graphics begin with a multitude of different characters, so there

is no obvious way to simply see all the possibilities.

Additionally, the geometries implemented in ggplot2 use the same core function argu-

ments and share common aesthetics, which makes it easier to pick up and explore new

geometries, as well as quickly swap between related visualization methods. For example,

changing between boxplots and violin plots (an augmented form of boxplots) only requires

changing geom boxplot() to geom violin()—the arguments to the two functions remain

the same.

As ggplot2 is built around the principles of the grammar of graphics (Wilkinson 2012), its

syntax is designed to reflect the process of building a visualization through the composition

of layers using the + operator. In contrast, base R graphics are generally built up using

multiple function calls (e.g., plot(..., add=TRUE) and abline()).

Example 3.6 presents an example of side-by-side boxplots of loan amount as a function

of application type and homeownership.
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loans |>
ggplot(aes(y = loan amount, x = application type)) +

geom boxplot() +

facet wrap(~ homeownership)
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Example 3.6: Using ggplot2 to create boxplots of loan amount broken down by
both application type and homeownership.

The figure is constructed in three calls: one to bind the data and map the variables to

aesthetics, another to draw the boxplot, and the last to facet by levels of homeownership.

A similar plot can be constructed using base R graphics (see Example 3.7), however the

process of creating facets is more burdensome as it requires using creation of separate plots

with a for() loop and subsetting to iterate over the unique levels of homeownership.

levels <- sort(unique(loans$homeownership))

n <- length(levels)

par(mfrow = c(1,n))

for(i in seq len(n)) {
boxplot(

loan amount ~ application type,

data = loans[loans$homeownership == levels[i],],

main = levels[i]

)

}
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Example 3.7: Using base R to create boxplots of loan amount broken down by both
application type and homeownership.

As seen in Example 3.8, in ggplot2 it is straightforward to extend the original boxplot

to more data dimensions by mapping another variable to an additional aesthetic. For

example, adding fill = bankruptcy to the aes() call will create a plot that now displays

four dimensions of the original data.

loans |>
ggplot(aes(y = loan amount, x = application type, fill = bankruptcy)) +

geom boxplot() +

facet wrap(~ homeownership)
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Example 3.8: Using ggplot2 to create boxplots of loan amount broken down by
both application type and homeownership, filled by bankruptcy.

Splitting the data to create multiple boxplots based on different variables is possible with

base R, however the implementation is more complex and verbose, and it is left as an

exercise to the reader.
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Next we generate scatterplots of interest rate as a function of income, where the points

and linear fits are colored by the bankruptcy status of the loan recipient.

loans |>
ggplot(aes(y = interest rate, x = annual income, color = bankruptcy)) +

geom point(alpha = 0.1) +

geom smooth(method = "lm", size = 2, se = FALSE) +

scale x log10(labels = scales::label dollar()) +

scale y continuous(labels = scales::label percent(scale = 1)) +

scale color manual(values = c("#E69F00", "#56B4E9")) +

labs(

x = "Annual Income",

y = "Interest Rate",

color = "Previous\nBankruptcy"
)
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Example 3.9: Using ggplot2 to create a scatterplot of interest rate versus annual
income, colored by bankruptcy.

We note that Example 3.9 requires seven function calls, but each call builds on a common

framework and interface.

Base R code is used in Example 3.10 to create a similar scatterplot, but the syntax

requires careful study of the documentation for par() and multiple separate calls of lm().
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cols = c(No = "#E69F00", Yes = "#56B4E9")

plot(

loans$annual income,

loans$interest rate,

pch = 16,

col = adjustcolor(cols[loans$bankruptcy], alpha.f = 0.1),

log = "x",

xlab = "Annual Income ($)",

ylab = "Interest Rate (%)",

xaxp = c(1000, 10000000, 1)

)

lm b no = lm(

interest rate ~ log10(annual income),

data = loans[loans$bankruptcy == "No",]

)

lm b yes = lm(

interest rate ~ log10(annual income),

data = loans[loans$bankruptcy == "Yes",]

)

abline(lm b no, col = cols["No"], lwd = 3)

abline(lm b yes, col = cols["Yes"], lwd = 3)

legend(

"topright",

legend = c("Yes", "No"),

title = "Previous\nBankruptcy",
col = cols[c("Yes", "No")],

pch = 16, lwd = 1

)
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Example 3.10: Using base R to create a scatterplot of interest rate versus annual
income, colored by bankruptcy.

We note several differences between the two scatterplot implementations. The ggplot2

approach uses function arguments vs. base graphics parameters. Some of the parameters

(e.g., xaxp, log) are idiosyncratic and difficult to find in the documentation. Specifying

colors and alpha transparency levels are quite different in the two implementations. In base

graphics, legends require a separate function with additional manual bookkeeping, which

increases the potential for human error. Explicit iteration is required to create multivariate

plots and the user is required to specify the display structure. Care is needed in constructing

axis values.

We note that the + operator in the ggplot2 syntax differs from the pipe (|>) operator

for historical reasons (Wickham 2015). We have found, however, that the + operator is

straightforward for students to learn. The + operator is consistent with the layering aspect

of creating a plot. Additionally, the error message when |> is used in place of + explicitly

asks: Did you use %>% instead of +?.3

3As of this writing, the ggplot2 error message still references the magrittr pipe (%>%), even when you

use the native pipe (|>).
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3.3 Beyond wrangling, statistical summaries, and visualizations

While data wrangling and data visualization are high on the list of important tasks for

working with data, there are many additional tasks and tools needed for a complete data

analysis. We argue that setting your students up to understand the tidyverse approach

will not only help them work fluently with data at the exploratory data analysis stage, but

will also provide a solid grounding for inference, modeling, working with databases (e.g.,

SQL), and other data-focused operations.

Statistical inference can be taught using the infer package (Bray et al. 2021), which

uses a consistent syntax for one- and two-sample inferential techniques for tidy data. The

package implements both computational methods like randomization tests and bootstrap-

ping as well as mathematical models like t- and z-tests. With the infer syntax, students

learn a single set of functions that walk through the inferential process and focus atten-

tion on each step of the process. Indeed, the functions themselves are named to reinforce

the conceptual understanding of the process. For example, a student will specify() the

variables and then hypothesize() about the conditions and then generate() a sampling

distribution and then calculate() the statistic of interest. The output of these func-

tions can be wrangled (e.g., to determine a p-value) or visualized (e.g., to inspect the null

sampling distribution).

When doing modeling and machine learning, many data analysts rely on functions

like lm() and glm() as important tools in the analysis process. To avoid reinventing the

wheel, packages like broom (Robinson et al. 2021) allow tidy modeling with base R

functions to extend the convention of data frame as input and data frame as output for

modeling tasks. Using lm() as an example, there are model output pieces that: 1) describe

each of the variables (e.g., the coefficients); 2) describe each of the observational units

(e.g., the residuals); and 3) describe the entire model (e.g., R2). Since the lm() output

is a list with a specialized print method, it is not immediately clear how to access certain

components of it (e.g., the value of the slope or the intercept) programatically. The broom

paradigm—which can be applied to lm() and glm() as well as many other model objects—

uses tidy() for output which describes variables, augment() to describe observational

units, and glance() to describe the entire model. The outputs of each of these functions
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is a tibble, which makes it easy to extract values like coefficient estimates or p-values

using data wrangling functions offered by dplyr. This, in turn, makes it straightforward to

include these extracted values within text in computational documents (e.g., R Markdown

documents) using inline code chunks, hence easing reproducible communication of results.

In addition to modeling done using base R functions, a educator or student interested

in machine learning methods or approaches (e.g., cross validation) may benefit from tidy

modeling functionality available in the tidymodels package (Kuhn & Wickham 2021).

The core idea of tidymodels is to simplify the practice of modeling by pre-processing and

then training and then validating models. The pre-processing step can scale variables or

filter for highly correlated covariates. The training step can use anything from a linear

model to a support vector machine to a neural network. The validating step incorporates

cross validation or prediction on a test dataset to evaluate the user’s metric of choice.

Database technologies are supported using the dplyr (Wickham, François, Henry &

Müller 2021a) and dbplyr (Wickham, Girlich & Ruiz 2021) packages, which facilitate ac-

cess to SQL databases using the same general syntax and idioms learned with the tidyverse.

As an example, we can access and summarize data from a publicly accessible repository of

audiological measurements (Voss 2019) using the same form as our earlier wrangling (see

Section 3.1).

db <- DBI::dbConnect(

RMySQL::MySQL(),

dbname = "wai",

host = "scidb.smith.edu",

username = "waiuser",

password = "smith waiDB" # publicly accessible database

)

db |>
tbl("Subjects") |>
group by(AgeCategoryFirstMeasurement) |>
summarize(num people = n())

## # Source: lazy query [?? x 2]

## # Database: mysql 8.0.27-0ubuntu0.20.04.1 [@scidb.smith.edu:/wai]

## AgeCategoryFirstMeasurement num_people

## <chr> <dbl>
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## 1 Adult 775

## 2 Infant 2215

## 3 Child 116

## 4 NICU 41

Example 3.11: Applying tidyverse wrangling to data which has been queried from
a SQL database.

Note that the output of the wrangled SQL data is a tibble similar to that of Section

3.1, but with additional information about the MySQL database server.

4 Pedagogical strengths of the tidyverse

In this section, we expand on the core benefit of the tidyverse outlined in Section 3, con-

sistency, by highlighting pedagogical strengths with respect to mixability, scalability, user-

centered design, readability, community, and shared syntax.

4.1 Mixability

Consistent syntax and interface are hallmarks of the tidyverse’s design principles (as out-

lined in Section 2). As instructors, we strive for consistency in how we use the tidyverse in

our teaching. To achieve this, we avoid mixing-and-matching tidyverse patterns with base

R patterns. An example of inconsistent behavior to avoid is using base graphics for box-

plots and ggplot2 for scatterplots or using dplyr::count() for creating a frequency table

for two categorical variables but then using a function from the apply() family for creating

summaries for a numerical variable across levels of a categorical variable. However, it’s not

possible to write “tidyverse code” without using base R functions and this mixability is a

strength of the tidyverse, allowing students to learn many base R functions (e.g., mean(),

sd(), quantile(), dnorm()) while learning the tidyverse framework. Additionally, be-

cause the input and output of tidyverse functions are “normal” R objects (typically, a data

frame), an instructor can be consistent without coding exclusively in the tidyverse.

In Section 3.3 we illustrate how the infer package can be used in an introductory statistics

course to extend the tidyverse framework to include statistical inference. However, one can
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certainly teach introductory statistics by combining functionality from the most popular

tidyverse functionality (i.e., dplyr and ggplot2) for wrangling with base R implementations

of inferential functions (e.g., t.test(), chisq.test(), etc.). The combination of functions

will necessitate some inconsistency, since some base R inferential functions accept vectors

as inputs rather than data frames. However, as with explaining the difference between the

+ and |>, instructors can explain that data wrangling and visualization always use data

frames, but that inferential functions sometimes use vectors. We believe that inference is

smoother with the infer package, but a decision not to adopt infer should not preclude an

instructor from adopting the tidyverse for other tasks.

A similar argument holds for statistical modeling, where lm() can be used alongside

tidyverse code. We contend that broom and/or tidymodels reduce friction when analyz-

ing data that can arise due to inconsistent input and output types of base R’s modeling

functions, but several of the authors still teach lm() in their own courses.

4.2 Scalability

In Section 3.1, we illustrated how the group by() and summarize() verbs make it easy

to “roll up” a data frame by groups. Next, we consider extending that analysis in two

different ways: by adding one or more summary computations; and by adding one or more

additional grouping variables. In both cases, we argue that tidyverse code adapts more

easily than base R by not requiring a student to learn any additional functions.

First, in Example Example 4.1, we note that adding an aggregate computation involves

only a comma and the expression involving the relevant summary function in the call to

summarize(). Here, we compute two quantities: a count (num applicants) and a mean

(avg loan amount).

loans |>
group by(homeownership) |>
summarize(

num applicants = n(),

avg loan amount = mean(loan amount)

) |>
arrange(desc(avg loan amount))
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## # A tibble: 3 x 3

## homeownership num_applicants avg_loan_amount

## <chr> <int> <dbl>

## 1 Mortgage 4778 18132.

## 2 Own 1350 15665.

## 3 Rent 3848 14396.

Example 4.1: Using the tidyverse to count applicants and compute the average loan
amount from the loans data, sorted by average loan amount.

If we wanted to compute p quantities, for any integer p > 1, it is straightforward to add

p arguments to summarize(). Thus, this type of operation is scalable, because the number

of lines of code is proportional to the number of quantities computed.

Additionally, if the variables to be summarized can be selected based on their types or

names, we can use dplyr::across() to summarize many variables with one line of code.

In example Example 4.2, we show how to calculate the mean for across variables in the

loans dataset that contain the character string "paid" for each homeownership group.

loans |>
group by(homeownership) |>
summarise(across(contains("paid"), mean))

## # A tibble: 3 x 5

## homeownership paid_total paid_principal paid_interest paid_late_fees

## <chr> <dbl> <dbl> <dbl> <dbl>

## 1 Mortgage 2734. 2089. 646. 0.0810

## 2 Own 2512. 1950. 563. 0.111

## 3 Rent 2191. 1635. 555. 0.171

Example 4.2: Using the tidyverse to calculate mean amounts across variables that
contain the character string ’paid’ for each homeownership group.

Achieving scalability in base R is possible, but the approaches involve additional pro-

gramming concepts. A conceptually straightforward base R approach to scaling up is to

call tapply() p times and combine the resulting vectors using cbind() (see Example 4.3).

While the approach also involves O(p) lines of code, you would need to type the names of

the two variables (loan amount and homeownership) p times, instead of once.

26



with(

loans,

cbind(

num applicants = tapply(loan amount, homeownership, length),

avg loan amount = tapply(loan amount, homeownership, mean)

)

)

## num_applicants avg_loan_amount

## Mortgage 4778 18132.45

## Own 1350 15665.44

## Rent 3848 14396.44

Example 4.3: Using tapply() in base R to calculate multiple summary statistics.

A base R construction that is more scalable involves writing a custom summary function

and iteratively combining the results using do.call() and rbind() (see Example 4.4). The

approach requires two programming concepts (writing a user-defined function and iterating

a function) that are likely beyond the scope of introductory statistics or data science.

my summary <- function(x) {
data.frame(

num applicants = length(x),

avg loan amount = mean(x)

)

}
do.call(rbind, with(loans, tapply(loan amount, homeownership, my summary)))

## num_applicants avg_loan_amount

## Mortgage 4778 18132.45

## Own 1350 15665.44

## Rent 3848 14396.44

Example 4.4: Using a custom function in base R to calculate multiple summary
statistics.

Second, we note that adding a second grouping variable in the tidyverse involves only

adding another argument to group by(). Moreover, adding k grouping variables involves

adding k items to group by() (see Example 4.5). No additional programming knowledge

is necessary.
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loans |>
group by(homeownership, verified income) |>
summarize(

num applicants = n(),

avg loan amount = mean(loan amount)

)

## # A tibble: 9 x 4

## # Groups: homeownership [3]

## homeownership verified_income num_applicants avg_loan_amount

## <chr> <fct> <int> <dbl>

## 1 Mortgage Not Verified 1580 14739.

## 2 Mortgage Source Verified 1963 19085.

## 3 Mortgage Verified 1235 20960.

## 4 Own Not Verified 495 13161.

## 5 Own Source Verified 547 16537.

## 6 Own Verified 308 18142.

## 7 Rent Not Verified 1498 12287.

## 8 Rent Source Verified 1605 14964.

## 9 Rent Verified 745 17413.

Example 4.5: Using the tidyverse to add a layer of grouping before calculating
summary statistics.

In base R, additional grouping variables can be added by wrapping the set of grouping

variables names in list(). Here again, while the approach is scalable, it introduces a data

structure (list) that is not typically necessary for introductory classes (see Example 4.6).

The output also omits the factor levels that correspond to each row, which introduces

potential confusion.

do.call(

rbind,

with(

loans,

tapply(loan amount, list(homeownership, verified income), my summary)

)

)

## num_applicants avg_loan_amount

## 1 1580 14739.15

## 2 495 13161.21
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## 3 1498 12287.43

## 4 1963 19084.74

## 5 547 16536.97

## 6 1605 14964.45

## 7 1235 20960.04

## 8 308 18142.29

## 9 745 17413.39

Example 4.6: Using base R to add a layer of grouping before calculating summary
statistics.

Thus, in both cases, while scalable programming in base R is possible, it brings with

it additional extraneous programming concepts that may distract—rather than support—

students from learning statistics and data science. Some of the confusion is because base

R functions operate on vectors, matrices, and data frames idiosyncratically. In contrast,

because tidyverse functions focus on data frames, users of the tidyverse may be able to

fall into the “pit of success,” (Wickham 2016) wherein scaling one’s analysis is natural and

minimizes extraneous cognition or bookkeeping.

4.3 User-centered design

The tidyverse has been developed with a user-centered design process (Kling 1977, Norman

& Draper 1986), that can also be considered learner-centered (Soloway et al. 1994). While

many R packages are designed once and then updated incrementally with bug fixes, a

number of the packages within the tidyverse have undergone large scale API changes to

improve usability.

A prime example of the user-centered approach to development in the tidyverse is the

evolution of the functions for reshaping data. Reshaping data is a key data wrangling skill,

as data does not always come in a format conducive to analysis. For example, consider

data containing counts of fruits and vegetables sold at a produce stand where rows are

years and months (and totals!) and columns are fruits and vegetables (and totals!), as in

Figure 2. Note that in the sample dataset, variables (year and month) are in the rows,

which keeps the data from being tidy. Additionally, the row and column totals make the

task of visualizing and summarizing difficult.
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Figure 2: Non-tidy data which can be wrangled using pivot longer().

The reshape package (Wickham 2018) was introduced in 2005, and offered the functions

melt() and cast() to perform data transformations. The package author later realized

that the functions were not consistent with other parts of the tidyverse (such as plyr

(Wickham 2020a), a predecessor to dplyr), and that the cast() function needed to be

split into two: dcast() for data frames and acast() for arrays and matrices. These

functions were introduced in the reshape2 (Wickham 2020b) package in 2010. However,

that was not the end of the improvements to the functions. Many users reported difficulty

remembering when to use melt() and when to use cast(). While they were somewhat

‘cute’ names, they did not hold inherent meaning in the context of data analysis. The next

iteration in 2014 introduced the functions gather() and spread() in the tidyr (Wickham

2021c) package. The verbs gather() and spread() were somewhat easier for users to

remember, and included the arguments key and value, which were familiar to database

programmers. However, the improvement left even experienced programmers consulting

the documentation too frequently.

The most recent iteration of the pair of functions is pivot wider() and pivot longer(),

introduced in version 1.0.0 of tidyr (Wickham 2021c). The names for the functions were

developed as part of a design process that included user surveys. The resulting functions

are much more expressive than the original melt() and cast() (Wickham 2019). Instead

of key and value, the arguments use names to and values to in pivot longer() and
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names from and values from in pivot wider(). Anecdotal evidence (including but lim-

ited to the experience of the authors and many of our students) suggests that the newest

set of functions empower users to write code more fluently without looking at the full

documentation.

Beyond changes to function names, the default values of arguments present in the tidy-

verse have been thoughtfully designed with the intention of making life easier for users and

preventing mistakes. These defaults can be more flexibly updated than those in base R,

which, by design, changes slowly.

While all graphics libraries in R provide for customization, the initial plots generated

by ggplot2 look much more “finished” than graphics from base R or lattice (Sarkar 2021)

graphics, which helps students feel pride in their work from the beginning (Myint et al.

2020). The graphics look more polished because the defaults have been chosen based on

research. For example, the default ggplot2 color scheme has been updated to use viridis

(Garnier 2021), a set of color scales based on perceptual research. The default grey back-

ground is used so that the plot is of similar visual weight as surrounding text (Wickham,

Navarro & Pedersen 2021). When colors or facets are applied, ggplot2 automatically pro-

vides a legend.

The tidyverse provides warnings to analysts to help them avoid making mistakes. For

example, when you create a plot that involves a variable with missing values, the package

will warn you.

ggplot(loans) +

geom boxplot(aes(y = emp length, x = application type))

## Warning: Removed 794 rows containing non-finite values (stat_boxplot).

Example 4.7: ggplot2 displays a warning when plotting a variable with missing
values.

Defaults in other areas of the tidyverse are also designed for success. The drop na()

function forces users to think more intentionally about the way they wish to deal with

missing values. In base R, addressing NA values is either done with a destructive na.omit()

call or as an argument to each function, as shown in Example 4.8.
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mean(loans$annual income joint)

## [1] NA

mean(loans$annual income joint, na.rm = TRUE)

## [1] 128085.2

Example 4.8: When working with missing data in base R, each function needs an
additional argument.

In the tidyverse, dropping missing values becomes an explicit part of the pipeline, as

shown in Example 4.9.

loans |>
drop na(annual income joint) |>
summarize(mean(annual income joint))

## # A tibble: 1 x 1

## ‘mean(annual_income_joint)‘

## <dbl>

## 1 128085.

Example 4.9: Working with missing data in the tidyverse becomes part of the
pipeline.

In base R, it is easy to break the relationship between factor levels and their labels, but

the forcats package (Wickham 2021a) provides many custom functions (prefixed fct ) for

wrangling categorical data while maintaining sound and reproducible analysis (McNamara

& Horton 2018). Defaults from the tidyverse—such as not reading in strings as factor

variables—have gained so much popularity they have been integrated into base R.

We argue that using functionality created to be deliberately user-centered is vital to

bringing new software tools to the classroom. The more intuitive and memorable the

functions, the lighter the cognitive load for the novice learners we hope to retain (Burr

et al. 2021, Fergusson & Pfannkuch 2021, McNamara et al. 2021, Lovett & Greenhouse

2000). The more functions have been designed with thoughtful defaults, the easier it is for

students to find success.
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4.4 Readability

Programming instruction is improved by reading code out loud (Swidan & Hermans 2019),

so it stands to reason that statistics programming instruction could be similarly improved.

People learning to read a human language (e.g., English) learn by reading aloud and then

moving to “subvocalizing”: saying words in one’s head. The reading process allows learners

to connect the sound of the word to the concept it signifies.

Learning programming by reading aloud can provide similar cognitive benefits. Students

will likely try to subvocalize code as they read silently, but without examples of phonology

(the specific way parts of the language should be vocalized), they have to make up their

own pronunciations, which may be inconsistent throughout their reading, adding additional

cognitive load (Hermans et al. 2018). McNamara (2020) connects ideas of vocalization to

programming using R code, demonstrating specific phonology for reading R aloud. As with

human language, there can be regional variations in how particular symbols are voiced, but

an instructor should strive to be as consistent as possible with their choices of vocalizations.

Additionally, consistency with vocalization can help while pair programming or debugging

from afar (e.g., over Zoom), because one person can dictate code to another using shared

language.

The focus on function names as “verbs” in the tidyverse lends itself well to vocalization.

Unfortunately, vocalization does not transfer well to the written page, so the ideas are

difficult to convey in the current manuscript. Consider the sample code in Example 4.10

and Example 4.11.

loans |>
mutate(bankruptcy = if else(public record bankrupt >= 1, "Yes", "No")) |>
group by(bankruptcy) |>
summarize(avg loan amount = mean(loan amount))

Example 4.10: A tidyverse wrangling of the bankruptcy variable in the loans data.

loans$bankruptcy <- ifelse(loans$public record bankrupt >= 1, "Yes", "No")

tapply(loans$loan amount, loans$bankruptcy, mean)

Example 4.11: A base R wrangling of the bankruptcy variable in the loans data.
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Try reading these code snippets out loud to yourself. Which elements do you vocalize?

Which do you skip? When we read the tidyverse code, we pronounce the |> operator as

“and then.” “Start with the loans data and then group by bankruptcy and then summa-

rize.” When we read the base code, it is more repetitive because we need to repeatedly say

things like “loans dollar sign bankruptcy.” Typically, we do not vocalize every character on

the screen. Most commonly, we do not read out line breaks, underscores, or many paren-

theses (particularly closing parentheses). However, a more verbose vocalization (perhaps

used when dictating to a newer student) would likely include the additional punctuation.

If you would like to hear one of us read the code snippets aloud, please see McNamara

(2021b). Hopefully, the exercise of reading code aloud helps illustrate that the tidyverse

is more designed for speakability. The tidyverse verbs sound more like English sentences

(e.g., compare tapply() to group by()).

We should note that readable does not necessarily mean discoverable—one would not

necessarily think of the word “summarize” to calculate the mean of a column, but once

you learn the framework of “summarize” it is likely to stick because the verb does what it

says.

Additionally, even when the function names may seem self-explanatory, it is still impor-

tant not to assume learners can tell what the function does without explaining the meaning

of the word. Thoma et al. (2018) discusses the importance of the code itself aligning with

statistical frameworks. Tidyverse verbs are based on English, so they privilege people

whose first language is English. And, even for native English speakers, some of the words

are not immediately transferable into the data analytic context. For example, if you’ve

never come across tidyr::hoist(), would you be able to guess what “hoist” means in

this context? The advantage of well-chosen function names is that once you explain what

a function does, you likely do not need to explain it again.

4.5 Community

We note the tidyverse’s popularity across a wide variety of disciplines and application areas,

including in industry. While companies often keep their software choices private, a number

of high-profile companies publicly use the tidyverse, including Airbnb (Bion et al. 2018),
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T-Mobile (Nolis & Nolis 2020), Stack Overflow (Robinson 2015), and many more (RStudio

PBC 2022). The tidyverse is also used at many journalistic outlets, including the BBC

(BBC Visual and Data Journalism 2019) and FiveThirtyEight (Flowers 2016), as well as

by nonprofits such as the ACLU (Watson 2019) and The Urban Institute (Data@Urban

2019).

Popularity not only indicates that professional users find it to be a worthwhile tool, but

also can actually increase students’ ability to engage with R. DataScienceMeta.com tracks

downloads of R packages from the Comprehensive R Archive Network (CRAN) (R Core

Team 2021). Six of the top 10 packages (as of July 2, 2021) downloaded from CRAN are

part of the tidyverse, and the tidyverse package itself is the 20th most downloaded from

CRAN. The popularity is an indication that when students are searching for help (e.g.,

from Google or StackOverflow), they are likely to come upon a tidyverse solution.

Additionally, although older textbooks predominantly use base R to introduce statistical

computing, more and more texts are using tidyverse syntax. A popular example is R for

Data Science (Wickham & Grolemund 2016), a textbook specifically focused on using

the tidyverse to do data science. Ismay & Kim (2019), Baumer et al. (2021), Roback &

Legler (2021), Hyndman & Athanasopoulos (2021), and the R materials associated with

Çetinkaya-Rundel & Hardin (2021) all use primarily tidyverse code. Providing our students

contemporary tools like the tidyverse will prepare them to engage fully with the larger

community of statisticians and data scientists who have adopted the tidyverse into their

work.

4.6 Transferability

The majority of Section 3 has argued that tidyverse makes common data analysis tasks

more straightforward to learn than other approaches with R. This reduction in cognitive

load will make the tidyverse easier to learn than base R. Here, we provide one additional

reason for bringing the tidyverse into an undergraduate classroom full of students who will

be heading into a workforce in a data-centered world.

The careful construction of the tidyverse, and in particular the dplyr package, can have

additional benefits to learners in the context of working with databases. Since the develop-
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ment of relational database modeling begun by Codd (1970), Structured Query Language

(SQL) has been the dominant paradigm for interacting with relational databases. SQL

databases are widely deployed through technologies like SQLite, MySQL, PostgreSQL, Mi-

crosoft SQL Server, and Oracle. Moreover, many newer technologies that seek to supersede

SQL are predicated on their users’ knowledge of SQL. This includes cloud-based services

(e.g., Google Big Query), as well as non-tabular database systems (e.g., “NoSQL”). Thus,

for undergraduates, learning how to write SQL queries is a useful step towards a career in

data science (Horton et al. 2015), particularly for those headed towards industry.

The dplyr package was written with SQL in mind. As described in Section 3.1, the main

verbs, along with the various * join() functions, comprise a set of functions that can serve

as the building blocks for SQL queries. The dbplyr package provides functionality that

will translate dplyr pipelines into SQL queries, enabling R users to query SQL databases

without having to write SQL code. However, since knowing how to write an SQL query is a

useful skill for students to develop, learning data wrangling through dplyr has the beneficial

side effect of giving students a conceptual understanding of SQL with minimal additional

cognitive load. That is, the work that students have put in to learn data wrangling in

dplyr can be easily extended into achieving SQL fluency. Instructors can pair a few weeks

of dplyr instruction with a few weeks of SQL instruction and have reasonable confidence

that students can develop basic proficiency in both technologies.

Students can engage in a comparative literature exercise in which they map each function

in the dplyr pipeline to a different clause in the SQL statement. The comparison of SQL

and dplyr syntax can reinforce the message that the underlying concepts are the same

here: it is only the programming syntax that differs between R and SQL. To fully drive

the 1-to-1 equivalence home, the dbplyr package contains the function show query() that

will explicitly translate a dplyr pipeline to a SQL query. Example 4.12 shows the SQL

translation of the audiological measurement query shown in Example 3.11.

db |>
tbl("Subjects") |>
group by(AgeCategoryFirstMeasurement) |>
summarize(num people = n()) |>
show query()
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## <SQL>

## SELECT ‘AgeCategoryFirstMeasurement‘, COUNT(*) AS ‘num_people‘

## FROM ‘Subjects‘

## GROUP BY ‘AgeCategoryFirstMeasurement‘

Example 4.12: A SQL translation of the dplyr pipeline shown in Example 3.11.

Thus, by learning dplyr students get SQL (almost) for free. We note that there is also

the package tidyquery (Cook 2021) which allows for the translation of SQL queries back

into dplyr pipelines.

5 Discussion

In this section, we reflect on how the tidyverse fits into a larger curriculum, discuss the im-

portance and challenge of staying current, address some common criticisms of our approach,

and conclude with final thoughts.

5.1 Building a curriculum

We have made the argument that students’ first introduction to R can (and should) be with

the tidyverse. However this does not mean learning materials should be structured around

tidyverse packages, as opposed to statistics and data science concepts. We recommend

using library(tidyverse) to load all eight core tidyverse packages and not allocating

much time or energy to distinguishing which function lives in which of these eight packages,

at least in an introductory course. It is important to let students know where they can

find information in package documentation, but beyond that, making distinctions within

the tidyverse core packages can add to unnecessary distractions.

Even just the core eight packages in the tidyverse offer a vast array of functions for doing

data analysis tasks. The breadth of that functionality goes well beyond the topics that can

reasonably be covered in an introductory statistics or data science course within the span

of an academic term. For example, in introductory courses where the audience is new to

working with data, statistics, and programming, we recommend delaying introduction of the
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purrr package (Henry & Wickham 2020) and the functional programming paradigm. One

of the strengths of the purrr package is working with list-columns, which are relevant when

applying functions to many columns or when working with hierarchical data. If working

with advanced data structures is a topic included in the learning goals of an introductory

course, we recommend solving the problems using functionality recently added to packages

like dplyr (e.g., the across() function) and tidyr (e.g., unnest *() functions) in order to

avoid introducing functional programming as an additional topic in the curriculum.

This is not to say incorporating the tidyverse into a curriculum can be done without any

adjustments to the learning goals. For example, if teaching R without the tidyverse, one

might avoid the discussion of the pipe operator or the notion of a tibble (tidyverse’s im-

plementation of a data frame) entirely. On the other hand, adding some new learning goals

to the course to support the teaching of the tidyverse can provide a principled framework

that allows for tackling modern data problems while using a consistent syntax.

For an introductory data science course, data visualization is a good first topic, followed

by single-table data wrangling (Çetinkaya-Rundel & Ellison 2021). This structure intro-

duces students to functions from the ggplot2 package and then dplyr, but again we are

not advocating for focusing the course on packages. Subsequent learning goals for a given

course should embrace aspects of tidyverse packages designed to help with relevant data

analysis tasks related to those goals. For example, multivariate thinking can be introduced

alongside ggplot2 functionality that maps variables to additional aesthetics like color, size,

shape, and facets. Relational data can be introduced with two-table verbs from dplyr (i.e.,

* join() functions).

5.2 Keeping up with the tidyverse

Like the majority of (particularly open-source) software, the tidyverse evolves over time.

Many of the changes are responses to feature requests or difficulties with functions re-

ported by users. The tidyverse team explicitly solicits feedback from the community on

(particularly major) proposed changes via surveys and blog posts. Changes are generally

announced with each CRAN release of a package in blog posts as well as in NEWS files

of the packages. While the majority of changes are backwards compatible, a carefully
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evaluated small subset of them can be breaking changes (Wickham 2021b).

The tidyverse uses the lifecycle package to communicate information on the lifecycle of

functions and packages (Henry & Wickham 2021). Clear messaging via lifecycle badges can

help instructors evaluate whether to teach newly introduced functionality. For example,

one might choose to teach a new function that is in a stable stage but might hold off on an

experimental one. Similarly, deprecated and superseded functions are good candidates for

removal from course materials when revising.

Teaching the tidyverse will therefore always take a little preparation before class, even

if you have materials from a previous term. Because of occasional breaking changes, you

will want to re-run any code you are providing to students before class. However, quickly

reviewing materials before class is an important practice for any instructor.

5.3 Alternative viewpoints

Some alternative viewpoints to teaching with the tidyverse center on a general objection to

teaching with an excessive number of packages. One notable description of such minimalism

is the “tinyverse.” There are two main rationales for these points of view. First, some fear

students will learn a set of programming patterns so specialized, complicated (Leek 2016),

or idiosyncratic (Matloff 2020) that they will be baffled by the bare R syntax they are likely

to see after the course. (Portions of this argument explicitly support our characterization of

the tidyverse as a coherent syntax.) Second, others focus on maximizing the durability and

robustness of the code written by minimizing the number of dependencies. Since packages

change much more frequently than R itself, code that relies on packages is more likely

to break in the future (Bashir & Eddelbuettel 2018). These concerns are logical, and we

address them here.

To the first argument, the tidyverse has become so popular (see Section 4.5) that the fear

that tidyverse code will be unrecognizable, or that students will suffer as a result of their

reliance on the tidyverse, is unfounded. While this objection might hold for other teaching-

focused R packages with small user bases, the tidyverse ecosystem is too big for this to be

a legitimate concern. In fact, the opposite may be closer to the truth. In recent years we

have seen ideas that were popularized in the tidyverse implemented in base R. Namely, the
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change in the default behavior of the stringsAsFactors argument of data.frame() that

occurred in R 4.0, and the introduction of the native pipe operator (|>) in R 4.1. In our

experience, tidyverse code presented by students to prospective employers is often seen as

evidence of cutting-edge programming skill.

To the second argument, while breaking changes do occur in the tidyverse, the packages

themselves are both well-maintained and coordinated. Eddelbuettel (2018) invokes Met-

calfe’s Law to argue that as the number of dependencies increases, the probability that a

breaking change in a dependent package will cause a problem also increases. While this

may be true in general, the dependencies of the tidyverse package are all maintained by the

tidyverse team, so the dependencies are not independent—to the contrary, they are highly

correlated. Moreover, while changes in dependent packages can break both production

code and student code alike, the impact of those breakages is quite different. While robust-

ness is important, there is a complementary danger of missing out on innovations that will

put students in better positions to succeed. In any case, we view the possibility of these

breaking changes as the price one has to pay for software that is continually progressing.

Other criticisms of teaching R with the tidyverse to introductory students center around

the tidyverse’s extensive use of non-standard evaluation (NSE). Much of the user-centered

design of the tidyverse relies on the use of NSE within R (e.g., not having to quote column

names within a dplyr function). The complexity of NSE is hidden from students because

it is not something they will meaningfully encounter until they try to write certain kinds

of functions (specifically, a generic function that uses functions from the tidyverse, which

in turn make use of NSE). This need is unlikely to arise in a first or even second course

in statistics or data science. In advanced courses that might teach R as a programming

language (e.g., package development), programming with NSE as well as other evaluation

patterns used in R can be covered. Many tidyverse packages provide specific documenta-

tion to help users learn how to use tidyverse tools in functions and packages they write

(Wickham, François, Henry & Müller 2021b, Wickham, Chang, Henry, Pedersen, Taka-

hashi, Wilke, Woo, Yutani & Dewey 2021).
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5.4 Coda

We have provided an overview of how the tidyverse works and how it integrates with

undergraduate statistics and data science curricula, argued that we should start teaching

R with the tidyverse, and articulated core reasons for continuing to use the tidyverse

throughout the curriculum, while touching on features like consistency, scalability, user-

centered design, readability, community, and opportunities for growth.

We are all converts to the tidyverse and have made a conscious choice to use it in our

research and our teaching. We each learned R without the tidyverse and have all spent

quite a few years teaching without it at a variety of levels from undergraduate introductory

statistics courses to graduate statistical computing courses. Ultimately, we have settled on

computing curricula that teach (with) the tidyverse and synthesized the reasons supporting

our choice in this paper.

We encourage readers convinced by our arguments to implement the tidyverse in their

classroom teaching. The references that follow include several textbooks based on the

tidyverse, and additional open-source curricular materials that can be customized or used

as-is. As we have noted, the encouraging and inclusive tidyverse community is one of the

benefits of the paradigm. Welcome! We’re glad you’re here.
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