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Abstract 

A framework for analyzing wound transcriptome data of skin and oral mucosa 

by Krishnakant Dasika 

 

Analysis of gene transcriptome data plays a crucial role in understanding key biological 

processes that govern wound healing. Oral mucosal wounds are found to heal much 

faster than skin wounds. With the aim of improving rates of wound closure in skin 

tissues, a comparative study of the two tissues in different wound healing stages is 

undertaken. Gene transcriptome data of skin and tongue tissues in mus musculus is used 

to develop a general framework for analyzing gene microarray data and extract 

meaningful observations. The author presents a new approach to clustering gene time-

series dynamics, taking the underlying biological processes into consideration. 

Furthermore, an analysis on the comparison of skin and tongue tissues’ healing is 

presented, highlighting processes that are unique to the two tissues based solely on 

clustering gene microarray expression data.  
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1.1 Introduction 

A thorough understanding of molecular and systemic functions during different stages of wound healing 

potentially helps drive research into the development of novel medical devices targeted at accelerating 

the rate of wound closure. One such method is the design of smart bandages which improve macrophage 

functionality using bioelectric signals to the surrounding tissues.  

Some recent studies are devoted to bandages for control and treatment of wound healing [18] [19]. 

Understanding of wound healing stages on the level of gene expression may help in creating 

bioelectronics wound healing control systems [20]. Studies [21] also suggest that the use of bio-electrical 

mechanisms may enhance the rate of wound closure by improved recruitment rates of epithelial and 

connective tissue cells. Therefore, for proper intervention techniques, the dynamics of chemokines, 

cytokines, interleukins and keratins secreted by cells participating in inflammatory response and 

proliferation need to be analyzed in detail. Since wound healing in tongue tissue is established to be 

faster than in skin tissue [17], a comparison of the processes between the two tissues could help identify 

the pathways that need to be manipulated to achieve higher wound closure rates.  

Chen et al [2] have proposed a systematic framework distinguish the differences in gene expression 

between skin and tongue tissue of mus musculus. They employ the use of Affymetrix cDNA microarray 

data which is divided into groups based on k-means clustering, followed by gene annotations to confirm 

the difference between the two tissues. The framework helps identify crudely the gene groups in the two 

tissues and present a case for stronger inflammatory response in skin tissue compared to tongue tissue. 

J.Cheng [13] extended this work by presenting a Boolean network approach to identify the status of the 

wound. Using an example of six selected functional groups, the author presents a method to identify the 

stage of wound healing based on whether the functional group is active or inactive at the time of biopsy.  

It should be noted that both investigations use data clustering in general as the mathematical method for 

gene expression analysis. Upon investigating the methods of clustering used, it was found that using the 

entire data set, which usually consist of tens of thousands of gene dynamics, led to sub-optimal clustering 

results. The obtained gene groups could only be considered as crude estimates for the gene functionality 
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at each stage. This called for a need to improve clustering results. Most studies on gene expression data 

categorize the results into broadly two groups – early and late expressing genes. In order to pinpoint the 

differences in dynamics between the two tissues, there is a need to identify intermediate gene clusters as 

well. In addition to the result presented in Chen et al, , we would like to identify which processes cause 

delayed response in skin and which processes help accelerate wound healing in tongue tissues.  In the 

current work, we look for automatic and semi-automatic methods to find differences in gene dynamics. 

A new method for the analysis gene microarray data is proposed, with improved clustering results as 

well as a method to identify gene expression specific to skin tissues.  

 

1.2 Overview of wound healing  

The overall process of wound healing consists of four highly overlapping stages, hemostasis, 

inflammation, proliferation/repair, and remodeling [9]. Hemostasis is the first stage of the wound healing 

process and the shortest of the phases lasting from 0 to a few hours post wounding. Platelets trigger a 

short phase of vasoconstriction to reduce blood loss followed by clot formation which is composed 

primarily of fibrin-polymers and blood cells. Platelets also help trigger the infiltration of leukocytes by 

releasing chemotactic factors. This process paves the way for inflammatory response. 

Inflammation starts within 24 hours, and goes on for 2 weeks or more. Naïve lymphocytes, B and T cells 

are recruited to the site of injury. Circulating the blood vessels, there are erythrocytes (red blood cells), 

monocytes, neutrophils (phagocytes) and inflammatory mediators. There are two types of inflammatory 

mediators: Plasma inflammatory mediators which include complementary proteins and kinins and cell 

derived inflammatory mediators which include mast cells and dendritic cells (langerhan cells in skin 

tissue). PAMPs expressed by pathogens infiltrating the site of injury are recognized by the immune cells 

present in the tissues [24]. Mast cells upon identifying the pathogen secrete histamine, which when 

secreted causes vasodilation and causing increased permeability of blood vessels. This process allows 

more inflammatory response mediators and immune cells to get transported to the site of injury. Tissue 

macrophages on identifying the pathogen secrete cytokines primarily TNF-alpha and IL1. Cytokines 
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cause two types of effects: Local effect and systemic effect. Local effect is increased inflammation by 

vasodilation and increased vascular permeability. The monocytes recruited from the blood vessels 

differentiate into macrophages. In addition, the local effect of cytokines is the triggering of tissue repair 

by stimulating fibroblast activity. The systemic effect of cytokines includes the development of fever 

and leukocytosis [23]. Complement proteins, i.e., the plasma derived inflammatory mediators with 

antibodies can cause optimization or lysis of pathogens. C3a and C5a are the most notable 

complimentary proteins as they promote inflammation, vascular permeability and also act as chemo 

attractants, stimulating repair.  

The processes described above are part of the innate immune response. However, if a pathogen causes 

an infection in the body, the adaptive immune response is activated. Antigen presenting cells (APCs) 

such as dendritic cells or macrophages engulf the pathogen which activates the APCs causing them to 

travel to the lymph nodes via the lymph vessels, triggering the activation of naïve B and T cells in the 

lymph nodes. The naïve B cells become plasma cells which can secrete antibodies such as Ig-m, Ig-g 

and Ig-d and the naïve T cells become either T-helper cells or T-killer cells which then remove the 

pathogens and bring the system back to its normal state.   

Proliferation phase essentially begins when cytokines and platelet derived growth factors (PGDF) 

secreted by macrophages and platelets, initiate the migration or stimulation of fibroblasts into the wound. 

The process of proliferation is initiated by the production of matrix metalloproteinases (MMPs) which 

are produced by fibroblasts. MMPs help in the fluid transport of fibroblasts within the matrix. They also 

play an important role in wound re-epithelialization by regulating extracellular matrix degradation and 

deposition [16]. Fibroblasts begin proliferating and increase the synthesis of collagen which is the first 

step in tissue repair. This process is aided by growth factors TGF-beta and connective tissue growth 

factors (CTGF).  PGDF also stimulates chemotaxis which further promotes tissue repair. If there are 

damaged blood vessels, coagulation cascade is performed. Keratinocyte differentiation is another 

important aspect of this stage of wound healing. Keratin growth factors (KGF) are found to play a 

significant role [14] in epithelialization through stimulating epidermal and dermal regeneration. In 

addition, KGFs induce TGF-alpha expression and EGF-receptor signaling in tissues subject to exposure 
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from injuries, which partake in the mechanisms of epithelial cell proliferation leading to the 

reconstitution of an intact epidermis [15]. 

 

1.3 DNA Microarray Data 

With a wide range of microarray experiment data available, it is essential to choose relevant cDNA data 

that could help distinguish molecular functions pathways between the two tissues. The main criteria used 

to select the data sets used in this study are: A) The data set must contain gene intensities for control i.e., 

unwounded tissues to identify the baseline gene expression values for the two tissues. B) The span of 

the experiment must include the entire duration of wound healing process, typically 0-15 days for 

incisional wounds. C) The intervals for biopsies should roughly include all the stages of wound healing. 

D) Measurements should be consistent across replicates. 

The dataset available in the GEO accession GSE23006, titled “Transcriptional profiling of a wound 

healing process in skin and oral mucosa” was found to meet most of the above criteria and is therefore 

used as the primary data source for designing the framework proposed in this study. A total of six 

samples, three for skin tissue and three for the tongues, were measured at eight different time points 

covering the whole time span of the murine wound healing. For each chip, the intensity level of over 

45,000 genes are measured as the raw data. 

 

2 Methods 

2.1 Normalization 

The intensity values are normalized to facilitate comparison across different genes. For each gene, the 

maximum gene expression value is found over all 8 time points across the three. The normalized intensity 

𝐼(𝑡) at time t is defined as: 

𝐼(𝑡) =
𝐼(𝑡) − 𝐼(0)

max
𝑡

(max
𝑖

𝐼𝑖(𝑡))
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where 𝐼𝑖(𝑡) is intensity in replicate i at time t and 𝐼(𝑡) =
1

3
∑ 𝐼(𝑡)𝑖  – the  average by 3 replicates intensity. 

2.2 Filtering  

To gain insights into the biological processes at different stages of wound healing, we first filter the 

genes into 6 groups as follows: 

 Set a threshold for normalized intensity value beyond which a gene is considered up-regulated 

or down-regulated. For the purpose of this study, the threshold is assumed to be  ± 0.3 

above/below the baseline value 

 Three intervals are considered: 0-24 hrs, 24-120 hrs and 120-240 hrs corresponding to early, 

middle and late stages of wound healing  

 The gene is considered to be up/down regulated in the time interval if its normalized intensity 

𝐼(𝑡) reaches the threshold value 0.3/-0.3 for the first time at that time interval.  

 Once a gene is filtered into a category, it is removed from the pool of available genes 

 Downregulated genes are filtered out first followed by upregulated genes. Thus, if some gene 

satisfies both down and up regulated conditions then it is filtered as down regulated. The genes 

are filtered into 6 groups:  

Downregulated 0-24hrs, Downregulated 24-120hrs, Downregulated 120-240 hrs, Upregulated 

0-24hrs, Upregulated 24-120hrs and Upregulated 120-240hrs.  

 If the threshold value of 0.3 is met at the boundary of an interval, the gene is still filtered into 

that interval.  

 

2.3 Clustering 

For each of the 6 groups, we employ k-means clustering to identify genes having similar time-series 

dynamics.  The motivation behind performing clustering is to decompose a large amount of genes that 

are mixed in terms of expression level into smaller groups based on their relative expression level over 

the span of the entire wound healing process. Moreover, it is relatively difficult to understand the 
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contribution toward the wound healing processes of each individual gene in comparison to a collective 

group of genes, because biological processes usually require large amounts of genes to work together in 

order to achieve their functionality. Naturally, clustering becomes the method of choice to achieve this 

objective as part of the analysis. MATLAB’s k-means function which utilizes k-means++ algorithm is 

used, which is a data-partitioning algorithm that assigns n observations to exactly one of k clusters 

defined by centroids by minimizing the squared euclidean distance between observations. For this 

purpose, ‘dist’ metric was set to ‘sqeucliden’. Alternatively, the ‘dist’ metric can also be set to 

‘correlation’ where in the centroids are the component wise means of the points in the cluster. However, 

using this metric causes further normalization of values to zero mean and zero standard deviation which 

was not necessary. Various k values are explored and k=4 is chosen as it showed good results. 

 

 

2.4 Identifying inactive gene sets 

In addition to clustering, another approach is explored in this study which is used to filter genes into 

an ‘inactive gene’ category. In the comparison of gene expression between skin and tongue tissues, we 

find that some genes that show differential expression in skin do not show any deviation from their 

baseline values in tongue tissue. Identifying these genes is important as they help determine key 

differences in the responses to injury between the two tissues. For this purpose, we use the normalized 

intensity values and define an inactive gene as one having expression level within ±0.05 across all time 

points. In other words, a gene is inactive if: 

                                                                       −0.05 < 𝐼(𝑡) < 0.05 ∀𝑡                         (*) 

First, a set of inactive genes in tongue is obtained by using the above filter for all the normalized gene 

intensity values from the entire dataset. Normalized intensity values of these filtered set of genes is 

observed in skin tissue and genes that do not satisfy condition (*) are then identified and classified as 

‘active genes’ in skin. This gives us the set of genes that are active in skin tissue which are inactive in 
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tongue tissue. The same procedure is then carried vice versa and the set of genes active in tongue tissue 

but inactive in skin tissue is obtained. 

 

3 Gene Ontology 

The online gene annotation consortium called the Gene Ontology (GO) is a hierarchically organized 

collection of functional gene sets. It is a useful tool to define the collective biological functionality of 

the genes group. GO provides a large, up-to-date, and comprehensive computational model that maps 

biological systems from molecular levels to organism levels to biological functions. All GO annotations 

are ultimately supported by scientific literature either directly or indirectly. In GO, the supporting 

evidence is presented in the form of either a published reference or description of the methodology used 

to create the annotation [1][3].  

In this work, genes from a cluster/group are fed into the GO analysis algorithms by first cross referencing 

to existing online GO databases that pull from all available sources. Web-based Gene Set Analysis 

Toolkit (WebGestalt) [11] is used with the reference set Affy Mouse430 2.0 gene chip array on mus 

musculus. First 10 most significant GO terms corresponding to genes cluster/group are presented in a 

resulting GO-analysis table.  
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The following figure summarizes the workflow for the analysis: 

 

 

Fig1: Framework of microarray gene analysis proposed in this study 

 

4 Results 

4.1 Filtered Genes: Up-regulated and down-regulated in different intervals 

Here, we present the dynamics of genes filtered in different groups based on time and expression levels.  

All figures for filtered genes in different groups can be found in the Appendix. For the purposes of 

clustering and cluster comparison, normalized intensity values are plotted across time for all the filtered 

genes in each interval. Figure 2 shows the dynamics of Genes up-regulated in the early inflammatory 

stage. It can be observed that there are indeed a range of dynamics among the genes showing up 

regulation: Genes up-regulated 0-6hrs and turned off soon after, Genes up-regulated 6-12hrs and turned 

off soon after, Genes up-regulated around 24hrs and gradually lose expression and Genes having 

sustained expression levels after being up regulated. 
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Fig2. Skin tissue : Dynamics of Genes up-regulated in 0-24hrs post wounding  

 

 

4.2 Clustering Genes in each group 

The filtered genes are then clustered using MATLAB’s k-means clustering algorithm with k=4 to group 

genes having similar dynamics. The centroids of the clusters (bold lines in Fig 3) clearly depict the four 

groups mentioned above. The functional groups specific to these gene groups can be considered as 

definitive biomarkers for the early inflammatory phase of wound healing. This analysis is performed for 

all six filtered groups and the results can be found in the Appendix.    
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Fig 3: Skin tissue : k-means clustering of Genes up regulated in 0-24 hrs. Black lines show the centroids of each cluster. Cluster 

1 (red) – 219 genes, Cluster 2 (blue) – 107 genes, Cluster 3 (green) – 36 genes and Cluster 4 (magenta) – 89 genes 

4.3 Differences between skin and tongue tissues 

Clustering of genes completed in this work may seem non-perfect – some clusters look the same. 

However, with cluster representation we can see the differences between genes dynamics in both 

tissues. First we look at  the clusters of skin and tongue tissues in 0-24 hr period. Below are the clusters 

obtained for tongue tissue: 

 

Fig 4. Tongue tissue : k-means clustering of Genes up regulated in 0-24 hrs. Black lines show the centroids of each cluster. 

Cluster 1 (red) – 53 genes, Cluster 2 (blue) – 67 genes, Cluster 3 (green) – 32 genes and Cluster 4 (magenta) – 30 genes 
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 Skin Cluster 2 (blue plots in Fig 3) shows a pike of activity at 6h, no such pike observed in 

tongue tissue 

 Skin Cluster 3 (green plots in Fig 3) – cluster with similar dynamics not found in tongue 

tissue 

 Tongue Cluster 4 (magenta in Fig 4) a pike of activity at 12h, no such pike observed in skin 

tissue 

 

 

4.3.1 Clusters 1, 4 in skin and 1,2,3 in tongue tissue: Inflammatory and Immune 

Response: 

Consider clusters 1 and 4 in skin. The dynamics of gene expression in these two clusters is very 

similar and they could be in the same cluster. Moreover, similar dynamics is observed in clusters 

1,2, 3 in tongue. Most of those genes are responsible for inflammation. Literature suggests that 

cytokines and chemokines help recruit and activate inflammatory cells like macrophages, mast cells, 

T-cells and neutrophils. In this section we compare the inflammatory and immune responses in the 

two tissues using the top GO terms in the 0-24 hr interval. In the skin tissue, genes in clusters 1 and 

4 in the gene group up regulated in 0-24 hrs show a strong correlation to GO term GO:0006954 and 

GO:0006955 which signify inflammatory response and immune response respectively.  The same 

GO terms were found in the GO analysis of tongue tissue as well, in clusters 1, 2 and 3. However, 

the number of genes representing inflammatory response were found to be much higher in skin 

tissue compared to tongue tissue. This is in correspondence with the results obtained by Lin Chen 

et al. [2] where the authors conclude that the inflammatory and immune responses in skin are more 

dominant in skin tissues compared to tongue tissue in mus musculus.  

Key genes contributing to inflammatory and immune response in skin tissue are cytokines (Ccl2, 

Ccl3, Ccl4, Ccl7, Ccl20, Ccr1, Ccr7, and Ccrl2), chemokines (Cxcl1, Cxcl2, Cxcl3, Cxcl5 and 

Cxcl10) and genes from the toll-like receptor signaling pathways (Tlr1, Tlr2, Tlr4, Tlr6 and Tlr13). 

In contrast, although cytokines (Ccl12, Ccl3, Ccl8 and Ccr5) and chemokines (Cxcl1, Cxcl2, Cxcl3, 



12 
 

Cxcl5 and Cxcl10) were found in tongue tissue as well, the toll-like receptor signaling pathway 

genes were entirely absent. Cytokines from the interferon and interleukin family were also found to 

be present (IL1b, IL6, IL7r, IL1rap, IL23a, IL18rap and IFN-α r1) in the immune response of skin 

tissue. Figures 5 through 8 show the comparison between the expression levels for each of the above 

discussed gene groups. 

 

Fig 5. Chemokine expression level comparison between skin and tongue tissues 

 

 

 

Fig 6. Cytokine expression level comparison between skin and tongue tissues 
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Fig 7. IL gene expression level comparison between skin and tongue tissues 

 

 

 

Fig 8. TLR pathway gene expression level comparison between skin and tongue tissues 

One can see that in this group of genes the main difference between skin and tongue is 

quantitative: Gene expression in skin is higher than in tongue [2]. 
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4.3.2 Cluster 2 in skin  

The most obvious difference between skin and tongue is that skin cluster 2 has no similar dynamics 

in tongue. In Fig. 9 (Top) the plots of skin cluster 2 are shown both in skin and tongue. One can see 

that most of these genes don’t show any significant dynamics in tongue but stay at low level of 

expression during wound healing in tongue.  

Among the genes of skin cluster 2 upregulated in 0-24hrs we find an abundance of keratins and 

keratin associated proteins. These include Krt8, Krt18, Krt72, Krt82, Krt84, Krtap3-2, Krtap5-1, 

Krtap5-2, Krtap5-4, Krtap5-5, Krtap6-2, Krtap6-3, Krtap10-4, Krtap12-1, Krtap16-1, Krtap17-1, 

Krtap19-1, Krtap19-4, Krtap19-5, Krtap21-1, Krtap26-1, Krtap28-13 and Krtap31-1. Since keratins 

play a significant role in collagen synthesis, these results could explain increased scar tissue 

formation in skin compared to tongue tissues. 

In skin cluster 3 two more genes of keratins Krt6b, Krt16 were found (Fig. 9, bottom). These genes 

show no differential expression in tongue tissues as well. However, Krt6b and Krt16 in tongue are 

initially at significantly higher level than in skin. In skin these two genes are expressed are at low 

level and grow after the injury. This suggests that it is not hair regeneration but their role in immune 

response to be the reason for high expression.  

This is in correspondence with [12], paper about Krt/Krtap gene expression. The authors found that 

Krt6 and Krt16 were expressed differently from other keratins, concluding that high expression in 

non-injured tissue is observed in mouse line with better wound healing. Thus, higher expression of 

Krt6b and Krt16 in unwound tissue contributes to easier healing after injury. 
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Fig 9. Genes from Skin Up regulated 0-24h Clusters 2 and 3 related to keratinocyte differentiation 

 

 

Group of genes down-regulated in 0-24h interval:  

   

 

Fig 10 (a). Early down regulated genes in skin. 
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Fig 10 (b). Early down regulated genes in tongue. 

 One of the differences in dynamics between skin and tongue tissue observed in Fig 10 (a) and 

Fig 10 (b) is a sharp peak at 6h in skin cluster 1 that doesn’t exist in tongue genes. 

Among the genes downregulated in the 0-24 hrs interval, we again find a few keratins in skin tissue 

(Krt25, Krtap6-5, Krt71, Krt27) which were entirely absent in the differential down regulated tongue 

tissue genes (Fig. 11). 

  

 

Fig 11. Down regulated Keratin gene expression level comparison between skin and tongue tissues (0-24 hrs) 
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It can also be seen that the skin tissue early downregulated cluster 1 has a similarity with skin 

upregulated cluster 2 (Fig. 9 upper).  

 

Group of genes up-regulated in 24-120h interval:  

 

Fig 12(a). Middle-stage up regulated genes in skin  

 

 

Fig 12(b). Middle-stage up regulated genes in tongue 

 

Skin genes are more numerous, but the overall dynamics on this stage seems to be the very similar in 

both tissues.  

Since we find fewer genes in both up and down regulated genes in the 24-120hr interval, this interval, 

to obtain meaningful matches for GO terms, we combine the four clusters and look at the top 15 GO 
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terms in both skin and tongue. Table 5 shows a brief comparison of these terms for the two tissues. 

Skeletal muscle contraction, muscle tissue morphogenesis, cardiac muscle tissue morphogenesis and 

musculoskeletal movement standout as key processes in this interval. Troponin C type gene (Tnnc1), 

responsible for muscle contraction present in cardiac and skeletal muscles is found to be active in both 

skin and tongue tissues in this interval. In addition, Troponin I (skeletal muscle) gene which was found 

to be expressed in the 24-120 hr interval in skin was found to have a higher expression in the 120-240 

hr interval in tongue tissue. Troponin T (cardiac muscle) gene and Actc1 (Actin alpha, cardiac muscle) 

a gene responsible for cardiac muscle contraction and regulation of heart function were also found to 

have similar dynamics in skin and tongue tissues. It should be noted that although Tnnt2 and Actc1 genes 

visually show similar dynamics, they weren’t filtered into up regulated genes in either 24-120 hr or 120-

240 hr interval for tongue tissue as their normalized intensity values were below the cut-off of 0.3 

threshold which is used in this study. 

 

 

 

Fig 13. Skeletal and Cardiac muscle gene expression level comparison between skin and tongue tissues 
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Genes of this group show very similar dynamics in both tissue. This means that this stage (presumably, 

tissue repair) is the same in both tissue. 

 

4.4 Gene Ontology 

To identify the functionality of genes in each cluster, Gene enrichment analysis is performed. For this 

purpose, Web-based Gene Set Analysis Toolkit (WebGestalt) is used. The organism is chosen as mus 

musculus with the reference affymetrix chip set Affy Mouse430 2.0 gene chip array, as used in the 

experiment. Gene symbols for each cluster are used as the input to the software and the results for Gene 

Ontology with significant GO terms are obtained.  

In this section, we discuss key results from the four clusters of genes up-regulated in 0-24hrs post 

wounding in skin tissue. A complete set of GO results for all clusters can be found in the supplementary 

data provided in the excel sheet 

Summary_skin.xlsx and Summary_tongue_xlsx. 

Tables 1-4 below show the top 10 GO terms for each cluster in Fig. 3. Consistent with literature, we find 

that the gene sets corresponding to defense response to wounding, immune response, inflammatory 

response, regulation of immune system processes etc. are found to be the most significant GO terms in 

the first cluster (Fig. 3: red) (Table 1). It is interesting to note that similar GO terms can be found in the 

fourth cluster (Fig.3 :magenta) (Table 4) as well indicating that the genes showing high regulation ~6hrs 

and ~12hrs could be considered in a single cluster. Gene sets significant in the second cluster (Fig. 3: 

blue) correspond to hormone transport, protein processing and keratinocyte differentiation which are key 

markers in the inflammatory phase as well.  

A striking result of this type of clustering can be observed in the GO terms of the third (Fig. 3: green) 

cluster (Table 3) which has sustained expression levels throughout wound healing after up regulation. 

The most significant GO terms include skin development, tissue development, epithelium development 

and epidermis development which is in line with the biological understanding of the wound healing 
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process. It should be noted that clustering after filtering the genes into crude subgroups facilitates a 

deeper understanding of gene group dynamics, which would otherwise not be possible. 

  GO Term Definition p-value 
GO:0006952 defense response O(1E-16) 

GO:0006955 immune response O(1E-16) 

GO:0001775 cell activation O(1E-16) 

GO:0002684 
positive regulation of 

immune system process 
O(1E-16) 

GO:0002252 immune effector process O(1E-16) 

GO:0006954 inflammatory response O(1E-16) 

GO:0045087 innate immune response O(1E-16) 

GO:0002682 
regulation of immune 

system process 
4.44E-16 

GO:0045321 leukocyte activation 1.55E-15 

GO:0051707 response to other organism 1.88E-15 

 

Table 1: Skin tissue : Top 10 significant GO terms for Cluster 1 of genes up regulated in 0-24hrs post wounding 

 

GO Term Definition p-value 

GO:0006751 
glutathione catabolic 

process 
0.000154 

GO:0070327 thyroid hormone transport 0.000368 

GO:0016485 protein processing 0.000657 

GO:0030216 
keratinocyte 

differentiation 
0.000661 

GO:0016540 protein autoprocessing 0.000922 

GO:0097284 
hepatocyte apoptotic 

process 
0.001370 

GO:0042219 
cellular modified amino 

acid catabolic process 
0.001716 

GO:0045682 
regulation of epidermis 

development 
0.001793 

GO:0051604 protein maturation 0.002057 

GO:0006720 
isoprenoid metabolic 

process 
0.002242 

 

Table 2: Skin tissue : Top 10 significant GO terms for Cluster 2 of genes up regulated in 0-24hrs post wounding 
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GO Term Definition p-value 
GO:0043588 skin development 1.74961E-08 

GO:0008544 epidermis development 4.68524E-08 

GO:0009888 tissue development 3.52441E-07 

GO:0030855 
epithelial cell 

differentiation 
1.40557E-06 

GO:0060429 epithelium development 3.73959E-06 

GO:0010951 
negative regulation of 

endopeptidase activity 
7.78399E-05 

GO:0052548 
regulation of 

endopeptidase activity 
8.66998E-05 

GO:0010466 
negative regulation of 

peptidase activity 
9.71261E-05 

GO:0052547 
regulation of peptidase 

activity 
0.000124476 

GO:0051047 
positive regulation of 

secretion 
0.000277611 

 

Table 3: Skin tissue : Top 10 significant GO terms for Cluster 3 of genes up regulated in 0-24hrs post wounding 

 

GO Term Definition p-value 
GO:0006952 defense response O(1E-16) 

GO:0006955 immune response O(1E-16) 

GO:0006954 inflammatory response O(1E-16) 

GO:1990266 neutrophil migration 1.11022E-16 

GO:0060326 cell chemotaxis 2.22045E-16 

GO:0097529 
myeloid leukocyte 

migration 
2.22045E-16 

GO:0030595 leukocyte chemotaxis 4.44089E-16 

GO:0030593 neutrophil chemotaxis 5.55112E-16 

GO:0050900 leukocyte migration 1.22125E-15 

GO:0097530 granulocyte migration 1.55431E-15 

 

Table 4: Skin tissue : Top 10 significant GO terms for Cluster 4 of genes up regulated in 0-24hrs post wounding 
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4.5 Comparison of GO terms in skin and tongue tissues 

Skin Tongue 

GO:0033275 
actin-myosin 

filament sliding 
4.06E-08 GO:0003009 

skeletal muscle 

contraction 
0.00031 

GO:0030049 
muscle filament 

sliding 
4.54E-06 GO:0050879 

multicellular 

organismal 

movement 

0.00060 

GO:0060415 
muscle tissue 

morphogenesis 
8.9E-06 GO:0050881 

musculoskeletal 

movement 
0.00060 

GO:0003009 
skeletal muscle 

contraction 
1.04E-05 GO:0002011 

morphogenesis of 

an epithelial sheet 
0.00071 

GO:0048644 
muscle organ 

morphogenesis 
1.41E-05 GO:0003208 

cardiac ventricle 

morphogenesis 
0.00118 

GO:0007517 
muscle organ 

development 
3.68E-05 GO:0008015 blood circulation 0.00278 

GO:0050879 

multicellular 

organismal 

movement 

3.75E-05 GO:0003013 
circulatory system 

process 
0.00293 

GO:0050881 
musculoskeletal 

movement 
3.75E-05 GO:0002461 

tolerance 

induction 

dependent upon 

immune response 

0.00337 

GO:0048729 
tissue 

morphogenesis 
4.48E-05 GO:0001844 

protein insertion 

into mitochondrial 

membrane 

involved in 

apoptotic 

signaling pathway 

0.00337 

GO:0051346 

negative 

regulation of 

hydrolase activity 

8.52E-05 GO:0018057 
peptidyl-lysine 

oxidation 
0.00337 

GO:0055008 

cardiac muscle 

tissue 

morphogenesis 

0.00010 GO:0003231 
cardiac ventricle 

development 
0.00352 

GO:0006941 
striated muscle 

contraction 
0.00012 GO:0003206 

cardiac chamber 

morphogenesis 
0.00367 

GO:0003208 
cardiac ventricle 

morphogenesis 
0.00014 GO:0072359 

circulatory system 

development 
0.00390 

GO:0070252 
actin-mediated cell 

contraction 
0.00016 GO:0006941 

striated muscle 

contraction 
0.00394 

GO:0044278 

cell wall 

disruption in other 

organism 

0.00017 GO:0002072 

optic cup 

morphogenesis 

involved in 

camera-type eye 

development 

0.00404 

 

Table 5: Comparison between genes up regulated in 24-120hrs in skin and tongue tissues 
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5 Genes active in skin tissue and inactive in tongue tissue 

There are unlimited numbers of possible differences between skin and tongue gene expression. One 

particular case of such difference is when one and the same gene demonstrates significant change in 

expression in one tissue but in another tissue the expression stays at the same level. This means that 

corresponding pathway in wound healing is working in one tissue but is turned off in another.  In this 

chapter we are searching for the genes with this type of dynamics. 

There are 45 genes in Skin tissue that show a normalized intensity > 0.3 at some time point between 0-

240hrs which are otherwise inactive in tongue (satisfying condition (*)). These genes are filtered out and 

a k-means clustering is performed to identify significant GO terms related to each cluster. Fig 14 shows 

the results of clustering with k=9 (since there are a wide range of time series dynamics, a higher k-value 

is used to potentially filter all sub-groups). Clusters 2, 3 and 4 with 11, 10 and 6 genes respectively stand 

out as key identifiers of GO terms unique to skin tissue. Specifically, these include GO:0009913 

epidermal cell differentiation (p-value 0.0018), GO:0043588 skin development (p-value 0.0032), 

GO:0008544 epidermis development (p-value 0.0041), GO:0042303 molting cycle (p-value 3.96E-05), 

GO:0042633 hair cycle (p-value 3.961E-05), GO:0031069 hair follicle morphogenesis (p-value 

0.003068801) etc. which from our understanding of the biological processes are indeed specific to skin 

tissue. However, when a similar analysis is performed to identify Tongue genes that are not active in 

skin (using the same threshold of 0.3) we find that there is only one gene Vti1a.  
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Fig 14: k-means clustering of genes active in skin which are inactive in tongue 

 

 

 

The following table lists the top 15GO terms for the 45 genes identified above: 

GO Term Definition p-value 

GO:0042742 
defense response to 

bacterium 
3.67E-05 

GO:0009617 response to bacterium 7.37E-05 

GO:0051707 
response to other 

organism 
9.40E-05 

GO:0043207 
response to external 

biotic stimulus 
9.63E-05 

GO:0008544 epidermis development 0.000116 

GO:0009607 
response to biotic 

stimulus 
0.000124 

GO:0045861 
negative regulation of 

proteolysis 
0.000295 

GO:0009913 
epidermal cell 

differentiation 
0.000306 

GO:0010951 
negative regulation of 

endopeptidase activity 
0.000686 

GO:0042303 molting cycle 0.000797 

GO:0042633 hair cycle 0.000797 

GO:0010466 
negative regulation of 

peptidase activity 
0.000818 
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GO:0043588 skin development 0.000870 

GO:0050832 
defense response to 

fungus 
0.000895 

GO:0098542 
defense response to 

other organism 
0.000959 

 

Table 6: Top GO terms for the 45 genes that show activity in skin tissue which are inactive in tongue tissue 

 

6 Discussion 

Using the framework described for filtering and clustering gene microarray data, we immediately 

observe certain gene dynamics in skin tissue which are delayed or in some cases entirely absent in the 

tongue tissue. Qualitative trends of these gene are presented in section 4.3 using the centroids of the 

clusters obtained. Clusters 2 and 3 of the genes up regulated in the early stages of inflammation (0-

24hrs) have dynamics exclusive to the skin tissue. Upon further analysis of these gene sets, we find 

that the sharp peak in expression at 6hrs followed by a sudden decrease in expression is due to keratins 

and keratin associated proteins. A majority of these keratins showed no differential expression in 

tongue tissue indicating that the process of keratinization and keratinocyte differentiation could be 

used as key biomarkers in the early inflammatory stages in skin tissue. Similarly, the genes in cluster 3 

in skin tissue showed prolonged expression after up regulation, a dynamic unique to skin tissue. 

Among these genes, Keratin Krt16, Stefin family of genes (Stfa1, Stfa3, Stfa2l1), matrix 

metalloproteinases (Mmp13, Timp1) were most notable. A similar trend was also observed in keratin 

gene dynamics in the first cluster of the early down regulated genes where a sharp decline is observed 

around 6hrs. These keratins again showed no differential down regulation in tongue tissue. In addition, 

among the genes up regulated in the 0-24hr interval, we find numerous cytokines, chemokine, 

interleukins and toll-like receptor signaling pathway genes in skin tissue which presented a higher 

expression level compared to tongue tissues. This observation is in line with the analysis presented by 

Lin Chen et al. [2] and further helps validate the results in the present study. In order to identify further 

differences in responses to injury between the two tissues, genes showing up and down regulation in 

skin tissue which were otherwise inactive in tongue were analyzed. Upon investigating the absolute 
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gene intensity values for these genes, we find that although the genes showed no differential 

expression in tongue, the baseline expression intensity was higher in tongue compared to skin tissues. 

Fig 15 below shows a comparison between the two tissues for the set of 45 genes clustered previously.  

 

  

Fig 15. Absolute gene intensity comparison for the genes active in skin tissue which are inactive in tongue tissue   

 

Among the 45 genes, 33 genes (Krtap3-2, Krtap3-3, Krtap4-1, Krtap4-6, Krtap4-7, Krtap4-13, Krtap4-

16, Krtap12-1, Krtap13-1, Krt16, Krtap26-1, Krt34, Krt86, Serpinb3a, Serpinb12, Sptssb, Padi1, 

Defb4, Chac1, Gjb6,  Wfdc12,  Lce3a,  Lce3f,  Rptn, Fmo2, Mt4, Fxyd4, Mgarp, Dsc2, Spred3, Slpi, 

Rab44, 22310057N15Rik, 2310061N02Rik and 2610528A11Rik) showed a higher baseline expression 

in tongue tissue compared to skin tissue.   

In cluster 4 of the above analysis, we find the expression of two LCE3 genes LCE3a and LCE3f. 

Bergboer JG et al. [22] have found that LCE3 genes, in contrast to other LCE genes, are unregulated in 

skin after injury and also highly expressed in skin during psoriasis. To investigate these genes further, 

the entire set of LCE genes are analyzed in two groups – LCE1 and LCE3 genes and their expression in 

the two tissues is compared. LCE3 genes indeed show the dynamics after injury as predicted in the paper 

[22]. In contrast to keratin 6 and 16 genes, higher LCE3 level of expression in tongue turns out to have 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bergboer%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=21435436
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side-effect in the skin as their expression is related to the development of psoriasis.

 

Fig 16. LCE1 gene family expression level comparison between skin and tongue tissues 

 

 

Fig 17. LCE3 gene family expression level comparison between skin and tongue tissues 
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Although the framework presented in this study improves the ease of clustering large data sets to 

obtain meaningful insights, there are a couple of drawbacks which the authors acknowledge. The 

choice of threshold values (0.3 for up and down regulation) is arbitrary and does influence the number 

of genes filtered for clustering.  If there indeed exist genes which have a non-linear expression to effect 

dynamics, setting a cutoff for the fold intensity expression could potentially eliminate the genes from 

consideration. To obtain a better yield, different threshold values could be tested and a comparison 

could be made for the top GO terms obtained for various thresholds. Secondly, though the use of a 

normalized intensity value does facilitate comparison across different genes, filtering genes based on a 

threshold value for normalized intensity in some cases fails to filter genes which have qualitatively 

similar dynamics below the threshold value. An example of this issue was seen in the analysis of genes 

related to skeletal and cardiac muscles in section 4.3.2. Even though the genes in tongue tissue showed 

similar dynamics to skin tissue, they were not filtered into the final set of tongue genes as the 

normalized gene intensity values failed to meet the threshold of 0.3. It is our hope that these issues will 

be resolved in future iterations.   

7 Conclusions 

This study provides a framework for analyzing large gene datasets obtained for gene microarray analyses 

and derive meaningful observations of gene dynamics at different stage of wound healing. The results 

suggest an important application in identifying the specific time period of the wound healing stage based 

on the genetic profile of the tissue samples. Normalizing gene intensity values for comparison across 

genes and pre-filtering genes based on understanding of the underlying biology, facilitate effective 

clustering to gain detailed insights. The combination of the extracted functional groups and the top 

regulated genes could provide promising modeling approaches to make predictions and control the 

overall wound healing process of a given tissue. Having analyzed the GO sets for all clusters, we observe 

that this type of clustering provides a much detailed breakdown of gene dynamics compared to 

conventional clustering methods. Although a GO analysis of the typical five clusters approach [2] does 

identify similar significant gene groups, the framework presented in this work allows the identification 
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of specific time points where the gene regulation is significant. It is our hope that this study provides the 

ground work for identifying key biomarkers in developing models to predict the status of a given tissue’s 

wound healing stage.  
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Appendix  

Skin Tissue Figures: 

 

Fig A1: Skin tissue : Dynamics of Genes up-regulated in 0-24hrs post wounding 

 

 

Fig A2: Skin tissue : Dynamics of Genes up-regulated in 24-120hrs post wounding 
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Fig A3: Skin tissue : Dynamics of Genes up-regulated in 120-240hrs post wounding 

 

 

Fig A4: Skin tissue : Dynamics of Genes down-regulated in 0-24hrs post wounding 
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Fig A5: Skin tissue : Dynamics of Genes down-regulated in 24-120hrs post wounding 

 

 

 

Fig A6: Skin tissue : Dynamics of Genes down-regulated in 120-240hrs post wounding 
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Skin Tissue Clustering Plots: 

 

Fig A7: Skin tissue : k-means clustering of Genes up regulated in 0-24 hrs. Black lines show the centroids of each cluster.  

Cluster 1 (red) – 219 genes, Cluster 2 (blue) – 107 genes, Cluster 3 (green) – 36 genes and Cluster 4 (magenta) – 89 genes 

 

 

Fig A8: Skin tissue : k-means clustering of Genes up regulated in 24-120 hrs. Black lines show the centroids of each cluster.  

Cluster 1 (red) – 15 genes, Cluster 2 (blue) – 31 genes, Cluster 3 (green) – 28 genes and Cluster 4 (magenta) – 20 genes 
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Fig A9: Skin tissue : k-means clustering of Genes up regulated in 120-240 hrs. Black lines show the centroids of each cluster.  

Cluster 1 (red) – 31 genes, Cluster 2 (blue) – 3 genes, Cluster 3 (green) – 18 genes and Cluster 4 (magenta) – 5 genes 

 

 

Fig A10: Skin tissue : k-means clustering of Genes down regulated in 0-24 hrs. Black lines show the centroids of each cluster. 

Cluster 1 (red) – 50 genes, Cluster 2 (blue) – 91 genes, Cluster 3 (green) – 122 genes and Cluster 4 (magenta) – 163 genes 
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Fig A11: Skin tissue : k-means clustering of Genes down regulated in 24-120 hrs. Black lines show the centroids of each cluster. 

Cluster 1 (red) – 3 genes, Cluster 2 (blue) – 2 genes, Cluster 3 (green) – 10 genes and Cluster 4 (magenta) – 6 genes 

 

 

Fig A12: Skin tissue : k-means clustering of Genes down regulated in 120-240 hrs. Black lines show the centroids of each 

cluster. Cluster 1 (red) – 3 genes, Cluster 2 (blue) – 8 genes, Cluster 3 (green) – 2 genes and Cluster 4 (magenta) – 5 genes 
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Tongue Tissue Figures: 

 

Fig A13: Tongue tissue : Dynamics of Genes up-regulated in 0-24hrs post wounding 

 

 

Fig A14: Tongue tissue : Dynamics of Genes up-regulated in 24-120hrs post wounding 
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Fig A15: Tongue tissue : Dynamics of Genes up-regulated in 120-240hrs post wounding 

 

 

Fig A16: Tongue tissue : Dynamics of Genes down-regulated in 0-24hrs post wounding 

 



40 
 

 

Fig A17: Tongue tissue : Dynamics of Genes down-regulated in 24-120hrs post wounding 

 

 

Fig A18: Tongue tissue : Dynamics of Genes up-regulated in 120-240hrs post wounding 
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Tongue Tissue Clustering Plots: 

 

Fig A19: Tongue tissue : k-means clustering of Genes up regulated in 0-24 hrs. Black lines show the centroids of each cluster. 

Cluster 1 (red) – 53 genes, Cluster 2 (blue) – 67 genes, Cluster 3 (green) – 32 genes and Cluster 4 (magenta) – 30 genes 

 

 

Fig A20: Tongue tissue : k-means clustering of Genes up regulated in 24-120 hrs. Black lines show the centroids of each cluster. 

Cluster 1 (red) – 5 genes, Cluster 2 (blue) – 3 genes, Cluster 3 (green) –6 genes and Cluster 4 (magenta) – 5 genes 
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Fig A21: Tongue tissue : k-means clustering of Genes up regulated in 120-240 hrs. Black lines show the centroids of each 

cluster. Cluster 1 (red) – 2 genes, Cluster 2 (blue) – 6 genes, Cluster 3 (green) – 9 genes and Cluster 4 (magenta) – 2 genes 

 

 

Fig A22: Tongue tissue : k-means clustering of Genes down regulated in 0-24 hrs. Black lines show the centroids of each cluster. 

Cluster 1 (red) – 67 genes, Cluster 2 (blue) – 14 genes, Cluster 3 (green) – 6 genes and Cluster 4 (magenta) – 29 genes 
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Fig A23: Tongue tissue : k-means clustering of Genes down regulated in 24-120 hrs. Black lines show the centroids of each 

cluster. Cluster 1 (red) – 2 genes, Cluster 2 (blue) – 3 genes, Cluster 3 (green) – 1 genes and Cluster 4 (magenta) – 1 genes 

 

 

Fig A24: Tongue tissue : k-means clustering of Genes down regulated in 120-240 hrs. Black lines show the centroids of each 

cluster. Cluster 1 (red) – 27 genes, Cluster 2 (blue) – 13 genes, Cluster 3 (green) – 8 genes and Cluster 4 (magenta) – 37 genes 

 

 




