
UC Irvine
UC Irvine Previously Published Works

Title
Psychosocial stress reactivity is associated with decreased whole-brain network efficiency 
and increased amygdala centrality.

Permalink
https://escholarship.org/uc/item/7gk9000f

Journal
Behavioral neuroscience, 132(6)

ISSN
0735-7044

Authors
Wheelock, Muriah D
Rangaprakash, Deshpande
Harnett, Nathaniel G
et al.

Publication Date
2018-12-01

DOI
10.1037/bne0000276

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gk9000f
https://escholarship.org/uc/item/7gk9000f#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Psychosocial stress reactivity is associated with decreased 
whole brain network efficiency and increased amygdala 
centrality

Muriah D. Wheelock1, Desphande Rangaprakash2,3, Nathaniel G. Harnett1, Kimberly H. 
Wood1, Tyler R. Orem1, Sylvie Mrug1, Douglas A. Granger4,5, Gopikrishna Deshpande2,3,6,7, 
and David C. Knight1,7

1Department of Psychology, University of Alabama at Birmingham, AL, USA

2Auburn University MRI Research Center, Department of Electrical and Computer Engineering, 
Auburn University, AL, USA

3Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Ca, 
USA

4Institute for Interdisciplinary Salivary Bioscience Research & Center for the Neurobiology of 
Learning and Memory University of California, Irvine

5Johns Hopkins University School of Nursing, Johns Hopkins University Bloomberg School of 
Public Health, and Johns Hopkins University School of Medicine, Baltimore, MD, USA

6Department of Psychology, Auburn University, AL, USA

7Alabama Advanced Imaging Consortium, Auburn University and University of Alabama at 
Birmingham, Birmingham, AL, USA

Abstract

Cognitive and emotional functions are supported by the coordinated activity of a distributed 

network of brain regions. This coordinated activity may be disrupted by psychosocial stress, 

resulting in the dysfunction of cognitive and emotional processes. Graph theory is a mathematical 

approach to assess coordinated brain activity that can estimate the efficiency of information flow 

and determine the centrality of brain regions within a larger distributed neural network. However, 

limited research has applied graph theory techniques to the study of stress. Advancing our 

understanding of the impact stress has on global brain networks may provide new insight into 

factors that influence individual differences in stress susceptibility. Therefore, the present study 

examined the brain connectivity of participants that completed the Montreal Imaging Stress Task. 

Salivary cortisol, heart rate, skin conductance response, and self-reported stress served as indices 

of stress, and trait anxiety served as an index of participant’s disposition towards negative 
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affectivity. Psychosocial stress was associated with a decrease in the efficiency of the flow of 

information within the brain. Further, the centrality of brain regions that mediate emotion 

regulation processes (hippocampus, ventral prefrontal cortex, and cingulate cortex) decreased 

during stress exposure. Interestingly, individual differences in cortisol reactivity were negatively 

correlated with the efficiency of information flow within this network, whereas cortisol reactivity 

was positively correlated with the centrality of the amygdala within the network. These findings 

suggest that stress reduces the efficiency of information transfer and leaves the function of brain 

regions that regulate the stress response vulnerable to disruption.
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graph theory; stress; amygdala; cortisol; network efficiency; brain connectivity

1.0 Introduction

Stress is typically considered an adaptive response to adverse life events (Chrousos, 2009). 

However, high levels of prolonged stress can have deleterious effects on mental health. 

Stress also produces a range of psychophysiological responses (e.g., cortisol, cardiac, skin 

conductance, and respiratory responses) that show large inter-individual variability. For 

example, while some individuals show a large emotional response to stress, others are 

relatively nonreactive (Negrao, Deuster, Gold, Singh, & Chrousos, 2000). Differences in the 

brain function that underlies stress reactivity may account for the individual variability 

observed in the emotional response to stress. For example, dysfunction of the network of 

brain regions that regulate hypothalamic-pituitary-adrenal (HPA) axis activity appears to 

predispose certain individuals to immune, cardiovascular, metabolic, and psychiatric 

disorders (Chrousos, 2009; Franklin, Saab, & Mansuy, 2012). Therefore, understanding the 

brain function that underlies individual differences in stress reactivity and susceptibility may 

ultimately have important implications for the social and economic burden of stress-related 

disorders.

Psychosocial stress research has largely focused on understanding hypothalamic-pituitary-

adrenal (HPA) axis activity (Chrousos & Gold, 1992) as this pathway controls the 

production of cortisol (Chrousos, 1998; Nicolaides, Kyratzi, Lamprokostopoulou, Chrousos, 

& Charmandari, 2015). However, contemporary theory suggests that cognitive and 

emotional deficits result from disruptions in brain connectivity across large networks of 

distributed brain regions. Brain regions that include the dorsal prefrontal cortex (PFC), 

ventral PFC, hippocampus, and amygdala contain cortisol receptors and mediate important 

processes that support the perception, interpretation, and emotional response to stress (Oken, 

Chamine, & Wakeland, 2015). Specifically, prior work suggests the PFC and hippocampus 

exert inhibitory control over the HPA axis, while the amygdala exerts an excitatory influence 

over HPA axis function. Thus, a complex brain network appears to influence an individual’s 

biological sensitivity to stress, and may ultimately mediate intra-individual differences in 

susceptibility to stress-related psychiatric disorders (Cisler et al., 2013; Holsen et al., 2013; 

Schatzberg et al., 2014; van der Werff, Pannekoek, Stein, & van der Wee, 2013; Veer et al., 
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2011). However, few studies to date have assessed the relationship between stress and the 

connectivity of large-scale complex brain networks.

While traditional connectivity approaches quantify the relationship between pairs of brain 

regions, they fail to elucidate the organizational structure and degree of communication 

among an ensemble of connections (Rubinov & Sporns, 2010). Graph theoretical methods 

can be used to characterize the flow of information within complex brain networks and 

provide additional unique information not obtainable through traditional connectivity 

analyses. Of the many metrics to quantify network topology (i.e. information flow), global 

efficiency provides compelling information about the functional integration and parallel 

information transfer within the brain during stress (Rubinov & Sporns, 2010). Further, 

measures of regional centrality (e.g. node betweenness) provide insight into which brain 

regions are most integral to information transfer within a network (Rubinov & Sporns, 

2010).

The present study investigated the relationship between stress-related psychobiological 

processes and brain network topology using an adaptation of the Montreal Imaging Stress 

Task (MIST) (Goodman et al., 2016; Wheelock et al., 2016). Functional magnetic resonance 

imaging (fMRI) data were collected during the MIST to examine network connectivity, and 

psychophysiological data (i.e. cortisol, heart rate, and skin conductance response) to 

determine the relationship between network connectivity and the peripheral emotional 

response. We hypothesized that (i) psychosocial stress would decrease whole-brain global 

network efficiency, (ii) psychosocial stress would reduce the centrality of brain regions (e.g. 

PFC and hippocampus) that regulate the emotional response (e.g. cortisol) to stress, (iii) 

stress would increase the centrality of brain regions (e.g. amygdala) that support the 

peripheral expression of the emotional response to stress, and (iv) individual variability in 

the emotional response to stress would vary with brain network efficiency and the centrality 

of the amygdala within the network during psychosocial stress.

2.0 Materials and Methods

2.1 Participants

One hundred and twenty right-handed volunteers participated in this study as part of a larger 

project that involved a community sample. 52 of these participants were included in a 

previously published neuroimaging study of stress (Wheelock et al., 2016). In the present 

analysis, four subjects were excluded due to an affective disorder diagnosis, six subjects 

were excluded due to incomplete imaging data, one subject was excluded for incidental 

findings (i.e. brain abnormality), and one subject was excluded for failure to follow 

instructions. Thus, 108 subjects (57 males: M age=18.88 years, range 17–22 years) were 

included in the present analyses. All subjects provided written informed consent as approved 

by the University of Alabama at Birmingham Institutional Review Board.

2.2 Task design

Participants completed a modified version of the MIST, a challenging mental arithmetic task 

optimized for administration during fMRI (Dedovic et al., 2005). Detailed methods for the 
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MIST are reported elsewhere (Goodman et al., 2016; Wheelock et al., 2016). Briefly, the 

MIST used in the present study was a fast event-related design consisting of two scans (a 

‘Control’ and a ‘Stress’ scan). Each scan was 7 minutes 54 seconds in duration and 

contained 54 trials. Each trial lasted six seconds. At the start of the trial a unique math 

problem was presented along with response options (0–9) that the participant could select. 

After response selection (button press) a fixation cross appeared (0.5–5 seconds duration) 

followed by 0.5 seconds of visual feedback (“Right”, “Wrong”, or “Time out”). Each trial 

was separated by a fixation cross during a variable inter-trial-interval (1–3 seconds). Math in 

the MIST consisted of either easy (two integers) or medium-easy (three integer) addition and 

subtraction problems. Prior to the scanning session, participants completed practice math 

problems and, based on individual performance, the difficulty level (either receiving two or 

three integer math problems) for the MRI task was determined for each subject. For each 

participant, the difficulty level (easy or medium-easy math problems) remained constant 

across Control and Stress scans.

Prior to the Control scan, investigators attempted to lower participant stress levels by telling 

them “It is OK if you do not answer all of the math problems correctly.” During the Control 

scan the participants were given five seconds in which to respond to each math problem. 

Further, during the Control scan, participants were given previously recorded positive 

auditory feedback. In contrast, the investigators attempted to elevate stress levels prior to the 

Stress scan by telling participants they must answer the questions correctly, and warning that 

if they did not perform as well as others in the study their data would not be used. In 

addition, participants were told that prior subjects answered more than 80% of the answers 

correctly, and if he/she did not answer at least 80% correct his/her data would not be used. 

Further, during the Stress scan, the participants were given recorded negative auditory 

feedback. Failure during the Stress scan was ensured by modulating the time in which the 

participant could respond in a stair-step manner such that on average participants answered 

approximately 50% of the problems correctly.

2.3 Task presentation

Presentation software (Neurobehavioral Systems, Inc.; Albany, CA) was used to present the 

visual stimuli through an IFIS-SA LCD (Invivo Corp.; Gainesville, FL) video screen located 

above the participant’s head. The participants were able to view the video screen through a 

mirror attached to the RF coil. Participants used an MRI compatible joystick (Current 

Designs; Philadelphia, PA) to highlight their math answer and a button on the joystick to 

make their selection. Participants’ responses to the math problems were used to provide 

corresponding real time visual feedback on task performance (e.g. ‘Right’, ‘Wrong’, or 

‘Time out’). Prerecorded auditory feedback was presented at four fixed points (i.e. after the 

first 4 sets of 9 trials) during each scan through MR-compatible pneumatic headphones.

2.4 Trait Anxiety

Prior work indicates network connectivity is altered in individuals with high negative affect 

and anxiety (Hermans et al., 2011; McMenamin, Langeslag, Sirbu, Padmala, & Pessoa, 

2014). Therefore, participants completed the State-Trait Anxiety Inventory (STAI form Y, 

Spielberger, 1983) prior to the imaging session. Scores on the trait anxiety scale were 
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assessed as an index of participants’ general tendency to engage in negative affect, and used 

for comparison to the neural response to stress.

2.5 Self-Reported Stress

A measure of self-reported stress level was developed as a manipulation check of 

participant’s emotional response to Control and Stress MIST scans. Following the 

completion of the MIST, participants completed a self-report questionnaire consisting of 

eight statements. Participants rated each statement’s applicability on a five-point scale where 

1 corresponded to “not at all” and 5 corresponded to “Extremely”. Four of the statements 

were worded positively (e.g. I felt calm) and four were worded negatively (e.g. I felt 

stressed) for a total possible self-reported stress score of 40 (Wheelock et al., 2016).

2.6 Math performance

Math task performance was assessed as a manipulation check to confirm that task 

performance varied between Control and Stress MIST scans as designed. While the 

difficulty of math problems remained constant for each participant, the response time 

window was titrated during Stress MIST to obtain an approximately 50% performance level. 

Therefore, math task performance was calculated as the percentage of correct answers 

during Control and Stress MIST.

2.7 Skin Conductance Response

Skin conductance response (SCR) data were collected using an MRI compatible 

physiological monitoring system (Biopac Systems; Goleta, CA) using the basic 

methodology described in prior work (Knight & Wood, 2011). SCR was sampled at 10 kHz 

with a pair of disposable radio-translucent electrodes (1 mm diameter, Biopac Systems; 

Goleta, CA) located on the thenar and hypothenar eminence of the non-dominant hand. SCR 

data were low pass filtered at 1Hz and downsampled to 250 Hz using Acqknowledge 4.1.0 

software. The downsampled SCR were analyzed with SCRalyze toolbox (version b2.1.8) 

(Bach, Flandin, Friston, & Dolan, 2009). The data were then bandpass filtered with a first 

order Butterworth filter (highpass cutoff of 0.0159 Hz, lowpass filter of 1.0 Hz), 

downsampled to a 10 Hz sampling rate, and the time-series was normalized (z-transformed 

and mean centered). SCRs to math events were estimated using the general linear model 

with an assumed SCR function without a time or dispersion derivative.

2.8 Heart Rate

Heart rate (HR) was collected using an MR compatible photoplethysmograph placed on the 

index finger of the non-dominant hand. Heart rate was recorded at 50Hz using a Siemens 

Physiological Monitoring Unit. QRSTool was used to identify peaks in the pulse waveform 

(Allen, Chambers, & Towers, 2007). CMetX was used to calculate the average HR for Stress 

and Control scans (Allen et al., 2007).

2.9 Cortisol Analysis

Two saliva samples were collected to assess the cortisol response to the MIST. Whole saliva 

samples (1.0 ml) were collected using passive drool through a short straw into 2.0 ml 
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cryovials, then stored at −80C until the day of assay. The first sample (Time1) was collected 

prior to the scanning session and the second sample (Time 2) was collected 20 minutes 

following the MIST. Samples were assayed at the Institute for Interdisciplinary Salivary 

Bioscience Research using a commercially available cortisol immunoassay kit without 

modification to the manufacturer’s recommended protocol (Salimetrics, LLC in State 

College, PA). The cortisol assay used 25 ul of saliva for singlet determinations. The assay 

had a lower limit of sensitivity of .007 ug/dL (range to 3.0 ug/dL), and intra- and inter-assay 

coefficients of variation were, on average, less than 5 and 15 % respectively. Samples were 

assayed in duplicate and the average of the duplicate assays was used in the statistical 

analyses. Cortisol data were transformed to nmol/L and cortisol outliers were assessed. 

Subjects with raw cortisol data greater than 3SD from the mean on both pre- and post-MIST 

samples were excluded. Cortisol reactivity was calculated as the difference between post- 

and pre-MIST cortisol. Cortisol reactivity outliers (greater than 3SD from the mean) were 

assessed and winsorized at the 97th percentile prior to further statistical analyses. The effect 

of the MIST on baseline (Time 1) to post-stress (Time 2) cortisol levels was assessed for the 

whole group using a 1-way repeated measures ANCOVA (including time of day as a 

covariate). Furthermore, intersubject variability in cortisol reactivity attributable to 

behavioral measures including trait anxiety, self-reported stress ratings, HR, and SCR was 

assessed using Pearson correlations.

2.10 Functional MRI acquisition

Functional MRI data were acquired on a 3T Siemens Allegra scanner using a gradient 

recalled echo-planar imaging (EPI) sequence (TR = 2000ms, TE = 30ms, flip angle = 70○, 

FOV = 24cm, matrix = 64X64, slice thickness = 4mm). A T1-weighted magnetization 

prepared rapid acquisition gradient-echo sequence (MPRAGE) reference image was 

acquired in the sagittal plane (TR = 2300 ms, TE = 3.9 ms, flip angle = 12°, FOV = 25.6 cm, 

matrix = 256×256, slice thickness = 1 mm, 0.5 mm gap).

2.11 Identification of regions of interest

Regions of interest (ROI) for effective connectivity analyses were selected based on 

previously published neuroimaging findings from our lab using the MIST (Wheelock et al., 

2016). In this prior work, MRI data were preprocessed in AFNI (Cox, 1996). The fMRI data 

were corrected for motion by censoring high motion TRs and including nuisance regressors 

for the six head motion parameters. Functional MRI data were deconvolved with a duration 

modulated (based on response time to math problems) gamma variate hemodynamic 

response function and normalized to MNI space. A multiple linear regression analysis 

(3dttest++) was used to determine the relationship stress (i.e. contrast of fMRI signal elicited 

by Math problems during Stress vs Control conditions) has to trait anxiety, self-reported 

stress, and cortisol reactivity. However, similar analyses were not completed with HR and 
SCR in this prior project. Analyses were restricted to grey matter and were cluster 

corrected using FWE p<0.05. Peak activation coordinates from each atlas region were 

identified using WFU PickAtlas (Maldjian, Laurienti, Burdette, & Kraft, 2003), resulting in 

105 coordinates of interest (Wheelock et al., 2016). 4 mm radius spheres were placed at the 

105 coordinate locations. These 105 ROI were selected based on areas of activation in 
prior published work (Wheelock et al., 2016). Thus, regions of unilateral activation do 

Wheelock et al. Page 6

Behav Neurosci. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not have a corresponding ROI in the contralateral hemisphere. Further, the right 

amygdala coordinate was shifted so that the coordinate center and the extent of the 4mm 

radius sphere fell entirely within the anatomical boundaries of the amygdala. An a priori left 

amygdala coordinate was added at the same location in the left hemisphere. This resulted in 

a final ROI count of 106 coordinates (54 left hemisphere, 52 right hemisphere) 

(Supplemental Table S1, Supplemental Figure S1).

2.12 Effective Connectivity Analysis

The entire, raw mean time series from the 4mm radius spheres centered on the 106 

coordinates were extracted from Stress and Control scans for all participants. Because 

research suggests vascular differences across regions of the brain can spuriously influence 

effective connectivity estimates (Webb, Ferguson, Nielsen, & Anderson, 2013), 

deconvolution was used to remove hemodynamic differences between time series from each 

ROI (David et al., 2008; Deshpande & Hu, 2012; Deshpande, Sathian, & Hu, 2010; Grant et 

al., 2015; Sreenivasan, Havlicek, & Deshpande, 2015). Therefore, the average time series 

from each ROI were temporally normalized and the corresponding latent neuronal signals 

were obtained via blind hemodynamic deconvolution of the fMRI time series using a 

cubature Kalman filter (Havlicek, Friston, Jan, Brazdil, & Calhoun, 2011). Deconvolution 
was performed by modeling each of the task events (i.e. math presentation, visual 
feedback, fixation, and auditory feedback events). Because deconvolution removes the 

hemodynamic response from the time series, no vascular or non-neuronal effects remain in 

the time series. Granger causality (Granger, 1969) was implemented using a dynamic 

multivariate autoregressive model to assess the causal influence of one brain region on 

another. This model dynamically estimates causal relationships between the deconvolved 

time series of pairs of regions across the entire duration of the task (for both Control and 

Stress conditions) (Grant et al., 2015; Havlicek, Jan, Brazdil, & Calhoun, 2010; Wang, 

Katwal, Rogers, Gore, & Deshpande, 2016). All possible pairwise effective connections 

were obtained between all 106 regions during math trials for Control and Stress scans for 

each subject, which produced the weighted directed networks used in further graph theoretic 

analyses. Details of the effective connectivity model and deconvolution have been reported 

previously (Wheelock et al., 2014). The effective connectivity methods in the present paper 

produced weighted directed networks.

2.13 Graph Metrics

Many graph metrics are best estimated when the connections between nodes are sparsely 

connected. Sparse graphs can be generated by thresholding the graph such that only the 

strongest network connections remain. The effective connectivity networks in the present 

analysis were systematically thresholded across a range of network edge densities to 

produce the graph metrics of interest (i.e. global efficiency and nodal betweeness centrality) 

(Hosseini, Hoeft, & Kesler, 2012; Wang et al., 2015; Zhang et al., 2011). For each subject, 

the area under the curve (AUC) from the range of network edge densities was used as a 

single summary graph metric to reduce the number of comparisons assessed. A range of 

network edge densities (1% to 40% in 1% increments) were used to generate these curves. 

Graph Theoretical Network Analysis toolbox (GRETNA version 1.2.1) (Wang et al., 2015) 

was used to analyze the subject matrices and produce the AUC and graph metrics of interest. 
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Outliers in graph metrics were assessed at 3 standard deviations above or below the mean, 

and were winsorized at the 97th percentile prior to further statistical analyses. 

BrainNetViewer (version 1.42) was used to display nodes for illustration purposes (Xia, 

Wang, & He, 2013).

2.13.1 Network Efficiency.—Efficiency is a measure of functional integration and 

parallel information transfer within a network. Functional integration within the brain allows 

rapid communication and transfer of information across distributed brain regions. On a 

global scale, efficiency can be defined mathematically as the average inverse shortest path 

length in the network, where path length is defined as the fewest number of edges between 

nodes. Low global efficiency reflects the use of long indirect neural pathways to transfer 

information across distributed brain regions. In the present study, global efficiency was 

calculated for each subject using the AUC estimate of network efficiency at a range of 

network densities (1%−40%). Paired samples t-tests were used to compare AUC global 

efficiency between Stress and Control conditions. Further, psychobiological measures (i.e. 
trait anxiety, self-reported stress, cortisol reactivity, HR, and SCR) were compared 
(i.e., using Pearson’s correlations) to global efficiency during the Stress as well as the 
contrast between Stress and Control conditions. Graph metrics were assessed during 
Stress as an index of brain communication under stress, as well as during the 
comparison of Stress-Control conditions. The comparison of Stress-Control conditions 
assessed whether graph metrics differed between these conditions, while the analysis of 
the Stress condition alone provides an additional confirmatory analysis that differential 
effects observed in the Stress-Control contrast are truly due to stress-induced, rather 
than control condition effects. Correlations were Bonferroni corrected to control 

familywise error rates.

2.13.2 Node Centrality.—The relative importance of a given node to information 

transfer within the network was assessed using node betweenness centrality. Betweenness 

centrality was calculated as the degree to which a given node mediates the number of 

shortest paths from all other regions. A region with low betweenness centrality contributes 

relatively little to information transfer within the network, while a high betweeness centrality 

score indicates a region is relatively important for information flow. AUC was used to 
assess node betweenness during the Stress condition as well as the contrast between 
Stress and Control conditions. Differences in node betweenness were assessed for a set of 

12 a priori brain regions (a subset of the entire graph) using paired samples t-tests to 

compare Control and Stress conditions. A priori regions of interest were selected from the 
106 regions identified above (Supplemental Table S1, Supplemental Figure S1), and 
restricted to areas identified in prior stress and emotion regulation research (Dedovic, 

Duchesne, Andrews, Engert, & Pruessner, 2009; Hartley & Phelps, 2010). These 12 ROI 
included 2 amygdala, 2 hippocampal, 5 vmPFC, and 3 dmPFC regions. FDR correction was 

used to control familywise error rates in comparisons of these a priori regions of interest 

(Benjamini & Hochberg, 1995). Further, given that node betweenness of the amygdala was 

of particular interest, amygdala node betweenness was correlated with psychobiological data 

(i.e. trait anxiety, self-reported stress, cortisol reactivity, HR, and SCR) to assess the 
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influence of amygdala node centrality on the stress response. Correlations were Bonferroni 

corrected to control familywise error rates.

3.0 Results

3.1 State and Trait Anxiety

The State (Mean=32.10, SEM=0.84, Range=20–56) and Trait (Mean=34.22, SEM=0.83, 

Range=20–57) Anxiety Inventory (Spielberger, 1983) was completed as an index of negative 

affect prior to the scanning session. State and Trait anxiety inventory scores were correlated 

(r=0.488, p<0.001, R2=0.238). Trait anxiety was used as an index of general negative affect 

in comparisons with behavioral and brain network topological data.

3.2 Skin Conductance Response

SCR was monitored during the scanning session as an index of the peripheral emotional 

response to Stress and Control MIST. Nineteen individuals had no measurable SCRs (i.e. 

zero SCRs above 0.05 μSiemens). Thus, data from these participants were excluded from 

SCR analyses. Paired t-test comparisons revealed that SCRs to math events were 

significantly greater during Stress than Control conditions (Table 1). These data demonstrate 

differential SCR to Stress vs. Control scans, and provide behavioral evidence the Stress 

condition was more stressful than the Control condition.

3.3 Heart Rate

HR was also monitored during the scanning session to assess the differential emotional 

response to Stress and Control MIST. HR data were not collected from 13 subjects due to 

equipment malfunction. In addition, HR could not be calculated for 26 participants due to 

excessive noise in the signal. Paired t-test comparisons indicate HR was significantly higher 

during Stress than Control MIST (Table 1). These data demonstrate differential cardiac 

response to Stress vs. Control scans, and provided additional behavioral evidence the Stress 

condition was more stressful than the Control condition.

3.4 Self-Reported Stress

Ratings of self-reported stress were obtained for Control and Stress conditions of the MIST. 

Self-reported stress was not collected for 12 participants. Thus, self-reported stress data for 

these participants were not included in these analyses. Paired t-test comparisons of self-

reported stress indicate that participants found the Stress condition more stressful than the 

Control condition (Table 1). Due to missing data across measures, paired samples t-tests 
were also run excluding cases listwise, which demonstrated the same pattern of results 
(Supplemental Table S2).

3.5 Cortisol

One subject did not have cortisol data (saliva was too viscous for assay), and could not be 

included in analyses. One subject was an extreme outlier on both pre- and post-MIST 

cortisol samples (greater than 3SD) and was excluded from further analyses. Thus cortisol 

data from 106 subjects were analyzed. Repeated measures ANCOVA revealed no-
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significant change in cortisol from baseline to post-MIST when covarying for time of 
day (F(1)=0.350, p>0.05) nor a significant interaction of time of day and cortisol (F(1) 
= 0.0,p>0.05). However, as with prior stress research, considerable heterogeneity was 

observed in inter-individual cortisol levels. Following previously published guidelines we 

defined a difference between pre and post-scan cortisol values greater than 10% and at least 

an absolute difference of 0.55 nmol/L as cortisol reactivity (i.e., a difference this large is 2× 

the average intra-assay coefficient of variation and 2× the lower limit of detection) (Granger 

et al., 2012). Using this criterion, 23 of 106 participants showed increases in cortisol in 

response to the MIST. Within this group the mean increase in cortisol T1 to T2 was 3.27 

(SEM=0.68) nmol/L or 66.73%. Cortisol reactivity, self-reported stress, trait anxiety scale 

scores, HR reactivity, and SCR reactivity were not correlated (p > 0.05), nor were they 
significantly correlated when controlling for time of day of cortisol collection (> 0.05). 
The effect of gender and race on cortisol reactivity, self-reported stress, trait anxiety, HR 

reactivity, and SCR reactivity was assessed and found to be non-significant p>0.05.

3.6 Math Performance

The percentage of correctly answered items during Control and Stress scans was calculated 

as a manipulation check. During the Control scan, participants answered 86% correct (range 

57–100%, SEM=0.01), whereas participants only answered 54% correct (range 44–57%, 

SEM=0.01) on the Stress scan (Table 1). These findings confirm that performance varied 

across scans as designed.

3.7 Network Connectivity

Seventeen subjects were excluded from the network connectivity analyses (two subjects 

were missing data from more than one node and fifteen subjects had poor fitting 

deconvolution models). Thus, 91 subjects were included in network connectivity group level 

analyses.

3.7.1 Efficiency.—Whole brain global efficiency was assessed to examine the impact of 

stress on efficient network processing. Global network efficiency was significantly lower 

during Stress than Control conditions at a range of network densities (3%−31%) (Figure 

1A). Paired samples t-test of the AUC of global efficiency across network densities revealed 

that network efficiency was significantly lower during the Stress than Control condition 

(t(90)=−8.16, p<0.001) (Figure 1B). In addition, a correlation analysis was completed to 

compare network efficiency with individual variability in psychobiological characteristics. 

Network global efficiency during the Stress condition was negatively correlated with 

individual variability in cortisol reactivity (r=−.282, p<0.005) (calculated as the difference 

from pre- to post-MIST cortisol) (Table 2, Figure 1C). Whole brain global efficiency did not 

correlate with any other psychobiological data. Due to the variability in the number of 
subjects with usable data from each psychological and biological measure, the 
association between global efficiency and each psychobiological variable was also 
assessed limiting cases listwise. When limiting cases listwise (n=44), over half the 
sample was excluded, and cortisol reactivity was no longer significantly associated with 
global efficiency (Table S3).
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3.7.2 Node Betweenness Centrality.—Node betweenness centrality was assessed 

using AUC for each individual during Control and Stress conditions. Node betweenness 

centrality was decreased for the left ventromedial prefrontal cortex (vmPFC) and left 

hippocampus in the Stress compared to Control condition (p<0.05 FDR corrected) (Table 3, 

Figure 2). A trend toward a decrease in node betweenness centrality was also observed 

within the right rostral and dorsal anterior cingulate cortex (Table 3). Although amygdala 

betweenness did not differ between the Control and Stress MIST conditions (p>0.05), 

intersubject variability in amygdala betweenness (Stress-Control conditions) was positively 

correlated with cortisol reactivity (Table 4, Figure 3). Amygdala betweeness centrality did 

not correlate with any other psychobiological data. The association between amygdala 
betweenness centrality and each psychobiological variable was also assessed limiting 
cases listwise. Cortisol reactivity remained significantly associated with amygdala 
betweenness after removing cases listwise (n=44; Table S4).

4.0 Discussion

Stress exposure influences the structure and function of brain connectivity (McEwen & 

Gianaros, 2011). However, limited prior research has investigated the impact of acute stress 

on network topology. In this study we investigated the topology of a large network of brain 

regions identified in prior psychosocial stress research (Wheelock et al., 2016). We found 

that global network efficiency decreased during psychosocial stress compared to the control 

condition. Further, global network efficiency during stress varied with cortisol reactivity. 

Specifically, as global network efficiency decreased, stress reactivity (indexed via cortisol) 

increased. We also evaluated an a priori subset of 12 brain regions within the emotion 

regulation network and demonstrated decreased network centrality (measured using 

betweenness) during Stress compared to Control MIST within the hippocampus and vmPFC. 

Finally, amygdala betweenness centrality during Stress compared to Control conditions was 

positively correlated with individual variability in cortisol reactivity.

4.1 Stress reactivity

Stress reactivity was assessed using a variety of psychological and psychophysiological 

measures in the present study. In addition to salivary cortisol, we measured HR, SCR, and 

self-reported stress, as well as trait anxiety as a measure of the general disposition towards 

negative affectivity. These psychobiological measures did not correlate with one another, 

suggesting each of these measures indexes a distinct facet of the stress response. Further, 

while cortisol reactivity explained variance in global network efficiency and amygdala 

betweeness centrality, HR, SCR, and self-reported stress did not explain variance in these 

network connectivity metrics. Taken together, these findings suggest that whole brain global 

efficiency and amygdala betweeness centrality play a distinct psychobiological role in 

mediating individual variability in cortisol reactivity to psychosocial stress.

4.2 Network Efficiency

In the present paper, network efficiency was assessed as a metric of functional integration 

and parallel information transfer within the brain. Functional integration within the brain 

allows rapid communication and information transfer across distributed brain regions. We 
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observed decreased global network efficiency during psychosocial stress as compared to our 

control condition. While math difficulty was the same during both the Stress and 
Control conditions, one might speculate that reducing the time available for 
participants to respond could increase cognitive demands during the Stress condition. 
However, prior research suggests that cognitively demanding tasks (e.g. N-Back task) 
increase global efficiency relative to simpler tasks (e.g. finger tapping) or resting state 
(Cohen & D’Esposito, 2016). Further, prior research suggests that modulating the level 
of cognitive demand during an n-back task does not alter global efficiency (Ginestet & 

Simmons, 2011). Thus, increased cognitive demand during the Stress condition of the 
present study, should either increase or produce no difference in global efficiency. 
These expectations are inconsistent with the global efficiency results obtained in the 
present study. Instead, the current findings demonstrate reduced global efficiency 
during the Stress condition. These findings suggest that stress reduces the efficiency of 
neural communication, as opposed to the view that greater cognitive demand increases 
the efficiency of communication within the brain.

In addition to observing reduced global efficiency during the stress scan, we also 

observed that individual variability in network efficiency during the stress condition was 

negatively correlated with individual variability in stress reactivity. Specifically, individuals 

with the lowest network efficiency during stress were the most stress reactive (as indexed by 

salivary cortisol). Taken together, these findings suggest that psychosocial stress disrupts 

network efficiency, and in turn, disrupted network efficiency leads to increased cortisol 

release. Prior work indicates that acute stress is associated with deficits in concentration, 

problem-solving, decision making, reasoning, maintaining selective and divided attention, 

spatial working memory, and memory recall (Joels, Pu, Wiegert, Oitzl, & Krugers, 2006; 

Kirschbaum, Wolf, May, Wippich, & Hellhammer, 1996; Leach, 2004; Lupien, Maheu, Tu, 

Fiocco, & Schramek, 2007; Schwabe & Wolf, 2010; Vedhara, Hyde, Gilchrist, Tytherleigh, 

& Plummer, 2000). These stress-related cognitive deficits may be linked to decreased 

communication among brain regions (i.e. decreased functional integration) during stress as 

observed in the present study. Furthermore, individuals with the poorest functional 

integration across brain regions have the greatest release of endogenous cortisol. This 

finding suggests that greater endocrine reactivity to stress is a product of the degree to which 

brain communication is efficient (or inefficient) during an acute stressor. Prior research 

suggests that the stress-related neural disconnectivity observed in the present study is 

mediated by altered receptor trafficking and dendritic spine morphology (Sousa & Almeida, 

2012). However, prior neuroimaging research has not previously assessed stress-induced 

neural disconnectivity at the cognitive/systems level using an experimental stress 

manipulation in humans. The present findings support the view that stress disrupts efficient 

functional network connectivity.

4.3 Node Centrality

Node centrality was assessed for a subset of 12 a priori ROI including the dmPFC, vmPFC, 

cingulate, hippocampus, and amygdala using an estimate of node betweenness. The left 

hippocampus and vmPFC demonstrated decreased betweenness centrality during Stress 

compared to Control MIST. This finding is consistent with research suggesting the vmPFC 
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and hippocampus play an important role in the regulation of the emotional response to stress 

(Jankord & Herman, 2008). The decreased betweenness centrality of these nodes during 

stress may reflect the impact of stress on emotion regulation circuitry. Specifically, 

decreased betweenness centrality of the vmPFC and hippocampus during stress suggests 

these brain regions have a decreased role in regulating the function of other brain regions 

during stress, resulting in decreased inhibition of the HPA axis. We did not observe an 

increase in amygdala betweeness centrality during stress as hypothesized. However, 

differential amygdala betweenness (Stress-Control betweenness) was positively correlated 

with individual variability in stress reactivity. Specifically, individuals with greater amygdala 

betweenness centrality during Stress compared to Control conditions demonstrated greater 

stress reactivity. These findings suggest the degree to which the amygdala mediates 

information flow within the brain impacts individual variability of the stress response. Taken 

together, these data are consistent with animal model research that has demonstrated stress 

enhances amygdala function while decreasing PFC function (Arnsten, 2015; Arnsten, 

Raskind, Taylor, & Connor, 2015). While prior research has observed a relationship between 

amygdala centrality and negative affectivity (Zhang, Li, & Pan, 2015), we did not observe 

any association between trait anxiety scores and amygdala centrality in the present study. 

However, this study does suggest the amygdala is a central component of the neural network 

that mediates cortisol reactivity in response to acute stress.

5.0 Limitations

In the present study, we did not observe an increase in cortisol from pre to post-stress. This 

finding is inconsistent with prior stress research, which has typically shown a robust cortisol 

response to psychosocial stress tasks (Kirschbaum, Pirke, & Hellhammer, 1993). However, 

prior neuroimaging research suggests that stress tasks performed in the MRI environment do 

not reliably produce a strong cortisol response (Allendorfer et al., 2014; Dedovic et al., 

2014; Dedovic, Rexroth, et al., 2009; Goodman et al., 2016; van Marle, Hermans, Qin, & 

Fernandez, 2010; Wheelock et al., 2016). Instead, there appears to be increased 

heterogeneity of the cortisol response during fMRI, which may be due to many factors 

including the novel environment, medical procedure, social evaluative threat associated with 

the scan procedure itself, loss of control, loud and startling noises, isolation, and 

confinement (Gossett et al., 2018). Thus, participants may perceive the MRI environment 

and testing procedures in the present study as a threatening experience, which would in turn, 

elevate baseline measurements of cortisol prior to the start of stress task. However, research 

suggests that inter-individual variability in endogenous cortisol levels, whether increasing or 

decreasing over the task, explain meaningful variance in brain connectivity between brain 

regions that regulate the stress response (Veer et al., 2012). Therefore, despite the non-

significant increase in cortisol across participants in the present study, the authors suggest 

that meaningful information about brain communication associated with the stress response 

can still be inferred. In the present study, approximately 22% of participants demonstrated 

elevated cortisol levels post-stress. Ideally, we would have been able to demonstrate 

increases in cortisol in a majority of participants following stress exposure to provide 

psychophysiological evidence that the task was indeed stressful. However, our other self-

report and psychophysiological measures (i.e. stress ratings, HR, SCR) do provide strong 
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evidence that participants found the task stressful (Wheelock et al., 2016). Future research 

should consider study designs that overcome the inherent stress of the scanning environment 

by combining approaches from psychosocial stress paradigms, physical stressors, and 

unpredictable stress (Quaedflieg, Meyer, & Smeets, 2013).

6.0 Conclusions

This study assessed the impact of stress on brain connectivity using graph theory techniques. 

While psychobiological reactivity increased (HR, SCR, and self-reported stress), network 

efficiency decreased during Stress compared to Control conditions of the MIST. These 

findings suggests that stress disrupts efficient information transfer within the brain. In 

addition, acute psychosocial stress decreased the centrality of nodes that regulate the stress 

response (e.g. vmPFC and hippocampus). In contrast, stress increased the centrality of the 

amygdala within the information processing network of high stress individuals. Taken 

together these findings suggest neurobiological mechanisms by which stress alters network 

topology. These stress induced vulnerabilities in network connectivity may precipitate the 

development of psychiatric illness. Future research should consider examining the utility of 

graph theory metrics of brain network topology as biomarkers to predict individual risk for 

the development of stress-related psychiatric illnesses.
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Figure 1. 
Network Efficiency during Control and Stress conditions. Network efficiency (Mean±SEM) 

was significantly lower during the Stress than Control condition at a range of network 

densities (A). The area under the curve (AUC) estimate of network efficiency demonstrated 

lower network efficiency during the Stress than Control condition (t(90)=−8.16, p<0.001) 

(B). Differential network efficiency (Stress-Control) negatively correlated with cortisol 

reactivity (r=−0.282, p=0.004) (C). A greater stress response was observed in participants 

with lower network efficiency during Stress compared to Control conditions.
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Figure 2. 
Betweenness centrality during Control and Stress MIST. Betweenness centrality was 

assessed for an a priori set of 12 regions including ventromedial prefrontal cortex, cingulum, 

amygdala, and hippocampus. Decreased betweenness centrality was observed during Stress 

compared to Control conditions within the hippocampus and ventromedial prefrontal cortex 

(vmPFC) (p<0.05 FDR corrected).
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Figure 3. 
Node centrality and psychobiological data. A positive relationship was observed between 

differential left amygdala node betweenness centrality and cortisol reactivity (r=0.302, 

p=0.002). Individuals in which the amygdala was more central to network information 

transfer had a greater stress response.
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Table 1.

Paired samples t-tests comparing Control to Stress MIST

Measure Control (M±SEM)
Stress

(M±SEM) n t p

Response time 2.87±0.04 2.16±0.04 108 −26.62 0.001

% correct responses 86%±1% 54%±0.1% 108 −36.89 0.001

Stress Rating 13.91±0.54 27.38±0.67 96 16.28 0.001

SCR 0.39±0.04 0.95±0.07 89 8.30 0.001

HR 67.26±1.12 73.94±1.61 69 6.52 0.001

Response time (in seconds) indicates time following math problem presentation to response selection with a button press. HR, Heart Rate; SCR, 
Skin Conductance Response. Stress ratings were not collected on 12 participants. Thirteen participants had errors in HR data acquisition, and 26 
participants had HR with low SNR. Nineteen subjects did not have any SCRs above 0.05 μSiemens. SEM reflects within subject standard error of 
the mean.
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Table 2.

Global network efficiency and psychobiological responses

Efficiencyg
During Stress

Efficiencyg
Stress-Control

n r p r p

Psychological

Self-Reported Stress 80 0.141 0.106 0.140 0.108

Trait Anxiety 91 −0.147 0.082 −0.181 0.043

Biological

Heart Rate Reactivity 58 0.120 0.185 0.147 0.136

SCR Reactivity 77 −0.168 0.072 0.02 0.431

Cortisol Reactivity 89 −0.282 0.004* −0.238 0.012

Efficiencyg, Global Network Efficiency; SCR, skin conductance response.

*
represents significance at FWE p<0.05, one-tailed.
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Table 3.

Betweenness centrality analyses of a priori nodes

Control Stress

Region M±SEM M±SEM t pFDR

Left amygdala 26.11±5.06 28.22±5.81 −0.279 0.781

Right amygdala 41.61±5.94 30.00±5.70 1.298 0.339

Left hippocampus1 27.68±4.61 13.07±2.64 2.906 0.030*

Left hippocampus2 27.15±5.04 25.07±5.08 0.283 0.781

Left rACC 31.98±4.91 17.54±3.29 2.520 0.052

Left vmPFC 33.40±5.88 15.29±2.86 2.887 0.030*

Left medial OFC 36.33±6.42 25.48±5.11 1.312 0.339

Right medial OFC1 25.39±7.30 18.79±5.29 0.720 0.631

Right medial OFC2 20.32±4.18 18.26±3.55 0.476 0.763

Left dACC1 22.74±4.41 16.24±3.58 1.120 0.399

Left dACC2 33.02±5.90 19.55±3.74 1.875 0.154

Right dACC 36.98±5.11 21.63±4.35 2.324 0.066

rACC, rostral anterior cingulate cortex; vmPFC, ventromedial prefrontal cortex; OFC, orbitofrontal cortex; dACC, dorsal anterior cingulate. p-
values are FDR adjusted.

*
indicates significant p-values after FDR (p<0.05) correction.
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Table 4.

Amygdala betweenness centrality correlated with psychobiological responses

Betweenness During Stress
Betweenness

Stress-Control

n r p r p

Psychological

Self-Reported Stress 80 0.131 0.123 −0.083 0.233

Trait Anxiety 91 0.047 0.329 0.070 0.255

Biological

Heart Rate Reactivity 58 −0.298 0.012 −0.186 0.082

SCR Reactivity 77 −0.028 0.404 −0.144 0.106

Cortisol Reactivity 89 0.155 0.074 0.302 0.002*

Self-reported stress represents the differential stress rating (Stress-Control conditions).

*
indicates significance at FWE corrected p<0.05, one-tailed.
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