
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Anomaly Detection for the Science DMZ

Permalink
https://escholarship.org/uc/item/7fn9v0ks

Author
Gegan, Ross Kieran

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7fn9v0ks
https://escholarship.org
http://www.cdlib.org/

Anomaly Detection for the Science DMZ

By

ROSS K. GEGAN
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Dipak Ghosal

Matt Bishop

Karl Levitt

Committee in Charge

2021

-i-

Contents

Abstract v

Acknowledgments vi

Chapter 1. Introduction 1

1.1. Science DMZ 1

1.2. Outline of Contributions 3

Chapter 2. Anomaly Detection Using System Performance Data 8

2.1. Introduction 8

2.2. Science DMZ 10

2.3. System Performance Metrics 10

2.4. Machine Learning for Anomaly detection 11

2.5. DBSCAN 12

2.6. Experimental Setup 12

2.7. Evaluation and Discussion 15

2.8. Conclusions and Future Work 17

Chapter 3. Insider Attack Detection Using System Performance Data 19

3.1. Introduction 19

3.2. Background and Related Work 21

3.3. Data Obfuscation Attack Scenario 23

3.4. Data Sabotage Detection 25

3.5. Experimental Setup 28

3.6. Results and Evaluation 30

3.7. Conclusions and Future Work 33

-ii-

Chapter 4. Covert Timing Channel Detection 36

4.1. Introduction 36

4.2. Timing Channels and Detection 39

4.3. Corrected Conditional Entropy 43

4.4. System Design and Experimental Setup 45

4.5. Results and Discussions 49

4.6. Related Work 53

4.7. Conclusion and Future Work 55

Chapter 5. Denial of Service Detection on High-Throughput Research Networks 57

5.1. Introduction 57

5.2. Characterization of DDoS Attacks 59

5.3. DDoS Detection Algorithms 62

5.4. Performance Evaluation 64

5.5. Related Work 71

5.6. Conclusion and Future Work 72

5.7. Sharing Statement 72

Chapter 6. Unusual Protocol Monitoring with Zeek 74

6.1. Introduction 74

6.2. Background and Related Work 76

6.3. Zeek Plugins and Scripts 78

6.4. Anomaly Detection 80

6.5. Conclusions and Future Work 84

Chapter 7. Conclusion 85

7.1. Anomaly Detection Using System Performance Data 85

7.2. Insider Attack Detection Using System Performance Data 87

7.3. Covert Timing Channel Detection 88

7.4. Unusual Protocol Monitoring with Zeek 88

7.5. Conclusion 89

-iii-

Publications 91

Bibliography 92

-iv-

Ross K. Gegan
Computer Science

Abstract

The primary focus of this dissertation is on evaluating anomaly detection for Science DMZ

networks. Compared to other anomaly detection problems, this introduces some unique challenges.

First, if real-time threat detection and response is desired, there is a smaller time window for reac-

tion in high speed networks such as Science DMZs. Anomaly detection, and real-time detection in

particular, is already a challenging problem, but in the case of high speed networks it becomes even

more difficult. Different approaches are required in order to keep up at high rates, such as either

simplifying the detection methods, or finding creative means of optimizing existing methods, either

through different hardware or modifying the algorithms. In some cases the best option is finding

an entirely new detection technique, utilizing new or previously neglected metrics. Determining

the specific techniques best suited for a given environment is another challenge. The ideal methods

for anomaly detection will vary depending on the particular network and how it is used. Science

Demilitarized Zone (DMZ) networks are generally made to perform a limited range of tasks, pri-

marily facilitating high speed data transfers between research sites. Therefore, the behavior seen

will be more predictable compared to more general purpose networks, which helps allow for more

practical anomaly detection. This work contains research into different methods of anomaly de-

tection on Science DMZs, providing evaluations of new real-time detection methods and tools for

more effective monitoring.

-v-

Acknowledgments

First, I would like to express my extreme gratitude to Dipak Ghosal for guiding and mentoring

me throughout my PhD, as well as to Matt Bishop and Karl Levitt for their guidance and serving

on my dissertation committee. I would also like thank Michael Dopheide and Sean Peisert, along

with all the others I’ve worked together with over the years. Thank you to my family for having

my back through it all, and thank you to everybody else who has helped me along the way.

-vi-

CHAPTER 1

Introduction

1.1. Science DMZ

The Science DMZ is a model designed for scaling scientific research, ensuring reliable perfor-

mance and high rate data transfers [1] between sites. Though the DMZs differ depending on their

purpose, DMZs share certain key features. Figure 6.1 presents a typical science DMZ configuration

and its components. A science DMZ is typically connected with a site at the network perimeter,

through a border router linking the Science DMZ and the site. Assuming their security policies

allow for it, multiple organizations can share access to their Science DMZs [2]. Therefore, the

slower site or campus network gains access to the high performance resources of the Science DMZs,

allowing high performance data transfers over the wide area network. A critical component is the

data transfer node (DTN), which is dedicated to managing the efficient data transfers. For these

transfers, the Science DMZ model prioritizes correctness, consistency, and performance, in that or-

der [1]. Different security measures such as data encryption during transfers, and stateless firewalls

controlling which DTNs are communicating, help to prevent data exfiltration [2]. Protecting the

DTN will be one of the main focuses of this work.

The DTN connects directly to the Science DMZ router, serving as a high-performance server

responsible for managing all of the incoming and outgoing data. As such, it is a critical component,

and the security of the Science DMZ depends on protecting the DTN and its data. The DTNs

do not typically run many applications, they are used almost solely for parallel data transfers

(commonly performed using GridFTP [3]), along with some performance monitoring performed

by tools like perfSONAR [4], and system maintenance [1, 2]. This simplicity not only improves

the efficiency of file transfers, it also improves the security of the DMZ by allowing strict access

control to be implemented, minimizing the attack surface. The Science DMZ model is flexible,

meaning no two DTNs will be identical in terms of hardware and software [5], and more or less

1

user access to the DTNs is possible depending on the security policy. For example, shell access

might be restricted on the DTN in some cases [1]. However, the basic usage can be expected to

remain similar across organizations. This is helpful to keep in mind when considering detection

of attacks, as the range of normal and acceptable behavior is much more limited and predictable

than a general purpose system. This narrower range of normal network and host activity makes

practical anomaly detection based on system performance metrics. Access to the DTN is strictly

controlled, meaning insider attacks from within an organization might be the primary concern.

Detecting these attacks is one area of research we will focus on.

There are many key differences between Science DMZ networks and standard enterprise net-

works that have implications on how anomaly detection is performed [6]. This includes both the

type of traffic seen, and the types of devices within the network. A typical enterprise network con-

tains a wide variety of devices, while the Science DMZ has much fewer devices. While enterprise

traffic tends to consist of many short flows, Science DMZ traffic usually consists of a few large and

long-lasting flows. The types of common applications are also different, with Science DMZs being

limited largely to data transfers and performance monitoring. This narrower scope greatly helps

to simplify anomaly detection and changes which threats we must consider.

Figure 1.1. A typical Science DMZ [7].

2

1.2. Outline of Contributions

In order for anomaly detection to be practical, there are many concerns we must address. Som-

mer and Paxson [8] describe some common concerns across prior machine learning-based anomaly

detection research. They discuss the necessity of avoiding closed world assumptions when applying

anomaly detection based on machine learning. A closed world assumption is defined by Witten et

al. [9] as the idea of specifying only positive examples and adopting a standing assumption that the

rest are negative is called the closed world assumption. Sommer et al. argues that in many cases

where machine learning is used for anomaly detection, there is too broad of a scope and that anom-

alies are inappropriately considered attacks by default (the semantic gap), leading to excessive false

positives. Anomaly detection is better applied towards detecting known attacks versus novel ones.

In our work, an important goal is finding detection methods that are realistic and applicable to

real environments. Therefore, we will attempt to address these concerns in our work. Due to their

narrower use, the Science DMZ and other specialized network models are well-suited for applying

machine learning-based anomaly detection. Throughout our research, we will consider a variety of

different detection methods and evaluate their effectiveness. For our science DMZ work, we focus

on machine learning-based approaches, primarily clustering. We will demonstrate how clustering

algorithms such DBSCAN [10] can be effective, and show how the algorithms might be modified

for real-time detection in the Science DMZ environment. However, we also consider some statistical

threshold-based anomaly detection methods, such as the corrected-conditional entropy test [11].

This test can be effective for anomaly detection, but is difficult to perform in real-time. There-

fore, we utilize different architectures (MPPA, GPUs) and techniques to attempt a more practical

implementation of the algorithm for detection in high speed networks.

1.2.1. External Threats to the Science DMZ. We begin by considering external threats

to the Science DMZ, focusing on monitoring the data transfer nodes, a critical component of the

model. Our interest is in determining whether or not we can use commonly available system and

network metrics together to detect external threats, such as denial of service attacks. Although

denial of service attacks might be unlikely on a DTN, we chose to consider TCP-SYN floods as a

starting point for future research on Science DMZ threats. DTNs are often monitored with network

3

intrusion detection systems (NIDS). However, NIDS do not consider system performance data, such

as network I/O interrupts and context switches, which can also be useful in revealing anomalous

system performance potentially arising due to external network based attacks or insider attacks.

We will demonstrate how system performance metrics can be applied towards securing a DTN in

a Science DMZ network. Specifically, we evaluate the effectiveness of system performance data in

detecting TCP-SYN flood attacks on a DTN using DBSCAN (a density-based clustering algorithm)

for anomaly detection. Our results demonstrate that system interrupts and context switches can

be used to successfully detect TCP-SYN floods, suggesting that system performance data could be

effective in detecting a variety of attacks not easily detected through network monitoring alone.

1.2.2. Insider Threats to the Science DMZ. In the next chapter, we will expand on

this idea, considering insider threats to the Science DMZ. In particular, we choose to consider the

detection of data exfiltration and data sabotage attacks by insiders. Although some limited network

intrusion detection systems (NIDS) are deployed to monitor DTNs, this alone is not sufficient to

detect insider threats. Monitoring for abnormal system behavior, such as unusual sequences of

system calls, is one way to detect insider threats. However, the relatively predictable behavior

of the DTN suggests that we can also detect unusual user activity through monitoring system

performance, such as CPU and disk usage, along with network activity. In this paper, we introduce

a potential insider attack scenario, and show how readily available system performance metrics

can be employed to detect data tampering within DTNs, using DBSCAN clustering to actively

monitor for unexpected behavior. We also consider a potential scenario for exfiltrating data through

obfuscated SSH sessions, and show that this obfuscation can also be detected through system

performance metrics. Some of the key contributions are as follows:

• We consider a new SSH obfuscation system using PDF files, describing how it could be

exploited by insiders as part of the overall attack chain.

• We present a real-time detection method which can quickly identify unexpected file editing

on the DTN using DBSCAN, as well as the obfuscated SSH sessions.

• We demonstrate the value of system performance metrics for anomaly detection on DTNs

for protecting data integrity.

4

1.2.3. Detecting Exfiltration Through Covert Timing Channels. In the following chap-

ter, we consider a different method for potential data exfiltration - covert timing channels. Specif-

ically, covert timing channels which use inter-packet delays in network packets to communicate.

Although DTNs typically transmit large amounts of data, and the bandwidth of these channels is

generally low, it is possible they could be used to extract small amounts of important data, or that

a long-lasting channel could be used to extract larger sets of data. We begin with our research

on the effectiveness of entropy-based detection of various covert timing channels. In particular,

we focus on a more complex entropy calculation known as corrected-conditional entropy (CCE).

The CCE test is useful for anomaly detection, but the complexity makes it difficult to apply in

real-time, particularly for higher traffic rates. We attempt to make the CCE detection more practi-

cal for real-time detection by modifying the algorithm and using different architectures to improve

the effectiveness of the detection. First, we consider an MPPA architecture, the TILEPro64, then

we consider a method using GPUs. The GPU method was considerably more effective, so we put

more emphasis on it in this work. GPU-based packet processing provides one means of scaling the

detection of CTCs and other anomalies in network flows. We implement a GPU-based detection

tool, capable of detecting model-based covert timing channels (MBCTCs). The GPU’s ability to

process a large number of packets in parallel enables more complex detection tests, including the

corrected conditional entropy (CCE) test, which has a variety of applications outside of covert

channel detection. In our experiments, we evaluate the CCE test’s true and false positive detection

rates, as well as the time required to perform the test on the GPU. Our results demonstrate that

GPU packet processing can be applied successfully to perform real-time CTC detection at near

10 Gbps with high accuracy. Some of the important contributions of this covert timing channel

research are as follows:

• Our detection tool marks a significant improvement over previous CTC detection work.

In our experiments, we manage to detect nearly 100% of our sample’s CTCs.

• In addition to confirming the CCE test’s effectiveness, we achieve higher rates compared

to previous real-time detection experiments [12]. We achieve close to 10 Gbps using

medium-sized packets.

5

• By performing our tree transformation and completing the calculation using arrays, we

compute the CCE scores in less than 1 ms per flow, an order of magnitude faster than

previous results [13].

• Our work also demonstrates how GPU packet processing can efficiently calculate complex

individual flow statistics using packet batches.

1.2.4. Creating Modular Detection Tools. In the next chapter, we present new detection

tools we have created to assist in anomaly detection. First, we present a modular tool for detecting

distributed denial of service attacks. Using this tool, we perform experiments evaluating the ef-

fectiveness of various detection techniques in large-scale science networks. The detection methods

tested include common entropy and volume-based techniques. Using our tool, we evaluate the true

and false positive rates of these techniques for detecting known DDoS attack samples. In addition,

we merged these attack samples with large science flow traffic to determine whether the attacks

could still be detected in the presence of legitimate periods of high volume traffic. The tool used is

highly configurable, and could be used to quickly evaluate new detection tests. The second portion

of this chapter presents new plugins and scripts created for the Zeek security monitor [14] to im-

prove the monitoring of protocol usage. By default, Zeek lacks the ability to log much information

about L3 and L4 protocol usage. These new tools help to address this hole in visibility. The scripts

are highly configurable and are capable of logging statistics about protocol distribution and how

it changes over time. To demonstrate the utility, we apply these tools towards detecting DDoS

attacks as well, using real attack data from the recent CIC-DDoS2019 dataset. All of the tools

discussed in the chapter have been made available on public GitHub repositories.

This dissertation consists of our completed work on the topic of anomaly detection for Science

DMZ and other related high speed networks. The dissertations is organized into the following

chapters. In chapter 2, we introduce our research work on Science DMZ threat detection, describing

our work on detecting external threats, using TCP-SYN floods as a starting point. In chapter 3,

we will show more of our work on Science DMZ threat detection, describing how system and

network performance metrics can be applied towards detecting insider threats. Chapter 4 will

discuss methods for detecting covert timing channels, which could be used for data exfiltration in

the context of both Science DMZs as well as other high-speed networks. Chapters 5 will discuss

6

our experiments with DDoS detection in high-throughput networks. In Chapter 6, we will discuss

our work on expanding the Zeek IDS for monitoring for unusual protocol usage. Finally, Chapter

7 will summarize the contributions of these works, along with providing discussion on how they

could be expanded upon by future work.

7

CHAPTER 2

Anomaly Detection Using System Performance Data

2.1. Introduction

Modern research often requires the efficient and reliable movement of vast amounts of data,

with some organizations generating terabytes of data daily [6]. To help facilitate the movement of

petabytes of data, organizations utilize Science Demilitarized Zone (DMZ) networks - a specialized

network model intended to maximize data transfer efficiency. Through a combination of network

organization, performance tuning, and dedicated data transfer nodes (DTNs), the Science DMZ

model helps guarantee reliable and high performance data transfers [6]. This also implies that pro-

tecting the performance of such networks is an important security concern, and security measures

must be considered with this in mind [1]. Therefore, Science DMZs avoid typical firewalls to max-

imize network transfer efficiency, instead relying on various detection systems and Access Control

Lists (ACLs) [1]. Typically, network intrusion detection systems (NIDS), such as Zeek(Bro) [14] or

Snort [15], tend to rely solely on network metrics to identify abnormal traffic or attacks. However,

we believe system performance metrics can also reveal the type of traffic being received, including

malicious traffic [16] [17].

DTNs can become a critical point of failure in a Science DMZ if performance becomes compro-

mised due to a denial-of-service (DoS) attack. Our work evaluates how system performance metrics

might be used to identify a standard DoS attack such as a TCP-SYN flood attack, directed toward

a DTN. In our study, we configured a server with a 10 Gbps backbone link to our campus Science

DMZ as a DTN following the best practices outlined in [18]. Scientific workloads are emulated on

the DTN by transferring files from the Energy Sciences Network’s (ESnet) test DTNs, to generate

real network traffic and system activity, while logging system performance metrics such as inter-

rupts, CPU utilization, memory utilization, context switches as well as packets received/transferred

8

and bytes transferred/received. We used an anomaly detection system based on DBSCAN cluster-

ing [19] to analyze these metrics for anomalies. The results given by the detection system are then

evaluated to gauge the effectiveness of these metrics in detecting TCP-SYN floods as anomalies.

By validating this detection method using a well-known and heavily studied attack, we establish

the effectiveness of this method and that it can be extended upon and generalized to detect other

types of external network-based attacks and insider attacks.

In section 2.2, we provide some additional background on the Science DMZ. Section 2.3 discusses

the system performance metrics we have selected for detection. Section 2.4 discusses machine

learning for anomaly detection. Section 2.5 discusses the DBSCAN clustering algorithm. Sections

2.6 and 2.7 explain our experimental setup and evaluation, respectively. Lastly, section 6.5 provides

a conclusion and possibilities for future work.

 WAN

 Site LAN

Science DMZ
Switch/Router

Border Router

perfSONAR

Enterprise Border
Router/Firewall

perfSONAR

perfSONAR

High Performance
Data Transfer Node,

with high-speed storage

High Latency WAN Path

Low Latency LAN Path

High-Bandwidth WAN Path Site access to DMZ resources

Detection Tool
Monitor system performance

Report potential DDoS attacks

Figure 2.1. The detection tool monitors system performance metrics on a data
transfer node. Using clustering-based anomaly detection, we can monitor for attacks
by checking for abnormal system performance.

9

2.2. Science DMZ

A Science Demilitarized Zone (DMZ) is a network paradigm designed for enabling large-scale sci-

entific research by providing a scalable environment for data transfers and reliable performance [1].

It has been recognized by the National Science Foundation (NSF) as a best practice and adopted

at a number of research institutions in the United States to facilitate data-intensive scientific re-

search [20]. Although Science DMZs vary among organizations depending on their purpose [7],

there are some shared features across all DMZs. The Science DMZ is usually placed at the or-

ganization’s network perimeter, with a border router connecting the site with the Science DMZ

resources and typically has dedicated network components tuned to maximize data transfer perfor-

mance. The most critical component of a Science DMZ is the data transfer node (DTN), servers

provisioned for and dedicated to efficient high-speed data transfers between sites. As dedicated

systems, DTNs do not have general computing applications installed (e.g. email clients, media

players, document editors) [1], and are limited to parallel data transfers tools such as GridFTP,

and performance monitoring tools such as perfSONAR [21] [1] [3].

2.3. System Performance Metrics

Predictions about the network activity can be made by considering the system metrics. For

example, increased network I/O is associated with increased CPU usage [22]. Previous work

has demonstrated that certain features can be used to identify different types of network traffic,

including attacks such as SYN floods or port scanning [16]. In particular, the relationship between

SYN floods and significant increases in interrupts has been demonstrated [17]. Interrupts signal

to the CPU that I/O needs to be performed, and each new SYN request triggers a new interrupt.

A large number of interrupts, coupled with an unexpectedly small increase in other metrics that

indicate meaningful work, such as context switches, can be used to identify flooding attacks [17].

Because DTNs perform a relatively narrow range of network activities, they generate predictable

network and disk I/O activity [1] [7], and make them ideal environments for host-based anomaly

detection. Therefore, we believe that SYN floods and other attacks can be detected through

anomalous patterns of system metrics. The relationship between system metrics such as interrupts

and the network metrics such as packets received can also be combined to enhance detection. For

10

example, abnormal relationships between the interrupts per second and packets or bytes received

per second could potentially identify malicious traffic. We focus primarily on three different per-

second metrics in our experiments - interrupts, packets received, and context switches.

2.4. Machine Learning for Anomaly detection

Machine learning algorithms, including clustering, excel at finding pattern similarities and are

thus classically applied to predictive classification problems [23]. The anomaly detection problem

(also known as the outlier problem) seeks to find new patterns in data that do not conform to

expected behavior [24] [25]. It too can be modeled as a classification problem with “normal” and

“abnormal” as classes. Sommer and Paxson [8] argue that the application of machine learning

for anomaly detection must be used with care when using a “closed world assumption.” Witten

et al. [9] defined a closed world assumption as: The idea of specifying only positive examples and

adopting a standing assumption that the rest are negative is called the closed world assumption. We

address some of those points of concern here:

• Bridging the Semantic gap: Anomalous activity does not necessarily translate to an attack,

and anomaly detection might be better suited for known attacks over novel ones. In our

experiments, we carried out both normal baseline activity and the attacks so that the

ground truth is known.

• Narrow Scope: DTNs have limited system functionality, as discussed in Section ??, result-

ing in predictable network and system activity. This context makes it suitable for anomaly

detection via machine learning.

• Real Data: We generated our own data using a test DTN and emulated scientific workflows

with other test DTNs (as we were unable to obtain campus-level DTN data).

Anomaly detection systems often give critical, actionable information, so a good system should

provide this information as soon as possible with the ability to predict anomalies in real-time with

streaming data. DBSCAN clustering is one such an unsupervised machine learning approach that

exhibits properties ideal for anomaly detection with noisy data streams in real-time [10]. The next

section gives a broad overview of the algorithm and its derivative anomaly detection system.

11

2.5. DBSCAN

DBSCAN, short for density-based spatial clustering of applications with noise, is a well-established

clustering algorithm [19]. Clusters are grouped together based on the density of the points, with

low density points labeled as noise. Unlike k-means clustering, DBSCAN does not require you to

specify the number of clusters beforehand, and the clusters can be any shape. DBSCAN only re-

quires two parameters, ε (the greatest distance allowed between points in each cluster) and MinPts

(the minimum number of points required for a cluster). Clustering algorithms like DBSCAN are

a form of unsupervised learning, meaning learns without the need for training nor labeled data,

both of which are needed with supervised approaches. This makes it a strong choice for monitoring

real-time data, since DBSCAN allows us to differentiate between normal patterns and anomalous

ones despite not knowing the exact thresholds beforehand. In addition, DBSCAN is designed for

clustering noisy data [10], which makes it well-suited for monitoring the sometimes unpredictable

network and system performance metrics. These properties make DBSCAN a good candidate for

our anomaly detection system.

2.6. Experimental Setup

For our experiments, we set-up and monitored a machine, denoted as D, to act as a Science

DMZ DTN, like that shown in Figure 6.1. D is a PowerEdge T630 server with a 10 Gbps NIC,

two Intel Xeon E5-2637 v3 3.5GHz processors, a RAID-10 set of 8 1TB 7.2K RPM SATA 6 Gbps

hard drives, and 32GB 2133MT/s RDIMM memory capacity. D has a 10 Gbps backbone link

to CENIC, a 100 Gbps wide-area network, as is true for our campus DTN. As in a true Science

DMZ [1], this machine requests data from other DTNs and receives files through the 10 Gbps link

using Globus GridFTP [3] transfers. We emulate real scientific workloads by having D receive test

data via GridFTP transfers from three read-only test DTNs provided by ESnet [26]. For each day

of experiments, we continuously receive randomly selected files from one of these three test DTNs at

randomized time intervals. The potential file sizes are shown in table 3.1. The actual workload of a

DTN varies significantly depending on the organization and type of scientific workflow. Therefore

we also consider two additional cases - a large number of small file transfers, and a small number

of large file transfers. This simulates the different distributions that have been observed on a real

12

NERSC DTN [27]. In each case, the time between file transfers has been chosen such that the total

expected data transferred is roughly 750 GB per day.

Table 2.1. GridFTP transfer distributions

Distribution Potential File Sizes Interval
Normal 10M, 50M, 100M, 1G, 10G, 50G 1-30 minutes
Large 10G, 50G 60-75 minutes
Small 10M, 50M, 100M, 1G 5-40 seconds

In addition to D, we have a machine designated as the attacker, denoted as A, with the same

specifications as D. A is connected to D by a 40 Gbps Mellanox ConnectX-3 network adapter.

To generate our TCP SYN flood attacks, we use hping3 [28], a freely available packet generator

used for penetration testing. Using hping3, we have A generate SYN packets and send them to

D over the 40 Gbps link. In order to determine the point at which unusual patterns of SYN

packets becomes detectable, we vary the attack intensity by increasing or decreasing the number

of microseconds between SYN packets sent. Each attack lasts for 15 minutes, with the intensity

gradually increasing by reducing the delay between packets by 5 µs every 90 seconds. At the max

intensity, hping3 just sends a flood of SYN packets with no delays in-between for 15 minutes. Six

different intensities, with varying inter-packet delay ranges, are used in our experiments − lowest

(150-100 µs), low (125-75 µs), medium (100-50 µs), high (75-25 µs), higher (50-0 µs), and max

(0 µs). We performed four experiments using this system configuration and set-up as shown in figure

2.3. Three of the experiments involved periodic SYN floods occurring every two hours starting at

noon, with each intensity level used once. The final experiment sends the medium, higher, and

max intensity floods once, each at random times during the day. While our experiments run, we

log system (interrupts, context switches) and network data (packets received, bytes received) per

second on D using the proc filesystem.

Finally, we use DBSCAN clustering [19] to detect the anomalies in each time-series performance

data set collected. First, we used DBSCAN to cluster the 24 hours worth of logged performance

data gathered for each of the experiments shown in figure 2.3. The standard method of detecting

TCP-SYN floods is to check whether or not the number of SYN packets received per second exceeds

a predetermined threshold [17]. As figure 6.4 shows, looking at the packets received alone is likely

insufficient on the DTN, particularly for low volume attacks, as file transfers can be mistaken for

13

Figure 2.2. DBSCAN clustering using packets received per second on the DTN.
The green dots represent noise, while the orange dots represent the primary cluster.
The other colors are random clusters formed from the noise. The SYN floods here
are generally indistinguishable based on packet volume alone.

TCP-SYN floods. Instead, we consider the results of clustering interrupts over context switches vs.

time for each of the four experiments over the entire day. We set the parameters such that, under

normal conditions, there will only be a single cluster representing the normal range of interrupts

over context switches. Therefore, if another cluster is discovered, it indicates a period of time where

there is a high density of abnormal behavior. Then, we consider the effectiveness of a real-time

detection system using DBSCAN clustering. The real-time streaming DBSCAN detection system

continually adds data from the proc filesystem to a pandas dataframe. Once the dataframe grows

large enough for clustering, we run DBSCAN and count the number of resulting clusters to check

for anomalies. We consider the time required to detect SYN floods of different rates, and trade-offs

associated with the various parameters.

14

(a) Experiment 1 (periodic floods, random file
transfers)

(b) Experiment 2 (periodic floods, large file trans-
fers)

(c) Experiment 3 (periodic floods, small file trans-
fers)

(d) Experiment 4 (random floods, random file trans-
fers)

Figure 2.3. DBSCAN clustering results for the normalized interrupts over context
switches vs. time (in seconds). In each subfigure, the largest cluster represents standard
activity, while the green dots represent un-clustered noise. The other small clusters occur
during SYN floods. In all cases, the SYN floods can be distinguished from ordinary traffic.

2.7. Evaluation and Discussion

In figure 2.3, we show the results of DBSCAN clustering on 24 hour DTN experiments. In these

figures, the interrupts over context switches values have been normalized by multiplying them by

10,000 to improve the readability of the charts and simplify the choice of the DBSCAN distance

parameter ε. To obtain these figures, we set ε to 910, and MinPts to 200. During ordinary

conditions on the DTN (file transfers or inactivity), we found that the interrupts over context

switches remained fairly consistent around 0.5 (5000 in the figure 2.3), with some noise occurring

15

throughout the day. However, ordinary spikes occur infrequently, compared to densely packed

clusters which appear during the attacks. The small clusters shown in figure 2.3 occur only during

the hping3 SYN floods. A large number of interrupts coinciding with a relatively low number of

context switches generally indicates that less meaningful work is being performed [17]. Therefore,

it is sensible that this is a good indicator of SYN floods, where a large amount of ”useless” packets

are handled within a short time frame. As expected, the higher intensity floods showed significantly

higher interrupt over context switch ratios.

2.7.1. Real-time Anomaly Detection. Following the analysis of the full days worth of

traffic, we consider how DBSCAN could be applied to detect attacks in real-time. A streaming

anomaly detection system was created using Python, which gathers performance data and creates

new clusters every 10 seconds. If an unexpected number of clusters is detected during a time

slice, then an anomaly is reported. In our experiments, we found that accurate detection could

be performed even clustering a small number of points. The recommended number for DBSCAN’s

MinPts parameter is one more than the number of dimensions [29]. In our case, the number

of dimensions is two − the interrupts over context switches ratio and the time. Since there are

only two dimensions, we don’t need a large sample to perform reliable clustering. We found that

the minimum recommended value of three points per cluster was sufficient to detect the attacks

without false positives. Random spikes caused by noise never occurred closely enough together

in a short time frame to trigger false alerts. The minimum time for detection is determined by

how many points we choose to gather before re-clustering. Our experiments used 10 data points,

making 10 seconds the minimum detection time. Figure 2.4 shows that most attacks were detected

in 10 seconds using the minimum number of points, even at very low rates. In our experiments,

we managed to detect SYN flooding at as low as 4,800 packets per second. Although we detected

all attacks with no false positives, the bandwidth measuring tool iperf produces a similarly high

interrupts over context switch ratio. As a common application used to test DTN performance [6],

this could result in false positives. However, even if the scheduled iperf tests are not recognized

beforehand, we can eliminate any false positives by also considering the number of bytes received

per second in our analysis. We found that the bytes per second during an iperf test is at least

16

one order of magnitude higher than during the SYN floods we tested. Therefore, we can improve

detection further by combining network and performance metrics.

Figure 2.4. Time spent before detection during low intensity TCP-SYN floods.
Over the course of an attack, the number of interrupts gradually increases, until it
becomes detectable. All but the lowest rate attacks were detected after the minimum
10 seconds required to gather data for clustering.

2.8. Conclusions and Future Work

Our work demonstrates that system performance data can be effective in detecting TCP-SYN

floods, an attack traditionally detected by a network IDS, on a Science DMZ DTN. The limited

variety of tasks typically performed on a DTN helps us use system performance metrics to reliably

detect threats. Interrupts over context switches consistently detected the SYN floods, even at

very low intensities. Combining this with network metrics such as the number of packets or bytes

received per second can improve detection. DBSCAN can applied in a real-time detection system,

clustering performance metrics over time to detect attacks. Successfully detecting SYN floods on

the DTN suggests that this system could be generalized for other threats, such as port scanning or

insider attacks which are unlikely to be detected with network activity alone. With that in mind,

these metrics could be valuable being incorporated into an intrusion detection system such as Zeek

17

(Bro). Future work could also involve using both network and system performance metrics (e.g.

context switches, etc.) to detect insider attack scenarios on a DTN.

18

CHAPTER 3

Insider Attack Detection Using System Performance Data

3.1. Introduction

Scientific research depends on the safe transfer of huge quantities of data, in some cases terabytes

worth [6]. Research organizations use Science Demilitarized Zone (DMZ) networks, a network

model designed to guarantee optimized and reliable transfers through performance tuning and

efficient network organization, as well as custom built data transfer nodes (DTNs). This Science

DMZ model enables higher performance and more reliable data transfers [1], and help connect

research sites to each other as well as cloud computing resources. Science DMZs often avoid

typical defense measures such as firewalls in order to optimize performance, instead using Access

Control Lists (ACLs) and other forms of detection [30]. However, these defenses are insufficient

for handling insider threats. Insider threats are a serious concern, as ensuring data integrity is

critical to scientific research [31]. In particular, protecting data confidentiality and preventing

data exfiltration are important concerns [31]. Therefore, monitoring for insider data tampering is

important to provide the DTNs with extra protection, both to protect their performance and the

integrity of the transferred data. DTNs can also be useful in contexts outside of scientific research,

such as transfers between cloud service providers [32].

This work examines a method of detecting insider attacks targeting the data stored on or

moving through a DTN. Since the insider attack category can be broadly defined, we focus our

efforts primarily on detecting data sabotage, considering a possible attack scenario involving SSH

obfuscation. We consider a novel method of detecting data tampering which monitors the host

performance data to detect file editing events, distinguishing between user file modification and the

modification occurring as a result of the DTN’s file transfers. The limited range of legitimate DTN

operations [2] allows for effective anomaly detection. The anomaly detection method used for this

utilizes DBSCAN clustering [19] of host metrics such as CPU utilization, along with checking disk

19

writes and network activity. To recreate the DTN environment, we set up an experimental DTN

using a server with a 10 Gbps backbone link to the UC Davis Science DMZ. Our experimental DTN

follows the best practices described in ESnet’s DTN tuning guide [18]. To emulate scientific data

being transferred to the DTN, real traffic and DTN activity is generated by files continually trans-

ferred from the Energy Sciences Network (ESnet) test DTNs. As the DTN operates, we continually

log and monitor system performance and network behavior, performing real-time monitoring by

continually re-clustering the CPU activity and checking the disk and network activity.

 WAN

 Site LAN

Science DMZ
Switch/Router

Border Router

perfSONAR

Enterprise Border
Router/Firewall

perfSONAR

perfSONAR

High Performance
Data Transfer Node,

with high-speed storage

High Latency WAN Path

Low Latency LAN Path

High-Bandwidth WAN Path Site access to DMZ resources

Detection Tool
Monitor system performance

Report potential insider attacks

Figure 3.1. The detection tool monitors system performance metrics on a data
transfer node. Using clustering-based anomaly detection, we can monitor for insider
attacks such as data tampering or exfiltration.

The key contributions are as follows:

• We consider a new SSH obfuscation system using PDF files, describing how it could be

exploited by insiders as part of the overall attack chain.

• We present a real-time detection method which can quickly identify unexpected file editing

on the DTN using DBSCAN, as well as the obfuscated SSH sessions.

• We demonstrate the value of system performance metrics for anomaly detection on DTNs

for protecting data integrity.

20

In Section 3.2 we provide background information on the Science DMZ, insider attacks, and

system performance metrics, along with related work. In Section 3.3 we describe a potential attack

scenario we have envisioned where an insider can establish an obfuscated SSH session on the DTN,

giving them the ability to sabotage data. Section 3.4 we provide details on our detection system,

in addition to some background on clustering and anomaly detection. In Section 3.5 we describe

our experimental setup in-depth and in Section 3.6 will discuss and evaluate our results. Finally,

in Section 3.7 we summarize our conclusions and discuss future work.

3.2. Background and Related Work

3.2.1. Insider Attacks. An insider attack can describe any case where the attack is performed

by somebody with legitimate access to a system [33]. Clearly, this encompasses a wide range of

attack types, from data sabotage and leaking to blackmail and fraud. Many different insider attack

taxonomies have been created [34] [35]. Generally speaking, we need to first consider the insider’s

profile, whether they are intentionally malicious or if they are unintentionally causing damage, if

they are masquerading as authorized or legitimately authorized, and what is their intended role

within the system [34]. The attacks also vary in terms of the level of sophistication and the

attacker’s knowledge of the target, their personal motivation and goals. We need to consider the

scope and targets of the attack - are they attacking the network, the operating system, applications,

or stored data? In some cases, the attacks will occur across multiple levels but become more

noticeable on a particular level. For instance, data tampering is noticeable at the application or

data level, while exfiltration can be observed at the network level [34].

Figure 3.2 shows the insider attack chain, and some actions that might be taken during the

different steps of an attack. Attackers can be classified into one of three categories depending on

their actions and role in the chain of an attack [34]. Masqueraders perform reconnaissance and

imitate legitimate users to set up an attack, while traitors and unintentional perpetrators execute

the attack through extracting data, sabotaging data or some other part of the overall system. In

our experiments, we focus primarily on the ”actions on objectives” portion of the attack sequence,

looking at data tampering detection in the DTN environment. However, in Section 3.3, we will

consider an SSH obfuscation method which could be used as part of a full insider attack chain.

21

Figure 3.2. The cyber attack chain [34]. In the first five steps, the insider acts as a
”masquerader” to gain control of the system. The final actions can also be executed
by a traitor or an unintentional perpetrator within the organization, skipping the
initial steps.

This method can be used to conceal the SSH protocol, making the exchange of protocol related

packet data within PDF files. To a network IDS monitoring the DTN, this activity would appear

as normal file transfers. We will explain its functioning at a high level, and consider how we can

detect the obfuscated SSH sessions before any data tampering occurs.

As expected from the wide variety of attacks, there are many categories of insider attack defense.

Our focus is on the ”Detection and Assessment” branch of defense [34], in particular we consider

anomaly-based detection and unsupervised detection of insider attacks. In this paper, one of our

goals will be to try detecting insider threats on the DTN using novel data sources and techniques.

Therefore, we will try to detect insider threats using host performance data such as CPU usage

and disk writes, applying DBSCAN clustering [29] to create a detection scheme well-suited for the

DTN environment.

3.2.2. Related Work. Detecting insider attacks is a very broad research area, considering a

range of topics based on the types of attackers and the form of the attacks. For further reading,

Homoliak, Ivan, et al. [35] provides a survey of the large variety of taxonomies for insider attacks,

covering taxonomies both for attacks and defense techniques. Liu et al. [34] provides another look

at insider attack taxonomies. A CERT guide [33] gives an in-depth description of insider attacks

and best practices for mitigating or eliminating them. In our case, the focus is primarily on data

22

sabotage by an insider who at one point was granted legitimate access to a system, and using

machine learning to detect that anomalous behavior. A number of different data sources have been

used for this form of insider detection [35]. Many other insider threat detection papers have relied

on anomaly detection based on system calls [36] [37]. However, using performance data for insider

threat detection like our method appears less common.

Some recent papers have been written on securing Science DMZs specifically. Nagendra et

al. [30] introduces a tool called SciMon, designed to protect Science DMZ DTNs. Trivedi et al. [38]

describes a high-speed network IDS for Science DMZs which utilizes Zeek (formerly known as

Bro) [14]. Machine learning based anomaly detection appears uncommon, and these papers do

not consider system performance metrics for detection. However, these metrics have been applied

to detecting insider attacks in other contexts. Nikolai et al. [39] describes a method of detecting

insider data theft in IaaS cloud environments using a mixture of system metrics such as CPU

and memory usage and network metrics such as the number of network bytes sent or received.

Oppermann et al. [40] describes how a simulated insider attack in a cloud environment can be

detected by monitoring CPU usage along with network traffic.

3.3. Data Obfuscation Attack Scenario

In order to establish how an insider might gain the ability to tamper with data on the DTN,

we consider one potential attack scenario using data obfuscation. This can be considered as the

”Masquerader” step shown in Figure 3.2. We make the assumption that the attacker is an insider

who at one point had been granted legitimate access to the system, and the privileges necessary

to modify data on the DTN. In this case, it is possible that the insider could setup a backdoor,

allowing them to continue remotely modifying the DTN files after officially losing access. However,

the attacker would like to avoid being caught running an SSH session, which might be blocked by

the DTN [1]. Therefore, we consider a method of SSH obfuscation which could be used to remotely

execute the attack. By hiding the raw SSH data in another file type, we can have a hidden SSH

session. Many types of files could be used, including image files. In our case, the SSH sessions are

obfuscated by hiding SSH data within PDF files.

23

SSH Terminal
Client

Obfuscation
Application

TCP/SSH
data

TCP/SSH
data

Server
Obfuscation
Application

SSH

TCP/SSH
data

TCP/SSH
data

TCP/PDF
data
(SSH)

TCP/PDF
data
(SSH)

Port
2222

Port
12345

Port
22

OS
Chosen
Port

Figure 3.3. PDF obfuscation overview. SSH protocol data is hidden within PDF
data sent over the network. This obfuscation method is one possible method an
insider could use to stealthily establish an SSH session and perform data sabotage
on a DTN. Although we chose to use PDF files, the SSH data could be placed into
other data types as well, such as image files.

This PDF obfuscation method involves creating a stealth SSH connection by concealing the

protocol data within PDF files before transmitting on the network. If both the sender and receiver

are able to decode the obfuscation, a covert connection can be setup. Assuming the network IDS

does not perform deep packet inspection to block packets containing PDF data, the SSH session

with the target will appear as normal file transfers over GridFTP. Since we know DTNs do not

perform this type of check, and GridFTP file transfers are the expected behavior, it is likely this

method would allow the attacker to establish a stealth SSH session, giving them the capability to

execute their attack.

The basic functioning of the PDF obfuscation method is shown in Figure 3.3. The obfuscation

server is setup on the DTN, while the insider is running the client on their own machine. As

the endpoints exchange packets, the obfuscation program checks if the packet contains obfuscated

data. If it does, then it will deobfuscate the data by inserting it into a PDF and reading from

it, sending that raw data to the original application - SSH in this case. If the packet does not

contain obfuscated data, the program inserts the raw SSH protocol data into the PDF to obfuscate

it, before sending it through the tunnel. By masquerading as legitimate traffic, the insider gains

the ability to perform their tampering on the DTN while evading detection by network intrusion

detection systems. Between this and tampering with user logging, the insider could evade detection

through traditional means. Therefore, alternative means of detection such as monitoring system

performance metrics could improve upon traditional insider attack defense.

24

Packet

No

Yes
Tunnel?

Insert data into a PDF at
the destination, and then

read it (deobfuscate)

Send the PDF
through the tunnel

Insert raw SSH data
into a PDF

Send extracted raw data to
the original application

(SSH)

Figure 3.4. PDF obfuscation tunneling method. The PDF obfuscation program
either places the raw SSH protocol data into a PDF before sending it through the
tunnel, or extracts the raw protocol data arriving through the tunnel. The tunneled
data (PDF data containing obfuscated SSH data) is inserted into a PDF at the
destination. The obfuscation application then extracts the raw SSH data and sends
it to SSH.

Regardless of the precise method used to gain or maintain access, the attacker has the ability to

modify data, putting any files stored on the DTN during the transfer process at risk. The following

section describes our method of detecting file editing on the DTN, and how file editing can be

distinguished from the disk writes caused by standard DTN transfers.

3.4. Data Sabotage Detection

Previous work has demonstrated how certain host performance metrics can be linked to network

activity, and can be used to detect some insider attacks [40]. In addition, logs of host activity

(system calls, user command histories) and network data are common data sources used to perform

anomaly detection for different forms of insider attacks [34]. However, detection schemes relying on

forensic logging can be hampered if the attacker is able to modify these logs [41], and interpreting

the log data can be difficult or time-consuming [42]. Therefore, we want to consider additional data

sources. Normally, as a dedicated component of the Science DMZ, a DTN is expected to perform

only a narrow range of tasks, mostly related to moving data and performance monitoring. The

25

performance metrics can be expected to remain within a consistent range, which allows us to more

easily predict typical system performance [1] [7]. Therefore, we take advantage of the difference

in system performance during normal activity and file modification to help detect unexpected file

editing events which might occur during an insider attack, as well as detecting obfuscated SSH

sessions.

3.4.1. Performance Metrics Monitored. In order to achieve this, we monitored host per-

formance metrics stored in procfs [43] - system CPU usage, user CPU usage, disk writes,

interrupts, and context switches. Figure 3.6 shows how the performance metrics change over

the course of a 10GB file transfer to the DTN, and figure 3.8 shows how the CPU changes during

file editing. Standard file editing increases CPU usage noticeably, along with the obvious spike in

the data written to the disk. However, a large file transfer to the DTN causes a similar increase in

total CPU usage and disk writes which can mask the file editing when the two events overlap, and

a clever attacker could arrange for editing to coincide with large transfers. Fortunately, the effects

on CPU usage are distinguishable by looking at the user and system CPU usage. Network file

transfers increased the system CPU (often significantly weighted on one core), while the user CPU

usage remains stable. Meanwhile, if the files are large enough, file editing will noticeably increase

the user CPU usage while the system CPU usage remains stable, as shown in figure 3.9. Based on

this, CPU usage is the primary means used for detecting file editing events.

3.4.2. Clustering Performance Metrics. To actively monitor these performance metrics,

we continually cluster the user CPU usage using DBSCAN (density-based spatial clustering of

applications with noise), a widely used clustering algorithm [10]. Although other clustering meth-

ods could also be applied, this particular clustering algorithm was selected for anomaly detection

because it is specifically designed for clustering noisy data [29]. This is necessary when monitor-

ing network and system performance metrics, which will have noticeable noise even in a relatively

predictable environment. As a form of unsupervised learning, DBSCAN allows us to distinguish

between normal and unusual performance data without performing training or using predefined

threshold values.

26

Although an in-depth comparison of clustering methods is beyond the scope of this paper, it is

worth noting that DBSCAN is simple and flexible compared with other classic clustering methods

such as k-means clustering. Any cluster shape is possible, and there is no need to define the

number of clusters beforehand. The only necessary parameters are the maximum distance between

the points within a cluster, ε, and the minimum points required to form a cluster, MinPts. There

are three types of points - core points, border points, and noise. Core points are within ε distance

of two or more points, while border points are within ε distance of just one other point. Noise

points are not within ε of any other points. If at least MinPts points are connected as core or

border points, then that becomes a cluster.

The relative simplicity and ability to handle noise well also allows us to easily cluster data in

real-time. Using Python, we created two scripts which continually create new small clusters every

10 seconds using the per-second data we gather. The first script clusters user CPU usage to detect

unexpected file modification, while the second script clusters disk writes to detect obfuscated SSH

sessions. With ε=4 and MinPts=4, the baseline user CPU usage values will be placed into the

same cluster. However, during a file editing event, outliers or additional clusters of higher values

will appear. Once this is detected, we check if the disk writes are greater than 1MB. If outliers or

extra clusters appear alongside disk writes, we report an anomaly indicating file editing. Figure

3.5 shows the clustering results when 10MB of file editing coincides with a 10GB file arriving on

the DTN.

3.4.3. Machine Learning for Anomaly Detection. Clustering and other forms of machine

learning-based anomaly detection are effective at detecting new behavior which does not match

the expected data patterns [25]. Therefore, machine learning is often applied towards predictive

classification problems. However, anomaly detection based on machine learning must address a

classification problem, defining properly what is ”normal” and what is ”abnormal”. Sommer et

al. [8] discusses the necessity of avoiding closed world assumptions when applying anomaly detection

based on machine learning. A closed world assumption is defined by Witten et al. [9] as the idea of

specifying only positive examples and adopting a standing assumption that the rest are negative is

called the closed world assumption. Sommer et al. argues that in many cases where machine learning

is used for anomaly detection, there is too broad of a scope and that anomalies are inappropriately

27

considered attacks by default (the semantic gap), leading to excessive false positives. Anomaly

detection is better applied towards detecting known attacks versus novel ones. In our experiments,

we attempt to bridge the semantic gap by carrying out normal baseline activity alongside the

attack in order to establish a ground truth. In addition, we focus on a narrow scope - the limited

functionality of DTNs results in more predicatable activity. Therefore, machine learning is suitable

for anomaly detection in this context. Furthermore, although we did not have access to campus-

level DTN data, we generate real data using a test DTN, emulating scientific workflows by receiving

data from other test DTNs. Our experimental setup is discussed in the following section.

Figure 3.5. DBSCAN clustering of the user CPU usage during a 10MB file editing
event coinciding with a 10GB file transfer. Although the CPU usage fluctuates, it
will not normally increase beyond a certain value during a transfer. If the user CPU
usage spikes without being clustered, this suggests unusual user activity. The red
spike coinciding with disk writes indicates file editing, while the green represents
ordinary CPU usage.

3.5. Experimental Setup

3.5.1. DTN Testbed. To simulate a real Science DMZ data transfer node (DTN), we setup

an experimental system acting as a DTN, a PowerEdge T630 server which we refer to as D. D has

a RAID-10 set of 8 1TB 7.2K RPM SATA 6 Gbps hard drives, 32GB 2133MT/s RDIMM memory

capacity, and contains two Intel Xeon E5-2637 v3 3.5GHz processors. Just like our campus DTN,

D is connected to a 100 Gbps wide-area network, called CENIC, through a 10 Gbps backbone

link. D continually requests and receives data from three different Energy Science Network (ESnet)

test DTNs through Globus GridFTP. To simulate the behavior of an ordinary DMZ, D randomly

28

requests different sizes of files from these test DTNs. These file transfers continue over the course

of the day. Table 3.1 shows the sizes of the files requested from the test DTNs. To simulate the

different distributions seen on a real NERSC DTN [27], we have two potential file size distributions,

with an equal value for the total expected data received (750 GB per day). The first case is a large

number of small files, while the second case is a small number of large files.

Table 3.1. GridFTP transfer distributions

Distribution Potential File Sizes Interval
Normal 10M, 50M, 100M, 1G, 10G, 50G 1-30 minutes
Large 10G, 50G 60-75 minutes
Small 10M, 50M, 100M, 1G 5-40 seconds

3.5.2. Data Sabotage. Through the PDF obfuscation method discussed in Section 3.3, the

attacker can establish an SSH session with the target, while hiding the SSH session to secretly

execute the data tampering script. Once the attacker gains access, either through masquerading

or legitimate access, they gain the ability to modify data. The specific nature of the data is not

significant. We choose to use tstat logs, which are commonly stored during network monitoring

[44]. Using familiar data, we can make assumptions about how an attacker might want to alter the

data set. The attacker might want to completely destroy the stored data, or they might want to

selectively alter the data by changing the entries in one field. Selectively changing the data could

be useful, allowing the attacker to extract the legitimate data sets while sabotaging the data left

on the system. Modifying particular data fields could also be employed to manipulate research

results, in the case of science data. Therefore, we consider different cases of data tampering in

our experiments, by varying the degrees to which the data is altered. A knowledgeable attacker,

familiar with the data, might only need to alter a few lines to get their desired result. Alternatively,

they might alter large portions of the dataset. The difficulty of detecting these changes depends

on the amount of files changed, but also on distinguishing between the attacker’s file modifications

and the changes caused by the file transfers. The nature of the DTN implies that files will not

normally be modified outside of file transfers. However, the attacker could potentially send traffic

while the data sabotage script runs, or, if the attacker is aware of when file transfers are occurring,

29

they might set their script to coincide with transfers. In addition, some log files could be routinely

written on the DTN for monitoring [2].

3.5.3. Detection. We consider different sources of data in our experiments. Host and network

performance data is gathered from procfs, as well commonly available tools such as collectl [45].

In addition to logging these values over a 24 hour period, we created two Python scripts to cluster

the data in real time - one script for detecting file modification, and another script for detecting

obfuscated SSH sessions. Each scripts works by gathering 10 seconds worth of per-second data,

clustering it using DBSCAN clustering [19] to look for anomalies, then repeating. We cluster disk

writes to detect obfuscated SSH sessions, and cluster user CPU usage to detect file modification.

All of the points should cluster under normal conditions, meaning an anomaly is detected when a

second cluster appears. When monitoring for file detection, we also considered noise outside the

baseline cluster as an anomaly, since user CPU usage remains within a small range under normal

conditions.

3.6. Results and Evaluation

We considered two insider attack cases - data sabotage through file editing, and data ex-

filtration through obfuscation. By monitoring the performance metrics and taking into account

network activity, we can detect both of these cases. We will discuss the various performance metrics

we measured, and how they were affected by file transfers, file editing, and PDF obfuscation. In

addition, we will explain our detection results and some limitations of our approach.

3.6.1. Data Sabotage. The most obvious impact on the performance metrics during file

editing will be an increase in disk reads and writes, and increased CPU usage. Figure 3.9a. demon-

strates the effects file editing had CPU had on user and system CPU usage. Other metrics, such as

interrupts and context switches, did not increase significantly while observing file editing. Figure

3.8 shows how the user CPU usage, representing the time spent on user level processes, increases

significantly as the amount of overwritten data increases, though it stabilizes around 30MB. Mean-

while, the system CPU usage (the time spent on kernel tasks) only slightly increases, remaining

relatively stable regardless of increased disk writes. By observing increased disk writes coinciding

with increased user CPU usage, we can easily identify a file editing event.

30

(a) Data written to disk (b) Interrupts and context switches

(c) User and System CPU usage (d) Data received

Figure 3.6. Host and network performance during a 10GB GridFTP transfer. Interrupts
and context switches do not increase significantly. CPU usage, primarily system CPU usage,
increases noticeably.

This is more complicated while file transfers are occurring. Small file transfer events don’t im-

pact the disk writes or CPU usage significantly enough to affect this detection. However, larger file

transfers similarly cause large spikes in both CPU usage and disk activity. Figure 3.6 demonstrates

the effect of a 10GB file transfer to D using GlobusFTP on various performance metrics over the

course of two minutes. Since there are generally few programs running on the DTN, the baseline

CPU and disk activity on the DTN remains low. When the transfer occurs around 20 seconds, we

see a large spike in data being written to the disk and CPU usage, as expected. Other metrics like

interrupts and context switches increase slightly during a large file transfer, and more than dur-

ing file editing, but not significantly enough to be useful for detection. Therefore, these transfers

31

can produce similar activity and it’s conceivable that an attacker might attempt concealing file

tampering by editing files while a large file transfer is ongoing.

In order to detect data tampering while a large file transfer event is occurring, we need to

consider how the host performance differs. The most obvious difference is the insider must edit

the files through user processes, meaning user CPU usage will increase noticeably during these

file editing events. We apply DBSCAN to cluster normal user CPU activity and detect outliers.

Figure 3.5 shows how the clustering appears when the tstat files are edited during a 10GB file

transfer. When a small amount of file data is modified, short spikes in the user CPU usage will

create outliers, while normal variations form the largest, primary cluster. Sustained periods of file

editing will form a smaller clusters above the primary cluster. The appearance of either outliers

or an unexpected cluster, combined with a spike in disk reads and writes, indicates files are being

overwritten. Clustering can reliably identify on-going data modification, even if it coincides with a

large GlobusFTP transfer.

Although the detection is effective, it is unable to detect small file modifications which do not

significantly increase the CPU usage. Looking at figure 3.8, we see that if the total data overwritten

is below 10MB, we cannot reliably detect that event, because it falls within the normal performance

range. Therefore, it is possible an attacker could evade detection by only editing small portions of

data at a time. Future work should consider what additional metrics could be leveraged to detect

this form of data tampering. However, most of the science data arriving on the DTN is likely to be

in the form of large files, and modifying these files will necessitate disk activity above the threshold

for detection.

3.6.2. Data Exfiltration. Data exfiltration can be performed through ordinary GridFTP

transfers, or by sending data through an obfuscated channel. In the first case, it is likely that the

transfer could be detected by ordinary security measures, such as Zeek network intrusion detection.

However, if it is being leaked through obfuscated protocols, an insider could extract the data while

evading detection. Therefore, we must be able to detect the PDF obfuscated SSH sessions.

The PDF obfuscation method has a clear impact on the system, because communication be-

tween the client and server depends on frequent writes to the PDF files. Figure 3.7a shows how

the disk writes increase during the obfuscated SSH session. Figure 3.7b shows how this increase

32

in disk writes appears when clustered. The consistently higher disk writes per second leads to

new clusters being formed in addition to the primary cluster representing the baseline disk writes.

During periods with no file transfers to the DTN, this is simple to detect. However, files transfers

could also cause sustained spikes in disk writing. If an attacker can ensure their activity on the

DTN coincides with these transfers, detection could become more difficult. We can achieve more

reliable detection by considering the ratio of disk writes to the amount of data written per second.

Since the PDF obfuscation program writes only small amounts of data to the disk each time, the

ratio will be much larger than during most file transfers.

3.6.3. Real-Time Detection. Since the user CPU usage and disk writes remain within a

small enough range under normal conditions, we do not need a large sample size to identify file

modification or the obfuscated SSH channel. In our experiments, we found that 10 data points

was sufficient to detect these anomalies through clustering. Therefore, DBSCAN can use a low

MinPts values, and the detection can be performed quickly. After collecting 10 seconds worth of

data, the values are clustered and checked for anomalies. If noise points or more than one cluster

appears, we report an anomaly. This method was able to reliably identify file modification without

false positives past 10MB, where the increase in user CPU usage becomes large enough to form

outliers and new clusters (Figure 3.8). By clustering the ratio of disk writes to data written to disk,

we could also reliably identify an on-going obfuscated SSH session. The obfuscated SSH session

performs more disk writes when characters are being typed, which will lead to a new small cluster

being formed. If two or more total clusters appear, we can identify the anomaly. Sending three

characters at a normal pace in the obfuscated SSH session is sufficient to create a new cluster and

trigger the alert. Therefore, the operations the attacker can perform using the obfuscated SSH

session are severely limited, and exfiltrating large amounts of data through the obfuscated channel

is no longer feasible.

3.7. Conclusions and Future Work

This work suggests that system performance metrics such as CPU usage and disk writes, along

with network performance metrics such as the amount of incoming traffic, can be used together to

help identify unwanted data modification in a DTN environment. The limited range of applications

33

(a) Disk writes over time (b) Disk write clusters

Figure 3.7. Disk write activity can detect an obfuscated SSH session. The obfuscated
SSH session begins at 80 seconds. Although this obfuscation method can evade traditional
detection methods, the frequent writes to PDF files can be used for detection. The three
new small clusters appearing after 80 seconds indicate obfuscated SSH activity.

Figure 3.8. Change in CPU usage during file editing events. We can see that
user CPU usage increases as more file data is overwritten, while system CPU usage
remains relatively stable.

and predictable system performance of the DTN environment allows clustering based anomaly

detection using DBSCAN to function effectively. Using DBSCAN clustering to detect abnormal

CPU activity, along with checking for coinciding disk and network activity, we can predict when

unexpected file editing is occurring and distinguish it from a large file transfer, even if the insider

has taken efforts to conceal it from other means of detection. Furthermore, this detection can be

used in real-time by repeatedly clustering the performance metrics gathered by common tools such

as collectl. In the future, this form of detection could be enhanced by considering additional

34

(a) CPU activity during data editing
(b) CPU activity during data editing alongside file
transfer

Figure 3.9. CPU Usage over the course of editing 50MB worth of files. The user
CPU usage increases significantly more than the system CPU usage. This spike in
user CPU usage is visible even if the editing occurs during a large data transfer.

performance metrics, as well as combining it with other methods of insider attack detection, such

as system call monitoring.

35

CHAPTER 4

Covert Timing Channel Detection

4.1. Introduction

A covert channel allows unauthorized data transfers through authorized channels. This can

allow harmful exploits such as controlling botnets or leaking private data [12]. In this work, we

will focus on detecting network covert timing channels, which function by encoding data inside the

inter-packet delays (IPDs) of a network flow. A very basic channel type would be Cabuk’s IP covert

timing channel (IPCTC) [46], a simple on/off channel, where a packet transmission during a set

time interval will be interpreted by the receiver as a 1, while no transmission during that interval

will be interpreted as a 0 [46]. This encoding scheme, although functional, creates traffic where the

shape and regularity differs greatly from the original, overt traffic, making detection simple [13].

More advanced timing channels attempt to mimic real traffic statistics to bypass detection. For

example, Time-Replay Covert Timing Channels (TRCTC) uses two legitimate IPD sets, producing

a 0-bit or a 1-bit by replaying according to one of the two sets. This encoding scheme makes the new

traffic appear similar to overt traffic, complicating detection [13]. CTCs are one possible means of

exfiltrating Science DMZ data. Although the capacity of these channels is low, a short-lived CTC

could be exploited to extract a small amount of sensitive data passing through the DTN, while a

long-running CTC could be used to slowly leak data over time. Therefore, we want to consider

methods of detecting these channels in high-speed networks.

Network security applications must utilize new techniques in order to process packets at network

line rates of 10 Gbps, and eventually 40 and 100 Gbps. For scaling these tasks, multi-core CPUs and

other parallel systems such as Massively Parallel Processing Array (MPPA) or Field Programmable

Gate Arrays (FPGA) architectures can be applied. However, these approaches each have their

own limitations in terms of programmability, performance, and flexibility. Containing thousands of

cores, Graphics Processing Units (GPUs) possess much greater thread-level parallelism and memory

36

bandwidth compared to CPUs [47]. Therefore, using the GPU presents another possible way to

scale real-time software-based packet processing, and several papers have already demonstrated its

effectiveness for tasks such as software routing [48] and firewall packet classification [49]. Covert

timing channel (CTC) detection is one possible network security application which can benefit from

GPU packet processing. CTCs exploit the timing of the inter-packet delays (IPDs) in authorized

network flows to embed hidden data transfers. Detecting CTCs in real-time requires performing

statistical tests on a large number of incoming flows and comparing the results with those expected

for legitimate traffic. Since the test scores for each flow are independent, a GPU can process

many flows in parallel. Furthermore, the GPU can also perform the tests on individual flows in

parallel, allowing real-time usage of more complex and effective detection tests such as the corrected

conditional entropy of the IPD sequence, which could not be included in our previous CTC detection

experiments [12].

 WAN

 Site LAN

Science DMZ
Switch/Router

Border Router

perfSONAR

Enterprise Border
Router/Firewall

perfSONAR

perfSONAR

High Performance
Data Transfer Node,

with high-speed storage

High Latency WAN Path

Low Latency LAN Path

High-Bandwidth WAN Path Site access to DMZ resources

CTC Detection
Monitor flows for covert channels

Statistical-based detection

Figure 4.1. A covert timing channel detection tool can be placed at the Science
DMZ router. Using statistical-based anomaly detection, we can monitor for flows
containing suspicious inter-packet delays. [7].

37

Although previous work shows that the first-order entropy alone can be somewhat effective for

detection, the false positive rate is still high [12]. A more effective detection method requires calcu-

lating the corrected conditional entropy (CCE), which is the conditional entropy calculation plus a

corrective term accounting for the number of unique subsequences in the sample. The CCE test has

proven effective for detecting a variety of CTCs with minimal false positives [13]. Outside of CTC

detection, the CCE test has a variety of applications, particularly in medical imaging applications,

such as analyzing heart rate variability data and other biological processes [11]. However, calculat-

ing the CCE score for a large sequence is an expensive calculation computationally, requiring the

construction of a tree for each individual flow [13]. For larger traffic rates with a large number of

flows arriving each second, we need to calculate the CCE score for each flow more efficiently. In

order to perform the calculation quickly, we propose that packets be processed on the GPU. The

corrected conditional entropy formula and our GPU algorithm will be explained in detail in section

4.3.

To evaluate the large number of incoming flows without packet loss, we implement a detection

tool that performs the CCE test using a NVIDIA Tesla K20C GPU. Our tool sniffs incoming traffic

and gathers packet data into large batches, which are then tested on the GPU. The GPU will use

the CCE calculation to report which flows are likely to contain covert channels. In our work,

we consider a well-known CTC variety known as model-based covert timing channels (MBCTCs),

which avoid detection by fitting the CTC’s packet timings to a statistical model based on natural

traffic [50]. By testing our tool against a traffic sample injected with MBCTCs, we confirm the

CCE test’s effectiveness as a classifier established in previous results [13]. We also evaluated the

maximum performance of our tool, establishing that it can handle close to a full 10 Gbps line rate

assuming average sized packets.

Implementing real-time CTC detection at high data rates requires capturing and storing large

amounts of packet data by flow, and then performing the detection test in a small amount of time

(less than 67.2 ns per packet for minimum-sized packets) to avoid packet loss. The limited time

available to process each flow makes it especially difficult to perform more complex calculations such

as the CCE test. While GPU packet processing offers good potential performance, mapping the

problem is particularly difficult because the CCE test requires us to construct and process a k-ary

38

tree for every flow, every few seconds. Since tree construction is a difficult task for GPUs [51,52],

we need an alternative method of calculating CCE scores. Since the CCE calculation uses k-ary

trees, each tree can be interpreted as an array. Therefore, our solution involves transforming the

tree structures into arrays, a form well-suited for GPU processing.

This work presents multiple new contributions. The most significant are as follows:

• Our detection tool marks a significant improvement over previous CTC detection work.

In our experiments, we manage to detect nearly 100% of our sample’s CTCs.

• In addition to confirming the CCE test’s effectiveness, we achieve higher rates compared

to previous real-time detection experiments [12]. We achieve close to 10 Gbps using

medium-sized packets.

• By performing our tree transformation and completing the calculation using arrays, we

compute the CCE scores in less than 1 ms per flow, an order of magnitude faster than

previous results [13].

• Our work also demonstrates how GPU packet processing can efficiently calculate complex

individual flow statistics using packet batches.

The rest of the chapter will provide further background on the CCE test and CTC detection,

as well as our experimental results and discussion. In Section 5.1 we discuss our motivations for

this project. In Section 4.4 we discuss our tool design in-depth, the CCE algorithm, and the

experimental setup. In Section 4.5 we discuss the experimental results. Section 5.5 describes some

related work on GPU-based packet processing and CTC detection. Finally, in Section 5.6 we give

the conclusions and describe the potential for future work.

4.2. Timing Channels and Detection

In this work, we focus on Model-Based Covert Timing Channels (MBCTC). MBCTCs evade

detection by mimicking legitimate traffic’s shape and regularity. To achieve this, the channel first

analyzes outgoing flows to determine an appropriate statistical model, then encodes the message

inside the flow’s IPDs using that model’s inverse distribution function. The channel can then be

decoded by the receiver using the cumulative distribution function [13]. Figure 4.2 illustrates the

39

Figure 4.2. Model-based covert timing channel detection model. A warden placed
at a router monitors traffic and reports unusual flows.

process. While this encoding prevents detection by common detection methods such as Kullback-

Liebler Divergence and the Kolmogorov-Smirnov Test, CCE detects MBCTCs with near-perfect

accuracy [13].

4.2.1. Detection Methods. Ideally, we would want to eliminate all possible CTCs. Existing

methods such as the network pump [53] and fuzzy time [54] introduce noise that alters packet

timings, reducing a covert channel’s reliability and capacity. However, applying these techniques

to all incoming flows will harm legitimate traffic performance as well. Therefore, we want to first

detect likely CTC flows, then disrupt them selectively. Basic channels—such as IPCTCs—are

relatively simple to detect, but other channels can closely resemble the unaltered traffic. CTCs

can be detected by measuring the shape and regularity of network traffic and comparing it to the

expected legitimate statistics [46].

CTC detection tests can be grouped into regularity tests and shape tests. Shape tests represent

first-order traffic statistics, including the Shannon entropy or Kolmogorov-Smirnov score, which

measures the greatest difference between two IPD distributions. Regularity tests represent higher

order statistics, such as conditional entropy [13]. Different detection tests will be effective depending

on the channel type [12]. IPCTCs alter both traffic shape and regularity, allowing detection by a

variety of tests. TRCTCs closely resemble the natural traffic’s shape, but since the packet timings

do not correlate naturally, the regularity scores will be significantly different than normal traffic.

MBCTCs closely resemble both the regularity and shape of unaltered traffic, making most detection

tests ineffective [12]. However, the CCE test, which is a modified conditional entropy measurement,

effectively identifies MBCTCs [13]. Our work focuses on efficiently implementing the CCE test for

real-time detection.

4.2.2. Motivation.

40

Improved Real-Time Detection. Although many papers have been written on CTC detection,

few consider real-time detection in streaming data. Our previous real-time CTC detection work

used an MPPA architecture [12] (Tilera TilePro64 NIC). The incoming flows were equally assigned

to the different cores. Each core, acting independently, used sample-and-hold [55] to identify

large flows. After a flow was identified as large, and potentially harboring a CTC, a histogram was

constructed representing that flow’s inter-packet delays (IPDs). Once enough packets were gathered

for a given flow (typically 1,000), a detection test such as the first-order entropy test was performed

using the histogram. If the score exceeded a certain threshold, the flow was reported as a CTC flow.

Our results demonstrated that distributing the network flows evenly to the individual cores of the

Tilera TilePro64 MPPA architecture significantly reduced the number of packet drops at high data

rates and consequently improved the covert timing channel detection rates. With the exception of

the first order entropy test for detecting model-based covert timing channels, the detection tests

included in our initial implementation are mostly poor classifiers. The work provided a relatively

functional and scalable framework for real-time covert timing channel detection at relatively high

data rates. However, the TilePro64 architecture proved to be overly complicated to use, not widely

available, and lacked the flexibility of multicore CPUs and GPUs, making it poorly suited for

widespread detection applications.

Although the MPPA detection tool could detect real-time CTCs with some success at line

rates around 2 Gbps, there were multiple limitations. Since the memory on a core is fairly small,

only a relatively small amount of packet data could be kept on each one. In addition, by having

each core handle different sets of flows, the tests themselves could not be parallelized across cores.

Both of these factors limited the types of possible detection tests to simple ones such as first-order

entropy, Kullback-Liebler divergence, and the Kolmogorov-Smirnov test. While the results show

that the first-order entropy test is a decent classifier for MBCTCs, it is outclassed by the corrected-

conditional entropy (CCE) test, which could not be implemented on the MPPA tool. Previous

results have shown that the CCE test is an excellent CTC classifier, capable of identifying multiple

covert channel types with low false positive rates [13].

Compared with specialized hardware like FPGAs or MPPAs, GPUs are more commonly avail-

able in existing systems. Therefore, GPU-based packet processing would be more valuable for

41

Figure 4.3. CCE k-ary tree [50]. k = 5 bins, window size = 3. The bin sequence
is divided into 5 windows, each representing a path through the tree. Each node
maintains a count of how many windows have passed through it. The counts are
then used to calculate the CCE score. Algorithm 1 describes how this same structure
can be represented using arrays.

implementing real-time CTC detection. Some existing GPU packet processing tasks include pat-

tern matching and packet routing [47]. In addition, GPUs have previously been used to accel-

erate mutual information calculations, a measurement that shares similarities with conditional

entropy [56]. Calculating the CCE scores for a large numbers of incoming flows in real-time should

also demonstrate more complex GPU calculations on streaming packet data are plausible. The pri-

mary motivation behind this project was to determine whether or not CCE-based detection could

be effectively implemented using GPU packet processing.

Efficient Entropy Calculation. In addition to detecting covert channels, entropy measurements

have a variety of applications. Corrected conditional entropy in particular is useful for evaluating

heart rate data and other bioinformatics [11]. Conditional entropy alone is useful for a variety of ap-

plications, including analyzing financial time series data [57]. Transfer entropy has applications in

data mining and neuroscience, among other uses. For example, it can be used to measure a person’s

influence on social media such as Twitter, or to measure the connectivity in brain regions [57]. How-

ever, for a large value series, entropy calculations can become very time-consuming [57]. Therefore,

improving the efficiency of entropy measurements using GPU processing is a worthwhile pursuit

beyond its applications for covert channel detection.

42

4.3. Corrected Conditional Entropy

The corrected conditional entropy (CCE) test is simply the conditional entropy with a corrective

term consisting of the Shannon entropy multiplied by the percentage of unique subsequences added.

The Shannon entropy, or first-order entropy, measures the amount of randomness of a random

variable. The formula is as follows:

(4.1) H = −
n∑

i=1

P (xi) logP (xi)

with P (xi) referring to the probability of selecting the value xi. The conditional entropy (CE) test,

which measures the randomness of a variable given the value of another variable, can be calculated

as follows for a sequence of random values:

(4.2) H(Xi|X1..Xi−1) = H(X1..Xi)−H(X1..Xi−1)

The CCE formula is as follows:

(4.3) CCE(Xm|X1..Xm−1) = H(Xm|X1..Xm−1) + P ×H

with P representing the percentage of uniquely occurring sequences and H being the Shannon

Entropy [13]. This corrective term is necessary, because with finite sequences the conditional

entropy tends towards zero as the sequence grows longer, while the corrective term will increase [13].

The reason for this is that the conditional entropy calculation requires finding the Shannon entropy

values for each subsequence. As the sequence windows get longer, the more likely we will have

no repeating subsequences, giving us a final entropy value of 0. With CCE, the corrective term

ensures that the score will not continue to decrease towards 0. The maximum CCE score possible

is equal to the first-order entropy score [13]. In the context of CTC detection, the sequence we use

to calculate the CCE is the sequence of bin numbers determined by the inter-packet delays (IPDs).

Each IPD is compared to a range of values based on training data and assigned a bin between 0 and

4 inclusive. The minimum CCE scores can be used to reliably detect common varieties of CTCs,

including IPCTC, TRCTC, and MBCTC.

43

To calculate the minimum CE score, we calculate the Shannon Entropy for each subsequence

length from 1 through N, where N is the maximum subsequence length. Then, after calculating all

the entropy values, we find the minimum entropy score. The typical way to calculate the CE score

is to create a perfect k-ary tree, where k is the total number of bins. The IPD bin sequence for

a flow is divided into subsequence windows, which have sizes equal to the tree height. Figure 4.3

demonstrates the tree used to calculate the CE for a small sequence of seven IPD bin values. Each

node of the tree contains a count representing how many times a subsequence has passed through

that node. For example, the leaf nodes represent a full window sequence, while the root’s children

represent the first value in a sequence. These counts are used to calculate the Shannon entropy

for each level of the tree, and the minimum value gives the CE score for that network flow. The

tree-based minimum CCE calculation functions the same way, but the corrective term is added to

the entropy score for each tree level.

Algorithm 1 Steps for calculating the corrected conditional entropy for the tree shown in Figure 4.3
using only arrays. The window size is 3, equal to the height of the tree.

input: IPD sequence array A = [1, 2, 3, 5, 1, 2, 5].
output: IPD sequence’s corrected conditional entropy.
1. Convert the sequence into windows of size 3. [[1, 2, 3], [2, 3, 5], [3, 5, 1], [1, 2, 5]]
2. Convert each sub-sequence to a single base 4 value by combining the value in that sub-
sequence. For example, in the first window, the sub-sequence of length 3, [1, 2, 3] will become
1 + 2 ∗ 4 + 3 ∗ 16 = 57. The windows will now be [[1, 9, 57], [2, 14, 94], [3, 23, 39], [1, 9, 89]]
3. Arrange the values such that tuples of equal length are together. We now have
[[1, 2, 3, 1], [9, 14, 23, 9], [57, 94, 39, 89]]
4. Sort the values. [[1, 1, 2, 3], [9, 9, 14, 23], [39, 57, 89, 94]]
5. Count how many times a number appears in the same group. [[2, 1, 1], [2, 1, 1], [1, 1, 1, 1]]
6. Now, each group corresponds to the counts at a level of the tree. Using these counts, we can
calculate the corrected conditional entropy at each level as we would using the tree.
7. Finally, take the minimum of these values to obtain the final CCE score.

4.3.1. GPU Entropy Calculation. Although using trees to calculate entropy works, it re-

quires too much time to calculate the CCE score for long sequences of packets. After dividing the

sequence of values into windows, the standard k-ary tree-based CCE calculation requires updating

each node’s count as it is visited while moving in a path from the root to the leaf nodes, repeating

for each window in the sequence. Once the counts have been calculated, the CCE score is calculated

for each level of the tree and the minimum value is selected as the final score. A previous paper

44

showed this method requires 16 ms to calculate the CCE score for a single flow using a 3.4 GHz Intel

Pentium D [13]. For high data rates, the need to process a large number of new flows constantly

arriving necessitates a more efficient means of calculating the CCE score for each flow.

For this reason, we chose to perform the CCE calculation using the GPU. However, constructing

thousands of large trees in real time on a GPU is difficult to perform efficiently. Rather than

dynamically constructing a tree for each flow on the GPU, we instead represent each flow’s tree

within a single large array. Since the number of bins and window size for the trees is predetermined,

the CCE calculation can be performed by first dividing each flow’s portion of the array into windows

of size N , then counting the number of matching sub-arrays of different lengths from 1 to N . Each

sub-array represents a partial path through the tree, and is stored as a single base-4 value for

comparison. Although some different sub-arrays will have the same base-4 translation, it is less

likely for longer sub-arrays and simplifies the matching process. The conversion of a CCE tree into

an array representation is further explained in Algorithm 1, which calculates the CCE score using

the same IPD bin sequence used to create the tree shown in Figure 4.3.

This approach simplifies performing the CCE test on the GPU and has multiple advantages.

Since the calculation can be performed entirely using arrays, we could implement the CCE cal-

culation using NVIDIA’s CUDA Thrust template library. Thrust is more manageable than raw

CUDA kernels and easily portable with multicore CPUs using OpenMP or TBB [58]. In its current

state, the algorithm expresses the nodes and counts for a k-ary tree in array form. However, with

modifications, other types of data can be stored at each node. Other calculations that require

binary or k-ary trees could benefit from using similar methods. Assuming we already know each

node’s maximum number of children, a tree could similarly be flattened into an array.

4.4. System Design and Experimental Setup

Our detection tool is a heterogeneous system, using both the CPU and GPU to calculate flow

statistics for an incoming packet stream. Similar to PacketShader and other GPU-based packet

processing systems [48, 59], our detection tool gathers first gathers packets into large batches on

the CPU, then sends those batches to the GPU for processing. The tool uses two threads to allow

an overlap between CPU and GPU operations. One thread receives packets, timestamping them

45

Figure 4.4. Basic GPU-based packet processing model, adapted from Mukerjee
et al. [59]. The GPU receives packet batches from the CPU, processes them and
returns a result.

CPU
CPU+GPU

Th
ro

ug
hp

ut
 (G

bp
s)

0

2

4

6

8

10

Packet Size (Bytes)
64 128 256 512 1024 1514

Figure 4.5. CPU vs. GPU maximum throughput achieved for different packet
sizes. Although the GPU does not make much difference for large packet sizes, it
significantly improves throughput for small and medium packet sizes.

and placing them into a lockfree queue, while the other removes packets from the queue and stores

them into batches. Once enough packets have been obtained to form a complete batch, that batch

is then copied to the GPU for processing. The processing consists of two steps. First, the GPU

gathers converts the batch array into a smaller arrays consisting of only packets belonging to flows

with enough packets to accurately perform the CCE test. Second, the GPU takes this modified

array and calculates the CCE score for each flow it contains. If a flow’s reported CCE score is

under a certain predetermined threshold, then that flow will be reported as containing a model-

based covert timing channel (MBCTC). Figure 4.5 compares the performance with the OpenMP

CPU-only version of the tool. Figure 4.4 gives an overview of how the system processes packet

data.

46

4.4.1. PF RING Packet Capture. Our CTC detection tool prototype uses PF RING ZC

(zero-copy), a NUMA-aware packet processing framework developed by ntop to receive packets at

line rate on a 10 Gbps ethernet link [60]. Similar to Intel’s DPDK [61] or netmap [62], PF RING

ZC bypasses the standard network stack, accelerating packet processing. Using DMA, the NIC

copies packet data directly to memory, rather than copying between the kernel and user space.

When beginning an application, PF RING ZC establishes a packet buffer to avoid any memory

allocation during execution. Rather than receiving packets through interrupts, PF RING ZC polls

for packets [63]. According to ntop [60], PF RING ZC performs better than DPDK for smaller

packets. Our packet sniffing code builds on ntop’s zcount example program, which receives and

counts packets at 10 Gbps line rates regardless of packet size.

4.4.2. Batch Processing. The packet I/O code is based on a modified version of pf ring’s

zcount example. One thread is dedicated to collecting and timestamping incoming packets. The

thread puts the raw packet pointers and timestamps into a lockfree queue. The processing thread

continuously reads packet data from this queue, obtains the four-tuple identifying the flow (source

ip and port, destination ip and port), and stores them in a buffer. Since we assume only large flows

contain CTCs, and 80 percent of flows contain no greater than 20 packets [64], we use ”sample-and-

hold” [55] to reduce the amount of packet data stored. For each incoming packet from a new flow,

there is a small chance (about 0.5% in our case) that it and all further packets in that flow will be

stored. Therefore, only large “Elephant” flows are likely to be stored in the buffer [65], reducing

memory usage and creating a buffer containing mostly flows capable of carrying a high capacity

CTC. Since the CTC flows we can detect will be very large (thousands of packets or more), we can

afford to use a very low sample-and-hold probability. This processes continues until enough packets

are gathered in the buffer to send a large batch to the GPU for testing. By default, the batch size

is set to 12,500,000 packets. Larger batch sizes will increase bandwidth, but also latency.

Once enough new packets are stored, the packet data in the buffer array is prepared for the

CCE calculation. First, the array containing the IPDs is converted into a new array containing only

flows with enough data to obtain an accurate CCE score, typically between 500 and 2,000 packets.

Then, we calculate the adjacent difference for the packet timestamps to obtain the inter-packet

delays (IPDs). Using equiprobable binning, the IPDs are converted to a bin value between 1 and 5,

47

with 5 representing the largest IPDs. If there are enough eligible flows, this modified batch array

is copied to the GPU to perform the CCE calculation using Thrust. Although our approach will

accurately detect CTCs in a batch, one issue is that processing packets in batches will inevitably

capture only a fraction of the large flows. For example, assume we set the CCE test to process

flows with 2000 packets or more, and the batch only contains the first 1000 packets of that flow. If

the flow is only slightly larger than 2000 packets, the flow will not be reported, because not enough

of its packets were present in any given batch. Therefore, our current approach can only sample a

fraction of the overall large flows. Using our trace file with a 500 IPD threshold, we captured around

98.4% of the large flows, and 91% when replaying it together with near 10 Gbps traffic. However,

we assume CTC flows are large and long-lived [12], and therefore a more significant portion of

potential CTC flows are likely to be sampled in their lifetime. CUDA Thrust allows GPU code to

be updated and tested quickly, while also being portable with multi-core CPUs.

4.4.3. Experimental Setup. For our setup, two PowerEdge T630 machines (a sender and a

receiver) were connected by a 10 Gbps Ethernet connection. Both the sender and receiver contained

two Intel Xeon E5-2637 v3 3.5GHz processors. The receiver contains a PowerEdge T630 GPU along

with a NVIDIA Tesla K20C GPU accelerator, which is used for our experiments. Designed for

general purpose computing, the Tesla K20C has 2496 CUDA cores, 208 GB/s memory bandwidth,

and 5 GB GDDR5 memory [66]. The sender will transmit flows to the receiver, which sniffs

incoming traffic and processes the packets in batches using the CCE test. By running our tool in

this way, we performed a variety of tests, evaluating the CCE test’s effectiveness of as a classifier,

measuring the packet processing time, and the various trade-offs in our implementation between

memory usage, latency, and throughput on the GPU. From a CAIDA repository [67], we used

a real traffic trace containing one minute of traffic from a 10 Gbps San Jose OC-192 link. The

trace file has been anonymized, meaning it only contains packet headers and therefore minimum-

sized packets. This same trace was used in our previous real-time detection experiments [12]. We

modify the pcap file by replacing roughly 10% of the flows containing greater than 1000 packets

with MBCTC flows. The threshold choice of 1000 IPDs was chosen based on previous detection

experiments [12,13]. Table 4.1 describes the CTC-containing trace file we used for our experiments.

48

Table 4.1. MBCTC trace file statistics. Large flows contain 1000 packets or more.

Total Packets Total Flows Large Flows Legitimate CTCs
33581932 631089 3377 3056 321

Table 4.2. Experimental Parameters

Parameter Definition
True Positive Rate Percentage of tested CTC flows correctly classified as CTCs.
False Positive Rate Percentage of tested legitimate flows incorrectly classified as CTCs.
Window Size The IPD bin sequence window length (CCE tree height).
IPD Threshold The number of IPD bin values per flow for calculating CCE scores.
Batch Latency The time spent gathering packets before processing a batch.
Maximum Throughput The maximum data rates achievable without dropping packets.
Batch Threshold The number of new packets required before testing a batch.
Batch Setup Time The time spent preparing a packet batch for the CCE test.
CCE Test Time The time required to calculate CCE scores and report flows as CTCs

or not after preparing a batch.

For sending packets, we used two different tools—tcpreplay and zsend. Depending on the

experiment, we send packets using either tcpreplay, zsend, or both. Tcpreplay replays pcap files

while maintaining accurate timing information, meaning we can use it for our detection rate tests.

PF RING ZC’s zsend tool allows us to blast random packets at 10 Gbps line rate for testing the

maximum data rates our system can handle without packet loss. By setting the packet size, zsend

lets us test the maximum data rate at varying packet sizes. The two tools can be combined by

replaying with tcpreplay while running zsend. By combining the two, we embedded our trace file

while sending larger amounts of traffic to test detection at high data rates.

4.5. Results and Discussions

We performed tests on the tool’s ability to identify CTCs using the CCE test, as well as the

performance. Table 4.2 defines the important system and experimental parameters.

4.5.1. Classification Results. To ensure our tool functions properly, we measured the true

and false positive rates for the CTCs reported after receiving all the packets from our trace file.

In this case, a true positive refers to a flow being correctly reported as containing a CTC. As

Figure 4.6 demonstrates, the corrected conditional entropy test score performs well at classifying

MBCTCs. Even while sending our trace file embedded within 10 Gbps traffic, the CCE scores

49

True Positive
False Positive

D
et

ec
tio

n
Ra

te

0

20

40

60

80

100

IPD Threshold
0 500 1000 1500 2000 2500

Figure 4.6. MBCTC true and false positive rates vs. the amount of IPDs tested
per flow. Flows with CCE scores < 0.4 were reported as CTCs. Setting the IPD
threshold to 500 or more is sufficient.

Time
Detection Rate

CCE Test Tim
e (m

s)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
Ra

te

90

92

94

96

98

100

Window Size
4 6 8 10 12 14 16

Figure 4.7. CCE test time per flow and MBCTC true positive rates vs. the window
size used to calculate the CCE score. The false positive rate for these values was
roughly 2.5% and the IPD threshold was set to 2000.

remain accurate. The percentages nearly match previous results [13], which reported a 95% true

positive rate with a 1% false positive rate when testing a sample of 2000 packets. By tweaking

the score threshold for reporting CTCs to reduce the false positive rate to the same value, we also

obtain a true positive rate around 95%. For our results, we report a possible CTC if the CCE

score is less than 0.4, ignoring outliers with CCE scores near zero. However, this threshold can be

altered depending on how many false positives can be accepted. The response to a reported false

positive could be to add noise to that flow through fuzzy time or other techniques [53,54]. Since

that flow’s packets will still arrive, albeit at a reduced rate, some false positive may be allowed

depending on the application. However, a stricter false positive rate could be necessary for some

applications such as VoIP.

50

CC
E

Te
st

Ti
m

e
(m

s)

0

0.2

0.4

0.6

0.8
1

IPD Threshold
0 500 1000 1500 2000 2500 3000

Figure 4.8. CCE test time per flow vs. the IPD threshold used to calculate the
CCE score. Window Size was set to 10. Increasing the number of IPDs used in the
CCE calculation increases the time to complete the test.

M
ax

im
um

 T
hr

ou
gh

pu
t (

G
bp

s)

0

2

4

6

8

10

Batch Threshold (# of packets)
5×106 7.5×106 107 1.25×107 1.5×107

Figure 4.9. Maximum throughput achieved with the GPU using different batch
testing thresholds.

There are trade-offs to consider when selecting the window size and IPD threshold used for

calculating the CCE score. Using a larger window size and testing more IPDs will give more

accurate detection (Figure 4.7). However, that will also increase the time required to process the

flows, and require more memory per flow. Figure 4.7 shows that the time per flow can increase

significantly. Ideally, the smallest possible sample and window size should be used to handle higher

data rates without packet loss. The detection rate for our sample stopped improving significantly

at 2000 IPDs and window size 10. With those parameters, it takes around 0.4 ms per flow to

calculate the CCE score for a batch.

4.5.2. GPU Packet Processing Results. In order to test for CTCs, we gather packets into

large batches. Once enough packets are gathered, the packet batch is copied to GPU memory,

and each flow in the batch is tested for CTCs. Before copying to GPU memory, the batch must

51

be setup for the CCE calculation. This involves culling all flows below the IPD threshold, and

ensuring that all remaining flows have an equal number of IPD bin values. The batch threshold

affects the test result latency and throughput. A larger batch threshold increases the throughput

by processing more flows per batch (Figure 4.9). Larger batch thresholds also increase the latency

between receiving enough packets to perform the CCE test on a flow and reporting whether or

not it contains a CTC (Figure 4.11). Assuming we test 2,500 IPDs per flow, we can test 3,000

large flows per batch without running out of memory during the Thrust CCE calculations. This

translates to a maximum batch size of 7,500,000 packets. However, it is improbable that all the

flows in a batch will each contain exactly 2,500 IPDs. Therefore, batch sizes larger than 7,500,000

are possible if larger throughput is desired, provided the number of flows to be tested is limited to

3,000 or less. We obtained the best results using a threshold of 12,500,000 or more, as shown in

Figure 4.9.

In Figure 4.5, we show the highest possible rates we could achieve with different packet sizes

on a CPU and GPU implementation of our detection tool. To measure this, we have our sender

machine blast packets to the receiver using PF RING’s zsend application for five minutes, then

report whether or not any packets were dropped. Since zsend cannot specify the number of packets

per flow, we assign a random flow id between 0 and 14999 to each incoming packet, ensuring that

flows are large enough to pass the sample-and-hold test and be stored in a batch. In order to

simulate a heavy workload with hundreds of large flows being processed every batch, each batch

is randomly assigned between 0 and 1,500 flows over the IPD threshold per batch for which to

arrange and calculate the CCE score. On average, around 750 flows containing over 2500 IPDs will

be tested per batch using this method. Assuming average 512 byte packets, our tool can handle

10 Gbps traffic at near line rate (about 9.69 Gbps, or 2,200,000 pps). However, higher rates should

be possible when testing with real traffic samples, depending on how many flows pass the sample-

and-hold test. Since code written in Thrust is portable between CUDA and OpenMP, comparing

the performance is simple [58]. Figure 4.5 shows that the GPU version performs significantly better

than the parallel OpenMP CPU version running on eight Intel Xeon E5-2637 cores.

The total time to complete the two batch processing steps depends primarily on a few factors—

the number of eligible flows, the window size, and the IPD threshold value. We obtained our best

52

Batch Setup (OpenMP CPU)
CCE Test (OpenMP CPU)
Batch Setup (CPU)
CCE Test (CPU)
Batch Setup (CPU+GPU)
CCE Test (CPU+GPU)

Pr
oc

es
sin

g
Ti

m
e

(m
s)

0

2000

4000

6000

8000

104

Flows Over IPD Threshold
500 1000 1500 2000 2500 3000

Figure 4.10. CPU Batch processing time vs. the numbers of flows tested.
La

te
nc

y
(m

s)

0

2.5

5

7.5

10

12.5

Number of Packets Per Batch
0 5×106 107 1.5×107 2×107

Figure 4.11. Batch Latency vs. Batch Threshold.

results by having Thrust perform the batch setup on the CPU and the CCE calculation on the GPU.

If the batch contains the maximum number of flows possible (3000), the calculation will require

slightly over 2 seconds to classify the flows (Figure 4.10). However, since a batch will almost never

contain only eligible flows, packet loss is unlikely. The CCE calculation time per flow remains below

0.5 ms regardless of how many flows are being tested. Even including the batch setup time, this is

significantly faster than the 16 ms per flow CCE calculation described in previous results [13].

4.6. Related Work

Covert Timing Channel Detection. Although many papers describe techniques for either lim-

iting channel capacity or eliminating network covert timing channels completely [53, 54], these

techniques usually hurt legitimate traffic performance as well, making covert timing channel de-

tection the more appealing choice [12]. Cabuk et al. [46] introduced two covert timing channel

detection techniques—the regularity test and the ε-similarity test. Gianvecchio and Wang [13]

provide background on a variety of covert timing channel detection techniques, and also introduce

53

entropy-based detection using measurements of first-order entropy and the corrected-conditional

entropy to identify covert traffic. Many other measurements have been used for detection, such as

mean-max ratio [13]. Commonly, detection techniques are created to counter a particular covert

timing channel, but have limited effectiveness in detecting other channel types [13]. Examples

include the ε-similarity test (effective for detecting IPCTC traffic), and measuring the data and

acknowledgement packet timing intervals (effective for detecting the Cloak CTC) [13]. After new

detection techniques are introduced, new covert timing channel types designed to counter those

techniques tend to follow [13,50].

GPU Packet Processing. There have been many papers showing GPU packet processing as an

effective means of scaling network packet processing applications using commodity hardware [47].

Given their higher memory bandwidth, GPUs have been shown to perform high data rate software

packet processing more efficiently than CPUs alone [48]. PacketShader is a GPU-based processing

framework that can perform OpenFlow flow matching and ipv4/ipv6 packet forwarding at multi-

10Gbps rates [59]. Similarly, Snap is a framework built on top of Click, a modular software

router. Snap performs SDN forwarding and other processing tasks at 30 Gbps with minimum-

sized packets, and can reach 40 Gbps with packet sizes starting at 128-bytes [68]. In addition

to packet forwarding, GPU-based processing has been used to quickly perform pattern matching

for intrusion detection systems, such as Kargus and Gnort [69, 70]. GPU-based processing has

also been applied to software-defined networks (SDNs). For example, GSwitch is a recent system

that performs packet classification using the GPU to improve packet searches. Their Bloom search

algorithm outperforms a CPU-based equivalent by a factor of 12, processing 64-byte packets at 10

Gbps [71].

Depending on the application, much of the benefits of GPU processing come from the advantages

of writing algorithms in languages such as OpenCL or CUDA, which has inherent advantages such

as vectorization and hiding memory latency [72]. By optimizing memory latency in CPU software

packet processing applications, the authors significantly closed the gap between CPU and GPU

performance [72]. Therefore, GPU-based packet processing could be more worthwhile for tasks

that benefit more from vectorization than reducing memory latency, since programming for CPU-

based vectorization is difficult [72], although compilers such as Intel’s ispc provide extensions for

54

single-instruction multiple data (SIMD) programming [72]. For this reason, CTC detection could

be expected to benefit significantly from GPU processing, since certain detection tests—including

the CCE entropy test—require processing a large number of flows, each with corresponding vectors

of inter-packet delays (IPDs).

4.7. Conclusion and Future Work

Our results confirm that covert timing channel detection can be performed efficiently in real-

time by calculating the corrected conditional entropy scores for network flows on a GPU. Our tool

manages to detect CTCs more accurately and at higher data rates when compared to previous

results [12], even while running purely on the CPU. As predicted by earlier results [13], the CCE

test is a reliable classifier for model-based covert channels, identifying suspicious flows with a low

false positive rate. By converting the conditional entropy tree structures into arrays, batches of

packet data can be converted into a format that is easily parallelized and translated into GPU code.

This technique could potentially be applied to other entropy measurements, such as those used to

evaluate financial transfers or connectivity in the brain [57]. Our results demonstrate that, in

addition to tasks such as firewall rule lookups and packet forwarding [48], GPU packet processing

can be applied for improving statistical analysis of individual network flows at the packet level.

There are multiple ways in which our tool could be expanded upon and improved. One obvious

way would be to include additional CTC detection tests that can identify channel types that evade

CCE detection, such as including Welch’s t-test for Jitterbug channels [73]. Although our detection

tool could handle traffic at 10 Gbps line rates with average sized packets, 40 Gbps line rates

are becoming more common. Although using raw CUDA kernels might increase the maximum

throughput, using CUDA Thrust provides multiple advantages, notably the ease of coding that

allows new detection tests to be added quickly, as well as portability between CPUs and GPUs.

One potential direction to expand this work would be to integrate it with the Bro intrusion detection

system by writing policy scripts that respond to reported CTCs by disrupting the flow’s packet

timing to reduce or eliminate the channel’s capacity. Finally, although our implementation uses

only a single GPU, the CCE computation should scale well for handling higher data rates. The more

55

memory available, the more batches can be created. On a system with multiple GPUs, multiple

batches can be processed in parallel, allowing our tool to handle much higher rates of traffic.

56

CHAPTER 5

Denial of Service Detection on High-Throughput Research

Networks

A broad range of techniques exists for detecting distributed denial of service (DDoS) attacks

under different circumstances. The type of techniques used will depend on the network traffic

and typically avoiding false positive alerts is a priority. In this paper, we consider the problem

of detecting DDoS attacks in large-scale science networks. Science networks possess certain fea-

tures, such as sudden large volume increases, which can trigger false positive alerts when applying

common anomaly-based detection techniques. Therefore, we evaluate the effectiveness of detec-

tion techniques for detecting attacks within science network traffic, including common entropy and

volume-based techniques. In our experiments, we evaluate the true and false positive rates of these

techniques against known DDoS attack samples. In addition, we combine these attack samples

with science flow traffic to determine whether or not the detection remains effective. By analyzing

known attack samples and DTN traffic, we hope to learn more about the effectiveness of DDoS

detection techniques on high performance science networks, including which techniques might be

effective and potential challenges. In addition, we have created a modular tool for performing our

DDoS detection tests, which we have made available in a public GitHub repository 1.

5.1. Introduction

Distributed denial of service attacks (DDoS) are a common form of attack which make the

target unusable by depleting some resource or reducing availability [74]. The methods used for

DDoS attack detection and mitigation depends heavily on the type of network being protected and

where the detection takes place [74]. Recent work has considered the problem of defending high

performance science networks from attacks [30], and therefore it is natural to consider the problem

of DDoS detection in that environment. Science networks pose a number of issues. For example,

1https://github.com/lbnl-cybersecurity/ddos-detection

57

https://github.com/lbnl-cybersecurity/ddos-detection

 WAN

 Site LAN

Science DMZ
Switch/Router

Border Router

perfSONAR

Enterprise Border
Router/Firewall

perfSONAR

perfSONAR

High Performance
Data Transfer Node,

with high-speed storage

High Latency WAN Path

Low Latency LAN Path

High-Bandwidth WAN Path Site access to DMZ resources

Detection Tool
Report potential DDoS attacks

Statistical-based anomaly detection

Figure 5.1. In this chapter, we examine various methods for detecting DDoS traf-
fic in the Science DMZ environment. A modular tool for testing different DDoS
detection techniques has been created.

the sudden appearance of large data transfers might be mistaken for a DDoS attack. Therefore,

existing statistical anomaly-detection methods such as entropy [75] or wavelet analysis [76] might

be ineffective in this environment. In addition, the high rates found in science networks, such as the

100G NERSC border router [77] presents another challenge for defending against attacks. Our goal

in this project was primarily to lay the groundwork for DDoS detection and prevention in large-scale

science flow environments by learning more about science traffic in general and how well traditional

methods work. To achieve this, we performed DDoS detection tests on both known attack samples

and science flow traffic, and noted other observed characteristics of science flows. The goal was to

help answer which types of detection tests function in these environments without creating false

positives. In our experiments, we consider two sources of science flows - the 10 Gbps ESnet and the

NERSC Data Transfer Nodes (DTN). We developed detection tests which were capable of detecting

attacks observed in real traffic samples obtained from IMPACT Cyber Trust [78]. Following that,

we studied the effectiveness of these methods to determine how to reduce potential false positives.

58

Table 5.1. Summary of the datasets used in this study.

Dataset Collected At Start Date Duration Description

DS-1 2 [79] Merit border router in SFPOP 07/21/2015 24 hours DNS-based reflection and am-
plification DDoS attack.

DS-2 [80] Merit border router in SFPOP 11/24/2016 24 hours CharGen-based reflection and
amplification DDoS attack.

DS-3 [81] Merit border router in Detroit 12/09/2015 2 hours SSDP-based reflection and
amplification DDoS attack.

The rest of the paper is organized as follows. Section 5.2 provides background on the attacks in-

cluded in our experiments. Section 5.3 describe the DDoS detection algorithms we used. Section 5.4

describes our analysis evaluating the performance of these algorithms in the science environments.

Section 5.5 provides a description of related work relevant to DDoS detection and protecting science

flows. Finally, Section 5.6 gives our conclusion and a discussion of future work planned for this

project.

5.2. Characterization of DDoS Attacks

The design of our detection framework is inspired by our analysis of real-world DDoS case

studies. In this section, we analyze a number of real-world DDoS events that are of different attack

types and are collected from different sources. Table 5.1 summarizes various DDoS events we have

analyzed.

5.2.1. Reflection and Amplification DDoS Attack. In a typical reflection and amplifi-

cation DDoS attack, the attacker sends a number of requests to a group of amplifiers that run

services vulnerable to an amplification attack. The attacker intentionally specifies the victim’s IP

address as the source of the requests, causing the amplifiers to send their responses to the victim,

even though the victim never asked for it. Due to the amplification factor, the size of responses

(number of packets and bytes) are significantly larger than the requests, causing a DDoS attack at

the victim side.

DNS, CharGen, SSDP, NTP are the top 4 services that are abused most frequently for reflection

and amplification DDoS attacks [82]. Table 5.2 summarizes the typical UDP listening port for the

top 4 services. This section illustrates how a clear attack pattern is detected by monitoring incoming

59

Table 5.2. Overview of the analyzed protocols.

Protocol Port Description
DNS 53 The Domain Name Service
CharGen 19 The Character Generator

Protocol
SSDP 1900 The Simple Service Discovery

Protocol

traffic from the corresponding source port. In the following we will characterize the attack case

study per protocol from the victim’s perspective:

(a) DNS attack (b) CharGen attack

(c) SSDP attack

Figure 5.2. From left to right are the case studies of DNS/CharGen/SSDP-based
reflection and amplification DDoS attacks. In each figure, we monitor the incoming
DNS/CharGen/SSDP traffic to the victim and plot from top to bottom: the packet/bit
rate, the number of amplifiers sending replies, and the number of destination ports being
accessed over time. The results are calculated per 5-minute time window.

2Dataset 1-3 are collected by Merit Network, Inc., who operates Michigan’s research and education network. In
dataset 1-3, all IPs are anonymized by zeroing the last 11 bits.

60

5.2.1.1. DNS. The dataset DS-1 contains a DNS-based reflection and amplification DDoS at-

tack. In figure 5.2, we monitor the following metrics over time: a) the DNS traffic volume towards

the victim, b) the number of unique source addresses (amplifiers) found in the DNS traffic, and c)

the number of the destination ports being accessed by the DNS traffic. For part a), we consider all

packets that are sent to the victim, over UDP protocol using source port 53. We can clearly detect

the attack from Figure 5.2a based on: a) dramatic increase in the DNS traffic volume received by

the victim during the attack, b) dramatic increase in the number of source addresses that send DNS

replies to the victim, and c) the fact that almost all 65535 ports at the victim side are accessed by

the DNS traffic.

5.2.1.2. CharGen. The DS-2 dataset contains a CharGen-based reflection and amplification

DDoS attack. From the victim’s perspective, we monitor the following metrics over time a) the

CharGen traffic volume, b) the number of source addresses (amplifiers) found in the CharGen

traffic, and c) the number of destination ports being accessed in the CharGen traffic. To estimate

CharGen traffic volume, we consider all packets sent to the victim over UDP protocol using source

port 19. As shown in Figure 5.2b, the DDoS attack can be easily detected based on: a) dramatic

increase in the CharGen traffic received by the victim, and b) dramatic increase in the number

of source addresses (amplifiers) sending replies to the victim. However, the number of destination

ports DDoSed is only 6, opposed to the 65535 ports exploited in the DNS DDoS attack.

5.2.1.3. SSDP. The dataset DS-3 contains a SSDP-based reflection and amplification DDoS

attack. Similarly, the attack can be clearly detected from Figure 5.2c based on: a) dramatic

increase in the SSDP traffic volume received by the victim, and b) dramatic increase in the number

of source addresses that send SSDP replies to the victim. However, the number of destination ports

being targeted during DDoS is only up to 2, in contrast to the 65535 ports exploited in the DNS

DDoS attack.

5.2.2. SYN Flooding DDoS Attack. The dataset DS-5 contains a SYN-flooding DDoS

attack. During the SYN-flooding, the victim sees an unusually high volume of SYN packets and an

alarmingly high percentage of syn-to-tcp packet ratio. We define the metric syn-to-tcp packet ratio

as the number of syn packets over the total number of tcp packets received by a destination address

within a time interval. As shown in Figure 5.4, the SYN-flooding attack signature is self-evident.

61

During the attack, the victim receives huge amount of TCP-SYN packets from a number of source

addresses. Note that DS-5 dataset is collected using Netflow [83] with 1:1000 sampling rate. The

true scale of source addresses are expected to be at most 1000 times larger than what we observe

after sampling. In this attack, all SYN packets are targeted at one destination port: port 80. We

specifically calculate the syn-to-tcp packet ratio. During the SYN-flooding DDoS attack, the ratio

is even higher than 50%.

Figure 5.3. Standard Deviation

Figure 5.4. From top to bottom: the SYN packet rate/bit rate, the number of unique
source addresses (botnet IPs or spoofed source IPs) found in the SYN traffic, the number
of destination ports being accessed by the SYN traffic, and the syn-to-tcp packet ratio over
time.

5.3. DDoS Detection Algorithms

In this section, we present two DDoS detection algorithms. We refer to the first one as modified

adaptive change detection (MACD) algorithm. It is an easy yet efficient algorithm that detects

DDoS incidents based on violations of a threshold that is adaptively updated with recent traffic

measurements. Direct application of the adaptive change detection algorithm is subject to a high

62

false positive rate. In this section, we also elaborate on our proposed methods to reduce false

positive rate. The second one is an entropy-based detection algorithm.

5.3.1. Modified Adaptive Change Detection Algorithm. Inspired by the analysis in

Section 5.2, detection of different DDoS attack types requires monitoring different types of traffic.

For instance, we focus on (incoming) DNS traffic to detect DNS-based amplification DDoS attacks.

In the later context, we use the term ”traffic of interest” to refer to the traffic that are monitored

to detect a particular type of DDoS attack.

In this algorithm, we first profile the normal traffic of interest to get the baseline volume. The

baseline volume is adaptively updated to account for traffic variations and trends. We test whether

the current traffic measurement over a given time interval exceeds a particular threshold that is set

based on the baseline number.

Let xda,n denote the measurement for destination da in the n − th time interval, µda,n−1 is

the mean count estimated from measurements to n for destination da. The mean µda,n can be

computed using an exponential weighted moving average (EWMA) of previous measurements [84]

(5.1) µda,n = β ∗ µda,n−1 + (1− β) ∗ xda,n

where β is the EWMA factor.

Alarm Condition. An alarm is triggered in the n− th time interval for destination da, if

(5.2) xda,n ≥ α ∗ µda,n−1

where α is the amplification factor.

The tuning parameters of the above algorithm are the amplification factor α that is used to

set the alarming threshold, the EWMA factor β for updating average count, and the length of the

time interval over which traffic measurements are taken. Direct application of the adaptive change

detection algorithm would yield high false positive rate. We discuss various methods to reduce false

alarms in the following context.

5.3.1.1. Absolute Volume Threshold. The absolute volume threshold provides a lower bound on

DDoS attacks we detect in our algorithms. The vanilla adaptive change detection algorithm only

63

considers relative change, therefore has a high false positive rate for variations of small-size flows.

We set this value according to the flow size distribution of background traffic. The absolute volume

threshold helps eliminate false positives induced by small flows.

5.3.1.2. Time Aggregate. The vanilla adaptive change detection algorithm easily mistakes flash-

crowds in the traffic as DDoS attacks. We observed that flash-crowds tends to be short peaks in

time. An effective modification we deploy in our MACD algorithm is to hold on an alarm, until

the number of consecutive violations reach an time aggregate threshold.

5.3.2. Shannon Entropy. Entropy measures the amount of randomness in a set of data, and

is commonly used for DDoS detection [75]. The formula for Shannon entropy is as follows:

(5.3) E = −
n∑

i=0

[pi ∗ log2 pi]

In this formula, pi is the probability of some event occurring, such as the probability that

a particular destination address occurs in some interval. For our implementation, we actively

measure the amount of randomness for incoming traffic flows every five minutes. For many DDoS

attacks, certain features will repeat more often than normal, giving an abnormal entropy scores [75].

Depending on the chosen features, the entropy scores will vary, as well as their effectiveness for

detecting attacks. Due to its consistency, we found it best to use the destination IP entropy, with

each flow containing that IP address weighted by its average packet size. In this case, E is calculated

every five minutes, each pi corresponds to the probability of a particular destination IP appearing

during that interval. This setting tended to give the most consistent baseline scores, along with

the most noticeable dips in entropy when attacks occur.

5.4. Performance Evaluation

We compare the performance of MACD algorithm against (a) direct application of Adaptive

Change Detection (ACD) algorithm and (b) Absolute Threshold algorithm. In absolute threshold

algorithm, we consider an IP address is under DDoS attack as long as the measurement in a time

interval is larger than the absolute volume threshold. We will show later that (a) or (b) would

yield large false positive rates. Direct application of ACD algorithm identifies small flows as DDoS

64

attacks. On the other hand, the absolute threshold algorithm simply treats all large flows as DDoS

attacks. We also consider the performance of entropy-based detection for our attack samples as a

comparison.

5.4.1. Experiment Design. We use two sets of real-world network traffic as the background

traffic. The first trace is taken from ESnet. This dataset contains sampled netflow data collected

continuously from 01/31/2016 to 02/13/2016. The sampling rate is 1 in 1000 [85]. The second

trace is taken from the NERSC DTN nodes.

In order to see how our tests performed with different kinds of science flows, we merge various

real-world DDoS attacks (described in section 5.2) with the science network background traffic to

test the effectiveness of our detection algorithms. The attack flows are extracted from the attack

samples and then tested alongside another source of background traffic. In some cases the attack

samples were taken from networks where the traffic was orders of magnitude higher. In other cases,

such as the ESnet sample, the recorded flows were sampled at a 1 to 1000 rate. Therefore, we also

include a method of amplifying one of the samples. For example, if the attack sample comes from

a higher volume network, we can choose to multiply the DTN background traffic by a constant

factor to mimic a proportionally large number of background flows.

In the first investigation, we merge the UDP-based reflection and amplification DDoS attacks

with ESnet background traffic. Following that, we merge attacks with the NERSC DTN traffic.

We also analyzed features such as the packet and flow volume, comparing the science flow traffic

to our Merit samples.

We use two metrics to evaluate the performance of detection algorithms. The detection rate

measures the percentage of true attacks that are detected by the algorithm. The false positive rate

(FPR) is the number of false alarms that do not correspond to an actual attack, over the total

number of alarms reported.

5.4.2. DDoS Detection in ESnet. In this experiment, we use traffic traces collected from

ESnet as the background traffic, and merge various real-world DDoS attacks into the background

traffic. We run the algorithms over the merged traffic trace to evaluate their detection performance

for the SSDP and CharGen samples.

65

Table 5.3. Comparison of Detection Results for SSDP DDoS Attacks

Algo. Detection Rate FPR
MACD 100% 2.10%
Direct ACD 100% 73.9%
Absolute Threshold 100% 8.50%

5.4.2.1. SSDP. We use the real-world DDoS attack found in [81] and merge it into the ESnet

background traces. Figure 5.5 (right) shows a snapshot of the attack and (left) plots the distribution

of SSDP packets in the background traffic. We can see that the volume of the attack is three orders

of magnitude larger than the traffic volume in background. We scaled down the attack volume and

merge into the background multiple instances of the attack with different scale factors, at randomly

picked time slots.

We use the first-day’s traffic data as the training data to build the average volume baseline for

each destination address and run our detection algorithm afterwards. In Figure 5.7, from top to

bottom, we show the traffic trace with merged attacks, the original background traffic trace, the

merged attacks only, and the detection results of our proposed algorithm. Table 5.3 compares the

detection performance of our proposed algorithm with direct adaptive change detection algorithm

and absolute threshold algorithm discussed above. We also run an entropy-based detection algo-

rithm on the merged trace and the result is plotted at the bottom of figure 5.7. We note that the

entropy score is constantly jumping from 0 to 1, making it not helpful in detection. This might

arise from the fact that the number of flows in SSDP traffic is limited.

5.4.2.2. CharGen. Similarly, we merge the real-world CharGen-based DDoS attack of [80] into

the ESnet background trace. Figure 5.8 (right) plots a snapshot of the attack and (left) shows the

distribution of CharGen packets per destination address per 5min bin in the background traffic.

We repeat the same experiments as in 5.4.2.1 (SSDP), and the results are shown in table 5.4

and Figure 5.10. We can see that our proposed algorithm achieves 100% detection rate as well as

the least false positive rate, compared to the other three algorithms.

5.4.3. DDoS Detection in DTN. In this section we will cover the results of our analysis of

DDoS detection in the NERSC DTN. Although we do not have any samples for attacks occurring

in the DTN traffic, we consider how the characteristics of our DTN traffic might affect established

66

(a) Standard Deviation (b) Entropy

Figure 5.5. Left: Distribution of SSDP packets in the ESnet background traffic. SSDP
packets are aggregatively counted for each destination address within a 5-min interval.
Right: A snapshot of the real-world SSDP attack. SSDP packets are counted within every
5-min time interval.

Figure 5.6. Standard Deviation

Figure 5.7. From top to bottom, the time-varying traffic trace with merged attacks, the
original background traffic trace, the merged attacks only, the time intervals when an alert
is reported. The bottom figure shows the time-series of entropy score for traffic trace with
merged attacks.

67

Table 5.4. Comparison of Detection Results for CharGen DDoS Attacks

Algo. Detection Rate FPR
MACD 100% 23.1%
Direct ACD 100% 53.8%
Absolute Threshold 100% 23.1%

(a) Standard Deviation (b) Entropy

Figure 5.8. Left: Distribution of CharGen packets in the ESnet background traffic. Char-
Gen packets are aggregatively counted for each destination address within a 5-min interval.
Right: A snapshot of the real-world CharGen attack. SSDP packets are counted within
every 5-min time interval.

detection methods. Merging DTN traffic with our attacks did not seem to affect the results signifi-

cantly, possibly because during periods of low activity the attack would dominate the traffic. This

indicates a potential flaw in the usefulness of our merging technique for the DTN sample. Rather

than considering merged data, we begin by comparing the entropy results for the DTN flows with

normal border router traffic seen in the DS-2 attack sample. The characteristics of both our re-

search network samples make certain detection tests less effective, meaning alternative methods of

calculating entropy should be used.

5.4.3.1. DTN Entropy Detection. Table 5.5 demonstrates that entropy was able to reliably

detect all our attack samples except the SSDP attack. This includes an observed ESnet SYN

flood attack we examined. In order to detect attacks, a consistent entropy score range is required

for non-attack traffic to establish a baseline. This proved problematic when measuring the DTN

science flows, because no consistent baseline exists when using the total packet size entropy (figure

5.11a). This means a normal entropy range cannot be established for detecting anomalies. However,

68

Figure 5.9. Standard Deviation

Figure 5.10. From top to bottom, the time-varying traffic trace with merged attacks,
the original background traffic trace, the merged attacks only, the time intervals when an
alert is reported. The bottom figure shows the time-series of entropy score for traffic trace
with merged attacks.

using the average packet size entropy (figure 5.11b), gives more consistent results. Therefore, the

consistency of the entropy scores varies heavily depending on the background traffic and the features

chosen. Figure 5.10 demonstrates the difference between the CharGen (DS-2) scores and the DTN

entropy scores (total packet size and average packet size entropy). In the character generation attack

sample (CharGen), we see an obvious drop from baseline entropy around 12:00 pm, matching where

the attack begins according to the provided metadata. Therefore, entropy is effective for detecting

CharGen’s attack without significant false positives. As seen in Figure 5.11b, the average packet

size gives more consistent entropy scores, letting us establish thresholds for anomaly detection.

However, the DTN results are still inconsistent. This inconsistency is due to the DTN traffic being

less regular compared to other forms of traffic, such as the border routers used in our IMPACT

Cyber Trust samples. Figure 5.12 compares the DTN volume on July 31st to the dns ampl attack

sample volume. For long stretches, the DTN has low levels of activity, with traffic on the order of

69

Table 5.5. Comparison of Entropy Results for DDoS Attacks.

Sample Detection Rate FPR
DNS (DS-1) 100% 3.1%
Chargen (DS-2) 100% 0%
SSDP (DS-3) 0% 0%
ESnet SYN Flood (DS-5) 100% 4.2%

100s of flows. However, due to intermittent large data transfers, we also see sudden increases in

traffic volume. These sudden traffic increases skew the entropy results, as well as other anomaly-

based detection methods such as wavelet detection [76]. This is similar to the problems caused

by flash events [86], where large amounts of legitimate traffic resembles a DDoS attack. Although

entropy is normally effective for detecting attacks, for research networks we must use carefully

select features which give consistent results under normal conditions in spite of the large variations

in volume.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

12
:00
	AM

	

2:0
0	A
M	

4:0
0	A
M	

6:0
0	A
M	

8:0
0	A
M	

10
:00
	AM

	

12
:00
	PM

	

2:0
0	P
M	

4:0
0	P
M	

6:0
0	P
M	

8:0
0	P
M	

10
:00
	PM

	

(a) NERSC DTN (total packet
size)

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

12
:00
	AM

	

2:0
0	A
M	

4:0
0	A
M	

6:0
0	A
M	

8:0
0	A
M	

10
:00
	AM

	

12
:00
	PM

	

2:0
0	P
M	

4:0
0	P
M	

6:0
0	P
M	

8:0
0	P
M	

10
:00
	PM

	

(b) NERSC DTN (average
packet size)

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

12
:00
	AM

	

2:0
0	A
M	

4:0
0	A
M	

6:0
0	A
M	

8:0
0	A
M	

10
:00
	AM

	

12
:00
	PM

	

2:0
0	P
M	

4:0
0	P
M	

6:0
0	P
M	

8:0
0	P
M	

10
:00
	PM

	

(c) chargen (DS-2)

Figure 5.11. Entropy Score Comparison. Using the average packet size per flow to
calculate the entropy gives more consistent entropy scores, making anomalies easier to detect.
However, it is still less consistent than the DS-2 Merit border router traffic.

70

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

100000000	

1E+09	

12
:00
	AM

	

2:0
0	A
M	

4:0
0	A
M	

6:0
0	A
M	

8:0
0	A
M	

10
:00
	AM

	

12
:00
	PM

	

2:0
0	P
M	

4:0
0	P
M	

6:0
0	P
M	

8:0
0	P
M	

10
:00
	PM

	

Packets	 Flows	

(a) NERSC DTN Volume (July
31st)

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

100000000	

12
:00
	AM

	

2:0
0	A
M	

4:0
0	A
M	

6:0
0	A
M	

8:0
0	A
M	

10
:00
	AM

	

12
:00
	PM

	

2:0
0	P
M	

4:0
0	P
M	

6:0
0	P
M	

8:0
0	P
M	

10
:00
	PM

	

Packets	 Flows	

(b) ESnet Sample Volume

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

100000000	

1E+09	

12
:00
	AM

	

2:0
0	A
M	

4:0
0	A
M	

6:0
0	A
M	

8:0
0	A
M	

10
:00
	AM

	

12
:00
	PM

	

2:0
0	P
M	

4:0
0	P
M	

6:0
0	P
M	

8:0
0	P
M	

10
:00
	PM

	

Packets	 Flows	

(c) DS-1 Volume

Figure 5.12. Packet and Flow Volume. The NERSC DTN traffic fluctuates more than
the ESnet traffic or the Merit border router traffic.

5.5. Related Work

There is a rich literature in the study of DDoS detection. Koay et al. [75] discussed the

commonly used entropy-based detection, describing effective features for calculating the score.

Wang [87] proposed to use the ratio of SYN packets to FIN/RST packets to detect SYN floods.

However the attackers can easily avoid detection by sending FIN/RST packets along with SYN

packets. Siris [84] proposed an adaptive threshold algorithm to detect SYN flooding. But the

algorithm is only tested against synthetically generated attacks. The LADS system [88] focuses on

DDoS detection on the coarse level of egress interface using SNMP feeds from routers, as contrary

to our fine-grained per-IP level DDoS detection. The MACD algorithm proposed in our work bears

a similar idea to the above proposals. But we generalize its application to different types of DDoS

attacks, and evaluate its effectiveness against real-world DDoS attacks with science background

traffic. We adapt the algorithm to accommodate the new environment to reduce false positive rate.

Although no other papers have currently addressed the specific problem of identifying DDoS

attacks on large scale science networks, a number of recent papers have described the challenges of

71

protecting such networks. A recent article [89] summarizes important differences between protect-

ing high-performance computing (HPC) networks and protecting standard environments. A key

observation is that, in addition to higher speeds, HPC networks usually have more specific pur-

poses, leading to more predictable behavior. The paper describes some currently used solutions for

monitoring high-rate science flows, such selectively shunting flows to analyze with the Bro network

intrusion detection system [90]. The broader issue of analyzing the content of large high-speed

flows found in science networks is also getting attention. Mandal et al. [91] discusses challenges

with monitoring and understanding the normal behavior of science networks.

5.6. Conclusion and Future Work

Our experiments demonstrate that some special considerations are necessary when monitoring

science flows. The activity in science flow environments like the NERSC DTN can vary largely, and

any detection method must account for this. The primary complications we discovered were long

periods of low activity in the DTN, combined with the sudden appearances of large, sometimes

long lasting flows. Although these factors make anomaly-based detection more difficult, we believe

that common methods such as Shannon entropy are potentially effective if the chosen feature can

produce consistent results in legitimate traffic. In addition, our MACD algorithm showed high

detection rates even with the ESnet background traffic. There are many directions in which our

current work can be expanded. So far, we have looked primarily at layer 3 and 4 attacks, such

as TCP-SYN floods and UDP reflection and amplification attacks (DNS Amplification, Character

Generation, SSDP). Therefore, we would like to continue looking at a wider variety of DDoS attack

types to further test the effectiveness of our detection methods. We also intend to experiment

further with other DDoS detection methods, such as wavelet analysis [76]. Although real attack

data is valuable, it can be difficult to base broad conclusions on individual attacks. Therefore,

we would also test detection using synthetic attacks where we have more control over different

parameters.

5.7. Sharing Statement

The data in this project from the IMPACT repository [78] is available to qualified researchers

at DHS-approved institutions, as indicated in the IMPACT Terms of Use. The data in this project

72

from ESnet and NERSC is available on a case-by-case basis to qualified researchers, and in accor-

dance with those institutions privacy policies, application3 to ESnet’s Security Team and NERSC’s

Security Team,4 respectively. The code for this project, including our DDoS detection tools are

also available in a public GitHub repository 5.

3https://www.es.net/about/governance/data-privacy-policy/
4http://www.nersc.gov/users/accounts/user-accounts/computer-security/
5https://github.com/lbnl-cybersecurity/ddos-detection

73

https://www.es.net/about/governance/data-privacy-policy/
http://www.nersc.gov/users/accounts/user-accounts/computer-security/
https://github.com/lbnl-cybersecurity/ddos-detection

CHAPTER 6

Unusual Protocol Monitoring with Zeek

The Zeek network security monitor provides a variety of ways to monitor and log protocol

usage. However, there are holes in the visibility of Zeek’s standard logging. By default, Zeek

does not report extensive data on all lower level protocols. For example, many transport layer

protocols outside of the common TCP, UDP, and ICMP are not visible to Zeek. No events are

created when they appear, making it difficult to handle them in scripts. In this work, we extend

Zeek by creating modified plugins and various scripts to assist in analyzing lower level protocol

usage. These extensions allow Zeek to monitor and log more protocol usage information, along

with logging anomalies which could indicate malicious behavior. In addition to the Zeek scripts,

we provide Python scripts for more in-depth analysis of the log data. In this paper, we explain

our the extensions, how our scripts work, and demonstrate how this protocol usage data can assist

with intrusion detection through detecting some common network anomalies such as DDoS attacks.

6.1. Introduction

Protocol specifications and usage statistics has been a common method for network anomaly

detection [92]. However, the widely used Zeek network intrusion detection system (IDS) provides

limited support for monitoring and analyzing lower level protocols. By default, Zeek supports

roughly 50 different protocols, and new protocol analyzers are required for adding new protocols.

[93] In some cases, the unrecognized protocols won’t be logged by Zeek at all, not even as unknown

protocols in the weird.log, which logs unexpected behavior. [94] This work introduces modified

plugins for IP and Ethernet layer protocols, which call Zeek events for each new packet. These

events contain the information such as the packet timestamp and the protocol seen. Zeek scripts

handle these events, logging the protocol data according to the user’s chosen settings. Some Python

scripts are also provided for analyzing these log files by providing additional analysis such as

74

 WAN

 Site LAN

Science DMZ
Switch/Router

Border Router

perfSONAR

Enterprise Border
Router/Firewall

perfSONAR

perfSONAR

High Performance
Data Transfer Node,

with high-speed storage

High Latency WAN Path

Low Latency LAN Path

High-Bandwidth WAN Path Site access to DMZ resources

Zeek
Network security monitor

Monitor unusual protocol usage

Figure 6.1. The Zeek network security monitor is a common tool used for pro-
tecting Science DMZs. In this chapter, we expand on Zeek’s protocol monitoring
capabilities.

DBSCAN clustering. If the distribution changes significantly in different measurement periods,

the clusters could reveal anomalous behavior on the network. By extending Zeek for this form of

anomaly detection should improve detection by making possible to create scripts based on previously

applied detection methods using protocol data. The Zeek scripts can be applied for both real-time

monitoring and analyzing trace files. This should be particularly useful for monitoring Science

DMZs and other networks where the traffic remains relatively predictable over time.

The tools we’ve created for monitoring protocol usage can log a variety of results, including

when new protocols appear for the first time, when protocols have appeared past a preset threshold

count, and statistics about the protocol usage distribution. This data can be used to detect a

variety of anomalies, and in this work we demonstrate its utility in detecting some common network

anomalies. In particular, we show how these scripts can be used together to detect some common

varieties of DDoS attacks captured in a recent test set [95]. Our initial results suggest that protocol

usage is effective for detecting DDoS attacks and other threats. The scripts can also log new top

protocols, the protocol distribution statistics such as standard deviation and Shannon entropy, and

75

when common L7 protocols appear over unexpected L4 protocols. For example, a protocol such

as HTTP or SSH might be riding on top of a protocol other than the expected TCP. Logging this

occurrence could be useful in detecting covert traffic that evades standard detection. The code

is made available in a public GitHub repository [96], and the various options and scripts will be

explained in a later section.

The following are some key contributions:

• We present modified Zeek plugins for creating new L3 and L4 protocol events.

• We provide Zeek scripts using these events for monitoring and logging anomalies in protocol

usage, along with Python scripts for additional analysis of the log files.

• We demonstrate the potential value of these detection tools through experimental results,

detecting attacks in the CIC-DDoS2019 dataset [95].

In section II, we will provide some background information on Zeek and examine related work

using protocol data for network anomaly detection. In section III, we describe the plugins and

detection scripts in detail, explaining the different log files and options available. Section IV will

provide some results for examples of how these tools could be used for detecting common network

threats. Finally, Section V discusses our conclusions and some plans for future work.

6.2. Background and Related Work

6.2.1. Zeek. Zeek (formerly Bro) [14] is an open-source platform for network monitoring,

analysis, and intrusion detection. The Zeek framework monitors network traffic (live or reading

from trace files), using two primary components - an event engine which calls events based on

network events, and policy scripts which handle these events. For example, an event is when a

new TCP connection begins, which can then be handled in different ways by the policy scripts.

Zeek provides a wide variety of events and scripts by default, logging connections and information

on application layer protocols, such as DNS requests [97]. However, unlike some other network

intrusion detection systems (NIDS), Zeek is not limited to predefined analysis functions. Instead,

Zeek’s goal is to provide a framework for network analysis through this extendable system of

events and scripts. Through the Zeek scripting language, users can define any sort of analysis to

be performed in response to the events, including calling external processes. Therefore, it can be

76

configured for any variety of intrusion detection methods, such as signature-based or anomaly-based

detection. Figure 6.2 illustrates how Zeek’s architecture functions.

In addition to this flexibility, Zeek is lightweight and suitable for a variety of systems. Zeek

clusters can be created to handle higher rates of traffic. The platform is commonly deployed for

monitoring Science DMZs and other high speed networks [97], effectively monitoring 10 Gbps

and higher networks in real-time. Furthermore, certain functionality such as calling events for L7

protocols regardless of the underlying protocols allows for the potential detection of obfuscation

attempts similar to those discussed in our previous insider attack detection work [98].

6.2.2. Related Work. As a basic feature of network traffic, monitoring protocol usage is a

critical feature for many network intrusion detection systems, and is used to detect a variety of

anomalies [99]. Different intrusion detection systems will vary in the number of protocols supported

and the extent to which they can be analyzed. A recent paper by Holkovič et al [93] proposes a

framework for automating network security analysis, and discusses the challenge of needing to

create new protocol dissectors whenever a previously unsupported protocol must be analyzed. In

their paper, Zeek is discussed as being close to their proposed framework, but Zeek’s limited range

of protocols supported by default is mentioned as a weakness, along with missing support for

some protocol fields. Grashöfer et al. [100] describes another weakness, that current methods

of identifying protocols in IDS can be evaded. Based on these papers, we can see some of the

motivation to expand Zeek by providing more methods of easily analyzing protocols.

One recent tool which helps alleviate this issue is Spicy [101], a parser generator. With its

Zeek plugin, Spicy simplifies the process of creating new network protocol parsers, allowing the

user to define their own grammar determining which events are called in response to an input. For

example, a recent paper by Chromik et al. [102] makes use of Spicy to implement an extensible

parser for IEC-104 protocol traffic. Similarly, Rice et al. [103] uses Spicy to parse the BACnet

protocol. Though Spicy satisfies some of our goals, we instead opted modify the default Zeek

plugins by providing events with new information about all seen protocols at lower levels, allowing

scripts to more readily handle previously unrecognized protocols.

77

Zeek

Event EngineNetwork
Packets Events

Zeek

Policy Script
Interpreter

Logs

Notification

Figure 6.2. Zeek architecture [97].

Table 6.1. File descriptions

Filename Description
IP.cc L4 protocol analyzer plugin, creates events for new IP packets.
Ethernet.cc L3 protocol analyzer plugin, creates events for new Ethernet packets.
unusual protocols.zeek Script for monitoring L4 protocols and logging unusual events.
ethernet protocols.zeek Script for monitoring L3 protocols and logging unusual events.

l7 unusual.zeek
This script is unusual protocols.zeek, with an added logging for L7 protocols
appearing over uncommon L4 protocols.

thresholds.file
CSV file for the Zeek scripts, containing a list of protocols and their threshold
values. If a protocol is observed in more packets than the threshold value,
the protocol is logged.

nfdump parser.py
Parses nfdump files, printing the protocols and the number of packets and flows
containing each protocol.

parse router results.py Takes nfdump files from the router directory, and outputs protocol statistics.
protocol clustering.py Uses DBSCAN clustering to cluster a given protocol’s timestamps and totals.

6.3. Zeek Plugins and Scripts

In this section, we will describe the updated plugins and the different Zeek scripts used. In

addition, we will explain the various events and functions. All of the described files are available in

a public GitHub repository. [96] Table I lists the various files and gives a brief overview for each.

In the following subsections we will discuss each in more detail.

6.3.1. Zeek Plugins. Previously, many protocols outside of the application layer did not

have Zeek analyzers available, making it more difficult to create plugins for lower level protocols.

However, a recent addition to Zeek [104] made pluggable lower layer analyzers available. This

recent release simplified the process of getting creating and modifying plugins for new L3 and L4

protocols. For example, by modifying the provided Ethernet and IP plugins to create events for

each new packet, we can gain access to a wide range of different protocol data for analysis with

our scripts. Whenever a new Ethernet or IP packet is seen, we call an event which contains the

packet timestamp, the source and destination addresses, and the protocol number. This event is

78

Table 6.2. Zeek log files

Log name Source Fields

unusual protocols.log unusual protocols.zeek, l7 unusual.zeek

timestamp, source IP,
destination IP, protocol number,
protocol name,
threshold, cycle count

unusual eth protocols.log ethernet protocols.zeek timestamp, source IP, destination IP, protocol number, protocol name

protocol totals.log unusual protocols.zeek, l7 unusual.zeek
timestamp, message type, protocol number, protocol name,
protocol total, standard deviation, entropy

new protocols.log unusual protocols.zeek, l7 unusual.zeek timestamp, protocol number, protocol name
over unusual.log l7 unusual.zeek timestamp, source IP, destination IP, protocol number, protocol name

Table 6.3. Zeek script options

Option Name True False

log all
Logs every protocol that appears past the shared
threshold value value (log all thresh)

Only logs the protocols listed in thresholds.file.

log once Only log a protocol the first time it passes the threshold value. Log every time the protocol appears past the threshold.

log distribution
Write the protocol distribution along with statistics periodically,
with log distr pkts as the cycle length.

Don’t log the distribution or distribution statistics.

reset Reset the value such as packet counts each cycle. Don’t reset the values for new cycles.

check esp
Check for the protocol encapsulated
in ESP protocol packets and log it.

Report ESP protocol only, not the encapsulated protocol.

then handled by the various Zeek scripts, which monitor and analyze protocol usage through this

information.

6.3.2. Zeek Scripts. The two main Zeek scripts we use for monitoring and logging the lower

layer protocol events are unusual protocols.zeek and ethernet protocols.zeek. These scripts

handle the events created by IP.cc and Ethernet.cc respectively. Therefore, unusual protocols.zeek

monitors new IP packets and ethernet protocols.zeek monitors new Ethernet packets. Option-

ally, multiple log files can be created with these scripts. A third Zeek script called l7 protocols.zeek

is essentially unusual protocols.zeek with an additional logging function. This script will mon-

itor SSH, HTTP, and FTP connections to log when they are found running over a lower level

protocol besides the typical TCP, which can indicate anomalous behavior. As most of our work

focused on L4 protocols, unusual protocols.zeek has more options available and creates addi-

tional log files for more in-depth analysis. These Zeek scripts have a variety of different settings

controlling the analysis and how the log files are created. The different log files created are listed

in Table II, and the various options are explained in Table III.

6.3.3. Python Scripts. In addition to the Zeek scripts, we’ve provided Python scripts for

further log files analysis. The scripts nfdump parser.py and parse router results.py work

together to breakdown protocol statistics for a directory containing Zeek logs for different routers.

79

First, nfdump parser.py takes an nfdump file and parses the protocol data, printing the protocols,

and the number and percentage of flows and packets appearing with that protocol. Meanwhile,

nfdump parser.py reads in the text file created by a bash script (router protocols script.sh),

and outputs the protocol percentages per router, unique and unnamed protocols per router, and

unique protocols (appearing only on a single router). The script protocol clusters.py takes

protocol-totals.log (which logs the packet distribution periodically) and clusters the packet counts

for that protocol along with the timestamps. This is one of the scripts we use for anomaly detection,

because a large change in the clusters will indicate that the distribution has changed significantly.

For traffic that maintains a relatively consistent distribution under normal conditions, this could

indicate a serious anomaly. In the next section, we will show how this clustering can be used along

with the Zeek log files to detect potential DDoS attacks.

6.4. Anomaly Detection

In order to show some potential use cases for our protocol monitoring, we demonstrate how

the scripts can be used to detect some common network anomalies. For our anomaly detection

experiments, we used the recent CIC-DDoS2019 dataset [95]. This dataset contains trace files for

two separate days of traffic, during which a variety of common DDoS attacks occur. The dataset

emphasized creating realistic background traffic along with the attacks, which helps in verifying the

detection results. Our goal was to test whether or not we could detect some of the DDoS attacks

contained in these trace files using our scripts. We consider how these attack can be detected

through the information logged in protocol totals.log, both by using the measured statistics

(Shannon entropy and standard deviation) or by clustering the protocol totals gathered each cycle.

In the next sections, we present and discuss the anomaly detection results.

6.4.1. Statistical anomaly detection. First, we consider how the statistics in protocol totals.log

can be used to detect the attacks. We use two separate statistics, which are recorded each time

a packet cycle ends and the protocol totals distribution is logged. The two values we log are the

standard deviation of the protocol totals, and the Shannon entropy of the protocol totals. The

Shannon entropy measures the randomness of a variable, with a higher entropy score indicating the

80

variable is less predictable. It is given by the following formula:

(6.1) H = −
n∑

i=1

P (xi) logP (xi)

with P (xi) referring to the probability of selecting the value xi. Assuming we know the network

will have relatively consistent types of traffic, the protocol totals per cycle should also maintain

predictable entropy and standard deviation values. For this experiment, each cycle is set to 10,000

packets (log distr pkts = 10,000), so new statistics are logged after every 10,000 packets.

Figure 6.3 compares the standard deviation and entropy values over time for both normal traffic

and DDoS traffic in the CIC-DDoS2019 dataset. As we can see, the standard deviation increases

during the DDoS attack, and the entropy drops significantly (indicating less randomness in the

protocol totals).

(a) Standard Deviation (b) Entropy

Figure 6.3. The standard deviation and entropy values for 30 cycles of protocol distri-
butions at different times during day 2 of the CIC-DDoS2019 dataset. The normal traffic
is taken after 17:15, when all the attacks have finished. The DDoS traffic here is the SYN
flood occurring at 13:29 - 13:34. In this case, each cycle lasted 7,500 packets. During normal
traffic conditions, the standard deviation of the protocol usage distribution remains fairly
stable. However, during an attack, the standard deviation will either increase due to one
protocol becoming significantly more common, or drop to zero because only one protocol is
seen during that entire cycle. Since the protocol distribution is more predictable during the
attack, we see that the entropy becomes very low.

6.4.2. Clustering-based anomaly detection. Next, we show how clustering can be applied

to identify the DDoS attacks. The timestamps and protocol totals per cycle are clustered using

DBSCAN clustering, a density-based clustering method designed for handling noisy datasets [29].

81

DBSCAN requires two parameters − minPts, the minimum number of points constituting a clus-

ter, and ε, the maximum distance between points within a cluster. The choice for these parameters

varies depending on the dataset, though generally minPts should be at least one more than

the number of variables being clustered. For our usecase, ε will depend primarily on the chosen

log distr pkts value, which determines how many packets are logged in each cycle. We previ-

ously applied DBSCAN for detecting threats using system performance data. More details on the

DBSCAN algorithm can be found in Chapter 2.

Figure 6.4 compares examples of the clusters formed during a SYN flood with those formed

during typical traffic. As we can see, the clusters are noticeably different. In particular, it seems

that there is a large difference when clustering the entropy per cycle. Therefore, it is likely that

new entropy clusters will appear during the DDoS attacks.

6.4.3. Further anomaly detection. In addition to these examples of detecting DDoS at-

tacks, these scripts could be helpful in detecting a variety of other threats. For example, when

Science DMZs or other networks with relatively predictable behavior, we can expect to mostly know

which protocols will appear. When a previously unseen protocol is logged in new protocols.log,

it could indicate an anomaly. Along with the distribution statistics, there are additional logging

options in packet totals.log can be used to detect unusual changes in the distribution. For ex-

ample, we create a log entry whenever the top seen L4 protocol changes. Furthermore, we monitor

for some common application layer protocols riding on top of uncommon lower layer protocols.

Specifically, we log HTTP, FTP, and SSH packets which are not using TCP. Running common

applications like SSH over uncommon protocols could be an indication of an attacker attempting

to obfuscate their behavior.

6.4.4. Detecting Low and Slow DDoS Attacks. ”Low and slow” DDoS attacks [105] are

performed at low rates and slowly exhaust resources over time. Unlike high rate DDoS attacks,

low and slow attacks are not likely to significantly alter the protocol usage statistics. Therefore, it

is unlikely that the detection method discussed earlier will be effective for these types of attacks.

However, there are effective options for detecting these types of attacks which can be implemented

alongside the other forms of detection. We considered how to modify our Zeek tools for detecting

82

(a) Ordinary TCP cluster (b) DDoS TCP cluster

(c) Ordinary entropy cluster (d) DDoS entropy cluster

Figure 6.4. Clustering the TCP protocol counts and entropy per 7,500 packet cycle at
different times during day 2 of the CIC-DDoS2019 dataset. The normal traffic is taken after
17:15, when all the attacks have finished. The DDoS traffic here is the SYN flood occurring
at 13:29 - 13:34. The clusters formed during normal traffic conditions will be separate from
the DDoS clusters. (Need to update these graphs and get more results for clustering, but
this gives an idea. Currently the CIC-DDoS2019 dataset is broken up in a way that makes
creating the graphs difficult.)

Slowloris [106], a common ”low and slow” attack, testing with a pcap file containing a Slowloris

attack [107]. The Slowloris attack functions by sending incomplete HTTP GET requests [106],

keeping HTTP connections open until their are no resources to handle legitimate HTTP con-

nections. One method we considered for detecting Slowloris attacks was monitoring for HTTP

packets appearing over uncommon protocols. Slowloris attacks can be performed using HTTP over

protocols besides TCP, such as UDP using QUIC [105]. Therefore, a sudden increase in HTTP

packets over non-TCP protocols could indicate suspicious activity. Using our l7 unusual.zeek

83

script, we can log whenever common application layer protocols such as HTTP appear over un-

usual protocols. Our sample Slowloris attack contained a large number of HTTP over HOPTOPT

(Hop-by-Hop IPv6) packets. Although seeing protocols like this is not unusual by itself, they can

be used exploited in certain servers which are not configured for handling them [108]. In addition

to looking at the protocol data, there are some known generalized detection methods for Slowloris

and similar HTTP stalling attacks. One such method using Zeek [109] involves monitoring HTTP

request and reply events for requests going for significant periods of time without receiving a reply.

If too many suspicious connections are flagged, then there is a possible Slowloris attack occurring.

This detection method has been incorporated into our Zeek scripts in addition to the protocol

usage-based DDoS detection. However, there is no one-size-fits-all solution, and in some cases it

would be necessary to include more specialized detection methods for specific attacks. In many

cases, this involves monitoring the resource targeted by the particular low and slow attack [110].

New Zeek scripts for detecting specific DDoS attacks of this variety could be added when desired.

6.5. Conclusions and Future Work

In this work we have expanded on Zeek’s protocol monitoring capabilities, updating the lower

layer protocol plugins and adding new scripts for logging protocol data. Taken together, these

scripts should be a useful tool for analyzing traffic and performing anomaly detection. Using the

recent CIC-DDoS2019 dataset [95]. Our tests showed that the logged protocol usage distributions

and related statistics can be used to identify DDoS attacks in networks where the protocol distri-

butions remain relatively consistent under normal conditions, such as Science DMZs. In addition,

other network traffic anomalies are likely to be found through these logs. By adding to Zeek’s pro-

tocol monitoring capabilities, we also expand the range of possible anomalies we can detect. Future

work should provide a more comprehensive look at which anomalies can be detected through more

in-depth monitoring of lower layer protocols. Furthermore, the scripts themselves can be expanded

upon, adding new features and logging more complex statistics. The tools created are available in

a public GitHub repository 1

84

CHAPTER 7

Conclusion

In this final chapter, we will summarize our work and contributions. In addition, we will

provide some thoughts on future work, including new potential projects in addition to expanding our

completed research. The emphasis of our work has been improving anomaly detection for protecting

the Science DMZ. Anomaly detection for high speed networks such as Science DMZ is a challenging

problem, in part due to the difficulty of obtaining realistic data for experiments. However, anomaly-

based detection has been shown to be more effective in cases where the detection is focused on

known threats in environments with a narrow range of normal behavior. The relatively predictable

behavior compared to general purpose environments makes anomaly-based detection well-suited

for Science DMZ networks. Our work considered various ways of detecting potential threats to the

Science DMZ, both insider threats such as data tampering and outsider threats such as denial of

service attacks. We developed and tested various methods of detection suited for protecting the

Science DMZ environment, particularly the data transfer nodes (DTNs). We considered potential

threats such as covert timing channel, and studied how they can be detected effectively in high-

speed networks. In addition, we expanded on the Zeek network intrusion detection system to assist

with this goal, creating new plugins and scripts for monitoring protocol usage more effectively. In

the following sections, we will summarize the completed projects, their important contributions,

and suggestions for future work.

7.1. Anomaly Detection Using System Performance Data

In this work [111], we considered how host performance metrics could be applied towards

anomaly detection in the data transfer nodes (DTNs). More specifically, we demonstrated how

interrupts per second and context switches per second could be used to discover TCP-SYN floods

in a DTN environment. In addition, we showed how system performance metrics could be used to

help detect insider threats such as data exfiltration and data tampering. We created a detection

85

method using continuous re-clustering of these performance metrics using DBSCAN [10]. In our

experiments, we found that by routinely clustering context switches and interrupts per second

together, we could detect all the generated TCP-SYN floods within 10 seconds. Previous work

has shown similar results in other environments [17] [16], indicating that certain attack varieties

create distinct and reliably detectable patterns in system performance. The primary contributions

of this work were the creation of the DBSCAN-based real-time anomaly detection method, and

demonstrating that certain system performance metrics such as interrupts and context switches

can be effective for anomaly detection in the Science DMZ environment.

TCP-SYN floods are just one simple form of attack which can be detected, and it is likely

that similar methods can be applied to detect a wide variety of attacks. Therefore, this work

should be expanded by attempting to detect a wider variety of threats to DTNs. Building on the

completed work, experiments should investigate a variety of common network threats, and take

a deeper look at which types of outsider attacks are the most realistic threats to the DTNs. In

addition to the TCP-SYN floods we’ve already considered, this could include detecting port scans,

brute force/dictionary attacks, and so forth. Although simulating these attacks is possible as in

our experiments, ideally real data samples could be used. Preferably, the detection could then

be tested on an active DTN, measuring the effectiveness of detecting them through the various

logged network and host performance metrics. In our previous experiments, TCP-SYN floods were

detected using our streaming DBSCAN clustering method. This method should be capable of

detecting a variety of other attacks by distinguishing between normal and abnormal clusters in

the logged data, and future experiments should apply this method to a wider variety of attacks.

For some common external threats to the network, it is likely the Science DMZ already has some

detection or prevention mechanisms in-place. Therefore, another aspect of future work should be

performing an in-depth comparison between this detection method and common network intrusion

detection methods. Finally, it would be useful if the clustering-based detection described in our work

were implemented in a standard network intrusion detection systems such as Zeek [14], allowing it

to be more easily tested and expanded upon.

86

7.2. Insider Attack Detection Using System Performance Data

Following the external attacks, we considered how this system might be applied towards the

detecting insider threats [98]. The main goal was to determine network and system performance

on the host given normal conditions, and then determine whether or not certain insider attacks

cause recognizable patterns of performance activity diverging from ordinary behavior on the DTN,

through which the attacks can be detected. In the Science DMZ environment, it is likely that

We considered varieties of insider threats targeting important data − data sabotage, exfiltration,

and obfuscation. To accomplish this, created a tool which obfuscates the packets through PDF

files to run an ssh session on the target, and through that session we tampers with or exfiltrates

the targeted data. The primary contribution of this work was demonstrating the value of system

performance metrics for detecting data tampering, as well as detecting the usage of obfuscation

methods which an attacker could exploit such as our PDF obfuscation tool, which could allow

the attacker to exfiltrate data while appearing to perform legitimate behavior. For detection, we

used our real-time detection method, which continually re-clusters the performance metrics using

DBSCAN. Through this approach, we could reliably detect both data tampering and obfuscated

SSH sessions. Given the relatively predictable range of behavior on the Science DMZ, we can more

effectively detect whether or not a user (authorized or not) is performing legitimate actions. Even if

an attacker attempts to conceal their malicious behavior, changes in the expected system behavior

could be observed.

Considering our results, it appears that a wide variety of insider attacks could be detected

through watching for anomalies in system performance data. Future work should begin by ex-

panding on this detection by considering additional performance metrics. In addition, this type of

detection might be combined with other common methods of insider attack detection, such as mon-

itoring system calls. One possibility for improving detection would be to create a more complete

model of the expected system behavior. For a system like a DTN, it might be feasible to gather

performance metrics for the majority of possible common operations and traffic loads, such as dur-

ing varying levels of traffic or while performance monitoring applications are running. Currently,

our clustering-based anomaly detection looks for major changes in the performance metrics, which

we assumed will occur only in the case of likely illegitimate behavior. However, it’s possible that

87

some unusual, but legitimate, situations could produce similar changes in performance. Therefore,

it would be beneficial to complete an in-depth analysis of system behavior on a real DTN, consid-

ering both during different transfer loads (large number of small files vs. small number of large

files), and whether or not performance monitoring is occurring during those transfers. It would also

be necessary to consider what types of legitimate user activity on the DTNs is generally accepted,

though this is likely to vary between different Science DMZs, as some will allow more access than

others [1]. Future work expanding on this project should take these factors into consideration.

7.3. Covert Timing Channel Detection

Network covert timing channels (CTCs) exploiting the inter-packet delays in network packets

represent another potential means through which an insider could exfiltrate data. Although their

capacity is often low [112], these channels are likely to be effective in environments such as a Science

DMZ where long-lasting flows are commonplace. In our work [12], we considered how such channels

could be detected in real-time at high data rates. Primarily, we focused on methods of performing

the correct-conditional entropy test (CCE) in real-time. Prior work demonstrated the effectiveness

of this test for detecting a variety of CTCs, however it was prohibitively time-consuming to perform.

By performing a novel tree transformation to calculate the CCE score more efficiently, we were

able to compute the CCE scores efficiently enough to perform the detection test in real-time. As a

result, we could handle traffic rates close to 10 Gbps using both a GPU-based implementation and

an OpenMP multicore CPU-based implementation. In addition to the improved CCE algorithm,

this work considered some advantages and disadvantages of using different parallel architectures

for CTC detection. Initially, we attempted CTC detection using the Tilera TilePro64 [113] MPPA

architecture, but found issues with the flexibility compared to implementing detection on multicore

CPUs or GPUs using CUDA Thrust [58]. Overall, the GPU implementation performed the best

for testing the batches of packets.

7.4. Unusual Protocol Monitoring with Zeek

In addition to the anomaly detection itself, we wanted to provide tools for intrusion detection

that could be shared and expanded upon. In this work, we created a set of plugins and scripts

to improve the Zeek [14] network security monitor’s ability to monitor L3 and L4 protocol usage.

88

Although Zeek provides some protocol monitoring by default, it has limited visibility. A large

number of protocols are either disregarded or reported as ”unknown protocols.” Therefore, the

primary contribution of this work was to provide these tools to improve unusual protocol monitoring

with Zeek. The plugins and script have been provided in a publicly available GitHub repository. In

addition, we provided extra Python scripts for analysis such as clustering the data contained in the

new protocol log files. A variety of options are provided, such as logging new top protocols, logging

the distribution of protocols periodically, and protocols appearing for the first time. To demonstrate

a possible use case for these tools, we demonstrate the effectiveness of detecting DDoS attacks

using new logs. We found that clustering the statistics recorded in the protocol distribution logs

was effective for detecting DDoS attacks, assuming the protocol distributions remained relatively

consistent. The Science DMZ is more predictable in terms of protocols seen than general purpose

networks, making it well-suited for this form of detection.

There are a variety of ways in which this work could be expanded. First, the code we provide

could be updated with new features. Currently the tools primarily log L3 and L4 protocol usage

statistics, as these were the protocols least visible to Zeek by default, but the plugins and scripts

could be expanded to log L7 statistics as well. In addition to adding more features, future work

should try to apply these tools for detecting a wider variety of attacks. Although we’ve shown

that the statistics gathered can be useful for detecting DDoS attacks, future experiments should

try detecting a wider variety of attacks. This could include other varieties of DDoS attacks such

as Crossfire [114], or even insider attacks and obfuscation attempts. There is already an option

available for logging case where application layer protocols are observed over atypical L4 protocols

(for example, SSH over UDP). This feature could possibly be applied to detect hidden SSH sessions

as seen with our PDF obfuscation tool. Overall, the tools provided in this work should help improve

detection with Zeek and serve as a starting point for future anomaly-detection using protocol usage

statistics.

7.5. Conclusion

Throughout our research, we have found effective methods of anomaly detection for the Science

DMZ which could reliably detecting common threats. In general, consistent anomaly detection is

89

challenging to perform due to a wide variety of possible threats and the difficulty of interpreting

the anomalies [8]. However, the relatively limited behavior seen in the Science DMZ networks

makes practical anomaly detection more feasible. In our work, we’ve demonstrated that we can

reliably detect common threats such as denial of service attacks through real-time anomaly-based

detection. We’ve also demonstrated that similar methods can be used to detect insider threats

such as data tampering or data exfiltration through obfuscation or covert channels. The projects

discussed in this dissertation should help demonstrate the potential for anomaly-based detection in

this environment, and serve as a starting point for future experiments.

90

Publications

(1) R. K. Gegan, “Unusual protocol monitoring with zeek,” (In preparation), 2020

(2) R. K. Gegan, R. Archibald, M. K. Farrens, and D. Ghosal, “Performance analysis of real-

time covert timing channel detection using a parallel system,” in International Conference

on Network and System Security, pp. 519–530, Springer, 2015

(3) R. K. Gegan, V. Ahuja, J. D. Owens, and D. Ghosal, “Real-time gpu-based timing channel

detection using entropy,” in 2016 IEEE Conference on Communications and Network

Security (CNS), pp. 296–305, IEEE, 2016

(4) R. Gegan, C. Mao, D. Ghosal, M. Bishop, and S. Peisert, “Anomaly detection for science

dmzs using system performance data,” in 2020 International Conference on Computing,

Networking and Communications (ICNC), pp. 492–496, IEEE, 2020

(5) R. K. Gegan, R. Archibald, M. K. Farrens, and D. Ghosal, “Performance analysis of real-

time covert timing channel detection using a parallel system,” in International Conference

on Network and System Security, pp. 519–530, Springer, 2015

91

Bibliography

[1] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The science dmz: A network design pattern for

data-intensive science,” Scientific Programming, vol. 22, no. 2, pp. 173–185, 2014.

[2] S. Peisert, E. Dart, W. Barnett, E. Balas, J. Cuff, R. L. Grossman, A. Berman, A. Shankar, and B. Tierney, “The

medical science dmz: a network design pattern for data-intensive medical science,” Journal of the American

Medical Informatics Association, vol. 25, no. 3, pp. 267–274, 2018.

[3] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu, and I. Foster, “The globus striped

gridFTP framework and server,” in Proceedings of the 2005 ACM/IEEE conference on Supercomputing, p. 54,

IEEE Computer Society, 2005.

[4] PerfSONAR, “PerfSONAR,” 2019.

[5] Y. Qin, A. Simonet, P. E. Davis, A. Nouri, Z. Wang, M. Parashar, and I. Rodero, “Towards a smart, internet-

scale cache service for data intensive scientific applications,” in Proceedings of the 10th Workshop on Scientific

Cloud Computing, pp. 11–18, 2019.

[6] J. Crichigno, E. Bou-Harb, and N. Ghani, “A comprehensive tutorial on Science DMZ,” IEEE Communications

Surveys & Tutorials, 2018.

[7] S. Peisert, W. Barnett, E. Dart, J. Cuff, R. L. Grossman, E. Balas, A. Berman, A. Shankar, and B. Tierney, “The

medical Science DMZ,” Journal of the American Medical Informatics Association, vol. 23, no. 6, pp. 1199–1201,

2016.

[8] R. Sommer and V. Paxson, “Outside the closed world: On using machine learning for network intrusion

detection,” in 2010 IEEE symposium on security and privacy, pp. 305–316, IEEE, 2010.

[9] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine learning tools and techniques.

Morgan Kaufmann, 2016.

[10] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited, revisited: why and how you

should (still) use dbscan,” ACM Transactions on Database Systems (TODS), vol. 42, no. 3, p. 19, 2017.

[11] A. Porta, G. Baselli, D. Liberati, N. Montano, C. Cogliati, T. Gnecchi-Ruscone, A. Malliani, and S. Cerutti,

“Measuring regularity by means of a corrected conditional entropy in sympathetic outflow,” Biological Cyber-

netics, vol. 78, no. 1, pp. 71–78, 1998.

[12] R. K. Gegan, R. Archibald, M. K. Farrens, and D. Ghosal, “Performance analysis of real-time covert timing

channel detection using a parallel system,” in Network and System Security, pp. 519–530, Springer, 2015.

92

[13] S. Gianvecchio and H. Wang, “An entropy-based approach to detecting covert timing channels,” IEEE Trans-

actions on Dependable and Secure Computing, vol. 8, no. 6, pp. 785–797, 2011.

[14] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer networks, vol. 31, no. 23-24,

pp. 2435–2463, 1999.

[15] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.,” in Lisa, vol. 99, pp. 229–238, 1999.

[16] A. Visconti, N. Fusi, and H. Tahayori, “Intrusion detection via artificial immune system: A performance-based

approach,” in IFIP International Conference on Biologically Inspired Collaborative Computing, pp. 125–135,

Springer, 2008.

[17] A. Aqil, A. O. Atya, T. Jaeger, S. V. Krishnamurthy, K. Levitt, P. D. McDaniel, J. Rowe, and A. Swami, “Detec-

tion of stealthy TCP-based DoS attacks,” in MILCOM 2015-2015 IEEE Military Communications Conference,

pp. 348–353, IEEE, 2015.

[18] E. Lawrence Berkeley National Lab, “DTN tuning,” 2019.

[19] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for discovering clusters in large

spatial databases with noise.,” in Kdd, vol. 96, pp. 226–231, 1996.

[20] N. S. Foundation, “Campus cyberinfrastructure (cc*) program solicitation,” 2019.

[21] A. Hanemann, J. W. Boote, E. L. Boyd, J. Durand, L. Kudarimoti, R. Lapacz, D. M. Swany, S. Trocha, and

J. Zurawski, “Perfsonar: A service oriented architecture for multi-domain network monitoring,” in International

conference on service-oriented computing, pp. 241–254, Springer, 2005.

[22] T. Park, Y. Kim, J. Park, H. Suh, B. Hong, and S. Shin, “Qose: Quality of security a network security

framework with distributed nfv,” in 2016 IEEE International Conference on Communications (ICC), pp. 1–6,

IEEE, 2016.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural net-

works,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[24] V. Chandola, V. Mithal, and V. Kumar, “Comparative evaluation of anomaly detection techniques for sequence

data,” in 2008 Eighth IEEE international conference on data mining, pp. 743–748, IEEE, 2008.

[25] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM computing surveys (CSUR),

vol. 41, no. 3, p. 15, 2009.

[26] ESnet, “ESnet,” 2019.

[27] A. Giannakou, D. Gunter, and S. Peisert, “Flowzilla: A methodology for detecting data transfer anomalies in

research networks,” in 2018 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS), pp. 1–9,

IEEE, 2018.

[28] K. Tools, “hping3. ICMP or SYN flooding tool,” 2014.

[29] M. Hahsler, M. Piekenbrock, and D. Doran, “dbscan: Fast density-based clustering with r,” Journal of Statistical

Software, vol. 25, pp. 409–416.

93

[30] V. Nagendra, V. Yegneswaran, and P. Porras, “Securing ultra-high-bandwidth science dmz networks with

coordinated situational awareness,” in Proceedings of the 16th ACM Workshop on Hot Topics in Networks,

pp. 22–28, ACM, 2017.

[31] P. J. Hawrylak, G. Louthan, J. Hale, and M. Papa, “Practical cyber-security solutions for the science dmz,” in

Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning),

pp. 1–6, 2019.

[32] W. Hong, J. Moon, W. Seok, and J. Chung, “Enhancing data transfer performance utilizing a dtn between

cloud service providers,” Symmetry, vol. 10, no. 4, p. 110, 2018.

[33] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak, The CERT guide to insider threats: how to prevent, detect,

and respond to information technology crimes (Theft, Sabotage, Fraud). Addison-Wesley, 2012.

[34] L. Liu, O. De Vel, Q.-L. Han, J. Zhang, and Y. Xiang, “Detecting and preventing cyber insider threats: A

survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1397–1417, 2018.

[35] I. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and M. Ochoa, “Insight into insiders and it: A survey of insider

threat taxonomies, analysis, modeling, and countermeasures,” ACM Computing Surveys (CSUR), vol. 52, no. 2,

pp. 1–40, 2019.

[36] N. Nguyen, P. Reiher, and G. H. Kuenning, “Detecting insider threats by monitoring system call activity,” in

IEEE Systems, Man and Cybernetics SocietyInformation Assurance Workshop, 2003., pp. 45–52, IEEE, 2003.

[37] A. Awad, S. Kadry, G. Maddodi, S. Gill, and B. Lee, “Data leakage detection using system call provenance,”

in 2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 486–491,

IEEE, 2016.

[38] S. Trivedi, L. Featherstun, N. DeMien, C. Gunlach, S. Narayan, J. Sharp, B. Werts, L. Wu, C. Ellis, L. Goren-

stein, et al., “Pulsar: Deploying network monitoring and intrusion detection for the science dmz,” in Proceedings

of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning), pp. 1–8,

2019.

[39] J. Nikolai and Y. Wang, “A system for detecting malicious insider data theft in iaas cloud environments,” in

2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2016.

[40] A. Oppermann, F. G. Toro, F. Thiel, and J.-P. Seifert, “Anomaly detection approaches for secure cloud reference

architectures in legal metrology.,” in CLOSER, pp. 549–556, 2018.

[41] D. M. Cappelli, A. P. Moore, and E. D. Shaw, “A risk mitigation model: Lessons learned from actual insider

sabotage,” tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST,

2006.

[42] M. Bishop, D. Gollmann, J. Hunker, and C. W. Probst, “08302 abstracts collection–countering insider threats,”

in Dagstuhl Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

[43] E. Mouw, “Linux kernel procfs guide,” 2001.

94

[44] A. F. M. M. M. Meo, M. Munafo, and D. Rossi, “10-year experience of internet traffic monitoring with tstat,”

2020.

[45] M. Seger, “Collectl,” 2014.

[46] S. Cabuk, “Network covert channels: Design, analysis, detection, and elimination,” 2006.

[47] K. Tsiamoura, “A survey of trends in fast packet processing,” Network, vol. 41, 2014.

[48] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-accelerated software router,” ACM SIGCOMM

Computer Communication Review, vol. 41, no. 4, pp. 195–206, 2011.

[49] J. Zheng, D. Zhang, Y. Li, and G. Li, “Accelerate packet classification using GPU: A case study on HiCuts,”

in Computer Science and its Applications, pp. 231–238, Springer, 2015.

[50] K. Kothari and M. Wright, “Mimic: An active covert channel that evades regularity-based detection,” Computer

Networks, vol. 57, no. 3, pp. 647–657, 2013.

[51] R. Strzodka, M. Doggett, and A. Kolb, “Scientific computation for simulations on programmable graphics

hardware,” Simulation Modelling Practice and Theory, vol. 13, no. 8, pp. 667–680, 2005.

[52] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and S. Zhang, “IP routing processing with graphic processors,”

in Proceedings of the Conference on Design, Automation and Test in Europe, pp. 93–98, European Design and

Automation Association, 2010.

[53] M. H. Kang, I. S. Moskowitz, and S. Chincheck, “The pump: A decade of covert fun,” in Computer Security

Applications Conference, 21st Annual, pp. 7–pp, IEEE, 2005.

[54] W.-M. Hu, “Reducing timing channels with fuzzy time,” Journal of computer security, vol. 1, no. 3–4, pp. 233–

254, 1992.

[55] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi, “ElephantTrap: A low cost device for identifying large flows,”

in 15th Annual IEEE Symposium on High-Performance Interconnects, HOTI 2007, pp. 99–108, IEEE, 2007.

[56] Y. Lin and G. Medioni, “Mutual information computation and maximization using GPU,” in IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW’08, pp. 1–6, IEEE, 2008.

[57] S. Shao, C. Guo, W. Luk, and S. Weston, “Accelerating transfer entropy computation,” in International Con-

ference on Field-Programmable Technology, pp. 60–67, IEEE, 2014.

[58] L.-t. Lo, C. Sewell, and J. P. Ahrens, “PISTON: A portable cross-platform framework for data-parallel visual-

ization operators,” in EGPGV, pp. 11–20, 2012.

[59] M. Mukerjee, D. Naylor, and B. Vavala, “Packet processing on the GPU,”

[60] “Ntop.” http://www.ntop.org.

[61] “Impressive packet processing performance enables greater workload consolidation.” Intel Solution Brief, 2013.

Accessed: Whitepaper.

[62] L. Rizzo, “Netmap: a novel framework for fast packet I/O,” in 21st USENIX Security Symposium (USENIX

Security 12), pp. 101–112, 2012.

95

http://www.ntop.org

[63] S. Gallenmuller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle, “Comparison of frameworks for high-

performance packet IO,” in ACM/IEEE Symposium on Architectures for Networking and Communications

Systems, pp. 29–38, IEEE, 2015.

[64] I. Matta and L. Guo, “Differentiated predictive fair service for TCP flows,” in Network Protocols, 2000. Pro-

ceedings. 2000 International Conference on, pp. 49–58, IEEE, 2000.

[65] K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang, “SIFT: A simple algorithm for tracking elephant flows,

and taking advantage of power laws,” in 43rd Allerton Conference on Communication, Control and Computing,

Citeseer, 2005.

[66] “Nvidia.” http://www.nvidia.com/object/tesla-workstations.html. Accessed: 2015-03-28.

[67] “Caida data..” http://www.caida.org/data/overview/.

[68] W. Sun and R. Ricci, “Fast and flexible: parallel packet processing with GPUs and click,” in Proceedings of

the Ninth ACM/IEEE symposium on Architectures for Networking and Communications Systems, pp. 25–36,

IEEE Press, 2013.

[69] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and K. Park, “Kargus: a highly-scalable

software-based intrusion detection system,” in Proceedings of the 2012 ACM Conference on Computer and

Communications Security, pp. 317–328, ACM, 2012.

[70] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis, “Gnort: High performance

network intrusion detection using graphics processors,” in Recent Advances in Intrusion Detection, pp. 116–134,

Springer, 2008.

[71] M. Varvello, R. Laufer, F. Zhang, and T. Lakshman, “Multi-layer packet classification with graphics processing

units,” in Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and

Technologies, pp. 109–120, ACM, 2014.

[72] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the bar for using GPUs in software packet

processing,” in 12th USENIX Symposium on Networked Systems Design and Implementation, NSDI 15, pp. 409–

423, 2015.

[73] R. Archibald and D. Ghosal, “A comparative analysis of detection metrics for covert timing channels,” Comput.

Secur., vol. 45, pp. 284–292, Sept. 2014.

[74] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mechanisms,” ACM SIGCOMM

Computer Communication Review, vol. 34, no. 2, pp. 39–53, 2004.

[75] A. Koay, A. Chen, I. Welch, and W. K. Seah, “A new multi classifier system using entropy-based features in

ddos attack detection,” in Information Networking (ICOIN), 2018 International Conference on, pp. 162–167,

IEEE, 2018.

[76] L. Li and G. Lee, “Ddos attack detection and wavelets,” Telecommunication Systems, vol. 28, no. 3-4, pp. 435–

451, 2005.

96

http://www.nvidia.com/object/tesla-workstations.html
http://www.caida.org/data/overview/

[77] E. D. Dart, K. A. Antypas, G. R. Bell, E. W. Bethel, R. Carlson, V. Dattoria, K. De, I. T. Foster, B. Helland,

M. C. Hester, et al., “Advanced scientific computing research network requirements review: Final report 2015,”

2016.

[78] “Impact Cyber Trust.” https://www.impactcybertrust.org.

[79] “DNS AMPL DDOS.” https://www.impactcybertrust.org/dataset_view?idDataset=580.

[80] “DDoS CHARGEN.” https://www.impactcybertrust.org/dataset_view?idDataset=693.

[81] “SSDP DDoS Attack.” https://www.impactcybertrust.org/dataset_view?idDataset=572.

[82] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti, “Millions of targets under attack: a

macroscopic characterization of the dos ecosystem,” in Proceedings of the 2017 Internet Measurement Confer-

ence, pp. 100–113, ACM, 2017.

[83] “Cisco NetFlow.” https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.

html.

[84] V. A. Siris and F. Papagalou, “Application of anomaly detection algorithms for detecting syn flooding attacks,”

in Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, vol. 4, pp. 2050–2054, IEEE, 2004.

[85] T. Jin, C. Tracy, and M. Veeraraghavan, “Characterization of high-rate large-sized flows,” in Communications

and Networking (BlackSeaCom), 2014 IEEE International Black Sea Conference on, pp. 73–76, IEEE, 2014.

[86] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial of service attacks: Characterization

and implications for cdns and web sites,” in Proceedings of the 11th international conference on World Wide

Web, pp. 293–304, ACM, 2002.

[87] H. Wang, D. Zhang, and K. G. Shin, “Detecting syn flooding attacks,” in INFOCOM 2002. Twenty-First

Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3,

pp. 1530–1539, IEEE, 2002.

[88] V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe, and H. Zhang, “Lads: Large-scale automated

ddos detection system.,” in USENIX Annual Technical Conference, General Track, pp. 171–184, 2006.

[89] S. Peisert, “Security in high-performance computing environments,” Communications of the ACM, vol. 60,

no. 9, pp. 72–80, 2017.

[90] V. Paxson, R. Sommer, S. Hall, C. Kreibich, J. Barlow, G. Clark, G. Maier, J. Siwek, A. Slagell, D. Thayer,

et al., “The bro network security monitor,” 2012.

[91] A. Mandal, P. Ruth, I. Baldin, D. Król, G. Juve, R. Mayani, R. F. Da Silva, E. Deelman, J. Meredith,

J. Vetter, et al., “Toward an end-to-end framework for modeling, monitoring and anomaly detection for scientific

workflows,” in Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International, pp. 1370–

1379, IEEE, 2016.

[92] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez, “Anomaly-based network intrusion

detection: Techniques, systems and challenges,” computers & security, vol. 28, no. 1-2, pp. 18–28, 2009.

97

https://www.impactcybertrust.org
https://www.impactcybertrust.org/dataset_view?idDataset=580
https://www.impactcybertrust.org/dataset_view?idDataset=693
https://www.impactcybertrust.org/dataset_view?idDataset=572
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html

[93] M. Holkovič, O. Ryšavỳ, and J. Dudek, “Automating network security analysis at packet-level by using rule-

based engine,” in Proceedings of the 6th Conference on the Engineering of Computer Based Systems, pp. 1–8,

2019.

[94] A. Khan, A feature taxonomy for network traffic. PhD thesis, University of Delaware, 2019.

[95] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing realistic distributed denial of service

(ddos) attack dataset and taxonomy,” in 2019 International Carnahan Conference on Security Technology

(ICCST), pp. 1–8, IEEE, 2019.

[96] https://github.com/rgegan/unusual protocols, “Uncommon protocol statistics and detection,” 2020.

[97] Zeek, “Faq,” 2020.

[98] R. Gegan, B. Perry, D. Ghosal, and M. Bishop, “Insider attack detection for science dmzs using system per-

formance data,” in 2020 IEEE Conference on Communications and Network Security (CNS), pp. 1–9, IEEE,

2020.

[99] M. Szmit, R. Weżyk, M. Skowroński, and A. Szmit, “Traffic anomaly detection with snort,” Information Systems

Architecture and Technology. Information Systems and Computer Communication Networks, Wydawnictwo

Politechniki Wroc lawskiej, Wroc law, pp. 181–187, 2007.

[100] J. Grashöfer, C. Titze, and H. Hartenstein, “Attacks on dynamic protocol detection of open source network

security monitoring tools,” in 2020 IEEE Conference on Communications and Network Security (CNS), pp. 1–9,

IEEE, 2020.

[101] Spicy, “Generating parsers for protocols files,” 2020.

[102] P. Drakos, “Implement a security policy and identify advance persistent threats (apt) with zeek anomaly

detection mechanism,” 2020.

[103] T. R. Rice, G. Seppala, T. Edgar, E. Choi, D. Cain, and S. Mahserejian, “Development of a host-based

intrusion detection and control device for industrial field control devices,” in 2019 Resilience Week (RWS),

vol. 1, pp. 105–111, IEEE, 2019.

[104] https://github.com/zeek/zeek/issues/248, “Generating parsers for protocols files,” 2020.

[105] J. Iyengar and M. Thomson, “Quic: A udp-based multiplexed and secure transport,” Internet Engineering Task

Force, Internet-Draft draftietf-quic-transport-17, 2018.

[106] E. Damon, J. Dale, E. Laron, J. Mache, N. Land, and R. Weiss, “Hands-on denial of service lab exercises

using slowloris and rudy,” in proceedings of the 2012 information security curriculum development conference,

pp. 21–29, 2012.

[107] “Slowloris attack sample.” https://kb.mazebolt.com/knowledgebase/slowloris-attack/. Accessed: 2021-

04-10.

[108] “Ip null attack description.” https://ddos-guard.net/en/terminology/attack_type/ip-null-attack. Ac-

cessed: 2021-04-10.

98

https://kb.mazebolt.com/knowledgebase/slowloris-attack/
https://ddos-guard.net/en/terminology/attack_type/ip-null-attack

[109] S. Hall, “Http stalling detector.” https://github.com/corelight/http-stalling-detector/, 2018.

[110] L. Cadalzo, C. H. Todd, B. Obayomi, W. B. Moore, and A. C. Wong, “Canopy: A learning-based approach for

automatic low-and-slow ddos mitigation,” 2021.

[111] R. Gegan, C. Mao, D. Ghosal, M. Bishop, and S. Peisert, “Anomaly detection for science dmzs using system

performance data,” in 2020 International Conference on Computing, Networking and Communications (ICNC),

pp. 492–496, IEEE, 2020.

[112] F. Rezaei, M. Hempel, P. L. Shrestha, and H. Sharif, “Achieving robustness and capacity gains in covert timing

channels,” in 2014 IEEE International Conference on Communications (ICC), pp. 969–974, IEEE, 2014.

[113] “Tilera tilepro64 overview.” http://www.tilera.com/sites/default/files/productbriefs/.

[114] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in 2013 IEEE symposium on security and

privacy, pp. 127–141, IEEE, 2013.

[115] R. K. Gegan, “Unusual protocol monitoring with zeek,” (In preparation), 2020.

[116] R. K. Gegan, R. Archibald, M. K. Farrens, and D. Ghosal, “Performance analysis of real-time covert tim-

ing channel detection using a parallel system,” in International Conference on Network and System Security,

pp. 519–530, Springer, 2015.

[117] R. K. Gegan, V. Ahuja, J. D. Owens, and D. Ghosal, “Real-time gpu-based timing channel detection using

entropy,” in 2016 IEEE Conference on Communications and Network Security (CNS), pp. 296–305, IEEE, 2016.

99

https://github.com/corelight/http-stalling-detector/
http://www.tilera.com/sites/default/files/productbriefs/

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Science DMZ
	1.2. Outline of Contributions

	Chapter 2. Anomaly Detection Using System Performance Data
	2.1. Introduction
	2.2. Science DMZ
	2.3. System Performance Metrics
	2.4. Machine Learning for Anomaly detection
	2.5. DBSCAN
	2.6. Experimental Setup
	2.7. Evaluation and Discussion
	2.8. Conclusions and Future Work

	Chapter 3. Insider Attack Detection Using System Performance Data
	3.1. Introduction
	3.2. Background and Related Work
	3.3. Data Obfuscation Attack Scenario
	3.4. Data Sabotage Detection
	3.5. Experimental Setup
	3.6. Results and Evaluation
	3.7. Conclusions and Future Work

	Chapter 4. Covert Timing Channel Detection
	4.1. Introduction
	4.2. Timing Channels and Detection
	4.3. Corrected Conditional Entropy
	4.4. System Design and Experimental Setup
	4.5. Results and Discussions
	4.6. Related Work
	4.7. Conclusion and Future Work

	Chapter 5. Denial of Service Detection on High-Throughput Research Networks
	5.1. Introduction
	5.2. Characterization of DDoS Attacks
	5.3. DDoS Detection Algorithms
	5.4. Performance Evaluation
	5.5. Related Work
	5.6. Conclusion and Future Work
	5.7. Sharing Statement

	Chapter 6. Unusual Protocol Monitoring with Zeek
	6.1. Introduction
	6.2. Background and Related Work
	6.3. Zeek Plugins and Scripts
	6.4. Anomaly Detection
	6.5. Conclusions and Future Work

	Chapter 7. Conclusion
	7.1. Anomaly Detection Using System Performance Data
	7.2. Insider Attack Detection Using System Performance Data
	7.3. Covert Timing Channel Detection
	7.4. Unusual Protocol Monitoring with Zeek
	7.5. Conclusion

	Publications
	Bibliography

