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ABSTRACT OF THE DISSERTATION

Theoretical and Numerical Analyses of Flow and Transport in the Spinal Canal

by

Jenna Joaquin Lawrence

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2021

Professor Antonio Sánchez, Chair

Cerebrospinal fluid (CSF) is a water-like fluid that surrounds the brain and the spinal cord,

together known as the central nervous system (CNS). CSF provides a physical cushion for the

CNS and also plays an important physiological role by maintaining the electrolytic environment,

transporting hormones, circulating nutrients and chemicals filtered from the blood, and removing

waste products from cell metabolism of the CNS. It is generally accepted that the absence of CSF

circulation may compromise the normal physiological functions of the CNS. CSF circulation

also provides a mechanism for the delivery of potent analgesics and chemotherapy to the CNS, a

drug delivery procedure often referred to as intrathecal drug delivery (ITDD). Despite significant

efforts, most of these processes remain poorly understood.

xv



This dissertation analyzes CSF flow and solute transport along the spinal canal by using

asymptotic methods based on the disparity of length and time scales associated with this problem.

In addition to the oscillatory flow induced by the cardiac and respiratory cycles, with zero time-

averaged velocity at any location, it is found that small corrections associated with the convective

acceleration and canal deformation lead to a nonzero steady-streaming velocity. This small steady

velocity, together with Stokes drift caused by the non-uniform oscillatory flow, determines the

slow time-averaged Lagrangian motion of the CSF, which is found to be responsible for the

transport of solutes along the canal. A key outcome of the analysis is a time-averaged transport

equation that describes solute dispersion in the long-time scale. The use of this simplified equation

circumvents the need to compute concentration fluctuations resulting from the fast oscillatory

motion in the short-time scale, drastically reducing the associated computational times. The

accuracy and limitations of the time-averaged description are tested by comparison to the results

of direct numerical simulations spanning hundreds of oscillation cycles, as needed to generate

significant dispersion of the solute. The analysis is extended to study effects of buoyancy-induced

motion, arising when the injected solute has a density that differs from that of the CSF. For the

small density differences that characterize ITDD drugs, buoyancy is found to have a significant

effect on the convective transport, leading to large changes in the resulting solute-dispersion

patterns. Finally, the classical problem of oscillatory flow past a circular cylinder is extended to

the case of a streamwise periodic array of cylinders, providing insight regarding the effects of

spinal-canal micro-anatomical features, such as trabeculae, ligaments, and nerve roots, on the

flow and transport in the spinal canal.
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Chapter 1

Introduction

1.1 Relevant Physiology

Cerebrospinal fluid (CSF) is the fluid that fills the cranial and spinal subarachnoid spaces

as well as the ventricles of the brain, as shown in figure 1.1(b). CSF is a Newtonian fluid with

density ρ and viscosity ν similar to those of water at typical body temperatures [5, 48]. The

primary functions of CSF are to cushion the brain within the skull, reduce compression on the

spinal cord via buoyancy, circulate nutrients filtered from the blood, and remove waste products

from cell metabolism of the central nervous system (CNS) [22, 23, 66]. It is generally accepted

that the CSF circulation is essential for normal physiological function [90].

CSF is continuously secreted from the blood by the choroid plexus in the ventricles and

absorbed at the arachnoid villi [8, 11, 15, 16, 53, 54, 62]. In healthy humans, these two processes

are balanced to maintain a constant CSF volume of ∼ 140− 170 cm3, of which ∼ 30 cm3 is

contained in the ventricles, ∼ 70−80 cm3 is contained in the cranial subarachnoid space, and

∼ 40− 60 cm3 is contained in the spinal subarachnoid space. Under normal physiological

conditions, the CSF is produced and absorbed at a rate of ∼ 0.3−0.4 cm3/min so that the entire

volume of CSF is replaced every 6-10 hours [16, 33, 52, 63].
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Figure 1.1: Schematic of the spinal canal, showing (a) the overall structure and most common
injection route in ITDD, (b) cranial anatomy, (c) simplified spinal canal anatomy, not including
smaller features such as nerve roots or trabeculae, showing the coordinate system and (d) the
location of the nerve roots along the canal, from [76].
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The spinal subarachnoid space (SSAS) is a thin annular canal bound internally by the pia

mater and externally by the dura membrane, as indicated in figure 1.1(a) and 1.1(c). Although

the shape of the spinal canal is fundamentally slender and slowly varying in healthy humans,

patient-to-patient geometrical variability can be sometimes significant; for example, the average

canal width in the thoracic region of similarly aged healthy adults with similar stature can range

from 2 mm to 4 mm [1, 76]. The geometry of the canal is complicated by the presence of local

anatomical features such as nerve roots, which are depicted in figure 1.1(d). Additional local

modifications of the geometry are associated with certain injuries and conditions. For example,

patients with a type 1 Chiari malformation (CM1) are prone to develop syringomyelia, a pathology

characterized by the formation of a cyst or syrinx in the central canal of the spinal cord [46]. The

latter can lead to a partial obstruction of the surrounding SSAS with detrimental consequences

such as weakness or even loss of sensitivity in arms and legs. It has been hypothesized that there

is a link between an anomalous CSF flow caused by the CM1 and the formation and growth of

the syrinx [81].

1.2 Flow in the Spinal Canal

1.2.1 In-Vivo Observations

A major feature of cerebrospinal fluid flow is its oscillation, which is driven mainly by the

intracranial pressure fluctuations that occur with each heart beat as a result of the cyclic variation

of the cerebrovascular blood volume [3, 21]. As follows from conservation of intracranial volume,

sometimes referred to as the Monro-Kellie doctrine or hypothesis [56], this pressure fluctuation

drives CSF periodically into and out of the compliant spinal canal [21]. The oscillating CSF

flow is accommodated by the compression of the veins and fatty tissue in the epidural space that

surrounds the dural sac. The compliance of the canal is limited, with the result that the tidal

volume of CSF flowing across the foramen magnum from the cranial vault into the SSAS during
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each cardiac cycle is approximately ∆V = 1− 2 cm3 [46], corresponding to a small fraction

(2% to 3%) of the total CSF volume V ' 40−60 cm3 contained inside the spinal canal. As a

consequence, the stroke length of the fluctuating motion is just a few centimeters, resulting in

velocities that are of the order of a few centimeters per second in the cervical region, progressively

diminishing along the canal to reach much smaller values in the lumbar region.

In addition to this oscillatory flow, it has been known since the early radiological observa-

tions of DiChiro [17] that the CSF exhibits a slow bulk motion with characteristic velocities of

the order of 1 centimeter per minute, much smaller than those of the periodic fluctuating flow,

and corresponding characteristic residence times of the order of 30 minutes, much longer than

the period of the oscillating motion (about 1 second). He also showed the rapid migration of

the compound injected in the brain ventricles downwards into the spinal canal [18, 19]. These

findings, later corroborated by several radiological studies [23, 44], support the idea that there

must be an active circulation mechanism associated with the overall movement of CSF.

1.2.2 Recent Theoretical and Numerical Efforts

The slow bulk motion of CSF in the SSAS is theorized to be the result of a steady-

streaming phenomenon, presented in detail in a recent publication [75]. The analysis models the

SSAS as a slowly varying annular canal with limited compliance, measured by a small parameter

ε∼ ∆V/V ∼ 1/50. The oscillatory motion is determined in the first approximation by a linear

unsteady lubrication problem. The nonlinear terms associated with the convective acceleration

and canal deformation produce a small velocity correction with a steady component, which is

commonly referred to as steady-streaming [74]. The resulting magnitude of this steady velocity

is a factor ε smaller than that of the oscillatory flow, consistent with experimental observations.

Recent numerical computations with anatomically correct geometries have verified the existence

of steady streaming [37] and show increased amounts of steady streaming resulting from the

presence of nerve roots in the cervical region. Steady streaming in the SSAS was also identified
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in earlier work in connection with the presence of the catheter used to infuse the drug [6, 59].

Besides the steady-streaming component of the Eulerian velocity field, there are a number

of additional transport mechanisms that may contribute to the dispersion of the drug along the

spinal canal. For example, an analysis of viscous oscillating flow near a wavy wall showed that

the Lagrangian mean motion of an oscillating fluid particle may contain a contribution arising

from Stokes drift [41]. This is a purely kinematic effect associated with the spatial nonuniformity

of the pulsatile flow. In the presence of a velocity gradient, a fluid particle subject to an oscillating

velocity field experiences small velocity variations, so that it does not return to its initial position

at the end of each cycle. The small cyclical displacements accumulate in time, leading to a

long-term motion known as Stokes drift, with associated velocities that are comparable to those

of steady streaming [41].

Another mechanism that has been postulated to be relevant to drug dispersion in the SSAS

is the enhancement of the streamwise transport rate arising from the coupling of the velocity

shear with the transverse diffusion [46], a phenomenon known as Taylor dispersion [85]. Taylor

dispersion, described theoretically for oscillatory flow in a pipe by Watson [89], is particularly

effective in gaseous flow, for which the molecular diffusivity of the solute κ is comparable to the

kinematic viscosity of the carrier fluid ν (i.e. values of the Schmidt number S = ν/κ∼ 1). For

example, Taylor dispersion is known to play an important role in the transport of oxygen and

carbon dioxide in the lung airways during pulmonary high-frequency ventilation [24], involving

high-frequency oscillatory flows with small tidal volumes. The effects of Taylor dispersion in

solute transport in liquids are necessarily limited by the smaller solute diffusivities. Although the

resulting effective diffusion velocities along the spine have been estimated to be negligibly small

[75], more work is necessary to quantify diffusion enhancement stemming from the presence of

micro-anatomical features [46].

The existence of two markedly different time scales (i.e. a period of oscillation of about 1

second and a residence time of about 30 minutes) hinders computational efforts, limiting their
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long-time predictive capability and their potential for providing understanding of the specific

physical mechanisms that determine the drug-dispersion rate along the spinal canal. In particular,

since solute transport in oscillatory flow is associated with nonlinear mechanisms (e.g. steady

streaming, Stokes drift, and Taylor dispersion) that have an accumulative effect over many cycles,

computational analyses based on numerical integrations over a finite number of cycles are not well

suited for investigating drug dispersion. Despite these inherent limitations, previous numerical

analyses have helped understand local aspects of the problem. Many of the previous numerical

studies of CSF flow and solute transport have been based on modeling of short segments of the

SSAS. Most of these investigations consider rigid walls and open input and output cross sections,

with boundary velocity profiles adjusted to satisfy some radiological measurements [39]. The

effect of deformable walls has been included in some simulations [46], which have been recently

extended to patient-specific 3D models of the anatomy of the canal. Some of these computational

studies also include modeling of pharmacokinetics parameters such as drug enzymatic decay,

tissue uptake, and clearance by the blood [65, 82].

1.3 Intrathecal Drug Delivery

The treatment of a number of CNS pathologies, including some cancers of the CNS, and

management of severe chronic and post-operative pain sometimes involves the direct injection

of medication into the CSF. This procedure, used since the early 1980s [61], is often referred

to as intrathecal drug delivery (ITDD). The standard ITDD protocol consists of placing a small

catheter in the SSAS of the lumbar region to continuously pump the drug or to release a finite

dose at selected times. Sometimes ITDD is used to deliver the drug to sites along the spinal cord

close to the location of injection, while in other cases the medication is delivered to distant target

sites in the brain. The most easily accessed and most commonly used injection route is a puncture

in the posterior spine in the lumbar area, typically using the L3/L4 intervertebral space indicated

6



in figure 1.1(a).

ITDD allows for the use of potent analgesic drugs that cannot be administered systemically

because of metabolic or other biochemical reasons, an example being ziconoide, an analgesic

agent for the amelioration of severe and chronic pain [7, 26, 38, 40, 59, 64]. More importantly, as

compared to systemic drug delivery methods, such as oral, transdermal, or intravenous delivery,

ITDD reduces the amount of medication needed to treat a given condition by a factor as large as

300, thereby drastically diminishing life-threatening side effects [51]. It is also useful to treat

cases of CSF infection (e.g. meningitis) that require direct and prompt antibiotic therapy [71].

In addition, ITDD is used to bypass the blood-brain barrier in treatments of certain cancers that

have reached the CNS, including some types of lymphoma, medulloblastoma, oligodendroglioma,

and intracranial germ-cell tumors [43]. As in the case of pain and antibiotic medication, the

advantage of ITDD chemotherapy is to maximize CNS exposure to the drug while reducing or

even eliminating systemic drug toxicity as compared with intravenous or oral delivery.

Although ITDD is currently used with satisfactory results, the drug dispersion rate is rather

unpredictable and exhibits dependences that are not thoroughly understood. For instance, it has

been shown that doubling the heart rate causes a 26.4% decrease in intrathecal drug concentration

at the injection site due to a faster drug dispersion rate along the canal [29]. It has also been shown

that doubling the stroke volume of CSF across the foramen magnum may decrease intrathecal

drug concentration at the injection site up to 38% [10]. Patient posture and amplitude of the

intracranial pressure have also been shown to affect the motion of the CSF and the dispersion of

the drug in the spinal canal [77].

Typical intrathecal drug densities are similar to that of the CSF, with density differences in

the range of 1/1000 to 1/100 [48, 60]. In spinal anaesthesia, it is common to use the term baricity

to refer to the relative density of the anaesthetic to the CSF. Hyperbaric means that the anaesthetic

is more dense than the CSF, hypobaric means that the anaesthetic is less dense than the CSF,

and isobaric means that the anaesthetic is the same density as the CSF. Barker was the first to
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use dextrose as a method of increasing the baricity to better control the spread of intrathecal

anesthetics [2]. More recent findings have shown that for a hyperbaric solution, injection while the

patient is seated for some time before moving to a supine position leads to an inital restriction in

the transport of the anaesthesia; however, given enough time in the supine position, the injection

position is irrelevant [55, 67, 87]. For a hypobaric solution, the sitting injection position leads to

more cephalad spread of the anaesthesia as compared to a lateral injection position [72]. Baricity

has no effect when injection occurs in the lateral position [25]. Positioning has no effect on an

isobaric solution [91]. Experimental evidence is clear that the density of the injected drug and the

position of the patient during injection both have an effect on the spread of the drug.

The limited predictive capability of drug-delivery rates to targeted locations, resulting

from a lack of a clear understanding of the complex convective and diffusive mechanisms

controlling the transport of the drug, may result in unexpected complications that cannot be

explained by current knowledge of pharmacokinetics [35, 63]. Recent studies have revealed

inexplicable variations in patient response, which may be attributed to differences in the physical

and molecular characteristics of the injected solution, and more importantly, to the patient

physiological parameters and specific anatomy and characteristics of the spinal canal. Inadvertent

over- or under-dosage may result in serious clinical consequences. Under-dosage may occur

in 30% or more of patients receiving standard regimes of chemotherapy and those who are

inadvertently under-dosed are at risk of a significantly reduced anticancer effect, with an estimated

20% relative reduction in survival rate [88]. In addition, over-dosing with anesthetic via ITDD may

produce serious consequences including acute nerve damage or chronic subclinical nerve damage

[9]. Thus, there is an imperative need to develop a methodology capable of accurately predicting

the dispersion of the drug along the spinal canal for the specific anatomy and physiological

conditions of the individual patient as well as for the molecular characteristics and injection rate

of the drug.
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1.4 Microanatomy in the Spinal Canal

The spinal canal is not an open channel, as modeled in previous work [75], but rather

contains a number of features that may affect the flow of cerebrospinal fluid and transport of

intrathecal drugs. Figure 1.1(d) shows an anatomical image of the nerve roots in the spinal canal,

approximately cylindrical objects branching off the spinal cord to deliver nerve signals to the rest

of the body, along with a 3D model of the SSAS including nerve roots from a recent publication

[76]. In addition to the nerve roots, the SSAS contains trabeculae and denticulate ligaments which

provide structure to the spinal canal and hold the spinal cord in place [57, 86].

Cerebrospinal fluid flow in the spinal canal is oscillatory, which in the presence of

obstacles is known to produce a small steady velocity component known as steady streaming. A

detailed formulation of steady streaming about a single cylinder for small oscillation amplitudes

finds both inner and outer streaming vortices [27]. A comprehensive regime diagram describing

how the streaming patterns depend on the governing dimensionless parameters shows that there

are at least four streaming regimes for a single simple object [12]. In general, steady streaming

about an obstacle depends on the oscillation amplitude s, the typical size of the object a, the

oscillation frequency ω, and the kinematic viscosity of the fluid ν. These quantities lead to the

definition of the Womersley number M = a/(ν/ω)1/2, which represents the inertial forces due

to oscillation as compared to the viscous forces caused by the cylinder, and the dimensionless

oscillation amplitude ε = s/a.

Steady streaming about multiple objects has also been studied. Numerical and experimen-

tal results for steady streaming about a pair of cylinders are shown in a recent publication [12].

Steady streaming is also utilized frequently in microfluidics, in which large arrays of cylinders

or other simple objects cause steady circulatory flow patterns that are used to trap particles for

imaging without direct contact [28, 45, 50]. In microfluidics, the cylinders and other objects used

are not semi-infinite, as in the aforementioned works, but rather confined axially which induces
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additional streaming patterns, as shown in some recent experiments [49, 68].

Several groups, using full direct numerical simulations, have studied the effect of mi-

croanatomical features in the spinal canal on local mixing, steady streaming, and transport. Some

find that the presence of the nerve roots enhances steady-streaming and therefore improves the

transport [37], while others directly show an increase in the transport of solutes due to the nerve

roots [79, 80]. An increase in drug dispersion due to the mixing patterns caused by the trabeculae

has also been found [83]. There is a clear need for detailed study of steady streaming past objects

in the spinal canal using classical steady-streaming methodologies.

1.5 Organization of Thesis

There are seven chapters in this thesis which are organized as follows.

The first (current) chapter describes typical healthy anatomy of the central nervous system,

focusing on cerebrospinal fluid and the spinal canal. Observations of cerebrospinal fluid motion

are explained as well as the use of cerebrospinal fluid motion in intrathecal drug delivery. The

observed effects of drug density and patient positioning are also listed. Finally, a brief overview

of spinal microanatomy and its theorized effects on drug dispersion is presented.

The second chapter studies fluid motion in a thin annular canal with an elastic outer wall

as a model of cerebrospinal fluid motion in the spinal canal. The driving force of the flow is the

oscillatory pressure in the cranial cavity, simplified here to be a cosine function. The elasticity of

the outer wall is small, such that the tidal volume in and out of the canal with each oscillation is

small compared to the total volume of cerebrospinal fluid in the canal. An asympototic analysis is

performed to determine the leading-order flow, which models the short-term oscillations, and the

steady-streaming flow, which models the long-term bulk motion. Lagrangian velocity components

are then found, which include both steady streaming and Stokes drift components. Results are

presented for a simplified geometry and then validated by comparison to full three-dimensional
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direct numerical simulations.

The third chapter uses the velocity field results from the previous chapter to investigate

the dispersion of a solute with the same density as the cerebrospinal fluid in the given flow.

Several distinguished limits of the Schmidt number, a dimensionless quantity that compares the

momentum diffusivity to the molecular diffusivity, are found in an order of magnitude analysis,

leading to different governing behaviors. Results are presented for a range of Schmidt numbers

for two geometries of interest. Again the results of the more simple asymptotic analysis are

validated by comparison to full three-dimensional direct numerical simulations.

The fourth chapter analyzes the transport for a solute with a density different from that

of the cerebrospinal fluid. The momentum and transport equations are now coupled, so the

buoyancy-induced velocity, a component of the Lagrangian velocity, varies with time. The same

distinguished limits of the Schmidt number appear, now with the inclusion of the Richardson

number to describe the effects of buoyancy as compared to the effects of convection. Results

are presented for the intermediate limit of Schmidt numbers and both positive and negative

Richardson numbers. The analysis is validated by comparison to full three-dimensional direct

numerical simulations.

The fifth chapter studies oscillatory flow past a streamwise periodic array of circular

cylinders as a simplified model of the nerve roots in the spinal canal. Asymptotic analysis is

performed in the distinguished limit of small oscillation amplitude and Womersley number of

order unity. Similar to chapter 2, the Eulerian velocity field contains a small steady correction term

known as steady streaming and the Lagrangian velocity field contains an additional component

due to Stokes drift. Transport of a solute is also briefly studied.

The sixth chapter suggests three areas of future work. The first suggestion is an extension

of the velocity field for a general intracranial pressure signal. The necessary equations are all

presented and it is suggested that this analysis is performed for a typical three peak intracranial

pressure signal. Second, the flow in the spinal canal driven by respiratory effects along the canal
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should also be investigated. Equations are presented, but the calculations and analysis remain to

be completed. Lastly, it is suggested that the transport of small particles is analyzed. The effect

of the Stokes number, which may be significant depending on the size or density of the particle,

as well as the effect of other body forces such as magnetism, are recommended areas of study.
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Chapter 2

Flow in the Spinal Canal

2.1 Characteristic Scales

CSF is an incompressible, Newtonian fluid with density ρ and kinematic viscosity ν

similar to those of water at body temperature. It fills the subarachnoid space of the spinal canal, a

thin annular gap surrounding the spinal cord bounded internally by the pia mater and externally by

the deformable dura membrane, as indicated in figure 1.1(c). The spinal canal is doubly slender,

in that its length L ∼ 60−80 cm, characteristic perimeter `c ∼ 2 cm, and characteristic width

hc ∼ 0.1 cm satisfy the inequalities

L� `c� hc. (2.1)

The associated total volume of CSF in the spinal canal is of the order of V ∼ L`chc ∼ 40−60

cm3.

The fluctuating motion of CSF in and out of the spinal canal is associated with the periodic

variation of the intracranial pressure, driven by the pulsating blood flow in the rigid cranial vault,

of angular frequency ω. In addition to the pulsation associated with the arterial blood flow, it has

been observed in several radiological studies [20, 36] that respiration produces a modulation of the

intracranial pressure, resulting in an additional oscillation of the CSF in the spinal canal at a lower
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frequency (12 to 18 cycles per minute in adults). For simplicity and reduced complexity of the

algebraic manipulations, our analysis assumes the cranial pressure to be a periodic function with

angular frequency ω, equal to that of that of the cardiac cycle. Section 6.1 shows an extension of

the following analysis for a general periodic pressure signal with multiple associated frequencies.

In the following development, the periodic pressure fluctuation in the cranial cavity is

written as (∆p)cΠ(t), where (∆p)c is the amplitude and Π(t) is a dimensionless periodic function.

The resulting volume flux is accommodated by the deformation of the dura membrane. For

simplicity, the displacement of the dura membrane is assumed to be linearly proportional to the

local pressure fluctuation, with a compliance factor γ′ whose characteristic value γ′c� hc/(∆p)c

defines the small parameter

ε =
γ′c

hc/(∆p)c
(2.2)

measuring the limited compliance of the canal as well as the small oscillatory displacements of

the CSF in the canal.

Because of the limited compliance of the spinal canal, the tidal volume that is displaced

along the canal during each cardiac cycle, ∆V ' εV ' 1− 2 cm3, is much smaller than V .

Correspondingly, the periodic flow involves axial displacements of order εL in times of order

ω−1, resulting in streamwise velocities of the CSF with characteristic values uc = εωL of the

order of a few cm/s near the entrance, progressively decaying along the canal to vanish at its

closed-end sacral region. The corresponding characteristic values of the azimuthal wc = εω`c and

transverse vc = εωhc velocities are much smaller, a consequence of the slenderness of the canal.

The slenderness of the flow is accounted for in defining a non-dimensional curvilinear

coordinate system (x,y,s), with x measuring the distance from the entrance scaled with L, y

measuring the transverse distance from the pia mater scaled with hc, and s measuring the

azimuthal distance, normalized with the local perimeter (see figure 1.1(c) for an indication of

the coordinate system). The corresponding non-dimensional velocity components (u,v,w) are

scaled with the characteristic velocities (uc,vc,wc) in the longitudinal, transverse and azimuthal
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directions respectively. The time is scaled with the period of the angular frequency ω−1 to

give the dimensionless variable t. Correspondingly, the velocity is 2π periodic in t. The shape

of the canal is described by the dimensionless inner perimeter `(x) (scaled with lc) and the

width distribution h(x,s, t) (scaled with hc). The deformation of the dura membrane leads to

small changes of the canal width h = h̄(x,s)+ εh′(x,s, t), where h̄ is the unperturbed canal width

and h′(x,s, t) measures the time-dependent radial deformation, such that the transverse velocity

satisfies v = ∂h′/∂t at y = h.

A straightforward order-of-magnitude analysis of the momentum conservation equation

reveals the main characteristics of CSF flow in the SSAS. The Strouhal number, measuring the

relative importance of the local acceleration and the convective acceleration, is ωL/uc =ωlc/wc =

ωhc/vc = ε−1� 1, so that effects of inertia are small. The viscous time across the canal, h2
c/ν, is

of order ω−1, yielding order-unity values of the Womersley number α = hc/(ν/ω)1/2 ∼ 1, with

α2 measuring the ratio of the local acceleration to the viscous forces. In the first approximation,

therefore, the local acceleration balances the pressure and viscous forces, resulting in a linear

unsteady lubrication problem with zero time-averaged velocity at any given point. The convective

acceleration introduces a small relative correction of order ε to this oscillatory lubrication velocity.

Because of the nonlinear nature of the inertial terms, this velocity correction, of order εuc = ε2ωL

in the axial direction, includes a steady component known as steady streaming [74].

The problem can be simplified in the slender-flow approximation (2.1) by consistently

neglecting terms of order (`c/L)2 and (hc/L)2 when writing the conservation equations. Further-

more, to account for the deformation of the dura membrane and the resulting variable geometry,

the distance to the pia mater is normalized with the local instantaneous width h(x,s, t) to give the

alternative transverse coordinate η = y/h.
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2.2 Eulerian Velocity Field

This section summarizes the results of the analysis presented in [75] for the motion of CSF

in the spinal canal, which was generalized slightly in [42]. In dimensionless form, the constitutive

equation becomes

h− h̄ = εγp ⇒ h′ = γ(Π+ k2 p′) (2.3)

involving the canal deformation h− h̄ = εh′ from its unperturbed distribution h̄(x,s) and the

streamwise pressure distribution p−Π(t) = k2 p′(x, t), where p′(x, t) is the pressure variation

from its entrance value scaled with ρεω2L2 and

k =
Lω

[(hc/γ′c)/ρ]1/2 (2.4)

is a dimensionless wave number, with [(hc/γ′c)/ρ]1/2 representing the relevant elastic wave speed.

In the original analysis [75], the compliance function γ = γ′/γ′c, of order unity, was assumed to be

only a function of x, resulting in deformations h′ that were a function of x and t. The description

is generalized in [42] by allowing for a more general variation γ(x,s), so that h′(x,s, t).

The pressure is taken to be the sum of two separate pressure functions p′ and p̂, where

p′(x, t) describes the streamwise pressure distribution, dependent only on the streamwise co-

ordinate due to the slenderness of the flow, and a supplementary function p̂(x,s, t) introduced

in the azimuthal component of the momentum equation (2.7) to describe the small relative

pressure variations occurring within each cross-section, of order (`c/L)� 1. Since p̂(x,s, t) is

much smaller than p′(x, t), it is neglected in the constitutive relation (2.3) and the streamwise

momentum equation (2.6).

In the slender-flow limit (2.1), the continuity equation takes the form

1
`

∂

∂x
(`u)+

∂v
∂y

+
1
`

∂w
∂s

= 0, (2.5)
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whereas the axial and azimuthal components of the momentum equation are

∂u
∂t

+ ε

[
1
`

∂

∂x
(`u2)+

∂

∂y
(uv)+

1
`

∂

∂s
(uw)

]
= −∂p′

∂x
+

1
α2

∂2u
∂y2 (2.6)

∂w
∂t

+ ε

[
∂

∂x
(uw)+2

uw
`

∂`

∂x
+

∂

∂y
(vw)+

1
`

∂

∂s
(w2)

]
= −1

`

∂ p̂
∂s

+
1

α2
∂2w
∂y2 , (2.7)

where

α =
hc

(ν/ω)1/2 (2.8)

is the Womersley number, which takes values of order unity.

The pressure drop is negligible at the entrance of the canal, corresponding to the condition

p′ = 0 at x = 0. The velocity satisfies u = v = w = 0 at y = 0 and u = v−∂h′/∂t = w = 0 at y = h.

Since the canal is symmetric, the azimuthal velocity component w vanishes at s = 0 and s = 1.

The requirement that the axial volume flux
∫ 1

0

(∫ h
0 udy

)
ds must vanish at the closed end x = 1

completes the set of boundary conditions needed to determine the flow in the canal.

For computational purposes, it is convenient to introduce the normalized transverse

coordinate η = y/h, so that the outer boundary occurs at the stationary location η = 1 rather

than the moving boundary y = h(x,s, t). Although the boundary condition becomes simpler, the

change of variables to η leads to more complicated equations. In the following, equations may be

given in y or η.

Solution of the problem described by (2.3) and (2.5)–(2.7) is completed by introducing

regular expansions in powers of ε for the velocity, canal deformation, and pressure functions.

The first two terms in the expansions are solved below for an intracranial pressure of the form

Π(t) = cos t. Additional terms in a Fourier expansion for Π(t) could be computed in a similar

manner, thereby enabling the extension of the analysis to general non-harmonic periodic functions

Π(t), shown in detail in section 6.1.
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2.2.1 Leading-order Solution

In the limit ε� 1 with α∼ 1 and k∼ 1, the problem defined by (2.3) and (2.5)–(2.7) with

the boundary conditions given below (2.7) can be solved in terms of regular expansions of the

form
u = u0 + εu1 + · · · ,v = v0 + εv1 + · · · ,w = w0 + εw1 + · · · ,

h′ = h′0 + εh′1 + · · · , p′ = p′0 + εp′1 + · · · , p̂ = p̂0 + ε p̂1 + · · · .
(2.9)

At leading order, (2.3) and (2.5)–(2.7) take the linear form

h′0 = γ(Π+ k2 p′0) (2.10)

0 =
1
`

∂

∂x
(`u0)−

∂h̄
∂x

η

h̄
∂u0

∂η
+

1
h̄

∂v0

∂η
+

1
`

∂w0

∂s
− 1

`

∂h̄
∂s

η

h̄
∂w0

∂η
(2.11)

∂u0

∂t
= −∂p′0

∂x
+

1
α2

∂2u0

∂y2 (2.12)

∂w0

∂t
= −1

`

∂p̂0

∂s
+

1
α2

∂2w0

∂y2 , (2.13)

for which the variables can be written in the form

u0 = Re
(

ieitU
)
,v0 = Re

(
ieitV

)
,w0 = Re

(
ieitW

)
,

p′0 = Re
(

eitP′
)
, p̂0 = Re

(
eit P̂
)
,h′0 = Re

(
eitH ′

)
, (2.14)

involving the complex functions U(x,η,s), V (x,η,s), W (x,η,s), P′(x), P̂(x,s), and H ′(x,s), to

be defined below.

The axial and azimuthal velocities are given in terms of the components of the pressure

gradient by

U =
dP′

dx
G and W =

1
`

∂P̂
∂s

G (2.15)
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with

G(x,η,s) = 1−
cosh

[
αh̄
2

1+i√
2
(2η−1)

]
cosh

[
αh̄
2

1+i√
2

] (2.16)

as follows at this order by integration of (2.6) and (2.7) with boundary conditions u0 = w0 = 0

at η = (0,1). The transverse velocity can be evaluated by integrating (2.5) with the condition

v0 = 0 at η = 0 to give

V =−1
`

∂

∂x

(
`

dP′

dx
h̄
∫

η

0
Gdη

)
− 1

`

∂

∂s

(
1
`

∂P̂
∂s

h̄
∫

η

0
Gdη

)
+

∂h̄
∂x

dP′

dx
ηG+

1
`

∂h̄
∂s

1
`

∂P̂
∂s

ηG (2.17)

where

h̄
∫

η

0
Gdη = h̄η− 1− i√

2α

sinh
[

αh̄
2

1+i√
2
(2η−1)

]
+ sinh

[
αh̄
2

1+i√
2

]
cosh

[
αh̄
2

1+i√
2

] . (2.18)

Evaluating (2.17) at η = 1, where V = H ′ as corresponds to v0 = ∂h′0/∂t, gives

H ′+
1
`

∂

∂x

(
`

dP′

dx
q(x,s)

)
+

1
`

∂

∂s

[
1
`

∂P̂
∂s

q(x,s)
]
= 0, (2.19)

with

q(x,s) = h̄
∫ 1

0
Gdη = h̄−

√
2(1− i)

α
tanh

(
αh̄
2

1+ i√
2

)
(2.20)

and

H ′ = γ(1+ k2P′), (2.21)

the latter derived from (2.10). Integrating (2.19) around the canal section with ∂P̂/∂s = 0 at s = 0,

consistent with the symmetry condition w0 = 0 at s = 0, yields

q
`2

∂P̂
∂s

+
1
`

d
dx

[
`
∫ s

0
qds̃

dP′

dx

]
+

(∫ s

0
γds̃
)
(k2P′+1) = 0. (2.22)
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Evaluating the last equation at s = 1, where ∂P̂/∂s = 0, finally yields the problem

1
`

d
dx

[
`Q

dP′

dx

]
+

(∫ 1

0
γds
)
(k2P′+1) = 0;

 P′ = 0 at x = 0

dP′
dx = 0 at x = 1

, (2.23)

involving the average section compliance
∫ 1

0 γds and the volume-flux function

Q(x) =
∫ 1

0
qds =

∫ 1

0

[
h̄−
√

2(1− i)
α

tanh
(

αh̄
2

1+ i√
2

)]
ds. (2.24)

For given values of γ(x,s), h̄(x,s), and `(x), the integration of (2.23) determines P′(x),

which can be used in (2.15) and (2.19) to evaluate U and H ′. The associated azimuthal pressure

gradient ∂P̂/∂s, determined from (2.22), is needed to evaluate the functions W and V from

(2.15) and (2.17), thereby completing the description of the harmonic solution (2.14). The

solution simplifies when the average section compliance γ and the shape of the canal section h̄ are

independent of x. For
∫ 1

0 γds = 1, `= 1, and h̄ = h̄(s), Q is a constant and integration of (2.23)

yields

P′ =
1
k2

{
cos[k(1− x)/

√
Q]

cos(k/
√

Q)
−1
}
. (2.25)

2.2.2 Steady Streaming

Because of the nonlinear interactions associated with the convective terms and canal

deformation, first-order corrections to the flow contain a steady component in addition to the

oscillatory component. The computation of this steady-streaming flow begins by collecting terms

of order ε in (2.6) and (2.7). Taking the time average 〈·〉= 1
2π

∫ 2π

0 ·dt of the resulting equations
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yields

F =
1
`

∂

∂x
(`h̄〈u1〉)−

∂

∂η

(
η

∂h̄
∂x
〈u1〉

)
+

∂〈v1〉
∂η

+
1
`

∂

∂s
(h̄〈w1〉)−

∂

∂η

(
η

`

∂h̄
∂s
〈w1〉

)
(2.26)

Fx = −∂〈p′1〉
∂x

+
1

h̄2α2
∂2〈u1〉

∂η2 (2.27)

Fs = −1
`

∂〈p̂1〉
∂s

+
1

h̄2α2
∂2〈w1〉

∂η2 , (2.28)

where

F =−1
`

∂

∂x
(`〈h′0u0〉)+

∂

∂η

(
η〈u0

∂h′0
∂x
〉
)
− 1

`

∂

∂s
(〈h′0w0〉)+

∂

∂η

(
η

`
〈w0

∂h′0
∂s
〉
)
, (2.29)

Fx =
1
`

∂

∂x
(`〈u2

0〉)+
1
h̄

∂

∂η
〈u0v0〉+

1
`

∂

∂s
〈u0w0〉

− η

h̄
∂

∂η
〈∂h′0

∂t
u0〉−

∂h̄
∂x

η

h̄
∂

∂η
〈u2

0〉−
1
`

∂h̄
∂s

η

h̄
∂

∂η
〈u0w0〉+

2
h̄3α2

∂2

∂η2 〈h
′
0u0〉, (2.30)

Fs =
∂

∂x
〈u0w0〉+2

〈u0w0〉
`

∂`

∂x
+

1
h̄

∂

∂η
〈v0w0〉+

1
`

∂

∂s
〈w2

0〉−
η

h̄
∂

∂η
〈∂h′0

∂t
w0〉

− ∂h̄
∂x

η

h̄
∂

∂η
〈u0w0〉−

1
`

∂h̄
∂s

η

h̄
∂

∂η
〈w2

0〉+
2

h̄3α2
∂2

∂η2 〈h
′
0w0〉 (2.31)

can be evaluated in terms of the leading-order solution. Computation of the time-averaged

quantities is facilitated by use of the identities 〈Re(ieitA)Re(ieitB)〉 = Re(AB∗)/2 and

〈Re(eitA)Re(ieitB)〉= Im(AB∗)/2, which apply to any generic time-independent complex func-

tions A and B, with the asterisk ∗ denoting complex conjugates.

Integrating (2.27) and (2.28) subject to 〈u1〉= 〈w1〉= 0 at η = 0,1 yields

〈u1〉
h̄2α2 =−d〈p′1〉

dx
(1−η)η

2
+η

∫
η

0
Fxdη̄−

∫
η

0
Fxη̄dη̄−η

∫ 1

0
Fx(1−η)dη (2.32)
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and

〈w1〉
h̄2α2 =−1

`

∂〈p̂1〉
∂s

(1−η)η

2
+η

∫
η

0
Fsdη̄−

∫
η

0
Fsη̄dη̄−η

∫ 1

0
Fs(1−η)dη (2.33)

in terms of the unknown axial and azimuthal pressure gradients d〈p′1〉/dx and ∂〈p̂1〉/∂s. The

accompanying transverse steady-streaming velocity 〈v1〉, not considered explicitly in [75], can be

obtained by integration of (2.26), yielding

〈v1〉=−
1
`

∂

∂x

[
`
∫

η

0

(
h̄〈u1〉+ 〈h′0u0〉

)
dη

]
+η

∂h̄
∂x
〈u1〉+η

〈
u0

∂h′0
∂x

〉
−1
`

∂

∂s

[∫
η

0

(
h̄〈w1〉+ 〈h′0w0〉

)
dη

]
+η

1
`

∂h̄
∂s
〈w1〉+η

〈
w0

1
`

∂h′0
∂s

〉
. (2.34)

The axial and azimuthal steady-streaming components are related by

∂

∂x

[
`

(
h̄
∫ 1

0
〈u1〉dη+

∫ 1

0
〈h′0u0〉dη

)]
+

∂

∂s

(
h̄
∫ 1

0
〈w1〉dη+

∫ 1

0
〈h′0w0〉dη

)
= 0 (2.35)

obtained by evaluating (2.34) at η = 1. Integrating this last equation in the azimuthal direction

gives

h̄
∫ 1

0
〈w1〉dη+

∫ 1

0
〈h′0w0〉dη =− ∂

∂x

[
`
∫ s

0

(
h̄
∫ 1

0
〈u1〉dη+

∫ 1

0
〈h′0u0〉dη

)
ds
]
, (2.36)

which can be used together with (2.32) and (2.33) to determine ∂〈p̂1〉/∂s as a function of d〈p′1〉/dx.

Evaluating (2.36) at s = 1 and using the condition that the canal is closed at x = 1, so that the

time-averaged value of the axial volume flux has to be necessarily zero, leads to

∫ 1

0
h̄
(∫ 1

0
〈u1〉dη

)
ds+

∫ 1

0

∫ 1

0
〈h′0u0〉dηds = 0, (2.37)

which can be used, together with (2.32), to compute the average streamwise pressure gradient
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d〈p′1〉/dx, thereby completing the determination of the steady-streaming flow.

The Eulerian velocity field includes a leading-order component, first-order corrections,

and higher-order corrections (of the order ε2 and smaller) which are not considered here. The

leading-order components (u0,v0,w0) are harmonic and have a time average that is identically

zero. The first-order corrections (u1,v1,w1) contain nonzero steady components (〈u1〉,〈v1〉,〈w1〉),

which is known as steady streaming.

2.3 Lagrangian Velocity Field

It can be anticipated that, in addition to the small oscillations of dimensionless amplitude

ε induced by the pulsatile component of the flow, fluid particles undergo relative displacements

of order unity in characteristic times of order ε−2ω−1. We shall see that, besides the direct

contribution resulting from the steady-streaming velocity 〈v1〉 = (〈u1〉,〈v1〉,〈w1〉), this slow

Lagrangian motion includes an additional contribution associated with the Stokes drift of the

fluid particles, resulting from the nonuniformity of the harmonic leading-order velocity field v0.

This can be clarified by considering the motion of a fluid particle, whose trajectory is obtained by

integration of


dxp
dt = εu(xp,ηp,sp, t)

dyp
dt = hdηp

dt +
(

∂h
∂t +

∂h
∂x

dxp
dt + ∂h

∂s
dsp
dt

)
ηp = εv(xp,ηp,sp, t)

`
dsp
dt = εw(xp,ηp,sp, t)

(2.38)

with initial conditions (xp,ηp,sp) = (xi,ηi,si) at t = 0.

It is convenient to exploit the existence of the two time scales ω−1 and ε−2ω−1 in a

formal multiple-scale analysis that introduces a second time variable τ = ε2t to describe the slow

evolution of the fluid-particle location, with xp(t,τ), ηp(t,τ), and sp(t,τ) assumed to be periodic
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in the short time scale t. This presumed time dependence is used to write (2.38) in the form

∂xp

∂t
+ ε

2 ∂xp

∂τ
= εu, (2.39)

h
(

∂ηp

∂t
+ ε

2 ∂ηp

∂τ

)
+ ε

(
∂h′

∂t
+

∂h
∂x

u+
1
`

∂h
∂s

w
)

ηp = εv, (2.40)

`

(
∂sp

∂t
+ ε

2 ∂sp

∂τ

)
= εw. (2.41)

The problem can be solved by introducing the expansions


xp = x0(t,τ)+ εx1(t,τ)+ ε2x2(t,τ)+ · · ·

ηp = η0(t,τ)+ εη1(t,τ)+ ε2η2(t,τ)+ · · ·

sp = s0(t,τ)+ εs1(t,τ)+ ε2s2(t,τ)+ · · ·

. (2.42)

The Eulerian velocity components appearing in (2.39)–(2.41) must be expressed in the Taylor-

expansion form

u = u0(x0, t)+ ε

[
u1(x0, t)+ x1

∂u0
∂x (x0, t)+η1

∂u0
∂η

(x0, t)+ s1
∂u0
∂s (x0, t)

]
+ · · ·

v = v0(x0, t)+ ε

[
v1(x0, t)+ x1

∂v0
∂x (x0, t)+η1

∂v0
∂η

(x0, t)+ s1
∂v0
∂s (x0, t)

]
+ · · ·

w = w0(x0, t)+ ε

[
w1(x0, t)+ x1

∂w0
∂x (x0, t)+η1

∂w0
∂η

(x0, t)+ s1
∂w0
∂s (x0, t)

]
+ · · ·

(2.43)

where the known functions (u0,v0,w0), (u1,v1,w1), . . . and their derivatives are evaluated at

x0 = (x0,η0,s0). Similarly, the canal perimeter `(x) and width h(x,s, t) must be expanded

according to

`= `(x0)+ εx1
∂`

∂x
(x0)+ · · · (2.44)

and

h = h̄(x0,s0)+ ε

[
h′0(x0,s0, t)+ x1

∂h̄
∂x

(x0,s0)+ s1
∂h̄
∂s

(x0,s0)

]
+ · · · , (2.45)

with similar expansions introduced for the known geometrical functions ∂h′0/∂t, ∂h′1/∂t, ∂h̄/∂x,
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and ∂h̄/∂s.

Substituting (2.42)–(2.45) into (2.39)–(2.41) and collecting the terms that appear at dif-

ferent orders in powers of ε lead to a set of equations that can be solved sequentially. At the

leading-order, O(1), the problem becomes

∂x0

∂t
=

∂η0

∂t
=

∂s0

∂t
= 0, (2.46)

which can be readily integrated to give the result x0 = [x0(τ),η0(τ),s0(τ)], indicating that the

leading-order terms evolve only in the long time scale, so that the fast oscillatory motion is

restricted to the first-order corrections x1 = (x1,η1,s1), as is consistent with the small stroke

lengths of order ε of the Eulerian velocity field. The rate of change in the long time scale dx0/dτ

determines the time-averaged Lagrangian velocity components of the slow bulk motion according

to

uL =
dx0

dτ
, vL =

dy0

dτ
= h̄

dη0

dτ
+η0

∂h̄
∂x

dx0

dτ
+η0

∂h̄
∂s

ds0

dτ
, wL = `

ds0

dτ
(2.47)

to be obtained below by carrying the analysis to order ε2.

At order ε we find

∂x1

∂t
= u0, (2.48)

h̄
∂η1

∂t
= v0−

(
∂h′0
∂t

+
∂h̄
∂x

u0 +
1
`

∂h̄
∂s

w0

)
η0, (2.49)

`
∂s1

∂t
= w0. (2.50)

Since the dependence on the short time scale t enters above only through the harmonic functions

u0[x0(τ), t], v0[x0(τ), t], w0[x0(τ), t], and ∂h′0/∂t[x0(τ),s0(τ), t], given in (2.14), straightforward

25



integration provides

x1 =
∫

u0dt + x̃1(τ), (2.51)

η1 =
1
h̄

[∫
v0dt−

(
h′0 +

∂h̄
∂x

∫
u0dt +

1
`

∂h̄
∂s

∫
w0dt

)
η0

]
+ η̃1(τ) (2.52)

s1 =
1
`

∫
w0dt + s̃1(τ), (2.53)

with ∫
u0dt = Re

(
eitU

)
,
∫

v0dt = Re
(

eitV
)
,
∫

w0dt = Re
(

eitW
)
, (2.54)

as follows from (2.14). The slowly varying terms x̃1, η̃1, and s̃1 appearing in (2.51)–(2.53), which

represent small relative corrections of order ε to the long-time evolution of the fluid-particle

location, are not considered in the present development but could be obtained by carrying the

analysis to a higher order.

Collecting terms of order O(ε2) in (2.39) provides

∂x2

∂t
+

dx0

dτ
= u1 + x1

∂u0

∂x
+η1

∂u0

∂η
+ s1

∂u0

∂s
, (2.55)

which leads to

dx0

dτ
= 〈u1〉+

〈
∂u0

∂x

∫
u0dt

〉
+

1
h̄

〈
∂u0

∂η

∫
v0dt

〉
+

1
`

〈
∂u0

∂s

∫
w0dt

〉
− η0

h̄

(〈
∂u0

∂η
h′0

〉
+

∂h̄
∂x

〈
∂u0

∂η

∫
u0dt

〉
+

1
`

∂h̄
∂s

〈
∂u0

∂η

∫
w0dt

〉)
(2.56)

upon taking the time average 〈·〉 = 1
2π

∫ t+2π

t ·dt. The above equation includes products of the

harmonic functions (2.14) and (2.54). Using the leading order continuity equation (2.11) along
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with integration by parts enables the above equation (2.56) to be written in the compact form

uL =
dx0

dτ
= 〈u1〉 +

1
h̄

{
〈u0h′0〉+

1
`

∂

∂s

(
h̄
〈

u0

∫
w0dt

〉)}
+

1
h̄

∂

∂η

〈
u0

[∫
v0dt−η

(
h′0 +

1
`

∂h̄
∂s

∫
w0dt

)]〉
. (2.57)

As expected, besides the steady-streaming velocity 〈u1〉, the Lagrangian velocity includes a

Stokes-drift component arising from the interactions of the leading-order axial velocity with

the leading-order azimuthal and transverse velocities and the deformation of the canal. Except

for the contribution due to the canal deformation, the Stokes-drift component arises due to the

nonuniformity of the velocity field, as can be seen by the presence of the partial derivatives in η

and s. Similar manipulations of the corresponding equations for dη0/dτ and ds0/dτ lead to

vL = 〈v1〉 +
1
`

∂

∂x

(
`

〈
v0

∫
u0dt

〉)
+

1
`

∂

∂s

〈
v0

∫
w0dt

〉
− η

h̄
∂

∂η

〈
v0

(
h′0 +

∂h̄
∂x

∫
u0dt +

1
`

∂h̄
∂s

∫
w0dt

)〉
(2.58)

and

wL = 〈w1〉 +
1
h̄

[
〈w0h′0〉+

∂

∂x

(
h̄
〈

w0

∫
u0dt

〉)]
+

1
h̄

∂

∂η

〈
w0

[∫
v0dt−η

(
h′0 +

∂h̄
∂x

∫
u0dt

)]〉
(2.59)

also exhibiting both steady-streaming and Stokes-drift contributions.

The three components satisfy the mass conservation equation

1
`

∂

∂x
(`uL)−

∂h̄
∂x

η

h̄
∂uL

∂η
+

1
h̄

∂vL

∂η
+

1
`

∂wL

∂s
− 1

`

∂h̄
∂s

η

h̄
∂wL

∂η
= 0, (2.60)
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which can be integrated across the canal to give

1
`

∂

∂x

(
`h̄

∫ 1

0
uLdη

)
+

1
`

∂

∂s

(
h̄
∫ 1

0
wLdη

)
= 0 (2.61)

relating the width-averaged values

∫ 1

0
uLdη =

∫ 1

0
〈u1〉dη+

1
h̄

[∫ 1

0
〈h′0u0〉dη+

1
`

∂

∂s

(
h̄
∫ 1

0

〈
u0

∫
w0dt

〉
dη

)]
(2.62)

and

∫ 1

0
wLdη =

∫ 1

0
〈w1〉dη+

1
h̄

[∫ 1

0
〈h′0w0〉dη+

∂

∂x

(
h̄
∫ 1

0

〈
w0

∫
u0dt

〉
dη

)]
(2.63)

of the axial and azimuthal components of the time-averaged Lagrangian flow, which will be of

interest later.

2.4 Results for a Simplified Geometry

The Lagrangian velocity field (uL,vL,wL), as well as the width-averaged values
∫ 1

0 uLdη

and
∫ 1

0 wL, can be evaluated using the expressions (2.57)–(2.59) and (2.62)–(2.63). The results

depend on the Womersley number α defined in (2.8), which measures the relative importance of

viscous forces, and the dimensionless wave number defined in (2.4), which enters in the elastic

equation (2.3) relating the pressure with the canal deformation, both order-unity parameters.

The geometry of the canal is defined by the inner perimeter `(x) and unperturbed canal width

h̄(x,s), both order-unity dimensionless functions. Additionally, a compliance function γ(x,s)∼ 1

is introduced for generality to describe the spatial variation of the elastic properties of the outer

dura membrane.

Although the formulation above can be used to describe the Lagrangian velocity field
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Figure 2.1: A schematic view of the model geometry used in the numerical evaluations (left
figure) and the associated distributions of Lagrangian-velocity components at different sections x
for β = 0.5, α = 3, k = 0.5 (right-hand-side panels).
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in anatomically-correct spinal-canal geometries through introduction of appropriately selected

functions `(x), h̄(x,s), and γ(x,s), we use a simplified model geometry to highlight the dominant

features of cerebrospinal fluid motion. Following previous work [75], the SSAS is modeled as

an annular canal with uniform elastic properties (i.e. γ = 1) bounded between two eccentric

parallel circular cylinders whose radii differ by a small amount hc and whose axes are displaced

by βhc with 0 ≤ β < 1, so that ` = 1 and h̄ = 1−βcos(2πs). The resulting canal geometry is

schematically represented on the left side of figure 2.1.

The expressions given in (2.57)–(2.59) together with the leading-order Eulerian velocity

components u0, v0, w0, wall deformation h′0, and steady-streaming components 〈u1〉, 〈v1〉, and

〈w1〉 can be used to evaluate (uL,vL,wL). The panels on the right side of figure 2.1 show the

resulting distributions at different sections x for β = 0.5, α = 3, and k = 0.5, with the width of the

annular cross-section arbitrarily enlarged to facilitate visualization. As expected, the distributions

of uL and vL are symmetric with respect to the symmetry plane of the canal (s = 0, 0.5), whereas

wL is antisymmetric.

For the geometry investigated, steady streaming is the dominant contribution to the

Lagrangian velocity, while the contribution of Stokes drift is comparatively smaller. This is

apparent when comparing the distributions of axial and azimuthal Lagrangian velocity uL and

wL shown in figure 2.1 with the distributions of 〈u1〉 and 〈w1〉, given for these same conditions

in figures 5 and 6 of [75]. The comparison reveals that the Lagrangian velocity and the steady-

streaming velocity display the same qualitative characteristics. In particular, the axial motion is

directed towards the cranial vault (i.e. negative values of uL and 〈u1〉) in the narrow part of the

canal and towards the lumbar region (i.e. positive values of uL and 〈u1〉) in the wide part, with the

azimuthal velocity being directed from the narrowest section s = 0 to the widest section s = 0.5

to accommodate the deceleration of the flow as the closed end is approached.

The width-averaged axial and azimuthal components of the Lagrangian velocity
∫ 1

0 uLdη

and
∫ 1

0 wLdη, which will be of use for future calculations, are plotted on the left-hand side panels
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of figure 2.2 for the same conditions as figure 2.1. Parametric dependences on the three controlling

parameters β, α, and k, are investigated on the right-hand-side plots by showing the variation of

the root-mean-square values ||∫ 1
0 uLdη|| and ||∫ 1

0 wLdη|| (where ||·||=
[∫ 1

0
∫ 1

0 (·)2dsdx
]1/2

) with

each individual parameter, while keeping the other two at the fixed constant values of figure 2.1.

The results in figure 2.2 indicate that for axisymmetric configurations, corresponding in the

model to the case β = 0 of concentric cylinders, the azimuthal motion is absent, and the resulting

width-averaged axial velocity is strictly zero, as follows from the continuity equation (2.61). This

feature of the solution emphasizes the importance of eccentricity. If the spinal canal had perfect

axial symmetry, convective transport would be drastically limited. Nonzero values of
∫ 1

0 uLdη

and
∫ 1

0 wLdη are found for any β > 0, with the motion being most pronounced for an intermediate

value (i.e. β' 0.4 for α = 3, and k = 0.5).

The effect of viscous forces is measured in the problem through the Womersley number

α = hc/(ν/ω)1/2. When viscous effects are dominant for α� 1, the resulting pulsating flow is

very slow and the associated Lagrangian motion, involving time-averaged products of fluctuations,

becomes negligibly slow. In the opposite limit α� 1, viscosity effects are confined to near-wall

Stokes layers. The numerical evaluations reveal a persistent Lagrangian motion with associated

root-mean-square velocities that approach finite values for α� 1. It is of interest that, for

intermediate values α∼ 1, pertaining to spinal-canal flow conditions, the curves of ||∫ 1
0 uLdη||

and ||∫ 1
0 wLdη|| in figure 2.2 display a non-monotonic variation, with maxima reached at α' 4

followed by local minima around α' 10.

The last column in figure 2.2 investigates the influence of the wave number k, which

measures the ratio of the canal length to the characteristic elastic-wave length, a parameter of

order unity in the spinal canal, as shown by MRI measurements [34]. This parameter determines

the amplitude of the tidal volume flux for the leading-order oscillatory flow, as shown in [75].

The numerical computations reveal finite values of ||∫ 1
0 uLdη|| and ||∫ 1

0 wLdη|| for k� 1, corre-

sponding to canal deformations that are everywhere in phase with the cranial pressure variation.
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The Lagrangian velocities increase initially with increasing k, but eventually decrease to vanish

in the short-wave-length limit k� 1, associated with vanishing tidal volume fluxes. The most

pronounced Lagrangian motion is found around k ' 1, associated with the peak in the amplitude

of the tidal volume flux (see figure 2 in [75]).

For the simple geometry investigated here, the overall Lagrangian motion depends non-

monotonically on the three controlling parameters β, α , and k. It is worth noticing that the local

maxima for α and k found in this parametric study are of order unity, as expected from the order

of magnitude analysis. The Lagrangian flow is significantly reduced for β = 0, extreme values of

k, and for some values of α.

2.5 DNS Validation

With the aim of providing detailed numerical results for validation of the theoretical

model, three-dimensional, unsteady direct numerical simulations (DNS) of fluid motion in the

spinal canal are conducted. Following previous theoretical developments, the present analysis

will approximate the SSAS as an open annular canal, thereby neglecting the presence of micro-

anatomical obstacles, such as trabeculae, ligaments, and nerve roots. Two geometrically simple

configurations will be investigated, as sketched in figure 2.3(b) and (c). The exterior surface

surrounding the canal represents the dura membrane, while the interior surface represents the

rigid pia mater surrounding the spinal cord. The deformation of the veins and fatty tissue present

in the dura membrane due to local pressure fluctuations must be accounted for in analyzing the

motion of the CSF, leading to a fluid-structure interaction problem that was previously solved

on the basis of a linear elastic model. The associated time-dependent displacements are small

compared with the canal thickness, and can therefore be analyzed as small perturbations from an

unperturbed state.

The unperturbed shape of the dura membrane will be taken to be a circular cylinder of
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Figure 2.3: Sketch of the geometrical configurations. (a) Anatomy of the spinal subarachnoid
space (SSAS) extending from the foramen magnum to the sacrum. The figure shows several
axial cuts at different locations. (b) Geometrical model with constant eccentricity indicating the
curvilinear coordinates (x,s,η). (c) Geometrical model with variable eccentricity. (d) Definition
of the unperturbed canal width in the geometrical models.

radius Re and length L. A circular cross section will also be assumed for the rigid inner surface

surrounding the spinal canal, whose radius is Ri = Re−hc with hc� Re. Correspondingly, in

a plane perpendicular to the axis of the outer cylinder the annular canal is the space defined

between two eccentric circles whose centers are separated by a small distance e, with 0≤ e≤ hc,
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as indicated in figure 2.3(d). With small errors of order hc/Re� 1, the local unperturbed width

of the canal h̄∗, measured normal to the inner surface, is given by h̄∗ = hc− ecos(2πs), with

0≤ s≤ 1. The configuration with two parallel cylinders of figure 2.3(b), used in computations

for the previous section, corresponds to the case of constant eccentricity e = βhc, where β < 1

is a positive constant representing the degree of eccentricity. The configuration in figure 2.3(c),

introduced here to investigate effects of variable eccentricity, considers the simple functional

dependence e/hc = βcos(2πx).

To facilitate the computation, instead of using the intracranial pressure as input, the

displacement of the dura membrane was prescribed, that also being the approach of the moving-

boundary-motion method first used in the computations of Tangen et al. (2015) [83] (see also

Khani et al. 2018 [37]). For consistency, the nonuniform temporal distribution of the dura-

membrane displacement was selected to be that found at leading order in the previous theoretical

analysis of the fluid-structure interaction problem [75].

In the first stage of the computations, the Navier–Stokes equations for an incompressible

Newtonian fluid,

∇ · v̄∗ = 0, (2.64)

∂v̄∗

∂t∗
+ v̄∗ ·∇v̄∗ =−∇p∗+ν∇

2v̄∗, (2.65)

were solved over many wall-displacement oscillation cycles until a periodic solution was attained.

In the governing equations (2.64) and (2.65), asterisks denote dimensional variables and p∗ repre-

sents the spatial pressure differences divided by the density. Numerically averaging the periodic

Eulerian velocity v̄∗ yields its steady-streaming component, which in turn can be subtracted from

v̄∗ to determine the zero-mean leading-order component of the velocity. Both are to be compared

with the results of the asymptotic analysis presented in sections 2.2.1 and 2.2.2.

Equations (2.64) and (2.65) were solved numerically with the finite-volume solver Ansys
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Fluent (Release 16.2), assuring second-order accuracy in time and in space. The PISO algorithm

was used for the pressure–velocity coupling [32]. No-slip conditions were imposed at the canal

walls and a condition of developed flow, ∇v̄∗ · n̄ = 0 was imposed at the inlet, where a buffer

region of length 0.15L was added to avoid entrance effects. To model the deformation of the

dura membrane, a dynamic mesh solver that employs a Laplacian mesh motion algorithm was

used [37, 84], with the instantaneous radius of the external boundary surface R′e varying from its

unperturbed value Re according to

R′e = Re + εhch′0(x
∗/L,ωt∗) = Re + εhc|H ′|cos[ωt∗+ arg(H ′)]. (2.66)

Here, the elastic-wave deformation h′0 = |H ′|cos[ωt∗+ arg(H ′)] is determined from the complex

function H ′, given in (2.21) from the previous asymptotic analysis. The equation for H ′ accommo-

dates general axial and azimuthal variations of γ(x,s), as needed to account for the non-uniform

deformable nature of the dura membrane [70], enabling subject-specific studies in which the

function γ(x,s) can be determined from in-vivo MRI measurements of CSF flow, as done recently

[13]. For the sake of simplicity, however, the following validation exercise is restricted to cases

with constant γ.

While the theoretical model is formulated in terms of dimensionless parameters, the

DNS formulation requires specification of dimensional values for all parameters appearing in the

equations and boundary conditions. The kinematic viscosity, appearing in equation (2.65), was

taken to be ν = 0.698×10−6 m2/s, the value corresponding to water at 36.8o C. The dimensions of

the domain for the two configurations shown in Figs. 2.3(b) and (c) are L = 0.6m, Re = 5mm, and

Ri = 4mm, corresponding to a canal with characteristic width hc = Re−Ri = 1mm and constant

inner perimeter `c = 2πRi ' 25mm. In all computations, the dimensionless eccentricity is taken

to be β = 0.5. The canal deformation, given in (2.66), is evaluated for an angular frequency

ω = 2πs−1, as corresponds approximately to the cardiac cycle, with the function H ′(x∗/L), given
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in (2.21), computed with k = 0.5 and α = (h2
cω/ν)1/2 = 3, the latter value consistent with the

parametric choice hc = 1mm, ω = 2πs−1, and ν = 0.698×10−6 m2/s. In all computations, the

reduced amplitude is taken to be ε = 1/20.

The computational domain was discretized using a structured uniform mesh. A grid

sensitivity analysis was conducted to ensure the grid-size independence of the results. To that

end, integrations were sequentially performed with an increasing number of grid points, starting

from a coarse grid with 7.5×104 computational cells. In comparing results corresponding to

different grids, the periodic velocity field was characterized by the amplitude of the axial velocity

oscillation (u∗max−u∗min) at two locations of the anteroposterior plane, namely, x∗= L/2 (x = 1/2),

y∗ = h̄/2 (η = 1/2) and s = 0 and s = 0.5. This velocity amplitude was seen to decrease as

the number of grid point increases, with relative changes becoming progressively smaller. The

refinement was continued until the relative differences of the velocity resulting from doubling the

number of grid points in consecutive computations were less than 0.3%. The final configuration

selected, to be used in the computations presented below, contains a total of 1.95× 106 grid

points.

In the following, results from the simulations will be compared with those of the pre-

vious theoretical analyses. The steady-streaming velocity components uSS and wSS will be

evaluated from the DNS results by taking the time averages 〈u∗〉 = ω/(2π)
∫ 2π/ω

0 u∗ dt∗ and

〈w∗〉 = ω/(2π)
∫ 2π/ω

0 w∗ dt∗, and scaling the resulting axial and azimuthal components with

their characteristic values ε2ωL and ε2ω`c, respectively. These values are compared below

with the theoretical predictions uSS = 〈u1〉 and wSS = 〈w1〉 from the asymptotic analysis. Simi-

larly, the harmonic leading-order velocity components predicted by the linear lubrication prob-

lem, (u0,w0) = Re
[
ieit(U,W )

]
, will be compared with the corresponding DNS predictions for

the purely oscillatory flow, obtained by subtracting its mean value according to u∗−〈u∗〉 and

w∗−〈w∗〉, and scaling the resulting axial and azimuthal velocity components with their charac-

teristic values εωL and εω`c.

37



0.9

0

-0.9

0.9

0

-0.9

0.9

0

-0.9

00.250.50.751

0.9

0

-0.9

0.4

0

-0.4

0.4

0

-0.4

0.4

0

-0.4

0 0.25 0.5 0.75 1

0.4

0

-0.4

s

DNS THEORY

axial velocity u
DNS THEORY

azimuthal velocity w

0 0.81-0.81 0 0.14-0.14

00.5

0.25

0.75

ηx

0

0.25

0.5

0.75

η

wide side s = 0.5 narrow side s = 0

THEORY

DNS

THEORY
DNS

UPWARD DOWNWARD ANTICLOCKWISE CLOCKWISE

UPWARD

DOWNWARD

UPWARD

DOWNWARD

Figure 2.4: Comparison of the oscillatory velocity determined in the numerical simulations
with that predicted by the simplified model. The theoretical predictions are evaluated from the
analytical expressions u0 = Re

[
ieitU(x,η,s)

]
and w0 = Re

[
ieitW (x,η,s)

]
, with the normalized

transverse coordinate η taken to be perpendicular to the inner surface. To enable quantitative
comparisons to be made, the DNS results are represented in their dimensionless form (u∗−
〈u∗〉)/(εωL) and (w∗−〈w∗〉)/(εω`c) with `c = 2πRi.

2.5.1 Results for Constant Eccentricity

Leading Order Velocity Field

The axial and azimuthal components of the oscillatory velocity obtained from the DNS,

expressed in the dimensionless form (u∗−〈u∗〉)/(εωL) and (w∗−〈w∗〉)/(εω`c), are compared

in figure 2.4 with the theoretical predictions (u0,w0) = Re
[
ieit(U,W )

]
. Velocity distributions are

given for t = ωt∗ = π at four different sections x = (0,0.25,0.5,0.75). In plotting the theoretical

predictions, the coordinate η is measured perpendicular to the inner surface. Note that upward

(cranial) / downward (caudal) flow corresponds to negative / positive values of the axial velocity.

As expected, the flow is symmetric with respect to the symmetry plane of the canal,
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defined by s = 0 and s = 0.5. The magnitude of the axial velocities is seen to decrease with the

axial coordinate, to eventually vanish at the closed end of the canal x = 1. By way of contrast, the

magnitude of the azimuthal velocity, shown on the right-hand side of the figure, tends to increase

along the length of the spinal canal, as needed to accommodate the flow recirculation. At the

instant of time t = ωt∗ = π selected in the figure, the flow moves downwards in the narrow part

of the canal and upwards in the wide part. Since viscous effects are more prominent in the narrow

regions (i.e. around s = 0), the largest peak velocities are found at s = 0.5.

To enable a more precise quantitative comparison, profiles of axial velocity are plotted

across the canal at s = 0.5 (left) and s = 0 (right). The velocity profiles obtained analytically

39



are symmetric in both locations, since the model does not take into account curvature effects.

However, the numerical results, obtained with large but finite curvature Ri/hc = 4, display slight

asymmetries, with peak velocities lying closer to the inner surface η = 0. The relative difference

in centerline velocity, measured by the value of |u0− (u∗−〈u∗〉)|/|u0| at η = 0.5, varies over

the course of the oscillation cycle. This relative difference is of the order of 9% when the flow

rate is maximum at t = π/2 (upward flow) and at t = 3π/2 (downward flow) and of the order

of 15% when the flow rate reverses direction at t = 0 and t = π, the flow in the latter instant of

time being represented in figure 2.4. As explained later in the discussion of figure 2.6, both the

small asymmetries and the departures in the velocity values are associated with curvature effects

resulting from the finite value of the slenderness ratio hc/Ri.

Steady Streaming

The predictions uSS = 〈u1〉 and wSS = 〈w1〉 for the axial and azimuthal components of the

steady-streaming velocity, evaluated from the expressions given in section 2.2.2, are compared in

figure 2.5 with the time-averaged values of the DNS velocities, expressed in the dimensionless

form uSS = 〈u∗〉/(ε2ωL) and wSS = 〈w∗〉/(ε2ω`c), as needed for consistency. Good agreement is

again found between the theoretical predictions and the numerical results, with relative differences

in peak values remaining below 15%. As can be inferred from the transverse profiles of uSS at s= 0

and s = 0.5, the magnitude of the steady-streaming velocities computed in the direct numerical

simulations is slightly larger than that predicted by the analytical model. As explained below, the

observed departures, on the order of 10% to 15 %, can be attributed to the different approximations

incorporated in developing the analytical results, as well as the finite slenderness of the geometry.

Although the results presented here have been obtained for α = 3, preliminary direct numerical

simulations at α = 10 also corroborate the good agreement between the theoretical and the

numerical results at more realistic Womersley numbers, commonly observed in human beings.

The resulting axial velocities are found to be mainly positive (caudal) where the canal
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width is larger (i.e. values of s around s = 0.5) and mostly negative (cranial) where the canal

width is smaller (i.e. values of s around s = 0), in agreement with previous results. The flow is

symmetric with respect to the plane s = 0 and s = 0.5, where wSS = 0, with the fluid moving

azimuthally in the direction of decreasing canal width. It is of interest that the magnitude of uSS

decreases away from the entrance (i.e. for increasing values of x) while that of wSS increases, as

needed to accommodate flow recirculation.

The small discrepancies observed between the numerical simulations and the theoretical

predictions can be attributed to the simplifications introduced in developing the theoretical model.

To investigate the inaccuracies associated with the assumption of slender flow, stated in (2.1),

computations were performed in more slender canals with smaller widths hc = Re−Ri, such that

hc/Ri = 1/8 and hc/Ri = 1/40. Resulting profiles of axial velocity at x = 0.5 and s = 0.5 are

plotted in figure 2.6 along with those of the previous calculations, corresponding to hc/Ri = 1/4.

The pulsating and time-averaged components (u∗−〈u∗〉)/(εωL) and 〈u∗〉/(ε2ωL) are compared

with the functions u0 and 〈u1〉. As can be seen, as effects of curvature become less important

for decreasing values of hc/Ri, the associated DNS profiles become more symmetric and tend
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to approach the theoretical prediction. For instance, when the canal thickness is reduced to

hc/Ri = 1/40, the peak values of the pulsating and time-averaged velocity components predicted

by the model differ by only 1.5% and 3.5% from the corresponding DNS values.

The long-term Eulerian bulk flow induced by the steady streaming can be characterized

by representing on an s− x plane the streamlines associated with the width-averaged values of

the axial and azimuthal velocity components
∫ 1

0 uSSdη and
∫ 1

0 wSSdη. Results corresponding to

the computation of figure 2.5 are shown on the left-hand side of figure 2.7, with small arrows

added to indicate the direction of the flow. The separation between streamlines characterizes
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the velocity magnitude, with smaller spacing corresponding to larger speeds. The resulting

streamlines are very similar to those corresponding to the theoretical predictions, represented

in the accompanying right-hand-side plot (figure 2.7b). The streamlines help visualize the flow

features previously discussed. The fluid is seen to enter along the wide part of the canal and leave

along the narrow part, recirculation occurring at a faster rate towards the closed end, in agreement

with the velocity contours shown in figure 2.5.

2.5.2 Results for Variable Eccentricity

To investigate effects of nonuniform eccentricity of the canal section, additional integra-

tions were performed for the model geometry shown in figure 2.3(c). Streamlines corresponding to

the width-averaged values
∫ 1

0 uSSdη and
∫ 1

0 wSSdη of the axial and azimuthal velocity components

are shown in figure 2.8.

The flow direction is reversed between contiguous recirculating cells, so that in the top and

bottom regions the flow is downwards at s = 0.5 and upwards at s = 0, while in the intermediate

region the flow is upwards at s = 0.5 and downwards at s = 0. The streamlines separating the

three distinct regions include stagnation points at the symmetry plane s = 0 and s = 0.5, around

which the flow exhibits a local counterflow configuration. The streamline spacing is used to

indicate the magnitude of the velocity, which shows very different values in the different regions,

smaller at larger distances from the entrance. The results indicate that the time-averaged motion

is virtually absent in the bottom recirculating region, where the velocities are three orders of

magnitude smaller than those found in the top recirculating region, in agreement with previous

findings [13].
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Figure 2.8: Streamlines corresponding to the width-averaged velocities
∫ 1

0 〈uSS〉dη and
∫ 1

0 〈wSS〉dη

for the variable-eccentricity model geometry of figure 2.3(c). The letters N and W indicate the
azimuthal location of the narrowest and widest sections respectively.

2.6 Conclusions

A model of the velocity field of cerebrospinal fluid in the spinal canal has been found

analytically. The flow is assumed to be doubly slender, following the conditions in (2.1), and the

Womersley number α and dimensionless wave number k are assumed to be order unity while the

parameter measuring the limited compliance ε, effectively measuring the stroke volume compared

to the total volume of fluid in the canal, is assumed to be small. Using this small parameter, all

variables are expanded asymptotically. The leading order velocity field due to the intracranial
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pressure variation is found to be oscillatory with a zero mean. The velocity field found at order

ε is found to have a nonzero mean and is known as Eulerian steady streaming. By taking a

Lagrangian view, Stokes drift is found to be an additional steady component to the first-order

velocity field.

Results for the velocity are presented for a simplified geometry, then verified by compari-

son to full DNS. Notably, the root-mean-square values of the velocity depend non-monotonically

on the parameters α, β, and k and show local maxima for α≈ 3, β≈ 0.4, and k ≈ 0.5. The axial

velocity, for given values of these parameters, tends towards the cranial vault on the narrow side

of the canal and away from the cranial vault on the wide side of the canal. For a canal with

varying eccentricity, this leads to closed recirculation regions, as the narrow and wide sides of the

canal alternate along the length of the canal. The DNS shows good agreement with the simplified

model and increasingly good agreement as the computational domain becomes more slender.

This chapter, in part, is a reprint of the material published in the Journal of Fluid Me-

chanics, titled “On the dispersion of a drug delivered intrathecally in the spinal canal,” by J. J.

Lawrence, W. Coenen, A. L. Sánchez, G. Pawlak, C. Martı́nez-Bazán, V. Haughton, and J. C.

Lasheras, (2019) 861, 679-720. The dissertation author was the primary investigator and author of

this paper. This chapter, in part, is also a reprint of the material published in Applied Mathematical

Modelling, titled “Modelling and direct numerical simulation of flow and solute dispersion in the

spinal subarachnoid space,” by C. Gutiérrez-Montes, W. Coenen, J. J. Lawrence, C. Martı́nez-

Bazán, A. L. Sánchez, and J. C. Lasheras (2021), 94, 516-533. Cándido Gutiérrez-Montes was

the primary author of this paper.
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Chapter 3

Transport of Solutes with Density Equal to

that of CSF

3.1 Characteristic Scales

The velocity field in the spinal canal determines the convective transport of the drug

injected in the lumbar region. Besides the characteristic time associated with the pulsating flow

ω−1, we have seen that the time-averaged Lagrangian motion introduces a second characteristic

time scale, the residence time ε−2ω−1. Molecular diffusion is characterized by the solute

diffusivity κ, typical values of which are of the order of κ' 5×10−10 m2/s for chemotherapy

drugs such as methotrexate [4], with even larger values pertaining to the radioactive tracers used

in exploratory radiological imaging. The associated Schmidt number ν/κ, defined as the ratio of

the kinematic viscosity to the molecular diffusivity, is very large, of the order of a few thousand.

Diffusion occurs primarily in the direction transverse to the width of the canal, with associated

characteristic times h2
c/κ, whereas the times characterizing axial and azimuthal diffusion, given

by L2/κ and `2
c/κ, are much longer due to the slenderness of the flow, so that these processes play

a negligible role and can be discarded in the description.
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To anticipate the relative importance of diffusion in the transport of the solute along the

SSAS, it is of interest to compare the two flow characteristic times ω−1 and ε−2ω−1 identified

above with the diffusion time h2
c/κ = Sα2ω−1, expressed in terms of the square of the Womersley

number α2 = ωh2
c/ν, which is of order unity for the CSF flow in the spinal canal. The comparison

of the large values S ∼ 1000 of the Schmidt number with the typical values of the parameter

ε∼ 1/50 suggests that the distinguished limit S∼ ε−2 applies under most conditions of interest for

intrathecal drug delivery, for which the diffusion times h2
c/κ are comparable to the characteristic

residence time ε−2ω−1 of the fluid particles in the spinal canal. As a result, in the limit S∼ ε−2

the temporal variation of the solute concentration is determined by the combined effects of the

time-averaged Lagrangian convection and the diffusion across the canal width. The latter will

be seen to become dominant for solutes with smaller values of S� ε−2, causing the solute

concentration to be uniform across the canal at leading order and resulting in a simpler transport

equation involving the width-averaged Lagrangian velocities
∫ 1

0 uLdη and
∫ 1

0 wLdη.

The variation of the solute concentration in the short time scale ω−1 occurs through

small fluctuations of order ε. For solutes with Schmidt numbers S ∼ 1, the interactions of

these nonuniform fluctuations with the pulsating velocity field will be shown to lead to an

additional dispersion mechanism, with transport rates that are seen to be of the order of (although

significantly smaller than) those of the time-averaged Lagrangian convection. We shall see that

this shear-enhanced dispersion, which has been shown to be an important transport mechanism in

applications involving oscillatory gaseous flow, such as high-frequency ventilation [24], becomes

less effective as the value of S increases, and is entirely negligible for the Schmidt numbers typical

of drugs delivered intrathecally, for which transport relies mainly on Lagrangian convection.
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3.2 Solute Transport

For the curvilinear coordinates (x,y,s) the transport equation for a solute of molecular

diffusivity κ with concentration c takes the form

∂c
∂t

+ ε

(
u

∂c
∂x

+ v
∂c
∂y

+
w
`

∂c
∂s

)
=

1
α2S

∂2c
∂y2 , (3.1)

where α∼ 1 is the Womersley number and S = ν/κ is the Schmidt number. The diffusion term

in the above equation only involves derivatives in the y direction, a simplification that follows

from the slenderness condition (2.1). Effects of second-order derivatives in the azimuthal and

axial direction are anticipated to introduce corrections that are of order (hc/`c)
2 and (hc/L)2,

respectively, which are not described in the present development, consistent with the lubrication

approximation used in computing the velocity field. The analysis below will be performed for the

case of impermeable bounding surfaces, yielding boundary conditions

∂c
∂y

= 0 at y = 0,h. (3.2)

Consistent with previous work [75] and chapter 2, we introduce a normalized transverse

coordinate η = y/h involving the local time-varying canal width h(x,s, t). Also, because of

the anticipated slow evolution of the concentration in the canal, with characteristic transport

times ε−2ω−1, the problem is analyzed with a two-time formalism that includes the long time

scale τ = ε2t in addition to the short time scale t. The resulting concentration field c(x,η,s, t,τ),

assumed to be 2π periodic in t, satisfies the transport problem

∂c
∂t
− ε

∂h′

∂t
η

h
∂c
∂η

+ ε
2 ∂c

∂τ
+ ε

[
u
(

∂c
∂x
− ∂h

∂x
η

h
∂c
∂η

)
+

v
h

∂c
∂η

+
w
`

(
∂c
∂s
− ∂h

∂s
η

h
∂c
∂η

)]
=

1
α2Sh2

∂2c
∂η2 ;

∂c
∂η

= 0 at η = 0,1 (3.3)
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as follows from (3.1).

The problem will be solved by expressing the solute concentration in the expansion form

c = c0 + εc1 + ε
2c2 + · · · , (3.4)

consistent with (2.9). All expansion terms ci(x,η,s, t,τ) for i = 0,1,2, · · · are assumed to be

expressible in the form ci = 〈ci〉+ c̃i, where the average in the short time scale 〈ci〉(x,η,s,τ) =
1

2π

∫ t+2π

t ci dt varies in the long-time scale τ, while the harmonic functions c̃i(x,η,s, t,τ) carry the

short-time dependence. Introducing (2.9) and (3.4) into (3.3) and collecting terms in increasing

powers of ε yield a series of problems that can be solved sequentially, as done below in the two

distinguished limits S = O(ε−2) and S = O(1).

3.2.1 Solute Transport for σ = ε2S∼ 1

We begin by considering the clinically significant case of large values of the Schmidt num-

ber S = ν/κ∼ ε−2, corresponding to most drugs used in ITDD procedures. In this distinguished

limit, the diffusion time across the canal h2
c/κ is comparable to the characteristic residence time

ε−2ω−1, and therefore much larger than the oscillation time ω−1 ∼ h2
c/ν, so that interactions

between the short-time fluctuations of concentration and velocity do not lead to appreciable

enhancement of the solute dispersion. We begin by rewriting the Schmidt number in the starting

equation (3.3) in the rescaled form σ = ε2S, with σ∼ 1.

At O(1) the solution provides

∂c0

∂t
= 0 → c0 = c0(x,η,s,τ), (3.5)

indicating that at leading order the concentration evolves only in the long time scale. The short-

time variation of the concentration is limited to the corrections c1, which are described by the
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problem that arises at the following order, given by

∂c1

∂t
=−u0

∂c0

∂x
− w0

`

∂c0

∂s
−
[

v0−
(

∂h′0
∂t

+
∂h̄
∂x

u0 +
1
`

∂h̄
∂s

w0

)
η

]
1
h̄

∂c0

∂η
. (3.6)

Since the dependence on t enters in (3.6) only through the harmonic functions u0, v0, w0, and

∂h′0/∂t, to be evaluated using the expressions (2.14), straightforward integration provides

c1 = −
∫

u0dt
∂c0

∂x
−

∫
w0dt

1
`

∂c0

∂s
−

∫
v0dt

1
h̄

∂c0

∂η

+

(
h′0 +

∫
u0dt

∂h̄
∂x

+
∫

w0dt
1
`

∂c0

∂s

)
η

h̄
∂c0

∂η
+ 〈c1〉 (3.7)

including the time-averaged value 〈c1〉(x,η,s,τ) and the harmonic functions h′0,
∫

u0dt,
∫

v0dt,

and
∫

w0dt given in (2.14) and (2.54).

The evolution equation for c0 emerges at the following order. Collecting terms of O(ε2)

in (3.3) and taking the time average leads to the convection-diffusion equation

∂c0

∂τ
+uL

(
∂c0

∂x
− ∂h̄

∂x
η

h̄
∂c0

∂η

)
+

vL

h̄
∂c0

∂η
+

wL

`

(
∂c0

∂s
− ∂h̄

∂s
η

h̄
∂c0

∂η

)
=

1
α2σh̄2

∂2c0

∂η2 , (3.8)

involving the time-averaged Lagrangian velocities (2.57)–(2.59) and the rescaled Schmidt number

σ = ε2S∼ 1. Equation (3.8) is to be integrated for a given initial distribution c0 = ci(x,η,s) with

the boundary conditions ∂c0/∂η = 0 at η = 0,1. An integral equation for the total amount of

solute contained between a given section x and the end of the canal follows from integrating (3.8)

to yield
∂

∂τ

{∫ 1

x

[
`
∫ 1

0

(
h̄
∫ 1

0
c0dη

)
ds
]

dx
}
= `

∫ 1

0
h̄
(∫ 1

0
uLc0dη

)
ds, (3.9)

involving the solute flux across section x

φc = `
∫ 1

0

(∫ 1

0
uLc0dη

)
h̄ds. (3.10)
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It is also worth noting that one may alternatively write the problem (3.8) in the form

∂c0

∂τ
+uL

∂c0

∂x
+ vL

∂c0

∂y
+

wL

`

∂c0

∂s
=

1
α2σ

∂2c0

∂y2 ;
∂c0

∂y
= 0 at y = 0, h̄(x,s), (3.11)

obtained from (3.8) by using the relation y = ηh̄(x,y) to express uL, vL, and wL as functions of

(x,y,s). Despite the apparent simplicity of (3.11), the associated computational domain varies

in time according to 0 ≤ y ≤ h(x,s, t), so that the more complicated equation (3.8), involv-

ing a transverse coordinate with normalized constant bounds 0 ≤ η ≤ 1, offers computational

advantages.

3.2.2 Solute Transport for 1� S� ε−2

One can rewrite simpler descriptions of the above equation for extreme values of σ = ε2S.

For example, for σ� 1, corresponding to tracers with S� ε−2, diffusion is entirely negligible,

with the result that the fluid particle conserves its initial concentration at all times. On the other

hand, in the opposite limit σ� 1 corresponding to values S� ε−2 (but still sufficiently larger

than unity for the analysis leading to (3.8) to remain valid), the transverse diffusion term on the

right-hand side of (3.8) becomes dominant. Since ∂c0/∂η = 0 at η = 0,1, it follows that the

concentration of the solute is uniform across the width of the canal, with small departures of

order σ that need not be considered in the first-order approximation. In deriving an equation for

c0(x,s,τ) it is convenient to remove the singular diffusion term by integrating (3.8) from η = 0 to

η = 1 taking into account the condition ∂c0/∂η = 0 in evaluating the convective terms, leading to

∂c0

∂τ
+

(∫ 1

0
uLdη

)
∂c0

∂x
+

(∫ 1

0
wLdη

)
1
`

∂c0

∂s
= 0 (3.12)

involving the width-averaged Lagrangian velocity components (2.62) and (2.63).
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3.2.3 Solute Transport for S∼ 1

Although the molecular diffusivities of the drugs used in ITDD are always much smaller

than the kinematic viscosity, yielding large values of S = ν/κ� 1, to investigate the role of

Taylor dispersion it is of interest to consider the transport of solutes with S = ν/κ∼ 1. In this

distinguished limit the diffusion time across the canal h2
c/κ is comparable to the oscillation time

ω−1 ∼ h2
c/ν, and therefore much smaller than the characteristic residence time ε−2ω−1. As a

result, the leading-order time-averaged solute concentration 〈c0〉(x,s,τ) becomes independent of

the transverse coordinate η. We shall see that the small short-time fluctuations of the concentration

described by the harmonic function c̃1 are essential in the description, in that their interactions with

the oscillating velocity provide an additional dispersion mechanism for the solute, described in

the time-averaged transport equation for 〈c0〉(x,s,τ) through apparent diffusion rates proportional

to Taylor diffusivities.

At O(1) the problem (3.3) becomes

∂c0

∂t
=

1
α2Sh̄2

∂2c0

∂η2 ,
∂c0

∂η
= 0 at η = 0,1, (3.13)

with c0 = 〈c0〉+ c̃0. An equation for 〈c0〉 follows from taking the time average of (3.13) to yield

0 =
∂2〈c0〉

∂η2 ,
∂〈c0〉

∂η
= 0 at η = 0,1, (3.14)

which can be readily integrated to give ∂〈c0〉/∂η = 0. The complex function C̃0 that determines

the leading-order harmonic contribution c̃0 = Re(eitC̃0) is identically zero, as can be seen by

integrating

iC̃0 =
1

α2Sh̄2
∂2C̃0

∂η2 ,
∂C̃0

∂η
= 0 at η = 0,1. (3.15)
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Consequently, at this order the solution reduces to

c0 = 〈c0〉= c0(x,s,τ). (3.16)

At O(ε) the transport problem (3.3) yields

∂c1

∂t
+u0

∂c0

∂x
+

w0

`

∂c0

∂s
=

1
α2Sh̄2

∂2c1

∂η2 ,
∂c1

∂η
= 0 at η = 0,1 (3.17)

for the first-order correction c1. The leading-order velocity components satisfy 〈u0〉= 〈w0〉= 0,

so that the time average of (3.17) provides

0 =
∂2〈c1〉

∂η2 ,
∂〈c1〉

∂η
= 0 at η = 0,1, (3.18)

which readily yields 〈c1〉 = 〈c1〉(x,s,τ). The harmonic fluctuation c̃1, needed in the following

development, is determined by integration of

1
α2Sh̄2

∂2c̃1

∂η2 −
∂c̃1

∂t
= u0

∂c0

∂x
+

w0

`

∂c0

∂s
,

∂c̃1

∂η
= 0 at η = 0,1. (3.19)

The solution reduces simply to

c̃1 =−
(∫

u0dt
)

∂c0

∂x
−
(∫

w0dt
)

1
`

∂c0

∂s
for S� 1, (3.20)

when the diffusion term in (3.19) becomes negligibly small, whereas in the general case S∼ 1 the

solution is more complicated and requires consideration of the variation with η of the axial and

azimuthal velocity components u0 = Re
(
ieitU

)
and w0 = Re

(
ieitW

)
. The functions U(x,η,s)

and W (x,η,s), shown in (2.15), can be used to write

u0 = Re
(

ieit dP′

dx
G
)

and w0 = Re
(

ieit 1
`

∂P̂
∂s

G
)
, (3.21)

53



where the dependence on η is carried by the function

G = 1−
cosh

[
αh̄
2

1+i√
2
(2η−1)

]
cosh

[
αh̄
2

1+i√
2

] . (3.22)

The functions P′(x) and P̂(x,s) in (3.21), independent of η, define the spatial variation of the

leading-order pressure functions p′ and p̂. Using (3.21) together with c̃1 = Re
(
eitC̃1

)
in (3.19)

yields

1
α2Sh̄2

∂2C̃1

∂η2 − iC̃1 = iG
(

dP′

dx
∂c0

∂x
+

1
`

∂P̂
∂s

1
`

∂c0

∂s

)
,

∂C̃1

∂η
= 0 at η = 0,1. (3.23)

which can be integrated to give

C̃1 =−F
(

dP′

dx
∂c0

∂x
+

1
`

∂P̂
∂s

1
`

∂c0

∂s

)
, (3.24)

where

F =
λ

2

[(
eλ

∫ 1

0
Ge−ληdη+ e−λ

∫ 1

0
Geληdη

)
eλη + e−λη

eλ− e−λ

+ e−λη

∫
η

0
Geλη̄dη̄− eλη

∫
η

0
Ge−λη̄dη̄

]
, (3.25)

with λ = 1+i√
2

√
Sαh̄(x,s). The resulting expression for c̃1 = Re

(
eitC̃1

)
can be cast in the compact

form

c̃1 =−
(∫

uadt
)

∂c0

∂x
−
(∫

wadt
)

1
`

∂c0

∂s
(3.26)

by introducing the apparent velocities

ua = Re
(

ieit dP′

dx
F
)

and wa = Re
(

ieit 1
`

∂P̂
∂s

F
)
. (3.27)
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Equation (3.25) yields F = G for S� 1, with the result that ua = u0 and wa = w0, so that (3.26)

reduces to (3.20) in that limit.

The transport equation for c0 can be obtained from the analysis of (3.3) at O(ε2). The

solution can be derived directly by considering the global conservation equation

∂

∂t

(
h
∫ 1

0
cdη

)
+ ε

2 ∂

∂τ

(
h
∫ 1

0
cdη

)
+

ε

`

[
∂

∂x

(
`h

∫ 1

0
ucdη

)
+

∂

∂s

(
h
∫ 1

0
wcdη

)]
= 0, (3.28)

obtained by integrating (3.3) between η = 0 and η = 1. Writing (3.28) for the two-time formalism

and introducing the expansions (2.9) provides

h̄
∂c0

∂τ
+

(
h̄
∫ 1

0
〈u1〉dη+

∫ 1

0
〈h′0u0〉dη

)
∂c0

∂x
+

(
h̄
∫ 1

0
〈w1〉dη+

∫ 1

0
〈h′0w0〉dη

)
1
`

∂c0

∂s

+
1
`

∂

∂x

(
`h̄

∫ 1

0
〈u0c̃1〉dη

)
+

1
`

∂

∂s

(
h̄
∫ 1

0
〈w0c̃1〉dη

)
= 0 (3.29)

after taking the time average and accounting for the conditions ∂c0/∂η = 0 and 〈u0〉= 〈w0〉= 0.

As can be inferred from observation of (2.62) and (2.63), the factors in the apparent

convective terms in the first line of (3.29) correspond to the width-averaged Lagrangian velocity

components
∫

uLdη and
∫

wLdη, except for the last Stokes-drift terms in (2.62) and (2.63), which

are missing in (3.29). The integrals in the second line of (3.29) account for the interactions of the

fluctuations of concentration with the fluctuations of velocity. When S� 1 the fluctuations of

concentration, given in (3.20), are not affected by diffusion and the interactions described by the

last two terms in (3.29) result in the missing contribution to the Stokes-drift convective transport,
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as can be seen by using (3.20) to write

1
`

∂

∂x

(
`h̄

∫ 1

0
〈u0c̃1〉dη

)
+

1
`

∂

∂s

(
h̄
∫ 1

0
〈w0c̃1〉dη

)
=

1
`

∂

∂s

(
h̄
∫ 1

0

〈
u0

∫
w0dt

〉
dη

)
∂c0

∂x
+

∂

∂x

(
h̄
∫ 1

0

〈
w0

∫
u0dt

〉
dη

)
1
`

∂c0

∂s
, (3.30)

Consequently, in the limit S� 1 the transport equation (3.29) reduces to (3.12), which was

derived earlier from (3.8) by considering values of σ = ε2S� 1.

In the general case S ∼ 1, the effect of transverse diffusion modifies the short-time

fluctuations c̃1, as described by (3.26). In this case, the interactions of these fluctuations with the

fluctuations of velocity, described by the nonuniform velocity profiles u0 and w0, lead to Taylor

dispersion in the azimuthal and axial directions, providing an additional transport mechanism for

the solute, supplemental to the convection associated with the time-averaged Lagragian motion.

Using (3.26) in evaluating in (3.29) the integrals containing c̃1 and rearranging the result to isolate

the effect of Taylor dispersion lead to

h̄
∂c0

∂τ
+ h̄

(∫ 1

0
uLdη

)
∂c0

∂x
+ h̄
(∫ 1

0
wLdη

)
1
`

∂c0

∂s
=

1
`

∂

∂x

(
`Dxx

∂c0

∂x

)
+

1
`

∂

∂x

(
Dxs

∂c0

∂s

)
+

1
`

∂

∂s

(
Dsx

∂c0

∂x

)
+

1
`

∂

∂s

(
Dss

1
`

∂c0

∂s

)
, (3.31)

involving the width-averaged Lagrangian velocities given in (2.62) and (2.63) along with the
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Taylor diffusivities

Dxx(x,s) = h̄
∫ 1

0 〈u0 (
∫

uadt)〉dη

Dxs(x,s) = h̄
∫ 1

0 〈u0 (
∫
(wa−w0)dt)〉dη

Dsx(x,s) = h̄
∫ 1

0 〈w0 (
∫
(ua−u0)dt)〉dη

Dss(x,s) = h̄
∫ 1

0 〈w0 (
∫

wadt)〉dη.

(3.32)

Since ua = u0 and wa = w0 for S� 1, it is clear from the definitions (3.32) that all diffusivities

vanish as S→ ∞, so that (3.31) naturally reduces to (3.12) in this limit. An integral conservation

equation, the counterpart of (3.9) for S∼ 1, can be derived by integrating (3.31) to give

∂

∂τ

{∫ 1

x

[
`
∫ 1

0
c0h̄ds

]
dx
}
= φc, (3.33)

where

φc = `
∫ 1

0

(∫ 1

0
uLdη

)
c0h̄ds− `

∫ 1

0
Dxx

∂c0

∂x
ds−

∫ 1

0
Dxs

∂c0

∂s
ds (3.34)

is the solute flux across section x.

3.3 Results for Two Simplified Geometries

The formulation above explicitly defines the solute transport given the geometrical func-

tions h̄(x,s), `(x), γ(x,s), the parameters β, α, and k, and the initial distribution of solute ci.

Transport results are shown for the simplified geometry with constant eccentricity, the same

configuration used in previous work [75] and chapter 2. Since the same parameters β, α, and k

are used, the velocities found in chapter 2 are applicable here. The additional case of concentric

cylinders is briefly considered as well. This case is not clinically relevant, as the spinal cord
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and spinal canal are not concentric, but it is of academic interest as the transport behavior has

additional features due to the azimuthal symmetry.

3.3.1 Constant Eccentricity

The time-averaged transport equation for the solute takes different forms depending on

the value of the Schmidt number. For S ∼ ε−2� 1, the solute concentration at leading order

c0(x,η,s,τ) is obtained from the reduced transport equation (3.8), involving transverse diffusion

across the width of the canal and convective transport, the latter driven by the time-averaged

Lagrangian velocity (uL,vL,wL). For S ∼ 1 the solute concentration c0(x,s,τ) is found to be

uniform across the width of the canal in the first approximation as a result of the dominant

effect of transverse diffusion. As seen in the associated transport equation (3.31), convective

transport involves the width-averaged axial and azimuthal components of the Lagrangian velocity,

while the apparent diffusion terms resulting from the interactions of the small fluctuations of the

concentration with the pulsatile flow are expressed in terms of Taylor diffusivities.

The relevant transport coefficients, i.e. uL, vL, and wL in (3.8) and
∫ 1

0 uLdη,
∫ 1

0 wLdη, Dxx,

Dxs, Dsx, and Dss in (3.31), can be evaluated using the expressions given in chapter 2 for the

Eulerian velocity components and wall deformation, along with the expressions given in (3.32)

for the Taylor diffusivities. The results depend on the Womersley number α defined in (2.8),

which measures the relative importance of viscous forces, and the dimensionless wave number

defined in (2.4), which enters in the elastic equation (2.3) relating the pressure with the canal

deformation, both order-unity parameters. The Taylor diffusivities (3.32) have an additional

dependence on the Schmidt number S, entering in (3.27) through the function F given in (3.25).

The geometry of the canal is defined by the inner perimeter `(x) and unperturbed canal width

h̄(x,s), both order-unity functions. Additionally, a compliance function γ(x,s)∼ 1 is introduced

for generality to describe the spatial variation of the elastic properties of the outer dura membrane.

The diffusion terms in (3.31) describe the dispersion resulting from the interactions of
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Figure 3.1: The distributions of the Taylor diffusivities for β = 0.5, k = 0.5, and S = 1.

the short-time fluctuations of concentration and velocity, the former influenced by transverse

diffusion. The relative contribution of this additional transport mechanism to the dispersion of the

solute along the canal depends on the values of the Taylor diffusivities (3.32), to be compared

with the width-averaged Lagrangian velocities, which determine in (3.31) the convective transport.

For the model geometry considered here, the values of
∫ 1

0 uLdη and
∫ 1

0 wLdη are shown on the

left panels of figure 2.2 for β = 0.5, α = 3, and k = 0.5. Corresponding distributions of Dxx, Dxs,

Dsx, and Dss are given in figure 3.1 for S = 1.

A first observation from the numerical results is that, even for this case of very diffusive
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solutes with S = 1, the magnitude of the Taylor diffusivities is relatively small, compared with

those of the width-averaged axial and azimuthal Lagrangian velocities. The axial diffusivity

exhibits the largest values Dxx ∼ 0.1, while the other three diffusivities remain everywhere smaller

than 0.01, with Dss showing the smallest values.

The spatial distributions of axial diffusivity Dxx and azimuthal diffusivity Dss, symmetric

about s = 0.5, show a strong correlation with the distributions of the amplitudes of the oscillatory

velocity components |u0| and |w0|. Thus, the distribution of Dxx is concentrated near the entrance

in the widest part of of the canal (s = 0.5), where the axial motion is more pronounced. Similarly,

the distribution of Dss shows two longitudinal bands centered about s ' 0.25 and s ' 0.75,

corresponding to the peaks of the azimuthal-velocity amplitude |w0|. Outside these distinct

regions the diffusivities are found to be negligibly small, that being a result of the quadratic

dependence of Dxx and Dss on the fluctuations. The diffusivities Dxs and Dsx are antisymmetric

about s = 0.5, and therefore show positive and negative values, with spatial distributions that tend

to be more uniform than those of Dxx and Dss.

Parametric dependences of the Taylor diffusivities are investigated in figure 3.2 by plotting

their root-mean-square values. The plots are generated by varying one of the four controlling

parameters β, α, k, and S, while keeping the other three constant and equal to the values employed

in figure 3.1. Due to the absence of azimuthal motion in axisymmetric canals, for β = 0 the only

nonzero diffusivity is Dxx. All diffusivities increase for increasing values of the eccentricity and

reach their maximum values at β = 1. By way of contrast, the curves showing the variations

with α, k, and S are non-monotonic, with diffusivities peaking at intermediate values of these

controlling parameters. The computations with varying Schmidt number were extended up to

S = 1000, a value representative of the drugs used in intrathecal-delivery procedures. As can be

seen, the resulting diffusivities are negligibly small for S > 100, indicating that shear-enhanced

dispersion is ineffective under conditions of interest for therapeutical applications, for which

the mean Lagrangian motion becomes the dominant transport mechanism. This is to be further
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Figure 3.2: The parametric variation of the root-mean-square values of the Taylor diffusivities,
with the dots indicating the values corresponding to the distributions shown in figure 3.1.

assessed in the time-dependent computations given below.

Once the time-averaged Lagrangian velocities and Taylor diffusivities are evaluated for

given values of the governing parameters and geometry, the computation of the solute dispersion

reduces to the integration of a linear transport equation, given in (3.8) for σ= ε2S∼ 1 and in (3.31)

for S ∼ 1, with the simpler equation (3.12) applying in the intermediate case 1� S� ε−2. In

these equations, convective transport is driven by the time-averaged Lagrangian velocity, given

by the sum of the steady-streaming and Stokes-drift components. Taylor dispersion emerges

in (3.31) as an additional transport mechanism for solutes with S∼ 1. Although this mechanism

in principle can be important, in view of the relative magnitude of the width-averaged velocities∫ 1
0 uLdη and

∫ 1
0 wLdη, shown in figure 2.2, and the much smaller Taylor diffusivities, shown in

figures 3.1 and 3.2, it can be anticipated that, even for S∼ 1, convection largely dominates the
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transport of the solute under most conditions, as verified in the integrations below. The only

exception is that of perfectly axisymmetric canals (i.e. with h̄ = h̄(x) and γ = γ(x)), for which

the azimuthal motion is absent, with the result that the width-averaged axial velocity along the

closed-end canal is identically zero, as follows from (2.61). This case, of some academic interest,

is analyzed separately in the next section. The results are, however, of limited practical relevance

for solute transport in the spinal canal, because of the lack of azimuthal symmetry in real anatomy.

For that reason, the remaining computations shown here consider instead an eccentric canal, a

geometry that is more relevant in connection with ITDD applications.

The results given in figures 3.3 and 3.4 correspond to an eccentricity β = 0.5, a Womersley

number α = 3, and a nondimensional wave number k = 0.5. The corresponding Lagrangian

velocity components and associated width-averaged values displayed in figures 2.1 and 2.2,

whereas the Taylor diffusivities for S = 1 are shown in figure 3.1. The numerical computations,

which use a second-order central finite-difference approximation for the spatial discretizations

and a Runge-Kutta 4/5 method for time advancement, consider a solute delivered at τ = 0

in a localized region centered about x = 0.75. The resulting distributions of width-averaged

concentration
∫ 1

0 c0dη as a function of x and s at different instants of time are shown in figure 3.3

for different solute diffusivities. For improved clarity, the azimuthal coordinate in the plots is

extended beyond the range 0 < s < 1, with values of
∫ 1

0 c0dη at s < 0 corresponding to those at

1+ s and values at s > 1 corresponding to those at s−1. The axial distribution of the averaged

concentration at each section x, computed according to
∫ 1

0 (h̄
∫ 1

0 c0dη)ds, is indicated on the side

of each individual panel.

Results of integrations of (3.8) for σ = ε2S = 10 and σ = ε2S = 1 are shown in fig-

ures 3.3(a) and 3.3(b), respectively, while figure 3.3(c) shows results for 1� S� ε−2, obtained

from (3.12), and figure 3.3(d) shows results for S = 1, computed with use of (3.31). With the

characteristic value of ε being of order ε ∼ 1/50 and the Schmidt number of drugs typically

used in ITDD procedures being or order S ∼ 1000, it appears that the conditions investigated
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Figure 3.3: Distributions of width-averaged concentration
∫ 1

0 c0dη at different instants of time
as obtained numerically for β = 0.5, α = 3, and k = 0.5 by integration of (3.8) with σ = 10 (a)
and σ = 1 (b), by integration of (3.12) (c) and by integration of (3.31) with S = 1 (d). The axial
distribution of the average concentration at each canal section

∫ 1
0 h̄

∫ 1
0 c0dηds is indicated along

the right side of each panel.
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in figure 3.3(b) are directly relevant to drug dispersion in the spinal canal, while the results for

σ = ε2S = 10, corresponding to Schmidt numbers of order S ∼ 25,000, are representative of

transport of radioactive or fluorescent tracers, used in clinical studies. On the other hand, the

results for S = 1, corresponding to mixing of two gases, are included to illustrate effects of Taylor

dispersion and the intermediate case 1� S� ε−2 is included to test the predictive capability of

the simplified transport equation (3.12).

For all of the computations shown in figure 3.3 the initial concentration is given by the

Gaussian distribution ci = exp[−162(x−0.75)2]. The integration of (3.8) employs the boundary

conditions ∂c0/∂η= 0 at η= 0,1, corresponding to impermeable bounding surfaces. Additionally,

a boundary condition must be specified for c0 at the open boundary x = 0. Since convection is

the only axial transport mechanism in (3.8), the appropriate condition is determined by the sign

of uL at x = 0, indicated by blue (upward) and red (downward) colors in the upper left circular

plot of figure 2.1. In regions of upward flow (negative values of uL) the concentration is given by

that within the canal at earlier times, whereas in regions of downward flow (positive values of uL)

the concentration is that found outside the canal, assumed to be c0 = 0 in our integrations. The

same boundary conditions are used at the canal entrance x = 0 when integrating (3.12). On the

other hand, the presence of Taylor dispersion in (3.31), involving second-order spatial derivatives,

necessitates introduction of suitable modified boundary conditions at the entrance x = 0, but not at

the closed end x = 1, because there the diffusion rate vanishes as a result of the zero values of Dxx,

Dxs, and Dsx, which are apparent in the plots of figure 3.1. As discussed by [30] in their study of

axial dispersion in a channel with oscillating walls, determination of the entry conditions requires

consideration of the flow outside the canal, which would be dependent upon the specific geometry

found there. To avoid this complicating aspect of the problem, in the integrations reported in

figure 3.3(d) we chose a simplified computational strategy, in which the axial diffusive transport

across the boundary at x = 0 is eliminated, and in which the axial convective transport is treated

as described before, i.e. in regions of inflow the concentration is set to zero, whereas in regions of
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outflow it is determined by its value within the canal at earlier times.

A notable finding of the numerical integrations in figure 3.3 is the striking qualitative

agreement of the different transport patterns. This result implies that the dominant transport

mechanism is convection driven by the Lagrangian motion, with the axial velocity uL largely

determining the evolution of the solute in all cases. As expected from the distributions of uL shown

in figure 2.2, the solute is transported rapidly towards the canal entrance along the preferential

path s = 0 (or s = 1), corresponding to the narrow part of the canal where we find large negative

values of uL, regardless of the Schmidt number.

The extent of the effects of Taylor dispersion can be assessed by comparing the snapshots

in figure 3.3(d), corresponding to S = 1, with the dispersion-free results shown in figure 3.3(c) for

the same rescaled times. As can be seen, even for this large-diffusivity case S = 1, the differences

between both sets of computations are not significant, and are mainly observed in the solute

distribution in the low-velocity region near the closed end, where the effect of Taylor dispersion

tends to spread the solute concentration. Additional results of integrations of (3.31) for S = 50, not

shown in figure 3.3, gave solute distributions that are virtually indistinguishable from those shown

in figure 3.3(c). These findings, consistent with the quantitative results in figure 3.2, indicate that

Taylor dispersion, which is known to play a central role in axial dispersion in axisymmetric or

planar configurations, contributes negligibly to the transport of drugs delivered intrathecally in

the spinal canal.

For S� ε−2 the solute concentration is uniform across the width of the canal in the first

approximation, while in the opposite case S� ε−2 molecular diffusion is entirely negligible, so

that each fluid particle conserves its initial concentration. An intermediate behavior is found in

the distinguished limit S∼ ε−2, the case considered in figures 3.3(a) and 3.3(b), where transverse

molecular diffusion is significant, but unable completely uniformize the solute concentration

across the canal width. As a result, the solute located initially near the bounding surfaces η = 0

and η = 1, where the velocity is small, tends to remain at the initial location, an effect that is
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clearly visible in the computations for σ = ε2S = 10 in figure 3.3(a). Away from the walls, the

solute is convected by the flow, so that the resulting transport pattern in 3.3(a) and 3.3(b) is

similar to that found in 3.3(c).

To provide a more direct quantitative assessment of the effects of the Schmidt number

on solute dispersion, the value of the solute flux φc was computed at three different sections

x = (0,0.25,0.5) for the solute evolutions of figure 3.3 and also for additional computations with

S = 50 based on (3.31). The value of φc(x,τ) is evaluated from (3.10) in the integrations for

σ = ε2S = 10 and σ = ε2S = 1 and from (3.34) in the integrations for S = 1 and S = 50, with the

simpler expression

φc = `
∫ 1

0

(∫ 1

0
uLdη

)
c0h̄ds (3.35)

applying in the intermediate limit 1� S� ε−2. The results are represented in figure 3.4.

Since the solute migrates towards the canal entrance, the corresponding values of φc are

negative. The curves at different sections display the expected delay associated with the distance

from the injection location (x = 0.75). The differences in the temporal variation of the solute

flux between the extreme values of the Schmidt number ε2S = 10 and S = 1 can be attributed to

their distinct transport mechanisms. For the least diffusive case (ε2S = 10) the concentration of

each fluid particle remains almost constant, so that particles located initially near the center of the

canal η = 0.5, where the velocity is higher, tend to move faster, whereas those near the bounding

surfaces η = (0,1) move more slowly. By way of contrast, for S = 1 the concentration, uniform

in η, is convected with the width-averaged velocity, smaller than the peak velocity found near

the center. As a result, for ε2S = 10 the flux φc increases earlier than that for S = 1, because of

the rapid motion of the fluid particles near the center of the canal, but reaches a peak value that

is significantly lower, because near-wall fluid particles take a long time to move from the initial

location. The differences between the other three curves (S = 50, 1� S� ε2 and σ = ε2S = 1)

are much smaller, with associated predictions of solute flux differing typically by about 10%.

This quantitative agreement suggests that the simplified transport model (3.12), involving only
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Figure 3.4: The variation with time of the solute flux φc(τ) at three different sections x =
(0,0.25,0.5) for β = 0.5, α = 3, and k = 0.5. The value of φc for S = 1 (thin dot-dashed curves)
and S = 50 (thick dot-dashed curves) was evaluated from (3.34), whereas that for 1� S� ε−2

(thick solid curves) was evaluated from (3.35) and that for σ = ε2S = 1 (thick dashed curves) and
σ = ε2S = 10 (thin dashed curves) was evaluated from (3.10).

67



convection driven by the width-averaged Lagrangian velocities, can provide a sufficiently accurate

description for many purposes.

3.3.2 Concentric Cylinders

Axisymmetric annular canals constitute a singular configuration of academic interest,

although the anticipated relevance to transport in the spinal canal is limited. A distinctive

characteristic of axisymmetric geometries is that, because of the lack of azimuthal motion, the

width-averaged axial velocity
∫ 1

0 uLdη is identically zero, so that solute transport for S∼ 1 depends

exclusively on Taylor dispersion, as described by

h̄
∂c0

∂t
=

1
`

(
`Dxx

∂c0

∂x

)
. (3.36)

To investigate this case in more detail, we consider a concentric annular canal of uniform

elastic properties (i.e. `= 1, h̄ = 1, and γ = 1) with an initial solute concentration

ci(x) = exp[−162(x−0.75)2]. (3.37)

A detailed description of the temporal evolution requires integration of the full transport equa-

tion (3.1) over multiple cycles in the short time scale t for a sufficiently small value of ε. For the

concentric canal, the equation takes the simplified form

∂c
∂t
− ε

∂h′

∂t
η

h
∂c
∂η

+ εu
(

∂c
∂x
− ∂h

∂x
η

h
∂c
∂η

)
+ ε

v
h

∂c
∂η

=
1

α2Sh2
∂2c
∂η2 . (3.38)

The instantaneous velocity and canal deformation were evaluated from the results of chapter 2

from the asymptotic expressions u≈ u0 + ε〈u1〉, v≈ v0 + ε〈v1〉, h−1 = εh′ ≈ εh′0. In addition to

the nonpermeability boundary conditions ∂c/∂η = 0 at η = 0,1, the integration of (3.38) must

specify a boundary condition at x = 0. To handle the oscillatory nature of the axial flow at
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that boundary, the computational domain was artificially extended in the upward direction by

an absorbing buffer region between x = −0.1 and x = 0, in which the values of the transport

coefficients in equation (3.38) were set equal to those at x = 0. An absorption term −Bc with B =

max(0,−{1− tanh[20(x+0.05)]}u) is added the right-hand-side of the transport equation (3.38)

to effectively absorb the solute concentration that enters the buffer region during the upward-

moving part of the oscillation cycle. The numerical integrations of (3.38) with the additional

absorption term were performed using a third order implicit backward difference scheme for time

derivatives and a fourth-order centered finite difference discretization for the spatial derivatives.

Results of integrations of (3.38) are to be compared with those of the reduced evolution

equation
∂c0

∂τ
=

∂

∂x

(
Dxx

∂c0

∂x

)
(3.39)

which follows from (3.36) when h̄ = ` = 1. A boundary value c0 = 0 at x = 0 was used in the

integrations, with no boundary conditions needed at the canal end x = 1, since Dxx vanishes there.

Instantaneous concentration maps c(x,η, t) obtained from (3.38) for S = 1 and ε = 0.02

are shown in figure 3.5(a). In the integrations, the velocity and canal deformation are

evaluated with α = 6 and k = 1. As indicated in the top right corner, the times selected

t − π/2 = 2π(125,250,375,500,625) incorporate a π/2 shift, so that the specific snapshots

shown in the figure represent intermediate instants between peaks of the fluctuating cycle. The

results are used to compute the width-averaged concentration
∫ 1

0 cdη, whose axial distribution is

shown as a solid curve on the right side of each plot. The results are compared with the profiles

of c0(x,τ) at corresponding times τ = ε2t obtained by integrating (3.39), with the value of Dxx

evaluated for α = 6, k = 1, and S = 1. As can be seen, the accuracy of the predictions provided

by the reduced equation (3.39), represented by dashed curves, is excellent in all cases.

The time-averaged variable c0(x,τ) does not describe the short-time fluctuations of the

concentration that are driven by the oscillatory flow. These can be significant initially when the

solute is injected in a small localized region, that being the case considered in (3.37). The extent
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Figure 3.5: (a) The evolution of the solute concentration in a concentric canal (β = 0.0) obtained
for α = 6, k = 1, and S = 1: (a) Instantaneous spatial distributions at six instants of time. Each
panel shows on the left the concentration c(x,η, t) obtained from integration of (3.38) for ε= 0.02,
with the corresponding width-averaged value

∫ 1
0 cdη (red solid line) compared on the right with

the value of c0(x,τ) obtained from the simplified transport equation (3.39) (thick dashed line). (b)
Comparison of the temporal evolution of the width-averaged value

∫ 1
0 cdη at x = 0.65 obtained

from (3.38) for ε = 0.02 (pink) and ε = 0.1 (purple) with the value of c0(x = 0.65,τ) (black)
determined from (3.39).
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of the resulting fluctuations, larger for larger values of ε, is illustrated by plotting in figure 3.5(b)

the variation of
∫ 1

0 cdη with t at x = 0.65. The solution is compared with the corresponding

variation of c0 with τ = ε2t at that same location, obtained by integrating (3.39). The comparisons

indicate that the time-averaged value c0 describes adequately the evolution of the envelope of the

fluctuating solution, with decreasing errors that reduce to values of order |∫ 1
0 cdη− c0| ∼ ε for

long times, as is consistent with the order of the approximation used here.

The model equation (3.39), describing the long-time evolution of the solute in the dis-

tinguished limit S∼ 1, involves a concentration c0(x,τ) that is uniform across the canal. Corre-

spondingly, convective transport is absent in this limit, because the axial velocity uL has a zero

width-averaged value
∫ 1

0 uLdη = 0. The nonuniformities of the concentration across the canal

become more pronounced for increasing values of S, thereby promoting convective transport by

mean Lagrangian motion. This is clearly seen in the reduced transport equation that arises in the

distinguished limit S∼ ε−2,

∂c0

∂τ
+uL

∂c0

∂x
+ vL

∂c0

∂η
=

1
α2ε2S

∂2c0

∂η2 , (3.40)

obtained by writing (3.8) for a concentric canal.

The reduced transport equations (3.39) (for S ∼ 1) and (3.40) (for S ∼ ε−2) involve

different transport mechanisms, namely, Taylor dispersion for S ∼ 1 and convection driven by

steady streaming and Stokes drift for S ∼ ε−2. Since the Taylor diffusivity Dxx vanishes for

S� 1 whereas convection becomes ineffective as the concentration becomes uniform across

the canal for S� ε−2, neither transport mechanism can operate efficiently for values of S in the

intermediate range 1� S� ε−2. This reasoning seems to suggest that in concentric canals the

dispersion rate must exhibit a nonmonotonic behavior as the Schmidt number increases from that

of gases S∼ 1 to that of liquids S∼ ε−2, with a minimum in the dispersion rate reached for an

intermediate value of S in the range 1� S� ε−2.
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This paradoxical behavior is illustrated in figure 3.6(a) by representing instantaneous

distributions of c(x,η, t) obtained after 125 integration cycles (i.e. at t/(2π) = 125) by integra-

tion of (3.38) for ε = 0.02 and different values of S. In agreement with the reduced transport

equation (3.39), for Schmidt numbers S ∼ 1 the plots in figure 3.6(a) reveal that dispersion is

seen to proceed as a nearly one-dimensional diffusion process, with the diffusion rate decreasing

for increasing values of S as a result of the decreasing Taylor diffusivity Dxx. On the other

hand, convection is seen to dominate the solute transport in the limit S∼ ε−2, as is apparent for

S = 2500, where the axial velocity, positive in the central region and negative near the walls,

is responsible for the resulting spreading pattern. Neither of these mechanisms is effective at

intermediate values of S, where the dispersion rate is seen to be much more limited.

The differences in dispersion rate observed in figure 3.6(a) can be quantified by evaluating

∆c =
∫ 1

0
∫ 1

0 (c− ci)
2 dηdx/

∫ 1
0
∫ 1

0 (ci)
2 dηdx as a global measure of the dispersion. The value of

∆c is normalized to be ∆c = 0 at t = 0 and ∆c = 1 as the solute abandons the canal for t → ∞.

The evolution of ∆c(t) obtained from the results of integrations of the transport equation (3.38)

is shown in figure 3.6(b). As can be seen, since ∆c is subject to short-time fluctuations, when

represented over many cycles the resulting curves appear as bands that evolve slowly in the long

time scale ε2t.

The results for increasing S appear to be in agreement with the previous discussion of the

two different transport mechanisms. Thus the slope of the resulting bands, measuring the rate

of dispersion, is seen to decrease initially as the Schmidt number increases from S = 1, a result

that can be attributed to the diminished effect of Taylor dispersion. The slope is very small in the

intermediate cases S = 50 and S = 250, but increases substantially for S = 1000 and S = 2500,

as convection driven by the mean Lagrangian motion becomes effective.

The plots clearly support the existence of an intermediate range of values of S where

neither Taylor dispersion nor Lagrangian convection are very effective, a distinctive feature of

solute transport in perfectly axisymmetric canals. As shown in figures 3.3 and 3.4, corresponding
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Figure 3.6: Results of integrations of (3.38) for ε = 0.02, α = 6, k = 1, and different values
of S: (a) Concentration fields c(x,η, t) at t/(2π) = 125. (b) Time evolution of ∆c =

∫ 1
0
∫ 1

0 (c−
ci)

2 dηdx/
∫ 1

0
∫ 1

0 (ci)
2 dηdx.
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to a canal defined between two eccentric cylinders, in the presence of asymmetries convection

driven by the time-averaged Lagrangian motion remains the dominant transport mechanism

regardless of the Schmidt number. An important conclusions of those results is that, with the

exception of axisymmetric canals, the simplified equation (3.12) provides a reasonably accurate

model for the description of solute transport.

3.4 DNS Validation

In order to validate the simplified model of solute transport described above, full direct

numerical simulations of the transport of a solute are calculated. Using the Eulerian velocity field

calculated previously in section 2.5, the transport problem

∂c
∂t∗

+ v̄∗ ·∇c =
ν

S
∇

2c, (3.41)

is solved to study the slow-time dispersion of a solute. Again, the asterisks denote dimensional

variables. The initial spatial distribution of the solute, defined below in (3.42), is selected to

represent the release of a drug in the lumbar region. The simulations are extended over a large

number of cycles, corresponding to values of the long-time scale τ of order unity, and their results

are compared with those of the simplified transport problem (3.8). Note that in the computations,

no simplifications on the basis of the slenderness of the canal or the smallness of the stroke length

are introduced.

The numerical solution of (3.41), using the results from the previous solution of (2.64)–

(2.65), is carried out with the finite-volume solver Ansys Fluent (Release 16.2), assuring second-

order accuracy in time and in space. The same dimensional parameters are used here as are

used to solve the flow field. The kinematic viscosity, appearing in (3.41), is taken to be ν =

0.698×10−6 m2/s, the value corresponding to water at 36.8o C. The dimensions of the domain for

the two configurations shown in figures 2.3(b) and (c) are L = 0.6m, Re = 5mm, and Ri = 4mm,
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corresponding to a canal with characteristic width hc = Re−Ri = 1mm and constant inner

perimeter `c = 2πRi ' 25mm. In all computations, the dimensionless eccentricity is taken to be

β = 0.5. The canal deformation, given in (2.66), is evaluated for an angular frequency ω = 2πs−1,

as corresponds approximately to the cardiac cycle, with the function H ′(x∗/L), given in (2.21),

computed with k = 0.5 and α = (h2
cω/ν)1/2 = 3, the latter value consistent with the parametric

choice hc = 1mm, ω = 2πs−1, and ν = 0.698× 10−6 m2/s. In all computations, the reduced

amplitude is taken to be ε = 1/20.

Results are presented for the time-dependent dispersion of a solute for the same two

geometrical domains previously presented, with results of integrations of the full transport

equation (3.41) compared with those of the simplified equation (3.8) for different values of the

Schmidt number S.

3.4.1 Constant Eccentricity

To test the accuracy of the theoretical model in describing transport in the spinal canal,

we consider the temporal evolution of a bolus of solute released at the initial instant of time. The

initial concentration is given by the truncated Gaussian distribution

c(x∗/L) = min

{
1,

3
2

exp

[
−162

(
x∗

L
− 3

4

)2
]}

, (3.42)

selected as representative of injection of a solute bolus in the upper lumbar region. Predictions

obtained by integrating the time-averaged (3.8) in the long time scale τ = ε2t = ε2ωt∗ for

0 ≤ τ ≤ 2 are compared in figure 3.7 with results of integrations of (3.41) for 0 ≤ ωt∗ ≤ 200.

The figure shows distributions of width-averaged concentration for different times, together with

the corresponding axial distributions of the averaged concentration at each section x, computed

according to
∫ 1

0 (h̄
∫ 1

0 〈c〉dη)ds and
∫ 1

0 (h̄
∫ 1

0 co dη)ds for the DNS and the model, respectively.

Here, 〈c〉= ω/(2π)
∫ t∗+2π/ω

t∗ c(x̄∗, t∗)dt∗ indicates the time-averaged value of the concentration
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Figure 3.7: Width-averaged distributions of concentration at different instants of time following
the release of a bolus of solute with Schmidt number S = 100 (a) and S = 4000 (b) in the constant-
eccentricity canal of figure 2.3(b). Flow conditions correspond to those in figures 2.4 and 2.5.
DNS results are represented by the contours on the left-hand side of the panels and by the solid
curves representing the axial distribution of solute on the side plots. Theoretical predictions
corresponding to integrations of (3.8) are epresented by the contours on the right-hand side of
the panels and by the dashed curves on the side plots. The letters N and W near the bottom of the
leftmost panels indicate the azimuthal location of the narrowest and widest sections.

over a cardiac cycle. The results correspond to the flow conditions of figures 2.4 and 2.5 for two

different values of the Schmidt number, namely S = 100 and S = 4000.

The agreement between the numerical results and those given by the model is very

satisfactory. As expected from the streamline pattern shown in figure 2.7, the solute is convected

along the narrow part of the canal (s = 0), reaching the canal entrance at τ = ε2t ≈ 1.2. This fast
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upward motion is accompanied by a slower downward motion occurring along the wide part of

the canal (s = 0.5). The theoretical model is seen to appropriately capture the effects of solute

diffusivity, described in the time-averaged (3.8) by the transverse-diffusion term on the right-hand

side, leading to solute spatial distributions that are different for S = 100 and S = 4000, with

theoretical predictions in excellent quantitative and qualitative agreement with the DNS results.

3.4.2 Variable Eccentricity

The existence of unconnected closed recirculating regions has a dramatic effect on the

solute dispersion along the canal, as verified in accompanying integrations of the transport (3.41)

with the initial condition stated in (3.42). These DNS results are shown in figure 3.8, along

with predictions obtained with the simplified transport (3.8). According to the streamline pattern

shown in figure 2.8, the initial distribution of solute, given in (3.42), is centered at x∗/L = 0.75,

so that the bolus occupies initially a section of the canal lying between the bottom and central

vortices. As a consequence, the upper and lower sides of the bolus are subject to a recirculating

flow with opposite sign, eventually resulting in counterflowing convective transport along the line

s = 0.5, with the solute carried by the central vortex moving upwards and the solute carried by the

bottom vortex moving downwards. The subsequent temporal evolution of the solute demonstrates

the dominant role of Lagrangian convection, with the solute largely following the streamlines

of figure 2.8. In the absence of molecular diffusion, solute particles would remain trapped in

the central and bottom recirculating regions. The numerical integrations reveal that diffusive

transport provides the needed inter-vortex connectivity, enabling a small portion of solute to reach

the entrance of the canal at the end of the numerical integration.
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Figure 3.8: Width-averaged distributions of concentration at different instants of time following
the release of a bolus of solute with Schmidt number S = 100 (a) and S = 4000 (b) in the
variable-eccentricity canal of figure 2.3(c). The solute is carried by the flow depicted in figure 2.8.
DNS results are represented by the contours on the left-hand side of the panels and by the solid
curves representing the axial distribution of solute on the side plots. Theoretical predictions
corresponding to integrations of (3.8) are represented by the contours on the right-hand side of
the panels and by the dashed curves on the side plots. The letters N and W at the leftmost panels
indicate the azimuthal location of the narrowest and widest sections.

3.5 Conclusions

A simplified model for the transport of a solute in the spinal canal has been found

analytically. The domain is assumed to be doubly slender, following the conditions in (2.1),

and the Womersley number α and dimensionless wave number k are assumed to be order unity

78



while the parameter measuring the limited compliance ε, effectively measuring the stroke volume

compared to the total volume of fluid in the canal, is assumed to be small. Using this small

parameter, all variables are expanded asymptotically. The leading order transport is found to only

occur in the long-time scale τ, influenced by the first order corrections to the transport which vary

in the short-time scale t.

Results for the simplified transport model are presented for two geometrical configurations,

then verified by comparison to full DNS. For the constant eccentricity case, it is clear that

convection dominates the transport behavior, with the solute tending cranially on the narrow side

of the canal and caudally on the wide side of the canal, matching the streamline patterns found for

the Lagrangian velocity. Different diffusion behaviors emerge for the distinguised limits S∼ 1

and S∼ ε−2, but convection still dominates in all eccentric cases studied here. For the concentric

cylinder case, azimuthal symmetry eliminates the azimuthal velocity and convection is suppressed.

The transport is therefore most pronounced at S∼ 1 and S∼ ε−2 by the corresponding diffusion

behaviors present at those distinguished limits of the Schmidt number.

The simplified model was verified by comparison to full DNS. Good agreement is found

in all cases. In verifying the DNS, the case of variable eccentricity is also studied. Since the

Lagrangian velocity field yields closed recirculation regions, transport of a solute to the cranial

vault (x = 0) requires diffusion between the closed vorticies. The simplified transport model for

1� S� ε−2, containing only the width-averaged convection terms, leads to solute that is trapped

in its original vortex with no means of escape. The DNS, which makes no simplifications to the

continuity, Navier–Stokes, and transport equations due to the slenderness or the distinguished

limit of the Schmidt number, always finds a small amount of diffusion to allow transport of solute

between vortices.

This chapter, in part, is a reprint of the material published in the Journal of Fluid Me-

chanics, titled “On the dispersion of a drug delivered intrathecally in the spinal canal,” by J. J.

Lawrence, W. Coenen, A. L. Sánchez, G. Pawlak, C. Martı́nez-Bazán, V. Haughton, and J. C.
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Lasheras, (2019) 861, 679-720. The dissertation author was the primary investigator and author of

this paper. This chapter, in part, is also a reprint of the material published in Applied Mathematical

Modelling, titled “Modelling and direct numerical simulation of flow and solute dispersion in the

spinal subarachnoid space,” by C. Gutiérrez-Montes, W. Coenen, J. J. Lawrence, C. Martı́nez-

Bazán, A. L. Sánchez, and J. C. Lasheras (2021), 94, 516-533. Cándido Gutiérrez-Montes was

the primary author of this paper.
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Chapter 4

Effects of Buoyancy on Solute Transport

4.1 Characteristic Scales

The previous chapter considered the transport of a solute assuming that the solute density

was exactly equal to the CSF density. The present chapter, however, considers the transport of a

solute with a density different from the CSF density. Although the density differences are typically

small, the velocities induced by buoyancy are anticipated to be significant since they enter at

the same order as the steady streaming and Stokes drift velocities. The transport, dominated by

convection caused by these velocities, is expected to see significant changes due to these small

density differences.

To anticipate the extent of solute motion induced by buoyancy forces, it is useful to begin

by comparing the characteristic value of the buoyancy-induced acceleration g(ρ−ρd)/ρ with the

characteristic value of the convective acceleration along the canal u2
c/L, their ratio defining the

relevant Richardson number

Ri =
g(ρ−ρd)/ρ

ε2ω2L
. (4.1)

Typical values of this number are evaluated in Table 4.1 for a few common intrathecal drugs

with a presumed value of ε = 1/30. The evaluations indicate that values of Ri of order unity
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Table 4.1: A few common intrathecal drugs, their densities [48, 60], and associated Richardson
numbers Ri = [g(ρ−ρd)]/(ρε2ω2L), the latter evaluated with g = 9.81 m/s2, L = 0.6 m, ρ =
1.00059 g/cm3, and ε = 1/30.

Drug ρd (g/cm3) Ri
Droperidol 0.9944 2.30

Normal Saline 0.9995 0.406
Epinephrine 1.0005 0.034

Lidocaine CO2 1.0010 -0.15
Meperidine 1.0083 -2.872

characterize most situations of practical interest. As previously discussed, the motion of CSF at

leading order is given by an unsteady lubrication problem involving the local acceleration and the

viscous and pressure forces, with convective acceleration introducing small corrections of order

ε, responsible for the steady-streaming motion. The leading-order balance is not altered in the

relevant limit Ri∼ 1 that applies to intrathecal drugs, in which the associated buoyancy-induced

velocities are comparable to the steady-streaming velocities (and therefore a factor ε smaller than

the leading-order velocities).

The limit Ri∼ 1 will be used in the following analysis to quantify buoyancy effects on

drug dispersion. We shall show that, since the buoyancy force depends linearly on the drug

concentration, concentration is no longer a passive scalar. Because the coupling with the mo-

mentum balance is weak and affects only the higher-order corrections, the slow time dependence

of the resulting time-averaged Lagrangian motion includes a buoyancy-induced component that

depends on the spatial distribution of drug concentration. The transport equation (3.8) describing

the long-time temporal evolution of the drug, which is linear in the absence of buoyancy forces,

becomes nonlinear through the dependence of the time-averaged Lagrangian velocities on the

solute concentration, thereby complicating the description.
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4.2 Updated Eulerian Velocity Field

The problem is formulated in dimensionless form using the scales and notation employed

in our previous buoyancy-free analysis shown in chapters 2 and 3. The equations are written

in terms of the curvilinear coordinates (x,y,s) indicated in figure 1.1(c), with corresponding

streamwise, transverse, and azimuthal velocity components (u,v,w). The geometry of the canal

is defined by the dimensionless unperturbed canal width h̄(x,s) and spinal-cord perimeter `(x).

In the thin-film approximation that applies to the slender spinal canal, the continuity, momentum,

and solute conservation equations take the simplified form

1
`

∂

∂x
(`u)+

∂v
∂y

+
1
`

∂w
∂s

= 0, (4.2)

∂u
∂t

+ ε

[
u

∂u
∂x

+ v
∂u
∂y

+
w
`

∂u
∂s

]
= −∂p′

∂x
+

1
α2

∂2u
∂y2 − εRic, (4.3)

∂w
∂t

+ ε

[
u
`

∂

∂x
(`w)+ v

∂w
∂y

+
w
`

∂w
∂s

]
= −1

`

∂p̂
∂s

+
1

α2
∂2w
∂y2 , (4.4)

∂c
∂t

+ ε

(
u

∂c
∂x

+ v
∂c
∂y

+
w
`

∂c
∂s

)
=

ε2

α2σ

∂2c
∂y2 , (4.5)

which must be supplemented with the presumed linear elastic equation

h′ = γ(Π+ k2 p′) (4.6)

relating the canal deformation h′ = (h− h̄)/ε with the local pressure, the latter given by the

sum of the periodic cranial pressure Π(t) and the streamwise pressure variation p′(x, t). The

order-unity compliance factor γ(x,s) is introduced to describe the nonuniform elastic properties

of the dura membrane. It is worth noting that, although results are given below only for a simple

harmonic intracranial pressure Π = cos(t), the analysis could be easily extended to general

periodic functions Π(t) with use of Fourier decomposition, as shown in section 6.1.

The problem is formulated using the Boussinesq approximation, as is appropriate for
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|ρ− ρd| � ρ. The case considered here is that of a sitting or standing patient, such that the

streamwise coordinate x is effectively aligned with gravity, neglecting the spinal curvature. The

component of the buoyancy force acting in the azimuthal direction is therefore small, and has

been correspondingly neglected in writing (4.4). With the definition (4.1), the Richardson number

measuring the buoyancy force in (4.3) is positive when the drug is lighter than the CSF, for which

buoyancy drives the drug upwards toward the brain (in the negative x direction), as is common for

drugs diluted in water. Conversely, for ρd > ρ the corresponding Richardson number is negative,

such as the case when dextrose is added to the drug solution, for which the buoyancy force points

in the positive x direction, toward the sacral region and away from the brain.

The pressure drop is negligible at the entrance of the canal, resulting in the condition

p′ = 0 at x = 0. The velocity satisfies the non-slip condition u = v = w = 0 at y = 0 and

u = v− ∂h′/∂t = w = 0 at y = h, while the concentration satisfies ∂c/∂η = 0 at y = 0,h, as

corresponds to the case of non-permeable bounding surfaces considered here. Since the canal is

symmetric, the azimuthal velocity component w vanishes at s = 0 and s = 1/2. The requirement

that the axial volume flux
∫ 1

0

(∫ h
0 udy

)
ds must vanish at the closed end x = 1 completes the set

of boundary conditions needed to determine the flow in the canal.

Besides the Richardson number Ri and the compliance parameter ε� 1, the set of

governing parameters includes the Womersley number α = hc/(ν/ω)1/2, the dimensionless

elastic wavenumber k, and the rescaled Schmidt number σ = Sε2. The problem is to be solved

in the limit ε� 1 with α∼ 1 and k ∼ 1, as is appropriate for describing CSF flow in the spinal

canal, for solutes with σ = Sε2 ∼ 1 and Ri∼ 1, the distinguished limit of interest in intrathecal

drug dispersion.

In the development, it is convenient to replace the transverse coordinate y by its normalized

counterpart η = y/h, with 0≤ η≤ 1. Effects of buoyancy can be described by introducing the

long time scale τ = ε2t, in addition to the short time scale t. In this two-time scale formalism,

all variables are assumed to be 2π periodic in the short time scale t, slow changes in time being
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described by the additional time variable τ, which is formally introduced in the equations by

replacing the original time derivatives by ∂/∂t + ε2∂/∂τ. Following our previous work [75] and

chapters 2 and 3, the asymptotic solution for ε� 1 is constructed by substituting expansions for

all flow variables in powers of ε (e.g. u = u0+εu1+ · · · ) into the above equations (4.2)–(4.6) and

sequentially solving the problems that arise when collecting terms at different orders in powers of

ε.

4.2.1 Leading-order Solution

At leading order, (4.2)–(4.5) simplify to

1
`

∂

∂x
(`u0) −

η

h̄
∂h̄
∂x

∂u0

∂η
+

1
h̄

∂v0

∂η
+

1
`

∂w0

∂s
− η

h̄
1
`

∂h̄
∂s

∂w0

∂η
= 0, (4.7)

∂u0

∂t
= −∂p′0

∂x
+

1
α2h̄2

∂2u0

∂η2 , (4.8)

∂w0

∂t
= −1

`

∂p̂0

∂s
+

1
α2h̄2

∂2w0

∂η2 , (4.9)

∂c0

∂t
= 0. (4.10)

The last equation indicates that the solute concentration varies at leading order in the long time

scale τ, while variations with the short time scale t affect only higher order corrections of relative

order ε and smaller. As shown previously, the solution to the periodic lubrication problem (4.7)–

(4.9) supplemented with h′0 = γ(cos t + k2 p′0), the leading-order form of (4.6) when Π = cos t,

can be written as

u0 = Re
(

ieitU
)
,v0 = Re

(
ieitV

)
,w0 = Re

(
ieitW

)
,

p′0 = Re
(

eitP′
)
, p̂0 = Re

(
eit P̂
)
,h′0 = Re

(
eitH ′

)
, (4.11)
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where the complex functions U(x,η,s), V (x,η,s), W (x,η,s), P′(x), P̂(x,s), and H ′(x,s) are given

in section 2.2.1. At leading order, the solution for the velocity is buoyancy-free and independent

of the long-time scale τ.

4.2.2 Buoyancy-induced Streaming

While the above harmonic functions (4.11) have zero mean values over an oscillation

period, i.e. 〈u0〉= 0 with 〈·〉= ∫ 2π

0 ·dt/(2π), the velocity corrections (u1,v1,w1) contain nonzero

time-averaged components (〈u1〉,〈v1〉,〈w1〉) that satisfy the quasi-steady conservation equations

F =
1
`

∂

∂x
(`h̄〈u1〉)−

∂

∂η

(
η

∂h̄
∂x
〈u1〉

)
+

∂〈v1〉
∂η

+
1
`

∂

∂s
(h̄〈w1〉)−

∂

∂η

(
η

`

∂h̄
∂s
〈w1〉

)
, (4.12)

Fx = −∂〈p′1〉
∂x

+
1

h̄2α2
∂2〈u1〉

∂η2 −Ric0, (4.13)

Fs = −1
`

∂〈p̂1〉
∂s

+
1

h̄2α2
∂2〈w1〉

∂η2 , (4.14)

obtained by taking the time average of the equations that emerge when collecting terms of order ε

in (4.2)–(4.4). The left-hand-side functions

F =−1
`

∂

∂x
(`〈h′0u0〉)+

∂

∂η

(
η〈u0

∂h′0
∂x
〉
)
− 1

`

∂

∂s
(〈h′0w0〉)+

∂

∂η

(
η

`
〈w0

∂h′0
∂s
〉
)
, (4.15)

Fx =
1
`

∂

∂x
(`〈u2

0〉)+
1
h̄

∂

∂η
〈u0v0〉+

1
`

∂

∂s
〈u0w0〉

− η

h̄
∂

∂η
〈∂h′0

∂t
u0〉−

∂h̄
∂x

η

h̄
∂

∂η
〈u2

0〉−
1
`

∂h̄
∂s

η

h̄
∂

∂η
〈u0w0〉+

2
h̄3α2

∂2

∂η2 〈h
′
0u0〉, (4.16)
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and

Fs =
∂

∂x
〈u0w0〉+2

〈u0w0〉
`

∂`

∂x
+

1
h̄

∂

∂η
〈v0w0〉+

1
`

∂

∂s
〈w2

0〉−
η

h̄
∂

∂η
〈∂h′0

∂t
w0〉

− ∂h̄
∂x

η

h̄
∂

∂η
〈u0w0〉−

1
`

∂h̄
∂s

η

h̄
∂

∂η
〈w2

0〉+
2

h̄3α2
∂2

∂η2 〈h
′
0w0〉, (4.17)

carrying the nonlinear corrections arising from the convective acceleration and the deformation of

the canal, involve nonzero time averages of products of the harmonic functions (4.11). Because of

the presence of the buoyancy force in (4.13), proportional to the solute concentration c0(x,η,s,τ),

the time-averaged velocity corrections (〈u1〉,〈v1〉,〈w1〉) can be expected to evolve in the long-time

scale τ.

The velocity must satisfy zero volume flux at the closed end of the canal, given by∫ 1
0

(
h̄
∫ 1

0 〈u1〉dη

)
ds = 0 at x = 1 and the symmetry condition

∫ 1
0 〈w1〉dη = 0 at s = (0,1). The

non-slip condition for the velocity on the bounding surfaces requires that 〈u1〉= 〈v1〉= 〈w1〉= 0

at η = (0,1), with the condition 〈v1〉 = 0 at η = 1 following at this order from the general

condition v = ∂h′/∂t written in the two-time-scale formalism in the form v = ∂h′/∂t + ε2∂h′/∂τ,

so that 〈v〉= ε2∂〈h′〉/∂τ.

In solving the above linear problem it is convenient to use superposition by writing

the velocity in the form (〈u1〉,〈v1〉,〈w1〉) = (uSS +uB,vSS + vB,wSS +wB). The subscript SS de-

notes the time-independent steady streaming velocities resulting from the terms on the left-hand

side of (4.12)–(4.14), while the subscript B denotes the velocity corrections induced by buoy-

ancy, linearly proportional to the unknown solute concentration c0(x,η,s,τ), which introduces

in (4.13) a quasi-steady dependence on the long-time scale τ. The steady-streaming components

(uSS,vSS,wSS), independent of τ, are determined by integration of the problem found for Ri = 0.

The solution, obtained previously, is given in section 2.2.2.
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The slowly evolving buoyancy-induced flow is determined by integration of

0 =
1
`

∂

∂x
(`h̄uB)−

∂

∂η

(
η

∂h̄
∂x

uB

)
+

∂vB

∂η
+

1
`

∂

∂s
(h̄wB)−

∂

∂η

(
η

`

∂h̄
∂s

wB

)
, (4.18)

0 = −∂p′B
∂x

+
1

h̄2α2
∂2uB

∂η2 −Ric0, (4.19)

0 = −1
`

∂ p̂B

∂s
+

1
h̄2α2

∂2wB

∂η2 , (4.20)

subject to the conditions uB = vB = wB = 0 at η = (0,1),
∫ 1

0

(
h̄
∫ 1

0 uBdη

)
ds = 0 at x = 1, and∫ 1

0 wBdη = 0 at s = (0,1). The solution can be written in terms of the solute concentration c0 in

the form

uB

α2Rih̄2 = η

∫
η

0
c0dη̃−

∫
η

0
c0η̃dη̃−η

∫ 1

0
c0(1−η)dη+3η(1−η)

∫ 1
0 h̄3C0ds∫ 1

0 h̄3ds
, (4.21)

wB

α2Rih̄2 =
3η(1−η)

h̄3
∂

∂x

[
`
∫ s

0
h̄3C0ds̃− `

∫ s

0
h̄3ds̃

(∫ 1
0 h̄3C0ds∫ 1

0 h̄3ds

)]
, (4.22)

vB = −1
`

∂

∂x

(
`h̄

∫
η

0
uBdη̃

)
+η

∂h̄
∂x

uB−
1
`

∂

∂s

(
h̄
∫

η

0
wBdη̃

)
+

η

`

∂h̄
∂s

wB, (4.23)

where

C0(x,s,τ) =
∫ 1

0
c0η(1−η)dη. (4.24)

Tildes are used throughout the text to denote dummy integration variables.
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4.3 Transport description

4.3.1 Solute Transport for σ = ε2S∼ 1

As shown in section 3.2, the transport equation for c0(x,η,s,τ) is obtained by extending

the analysis of (4.5) to higher order. Integration of the equation that arises at O(ε) provides

c1 = −
∫

u0dt
∂c0

∂x
−

∫
w0dt

1
`

∂c0

∂s
−

∫
v0dt

1
h̄

∂c0

∂η

+

(
h′0 +

∫
u0dt

∂h̄
∂x

+
∫

w0dt
1
`

∂h̄
∂s

)
η

h̄
∂c0

∂η
+ 〈c1〉 (4.25)

including the time-averaged value 〈c1〉 and the harmonic functions h′0,
∫

u0dt = Re
(
eitU

)
,∫

v0dt = Re
(
eitV

)
, and

∫
w0dt = Re

(
eitW

)
. Collecting terms of order ε2 in (4.5) and taking the

time average provides the reduced transport equation

∂c0

∂τ
+uL

(
∂c0

∂x
− ∂h̄

∂x
η

h̄
∂c0

∂η

)
+

vL

h̄
∂c0

∂η
+

wL

`

(
∂c0

∂s
− ∂h̄

∂s
η

h̄
∂c0

∂η

)
=

1
α2σh̄2

∂2c0

∂η2 . (4.26)

The time-averaged Lagrangian velocity driving convective transport in the long time scale


uL = uSS +uB +uSD

vL = vSS + vB + vSD

wL = wSS +wB +wSD

(4.27)

is found to be the sum of the time-averaged Eulerian velocity (〈u1〉,〈v1〉,〈w1〉) = (uSS +uB,vSS +

vB,wSS +wB), described above, and the Stokes-drift velocity (uSD,vSD,wSD), a purely kinematic

effect associated with the spatial non-uniformity of the leading-order flow. Explicit expressions

are given in section 2.3 for (uSD,vSD,wSD), thereby completing the description of the velocity field.

The transport equation (4.26), supplemented with (4.21)–(4.23) for the evaluation of the

changing buoyancy-induced velocity (uB,vB,wB) and with the expressions given in sections 2.2.2
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and 2.3 for the time-independent velocity components (uSS,vSS,wSS) and (uSD,vSD,wSD), can be

integrated with boundary conditions ∂c0/∂η = 0 at η = (0,1) to determine the temporal evolution

of the solute from a prescribed initial distribution.

4.3.2 Solute Transport for 1� S� ε−2

The solution simplifies for solutes with σ = ε2S� 1, when c0 is uniform across the width

of the canal, so that (4.26) reduces to

∂c0

∂τ
+

(∫ 1

0
uLdη

)
∂c0

∂x
+

(∫ 1

0
wLdη

)
1
`

∂c0

∂s
= 0. (4.28)

The width-averaged values of the buoyancy-induced velocities driving the convective in this limit

can be evaluated from

∫ 1

0
uBdη =

h̄2α2Ri

12
∫ 1

0 h̄3ds

(∫ 1

0
h̄3c0 ds− c0

∫ 1

0
h̄3ds

)
(4.29)

and

∫ 1

0
wBdη =

α2Ri
12h̄

∂

∂x

[
`∫ 1

0 h̄3ds

(∫ 1

0
h̄3ds

∫ s

0
h̄3c0ds̃−

∫ 1

0
h̄3c0 ds

∫ s

0
h̄3ds̃

)]
, (4.30)

as follows from (4.21) and (4.22) with C0 = c0/6. For an initial mass-fraction distribution

c = ci(x,s), integration of (4.28) supplemented with (4.29) and (4.30) determines the dispersion

of the solute.
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4.4 Preliminary Results for a Simplified Geometry

4.4.1 Results for 1� S� ε−2

The formulation above explicitly defines the dispersion of a drug with density different

from that of the CSF given the functions h̄(x,s), `(x), γ(x,s), the parameters β, α, k, and Ri, and

the initial distribution of solute ci. Here we consider the variable eccentricity case, shown in

figure 2.3, where the canal width varies according to h̄ = 1−βcos(2πs)cos(2πx). This case is

chosen to better illustrate the affects of buoyancy when the width-averaged steady streaming and

Stokes drift velocities, previously the only components of the Lagrangian velocities,
∫ 1

0 uLdη and∫ 1
0 wLdη predict closed recirculation regions (see figure 2.8).

The time-averaged transport equation for a buoyant solute takes different forms depending

on the Schmidt number. For S∼ ε−2� 1, the solute concentration at leading order c0(x,η,s,τ)

is obtained from the reduced transport equation (4.26), involving transverse diffusion across the

canal and convective transport, the latter driven by the previously found time-averaged Lagrangian

velocity (previously called (uL,vL,wL)), which is constant in τ, and the buoyancy-induced steady

streaming velocity velocity (uB,vB,wB), which is not constant in τ. For 1� S� ε−2, the solute

concentration c0(x,s,τ) is found to be uniform across the width of the canal as a result of the

dominant effect of transverse diffusion. The transport equation in this case (4.28) involves

convective transport of the previously found width-averaged axial and azimuthal components of

the Lagrangian velocity, constant in τ, and the width-averaged axial and azimuthal components of

the buoyancy-induced streaming velocity, not constant in τ.

The relevant transport coefficients for (4.26) are uL, vL, and wL, calculated from (2.57)–

(2.58), and uB, vB, and wB, calculated from (4.21)–(4.23). For (4.28), the transport coefficients are

instead given by the width-averaged values
∫ 1

0 uLdη and
∫ 1

0 wLdη, calculated from (2.62)–(2.63),

and
∫ 1

0 uBdη and
∫ 1

0 wBdη, calculated from (4.29)–(4.30). The results depend on the Richardson

number, defined in (4.1), which measures the relative importance of buoyancy compared to
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convection, where a positive Richardson number indicates a light or hypobaric solute and a

negative Richardson number indicates a heavy or hyperbaric solute. Additional parameters

include the Womersley number α defined in (2.8), which measures the relative importance of

inertial forces as compared to viscous forces, and the dimensionless wave number defined in

(2.4), which enters in the elastic equation (4.6) relating the pressure with the canal deformation,

both order-unity parameters. The Schmidt number S = ν/κ, comparing the momentum diffusivity

of CSF with the molecular diffusivity of the solute, enters in (4.26), the transport equation for

S ∼ ε−2, but is absent in (4.28), the transport equation for 1� S� ε−2. The geometry of

the canal is defined by the inner perimeter `(x), the unperturbed canal width h̄(x,s), and the

dura-membrane compliance γ(x,s), all order-unity functions.

The results given in figure 4.1 correspond to an eccentricity parameter β = 0.5, a Wom-

ersley number α = 3, and a nondimensional wave number k = 0.5. The coupling of the axial

momentum and transport equations causes the buoyancy-induced streaming velocities to vary with

c0, and therefore vary with time. Substitution of (4.21)–(4.23) into (4.26) for S∼ ε−2� 1 and

(4.29)–(4.30) into (4.28) for 1� S� ε−2 in both cases leads to a nonlinear ordinary differential

equation, different from the previous linear ordinary differential equation. The numerical compu-

tations utilize a second-order central finite-difference approximation for the spatial derivatives

and a third-order backward differentiation formula for the time-advancement. This method is

chosen over the previously used Runge-Kutta 4/5 method due to its improved stability. The initial

condition, given by (4.32), is a truncated Gaussian expression representing a bolus injection into

the lumbar region of the SSAS. The resulting distributions of the width-averaged concentration∫ 1
0 c0dη as a function of x and s at different instants of time are presented for different values of

the Richardson number, where solution of (4.28) is shown in figure 4.1 and solution of (4.26) is

to be completed in future work.

The non-buoyant case (Ri = 0), shown in figure 4.1(b), is computed in addition to the

cases of a light solute and a heavy solute in order to provide comparison. Because this limit of
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Figure 4.1: Distributions of width-averaged concentration
∫ 1

0 c0dη at different instants of time τ

obtained numerically for β = 0.5, α = 3, and k = 0.5 by integration of (4.28) for (a) Ri = 1, (b)
Ri = 0, and (c) Ri =−1 using the boundary condition defined below in (4.32).
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the Schmidt number (1� S� ε−2) only considers the convection due to the width-averaged

axial and azimuthal velocities, for the variable eccentricity geometry there is no transport across

the canal width and the solute has no mechanism to escape the closed recirculation regions. The

solute remains trapped in its original vortex, corresponding to the streamlines shown in 2.8, and

there is no bulk transport.

The solute is able to escape the recirculation regions when it is buoyant, shown in figure

4.1(a) for Ri = 1. Because the solute is lighter than the surrounding CSF, the solute has enough

upward momentum to escape the closed vortex. Notably, the solute still favors the preferential

path (s = 0,1) given by the Lagrangian velocity for the uppermost vortex. The case of a heavy

solute is also considered, shown in figure 4.1(c), corresponding to Ri = −1. In this case, the

solute escapes its original vortex and sinks. It is important to recognize that the lubrication

approximation removes the second derivative in x, and the only boundary condition on the

velocities in x is zero flux at x = 1, which means that the buoyancy velocity is not necessarily = 0

at x = 1.

Future work should include the solution of (4.26), the transport equation in the limit

S∼ ε−2. For the non-buoyant case (Ri = 0), the solute is no longer trapped in closed recirculation

regions. Diffusion across the width of the canal is expected to transport solute across the stagnation

planes given by solely convective transport. Thus, the solute is expected to slowly leak into

the above region, then follow the preferential path given by the Lagrangian motion and exit the

canal. The results for (4.26) for Ri = 0 are shown on the right-hand-side panels of figure 3.8

for two different Schmidt numbers. For a light or heavy solute, the results are expected to be

similar to those calculated for 1� S� ε−2, with small differences due to diffusion. For Schmidt

numbers of the order ε−2, diffusion across the width of the canal is significant, but insufficient

to uniformize the solute across the canal width. As a result, the solute initially located near the

bounding surfaces η = 0 and η = 1, where the velocity is small, tends to remain at its initial

location. It is therefore expected that the overall transport pattern will look very similar, with
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trace amounts of solute remaining near the initial condition, similar to the results presented earlier

in 3.3 for Ri = 0 and a constant eccentricity.

4.4.2 DNS Comparison

In order to validate the simplified model of solute transport described above, full direct

numerical simulations of the transport of a solute are calculated. Using the Eulerian velocity field

calculated previously in section 2.5, the transport problem

∂c
∂t∗

+ v̄∗ ·∇c =
ν

S
∇

2c+ ḡ
ρ−ρd

ρ
c, (4.31)

using the Boussinesq approximation for the buoyancy term, is solved to study the slow-time

dispersion of a solute, where ρ is the density of the CSF and ρd is the density of the solute

or drug. Again, the asterisks denote dimensional variables. The initial spatial distribution of

the solute, defined below in (4.32), is selected to represent the release of a drug in the lumbar

region. The simulations are extended over a large number of cycles, corresponding to values of

the long-time scale τ of order unity, and their results are compared with those of the simplified

transport problem (4.28). Note that in the computations, no simplifications on the basis of the

slenderness of the canal or the smallness of the stroke length are introduced.

The numerical solution of (4.31), using the results from the previous solution of (2.64)–

(2.65), is carried out with the finite-volume solver Ansys Fluent (Release 16.2), assuring second-

order accuracy in time and in space. The same dimensional parameters are used here as are

used to solve the flow field. The kinematic viscosity, appearing in (3.41), is taken to be ν =

0.698×10−6 m2/s, the value corresponding to water at 36.8o C. The dimensions of the domain for

the two configurations shown in figures 2.3(b) and (c) are L = 0.6m, Re = 5mm, and Ri = 4mm,

corresponding to a canal with characteristic width hc = Re−Ri = 1mm and constant inner

perimeter `c = 2πRi ' 25mm. In all computations, the dimensionless eccentricity is taken to be
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Figure 4.2: Comparisons of the distributions of width-averaged concentration
∫ 1

0 c0dη at different
instants of time τ obtained numerically for β = 0.5, α = 3, and k = 0.5 by integration of (4.28) for
(a) Ri = 1 and (b) Ri =−1. For each plot, the left-hand-side indicates the solution of (4.28) while
the right-hand-side indicates the solution of the full Navier–Stokes and concentration equations
via DNS.
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β = 0.5. The canal deformation, given in (2.66), is evaluated for an angular frequency ω = 2πs−1,

as corresponds approximately to the cardiac cycle, with the function H ′(x∗/L), given in (2.21),

computed with k = 0.5 and α = (h2
cω/ν)1/2 = 3, the latter value consistent with the parametric

choice hc = 1mm, ω = 2πs−1, and ν = 0.698× 10−6 m2/s. In all computations, the reduced

amplitude is taken to be ε = 1/20. Gravity is taken to be only in the x direction, corresponding to

a standing or sitting subject.

We consider the temporal evolution of a bolus of solute released at the initial instant of

time. The initial concentration is given by the truncated Gaussian distribution

c(x∗/L) = min

{
1,

3
2

exp

[
−162

(
x∗

L
−0.65

)2
]}

, (4.32)

selected as representative of injection of a solute bolus in the upper lumbar region. Predictions

obtained by integrating the time-averaged (4.28) in the long time scale τ = ε2t = ε2ωt∗ for

0≤ τ≤ 2 are compared in figure 4.2 with results of integrations of (4.31) for 0≤ ωt∗ ≤ 200. The

figure shows distributions of width-averaged concentration for different times.

Figure 4.2(a) shows good agreement between the model and the DNS for Ri = 1. The

DNS shows some diffusion effects, as shown by the residual concentration at the initial condition

as τ increases. While the DNS shows the same overall pattern, the concentration is not as sharp,

also due to diffusion effects. The solute reaches the canal entrance at τ = ε2t ≈ 1.22, following

the same preferential path as found in the case without buoyancy.

The comparison for Ri =−1, shown in figure 4.2(b), is less accurate. This can be partially

attributed to the boundary condition at x = 1. While the DNS employs a no-penetration boundary

condition, the model can only define a zero-flux boundary condition due to the lubrication

approximation. The difference caused by the boundary condition is more noticeable for the

Ri = −1 case, since the solute approaches the x = 1 boundary. The DNS is likely the more

accurate representation because of the boundary conditions.
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4.5 Conclusions

A simplified model for the transport of a solute with a variable density in the spinal canal

has been found analytically. The density of the solute leads to the definition of the Richardson

number, which compares the buoyancy effects to the convective effects. Although the density

differences between the solute and the CSF are small, the Richardson numbers are found to be of

order unity. The domain is assumed to be doubly slender, following the conditions in (2.1), and the

Womersley number α and dimensionless wave number k are assumed to be order unity while the

parameter measuring the limited compliance ε, effectively measuring the stroke volume compared

to the total volume of fluid in the canal, is assumed to be small. Using this small parameter, all

variables are expanded asymptotically. At order ε, the transport and axial momentum equations are

coupled and the steady-streaming velocity is now variable with τ due to the buoyancy component.

Results for the simplified transport model are presented for the variable eccentricity case

for Ri = 1, corresponding to a light or hypobaric solute, and for Ri = −1, corresponding to a

heavy or hyperbaric solute. Results are also shown for Ri = 0, which corresponds to an isobaric

solute, for which the solute density equals the CSF density. For 1� S� ε−2, the Ri = 0 case

shows closed recirculation regions, and the solute can never exit the vortex from which it starts.

However, the addition of buoyancy allows the solute to either rise or sink, depending on the

relevant Richardson number. Future calculations will include solution of the S ∼ ε−2 case. It

is expected that, similar to Chapter 3, convection will be found to dominate a majority of the

transport behavior, with small differences due to the inclusion of diffusion.

The simplified model was compared to full DNS. Good agreement is found in particular

for the Ri = 1 case, while the Ri = −1 case shows poor agreement. This is likely because the

simplified model has a no-flux boundary condition at x = 1, due to the use of the lubrication

approximation, while the DNS utilizes a no-penetration boundary condition at x = 1. The

discrepancy is noticeable for the Ri =−1 case since the solute approaches the x = 1 boundary.
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Additionally, the DNS, which makes no simplifications to the continuity, Navier–Stokes, and

transport equations due to the slenderness or the distinguished limit of the Schmidt number,

always finds a small amount of diffusion unlike the simplified model in the limit 1� S� ε−2.

This chapter is coauthored with W. Coenen, C. Gutiérrez-Montes, and A. L. Sánchez. The

dissertation author was the primary author of this chapter. The work presented in this chapter was

partially supported by the National Science Foundation, grant number 1853954.
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Chapter 5

Oscillating Flow Past a Streamwise

Periodic Array of Circular Cylinders

5.1 Characteristic Scales

In order to gain some insight on the effect of nerve roots in the spinal canal, let us

consider the flow configuration depicted in figure 5.1 in which a fluid of density ρ and kinematic

viscosity ν moves with a harmonic velocity U∞ cos(ωt ′) past an infinite array of equally spaced

identical cylinders aligned with the unperturbed stream. The semi-distance between the centers of

contiguous cylinders L is assumed to be comparable to the cylinders radius a, their ratio defining

the geometrical parameter `= L/a∼ 1. Attention is focused on situations when the characteristic

stroke length U∞/ω is small, as measured by the asymptotically small parameter

ε =
U∞/ω

a
� 1. (5.1)
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Figure 5.1: Schematic illustration of the cylinder array for `= L/a = 2, including the streamlines
corresponding to the potential-flow solution.

The characteristic viscous time a2/ν divided by the oscillation time ω−1 defines an additional

flow parameter M2, with

M =

(
a2ω

ν

)1/2

(5.2)

representing the characteristic Womersley number of the flow, related to the Reynolds number by

Re =U∞a/ν = εM2. Following classical steady-streaming theory, we shall consider the solution

for ε� 1 for which the velocity displays a harmonic time dependence at leading order, while the

first-order corrections, of order ε, contain a steady contribution called steady streaming. For M∼ 1,

steady streaming is governed by the steady Stokes equations subject to a forcing term arising

from the convective acceleration, yielding one or two streaming vortices in each quadrant about

the cylinder. In this limit, the Stokes-drift velocity, associated with the non-uniform harmonic

oscillatory motion, will be shown to be comparable in magnitude to the steady-streaming velocity,

with the sum of both contributions determining the time-averaged Lagrangian motion that governs
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the convective transport around the cylinders. Stokes drift will be shown to dominate for small

values of the Womersley number, while steady streaming will be shown to dominate for large

values of the Womersley number. Steady streaming, Stokes drift, and the Lagrangian motion all

result in an inner vortex for small values of the Womersley number and develop an outer vortex

as the Womersley number increases. The outer vortex dominates the behavior as M becomes very

large.

5.2 Governing Equations

The problem is scaled with use of a, ω−1, U∞, ρωaU∞ as characteristic values of length,

time, velocity, and pressure. Since the resulting velocity v is periodic in the streamwise direction,

the solution can be described by considering the flow about an individual cylinder, with the

origin of the coordinate system placed at the cylinder center. While most of the description

uses Cartesian coordinates x = (x,y) and velocity components v = (u,v), with x aligned in the

direction of the unperturbed flow far from the cylinders, as indicated in figure 5.1 in the vicinity

of the cylinder surface it shall prove convenient to use polar coordinates, such that x = (r,θ)

and v = (vr,vθ). For the circular cylinders considered here, the flow is symmetric about the

y = 0 plane, so that in the computations it suffices to consider the integration domain extending

for x2 + y2 > 1 with y > 0 and −` < x < `, shown in figure 5.1. The velocity must satisfy the

continuity and momentum equations

∇ ·v = 0, (5.3)

∂v
∂t

+ εv ·∇v =−∇p+
1

M2 ∇
2v, (5.4)

subject to the nonslip condition

v = 0 at r = 1, (5.5)
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the far-field condition

v = (cos t,0) as y→ ∞ for − `≤ x≤ `, (5.6)

the symmetry condition

∂u
∂y

= v = 0 at y = 0 for 1≤ |x| ≤ `, (5.7)

and the periodicity conditions

(
u,v,

∂v
∂x

)
(`,y, t) =

(
u,v,

∂v
∂x

)
(−`,y, t) for 0≤ y < ∞. (5.8)

5.3 Velocity Field for M ∼ 1

We describe the flow by introducing expansions for the different flow variables in powers

of ε, i.e.

v = v0 + εv1 + · · · (5.9)

and p = p0 + εp1 + · · · . As seen below, the leading-order solution has a zero time average, i.e.

〈v0〉= 0, with 〈·〉= 1
2π

∫ t+2π

t ·dt, whereas the first-order correction v1, accounting for the effects

of convective acceleration, includes a nonzero steady-streaming component vSS = 〈v1〉.

5.3.1 Leading-order Oscillatory Flow

At leading order, the convective acceleration is negligible and the resulting linear problem

can be conveniently solved by introducing v0 = Re
(
eitV0

)
and p0 = Re

(
eitP0

)
with V0(x,y) =
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(U0,V0) and P0(x,y) representing complex functions satisfying

∇ ·V0 = 0, iV0 =−∇P0 +
1

M2 ∇
2V0 (5.10)

with boundary conditions

V0 = 0 at r = 1, (5.11)

V0 = (1,0) as y→ ∞ for − `≤ x≤ `, (5.12)

∂U0

∂y
=V0 = 0 at y = 0 for 1≤ |x| ≤ `, (5.13)(

V0,
∂V0

∂x

)
(`,y) =

(
V0,

∂V0

∂x

)
(−`,y) for 0≤ y < ∞, (5.14)

as follows at leading order from (5.3)–(5.8)

For a general value of M, the resulting velocity function V0(x,y) has real and imaginary

parts. In the limit of steady creeping flow M� 1, the solution is real everywhere. In the inviscid

limit M� 1, the solution contains an imaginary part only in the thin Stokes layer of thickness

1/M that develops on the cylinder surface, outside of which the flow is irrotational, such that

V0(x,y) = ∇Φ0. The associated velocity potential satisfies ∇2Φ0 = 0 subject to the boundary

conditions

∂Φ0

∂r
= 0 at r = 1, (5.15)

Φ0 = x as y→ ∞ for − `≤ x≤ `, (5.16)

∂Φ0

∂y
= 0 at y = 0 for 1≤ |x| ≤ `, (5.17)(

Φ0,
∂Φ0

∂x

)
(`,y) =

(
Φ0,

∂Φ0

∂x

)
(−`,y) for 0≤ y < ∞. (5.18)

This problem, considered recently by [14], provides in particular the velocity distribution on the
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surface of the cylinder

V =
∂Φ0

∂θ

∣∣∣∣
r=1

, (5.19)

to be used later in analyzing steady streaming for M ∼ ε−1� 1. Distributions of V (θ) are shown

in figure 5.2 for different values of `. For illustrative purposes, the streamlines corresponding to

the specific case `= 2 are included in the schematic of figure 5.1.

Numerical integration is in general needed to solve the above problem, the only exception

being the limiting solution arising for `� 1, corresponding to flow over a single cylinder, for

which an analytic solution is available [27].

5.3.2 Steady Streaming

The steady-streaming velocity vSS = 〈v1〉= (uSS,vSS) is determined from the problem that

arises at the following order. Collecting terms of order ε in (5.3) and (5.4) and taking the time

average leads to

∇ ·vSS = 0,
1
2

Re(V0 ·∇V∗0) =−∇〈p1〉+
1

M2 ∇
2vSS, (5.20)

after writing 〈v0 ·∇v0〉= 1
2Re

(
V0 ·∇V∗0

)
, which follows from the identity 〈Re(eitA)Re(eitB)〉=

Re(AB∗)/2, applicable to any generic time-independent complex functions A and B, with the

asterisk ∗ denoting complex conjugates. The result, symmetric about the y = 0 plane, can be
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obtained by integrating (5.20) in the first quadrant subject to the boundary conditions

vSS = 0 at r = 1, (5.21)

vSS→ 0 as y→ ∞ for 0≤ x≤ `, (5.22)

∂uSS

∂y
= vSS = 0 at y = 0 for 1≤ x≤ `, (5.23)

uSS =
∂vSS

∂x
= 0 at x = 0 for 1≤ y < ∞, (5.24)

uSS =
∂vSS

∂x
= 0 at x = ` for 0≤ y < ∞. (5.25)

5.3.3 Stokes Drift

As seen above, the Eulerian velocity field for ε� 1 includes a harmonic leading-order

term v0 = Re
(
eitV0

)
and a first-order correction v1, the latter having a nonzero steady-streaming

component vSS = 〈v1〉. The time-averaged Lagrangian velocity of a fluid particle,

vL = vSS +vSD, (5.26)

accounting for the slow cumulative displacement of the particle over multiple cycles, has in

general an additional Stokes-drift component (see, e.g. [69]) given by

vSD =

〈∫
v0dt ·∇v0

〉
, (5.27)

which can be written in the form

vSD =
1
2

Im(V0 ·∇V∗0) , (5.28)

by using v0 = Re
(
eitV0

)
along with the identity 〈Re(ieitA)Re(eitB)〉=−Im(AB∗)/2. It is worth

noting that the real part of the complex function 1
2V0 ·∇V∗0 determines the steady streaming,
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as revealed by (5.20), whereas its imaginary part is the Stokes-drift velocity (5.28), which is

identically zero when the function V0 is real.

5.3.4 Results for `= 2

The leading order solution, given by (5.10)–(5.14), is solved in terms of V0 = ∇Φ0 + V̂.

First Φ0 was determined, subject to the conditions (5.15)–(5.18), from which cylinder slip velocity

V was determined. Then V̂, which carries the vorticity that diffuses from the cylinder surface

was calculated, which is subject to the same leading order equations but satisfies the modified

boundary conditions V̂→ 0 as y→∞ and V̂ = (V̂r,V̂θ) = (0,−V ) at r = 1. Stokes drift velocities

were calculated from the leading-order velocities. Steady streaming was determined as the

solution of (5.20)–(5.25). From these results, the steady streaming, Stokes drift, and Lagrangian

streamfunctions, ψSS, ψSD, and ψL respectively, were found, all subject to the condition that

ψ = 0 around the entire edge of the computational domain.

Numerical results were obtained using COMSOL. Though results in figure 5.3 are pre-

sented for 0≤ y≤ 5, the computational domain extends from 0≤ y≤ 50 and −`≤ x≤ `. The

computation utilized an unstructured triangular mesh with more elements concentrated toward

the cylinder surface. Figure 5.2 contains results for many values of `, for which a different mesh

was used for each calculation. 38730 elements were used for `= 1.1, 53296 elements were used

for `= 1.5, 64528 elements were used for `= 2, 77748 elements were used for `= 3, and 93976

elements were used for `= 5. Figures 5.3 and 5.4 correspond to `= 2, for which 64528 elements

were used again. Residuals, estimations of the algebraic error, were found to be of the order 10−6

or smaller for all computed quantities, much smaller than any of the presented quantities. For all

computations in this section, the equations were written in weak form and the PARDISO direct

linear solver was used.

Figure 5.2 shows the slip velocity on the cylinder surface for a variety of ` values, obtained

from integration of ∇2Φ0 = 0 subject to the boundary conditions stated in (5.15)–(5.18). As
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Figure 5.2: The potential-flow slip velocity on the cylinder surface V (θ) = ∂Φ0/∂θ|r=1 as
obtained numerically by integration of ∇2Φ0 = 0 with the boundary conditions stated in (5.15)–
(5.18) for `= 1.1 (red circles), `= 1.5 (blue crosses), `= 2 (green stars), `= 3 (purple squares),
and `= 5 (orange triangles). A solid black line is used to represent the limiting velocity found for
`→∞, which reduces to the familiar solution V =−2sinθ corresponding to an isolated cylinder.
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Figure 5.3: Streamlines (black lines) and contours of the vorticity for the steady streaming,
Stokes drift, and Lagrangian velocities for (a) M = 1, (b) M = 2, and (c) M = 16. Note that each
M value has a different range of values for vorticity, shown by the color bar on the right.
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Figure 5.4: Local maxima of the steady streaming (red), Stokes drift (blue), and Lagrangian
(black) streamfunctions. For each streamfunction, the higher maximum value is in a darker color
and the lower maximum value is in a lighter color.
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` increases, the velocity distribution approaches that of the theoretical case `→ ∞, for which

V =−2sinθ. While results for ` > 5 are not shown on the figure, it is found that for `≈ 8, V

is virtually indistinguishable from the theoretical solution for a single cylinder. As ` decreases,

the slip velocity decreases in magnitude since the smaller gap between cylinders forces the fluid

to slow down. For `= 1.1, V is very small near θ = 0, π, since the fluid has very little space to

flow.

Figure 5.3 shows streamlines and vorticity data for steady streaming, Stokes drift, and the

Lagrangian motion. In these plots, contours of the streamfunction were taken for the velocity

with the highest maximum, and those same contours were used for each plot in the row. If a plot

has fewer contours, then the streamfunction is smaller in magnitude, which corresponds to less

overall movement of fluid. Each row also uses the same color bar for the vorticity. For M = 1,

steady streaming and the Lagrangian motion show a single vortex in each quadrant, while Stokes

drift has a very small additional vortex near y = 0. All three plots show vorticity concentrated at

the cylinder surface as well as further from the cylinder. It is clear from the vorticity magnitude

and the number of streamlines that Stokes drift is the main contributor to the Lagrangian motion

and that the effects of steady streaming and Stokes drift are additive for this value of M. For

M = 2, again steady streaming and the Lagrangian motion show a single vortex in each quadrant,

but Stokes drift now has three vortices in each quadrant. The additional vortex enters from large

y, swirling in the opposite direction. Although the vorticity of Stokes drift is relatively small, it

can be seen that the outermost vortex has cancelled out some of the vorticity present in steady

streaming, leading to Lagrangian vortices that are slightly smaller. For M = 16, steady streaming

and Lagrangian motion both show two vortices while Stokes drift shows a single vortex. Steady

streaming clearly dominates for this value of the Womersley number, with the outer vortex again

approaching from large y with the opposite sign. The outermost vortex has now dominated the

behavior of Stokes drift, with the smaller vortices negligibly small and virtually invisible. As M

increases further, the steady streaming and Lagrangian outer vortices begin to dominate with the
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inner vortices shrinking down to the surface of the cylinder as a boundary layer.

Figure 5.4 shows local maxima of the steady streaming, Stokes drift, and Lagrangian

streamfunctions. Since all streamfunctions are identically zero at the cylinder surface, this

effectively represents the amount of fluid motion for each of these velocity fields. The plot

sometimes contains two values of the local maxima for a single M value, which means that the

streamfunction has two local maxima, indicating two vorticies. The higher value is represented

by the darker color. Although Stokes drift sometimes has an additional third vortex near the

cylinder surface, as can be seen in figure 5.3(a) and (b), these values are not included as they are

very small by comparison. For M = 0.5, Stokes drift is the dominant contribution to the overall

Lagrangian motion and all velocities exhibit a single vortex in each quadrant. Between M = 1

and 2, steady streaming begins to dominate the Lagrangian motion and the Stokes drift outer

vortex begins to approach the cylinder. Between M = 2 and 3, the Stokes drift outer vortex begins

to dominate over the inner vortex, leading to the sharp dip in the overall maximum. Since the

outer Stokes drift vortex is swirling the opposite direction, the total Lagrangian motion is less

than the steady streaming motion. Between M = 8 and 9, the outer vortices for steady streaming

and Lagrangian motion start to become visible. Between M = 10 and 11, the outer vortices for

both steady streaming and Lagrangian motion begin to dominate over the inner vorticies, leading

to similar sharp dips in the overall maximum. Now, both steady streaming and Stokes drift are

dominated by the outer vortices, which swirl in the same direction, so additive Lagrangian motion

is now the largest. As M continues to increase, steady streaming now dominates the overall

Lagrangian motion.
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5.4 Transport of a Passive Scalar

5.4.1 Governing Equations

Consider now the transport of a passive scalar of diffusivity κ = ν/S, described by the

transport equation
∂c
∂t

+ εv ·∇c =
1

SM2 ∇
2c (5.29)

where c(x, t) is the scalar concentration and S = ν/κ is its Schmidt number. As is clear from the

above equation, for solutes with S∼ 1, typical of gaseous molecules, transport is dominated by

diffusion. For diffusive transport in liquids, however, the solute diffusivity is much smaller than

the kinematic viscosity, yielding values of S that often exceed S = 103. To investigate transport

in that case, we consider the distinguished limit S∼ ε−2� 1, in which the diffusion time a2/κ

becomes comparable to the residence time of the slow Lagrangian motion ε−2ω−1. To describe

this limit, we follow the two-time scale formalism employed earlier, so that the transport equation

for the scalar concentration c(x, t,τ) becomes

∂c
∂t

+ ε
2 ∂c

∂τ
+ εv ·∇c =

ε2

σM2 ∇
2c, (5.30)

where σ = ε2S is the rescaled Schmidt number, of order unity in the distinguished limit S ∼

ε−2� 1 considered here. Substituting the expansion given in (5.9) for the Eulerian velocity along

with the presumed expansion

c(x, t,τ) = c0(x, t,τ)+ εc1(x, t,τ)+ ε
2c2(x, t,τ)+ · · · , (5.31)

where all terms ci(x, t,τ) are 2π periodic in the short-time scale t, leads to a series of problems

that can be solved sequentially.
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At leading order we find
∂c0

∂t
= 0, (5.32)

indicating that c0 = ĉ0(x,τ) is only a function of the long time scale, the small-time fluctuations

associated with the pulsating flow entering only at higher order. The equation that arises at the

following order (ε)
∂c1

∂t
+v0 ·∇ĉ0 = 0, (5.33)

can be readily integrated to yield

c1 =−
∫

v0dt ·∇ĉ0 + ĉ1(x,τ), (5.34)

which can be used when taking the time average of the equation that arises at the following order

∂c2

∂t
+

∂ĉ0

∂τ
+v1 ·∇ĉ0 +v0 ·∇c1 =

1
σM2 ∇

2ĉ0, (5.35)

to finally give
∂ĉ0

∂τ
+vL ·∇ĉ0 =

1
σM2 ∇

2ĉ0 (5.36)

for the transport equation that describes the scalar dispersion in the long time scale. As anticipated,

scalar diffusion competes with the convective transport driven by the time-averaged Lagrangian

velocity (5.26).

5.4.2 Results for M = 5 and `= 2

Since transport can occur over multiple cylinders, a large computational domain with

many cylinders was utilized to capture motion between Lagrangian cells. For the results presented

here, nine cylinders were used in the computational domain with `= 2. The entire domain had

a length of 40 and a width of 30, and used 82538 unstructured triangular elements, with more
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elements concentrated at the cylinder surface. The equations were all written in strong form and

the MUMPS direct linear solver was used.

The leading order velocity field was calculated using equations (5.10), with the boundary

conditions V0→ 0 on all cylinder surfaces and V0 = (1,0) on all domain edges, as (x,y)→ ∞.

The first order corrections to the velocity field were calculated using equation (5.20), with the

boundary conditions vSS = 0 on all cylinder surfaces and all domain edges as (x,y)→ ∞. Finally

the transport equation (5.36) was solved given an initial condition

ci(x, t) = exp
(
−(x−2)2

2 ·0.52 −
(y−2)2

2 ·0.52

)
, (5.37)

a Gaussian drop of solute centered at (2,2) with standard deviation 0.5.

Figure 5.5 shows results of transport for M = 5 and `= 2. Three different values of the

rescaled Schmidt number σ = ε2S are shown, σ = 5, 20, 100, corresponding to liquid-liquid

mixtures with large Schmidt numbers S∼ ε−2� 1. As σ increased, diffusion becomes visibly

less significant and the convection caused by Lagrangian motion becomes more pronounced and

noticeable. For σ = 1, not shown in the figure, the initial drop of solute diffuses radially outward,

with very small effects from the location of the cylinders. Therefore, for small values of the

rescaled Schmidt number, diffusion dominates the transport and there is very little convection due

to the Lagrangian vortices. However, for large values of the Schmidt number, corresponding to

liquids with very low diffusivities, convective transport within cells is clearly visible but diffusive

transport between cells is limited.

5.5 Conclusions

The goal here is to study the effects of multiple cylinders on the Lagrangian motion and

transport of a solute. It is found that for ` > 8, the potential solution approaches the theoretical

solution for `→ ∞. For M ∼ 1, it is found that the long-term Lagrangian motion is caused by
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Figure 5.5: Transport of a solute for M = 5, `= 2, and (a) σ = 5, (b) σ = 20, and (c) σ = 100.
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the combined effects of steady streaming and Stokes drift. As M increases, steady streaming,

Stokes drift, and the Lagrangian motion all have an additional vortex which enters from large y

that swirls in the opposite direction. As M continues to increase, this vortex gets larger and the

original vortex shrinks down to the surface of the cylinder. For M ≈ 2−10, steady streaming

has a single vortex but Stokes drift has an outer vortex swirling in the opposite direction, so the

Lagrangian motion is weaker than steady streaming alone. For σ < 1 the transport is dominated

by diffusion and the convection caused by the Lagrangian motion is not visible. For σ > 100,

however, the transport is dominated by convection and very little diffusion between cells occurs.

For 1 < σ < 100, both diffusion and convection affect the transport.

This work represents the first step in studying the effects of the nerve roots on flow and

transport in the spinal canal. There are several open questions that should be studied in detail.

For instance, the nerve roots in the spinal canal are not infinitely long, but confined axially.

Though the effects of confinement might be localized to a small region near the canal walls,

additional streaming patterns caused by this axial confinement are worth studying. Furthermore,

the distinguished limit M ∼ ε−1� 1, in which the outer steady-streaming vortex dominates the

behavior and the inner vortex is confined to the cylinder surface, should be analyzed theoretically

and numerically following [73]. The additional limit of oscillation amplitude ε ∼ 1 or ε� 1

should also be studied as that more accurately represents the oscillation amplitude in the spinal

canal relative to the typical radii of the nerve roots. Finally the flow at infinity could be modified

to be more realistic. A more accurate velocity field could be analyzed as Fourier series of terms,

although that may not lead to significant changes to the behavior as it will simply be a sum of the

patterns already seen here. The symmetry may be broken, however, by introducing a small steady

component to the velocity field at infinity, which would more accurately represent the flow in the

spinal canal which is an oscillatory flow plus a small steady component.

This chapter is currently being prepared for submission for publication of the material

along with W. Coenen and A. L. Sánchez. The dissertation author was primary the author of this
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material. The work presented in this chapter was partially supported by the National Science

Foundation, grant number 1853954.
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Chapter 6

Future Work

6.1 Extension for a General Cranial Pressure

Thus far we have analyzed the flow of cerebrospinal fluid in the spinal canal for a simple

sinusoidal function representing the intracranial pressure. The intracranial pressure, however, is a

more complicated function typically exhibiting three peaks with every heartbeat and an additional

lower frequency modulation due to respiration [58].

In the above analysis, the flow is driven by the periodic pressure function Π(t) = cos t,

where Π(t) is scaled with the amplitude of the cranial pressure (∆p)c. Here the analysis is

generalized for a general dimensionless periodic function, assumed to be expressible in the

Fourier-series form

Π(t) = Re

(
∞

∑
n=1

aneint

)
(6.1)

involving the complex coefficients an with |a1|= 1, as corresponds to defining the characteristic

pressure fluctuation (∆p)c as the amplitude of the first Fourier mode. The problem can be similarly
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solved by introducing regular expansions of the form

u = u0 + εu1 + · · · ,v = v0 + εv1 + · · · ,w = w0 + εw1 + · · · ,

h′ = h′0 + εh′1 + · · · , p′ = p′0 + εp′1 + · · · , p̂ = p̂0 + ε p̂1 + · · · ,
(6.2)

where the leading-order terms correspond to periodic oscillatory flow with zero time average

〈·〉= 1
2π

∫ 2π

0 ·dt = 0.

6.1.1 Leading-order Solution

At leading-order in the limit ε� 1 the solution satisfies the linear equations

1
`

∂

∂x
(`u0)−

∂h̄
∂x

η

h̄
∂u0

∂η
+

1
h̄

∂v0

∂η
+

1
`

∂w0

∂s
− 1

`

∂h̄
∂s

η

h̄
∂w0

∂η
= 0 (6.3)

∂u0

∂t
=−∂p′0

∂x
+

1
α2h̄2

∂2u0

∂η2 (6.4)

∂w0

∂t
=−1

`

∂p̂0

∂s
+

1
α2h̄2

∂2w0

∂η2 , (6.5)

h′0 = γ(Π+ k2 p′0). (6.6)

Following chapters 2, we write the velocity, pressure, and deformation in the form

u0 = Re

(
i

∞

∑
n=1

anneintUn

)
,v0 = Re

(
i

∞

∑
n=1

anneintVn

)
,w0 = Re

(
i

∞

∑
n=1

anneintWn

)
,

p′0 = Re

(
∞

∑
n=1

ann2eintP′n

)
, p̂0 = Re

(
∞

∑
n=1

ann2eint P̂n

)
,h′0 = Re

(
∞

∑
n=1

aneintH ′n

)
, (6.7)

consistent with (6.1). Note that in this case we anticipate the dependence of each quantity with n

and an.

The canal deformation is related with the streamwise pressure variation through (6.6),

which provides

H ′n = γ(1+n2k2P′n) (6.8)
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upon substitution of (6.7). The axial and azimuthal velocity are given in terms of the components

of the pressure gradient by

Un =
dP′n
dx

Gn and Wn =
1
`

∂P̂n

∂s
Gn, (6.9)

where the function Gn satisfies
i

nα2h̄2
∂2Gn

∂η2 +Gn = 1, (6.10)

as follows from (6.4) and (6.5). Integrating (6.10) with the no-slip condition G = 0 at η = (0,1)

yields

Gn(x,η,s) = 1−
cosh

[√
nαh̄
2

1+i√
2
(2η−1)

]
cosh

[√
nαh̄
2

1+i√
2

] . (6.11)

The transverse velocity v0 can be expressed using (6.3) in terms of the axial and azimuthal velocity

components, yielding

Vn =−
1
`

∂

∂x

(
`

dP′n
dx

h̄
∫

η

0
Gndη

)
− 1

`

∂

∂s

(
1
`

∂P̂n

∂s
h̄
∫

η

0
Gndη

)
+

∂h̄
∂x

dP′n
dx

ηGn +
1
`

∂h̄
∂s

1
`

∂P̂n

∂s
ηGn (6.12)

upon integration in η with the boundary condition v0 = 0 at η = 0. Evaluating this expression

at η = 1, where Vn = H ′n (as follows from the boundary condition v0 = ∂h′0/∂t), and using (6.8)

yields

γ(1+n2k2P′n)+
1
`

∂

∂x

(
`

dP′n
dx

qn

)
+

1
`

∂

∂s

[
1
`

∂P̂n

∂s
qn

]
= 0, (6.13)

with

qn(x,s) = h̄
∫ 1

0
Gndη = h̄−

√
2(1− i)√

nα
tanh

(√
nαh̄
2

1+ i√
2

)
. (6.14)

The pressure distribution can be determined by additional integrations of (6.13). Thus, integrating

in s with the condition ∂P̂n/∂s = 0 at s = 0, consistent with the symmetry condition w0 = 0 at
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s = 0, yields

qn

`2
∂P̂n

∂s
+

1
`

∂

∂x

[
`
∫ s

0
qnds̃

dP′n
dx

]
+

(∫ s

0
γds̃
)
(n2k2P′n +1) = 0. (6.15)

Evaluating the last equation at s = 1, where ∂P̂n/∂s = 0, finally yields the problem

1
`

d
dx

[
`Qn

dP′n
dx

]
+

(∫ 1

0
γds
)
(n2k2P′n +1) = 0;

 P′n = 0 at x = 0
dP′n
dx = 0 at x = 1

, (6.16)

involving the average section compliance
∫ 1

0 γds and the volume-flux function

Qn(x) =
∫ 1

0
qnds =

∫ 1

0

[
h̄−
√

2(1− i)√
nα

tanh
(√

nαh̄
2

1+ i√
2

)]
ds. (6.17)

For given values of γ(x,s), h̄(x,s), and `(x) the integration of (6.16) determines P′n(x), which can

be used to evaluate H ′n and Un with use made of (6.8) and (6.9), while the associated azimuthal

pressure gradient ∂P̂n/∂s, determined from (6.15), is needed to evaluate the functions Wn and Vn

from (6.9) and (6.12), thereby completing the description of the periodic solution (6.7). The axial

velocity can be used to evaluate the volume flux crossing a given canal section x at a given time t

according to

Q (x, t) = `
∫ 1

0
h̄
(∫ 1

0
u0dη

)
ds = ` Re

(
i

∞

∑
n=1

anneint dP′n
dx

Qn

)
. (6.18)

The solution simplifies when the average section compliance and the shape of the canal

section are independent of x, so that
∫ 1

0 γds = 1, `= 1, and Qn = constant. In that case, integration

of (6.16) yields

P′n =
1

n2k2

{
cos[nk(1− x)/

√
Q]

cos(nk/
√

Q)
−1
}
. (6.19)
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6.1.2 Steady Streaming

Similar to chapter 2, the periodic first-order corrections to the velocity contain steady

components that can be evaluated from

〈u1〉
h̄2α2 = −d〈p′1〉

dx
(1−η)η

2
+η

∫
η

0
Fxdη̄−

∫
η

0
Fxη̄dη̄−η

∫ 1

0
Fx(1−η)dη (6.20)

〈w1〉
h̄2α2 = −1

`

∂〈p̂1〉
∂s

(1−η)η

2
+η

∫
η

0
Fsdη̄−

∫
η

0
Fsη̄dη̄−η

∫ 1

0
Fs(1−η)dη (6.21)

〈v1〉 = −1
`

∂

∂x

[
`
∫

η

0

(
h̄〈u1〉+ 〈h′0u0〉

)
dη

]
+η

∂h̄
∂x
〈u1〉+η

〈
u0

∂h′0
∂x

〉
− 1

`

∂

∂s

[∫
η

0

(
h̄〈w1〉+ 〈h′0w0〉

)
dη

]
+η

1
`

∂h̄
∂s
〈w1〉+η

〈
w0

1
`

∂h′0
∂s

〉
. (6.22)

with

Fx =
1
`

∂

∂x
(`〈u2

0〉)+
1
h̄

∂

∂η
〈u0v0〉+

1
`

∂

∂s
〈u0w0〉

− η

h̄
∂

∂η
〈∂h′0

∂t
u0〉−

∂h̄
∂x

η

h̄
∂

∂η
〈u2

0〉−
1
`

∂h̄
∂s

η

h̄
∂

∂η
〈u0w0〉+

2
h̄3α2

∂2

∂η2 〈h
′
0u0〉 (6.23)

and

Fs =
∂

∂x
〈u0w0〉+2

〈u0w0〉
`

∂`

∂x
+

1
h̄

∂

∂η
〈v0w0〉+

1
`

∂

∂s
〈w2

0〉−
η

h̄
∂

∂η
〈∂h′0

∂t
w0〉

− ∂h̄
∂x

η

h̄
∂

∂η
〈u0w0〉−

1
`

∂h̄
∂s

η

h̄
∂

∂η
〈w2

0〉+
2

h̄3α2
∂2

∂η2 〈h
′
0w0〉. (6.24)

The average streamwise pressure gradient d〈p′1〉/dx is obtained from the continuity condition

∫ 1

0
h̄
(∫ 1

0
〈u1〉dη

)
ds+

∫ 1

0

∫ 1

0
〈h′0u0〉dηds = 0, (6.25)
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with ∂〈p̂1〉/∂s similarly obtained in terms of d〈p′1〉/dx by use of

h̄
∫ 1

0
〈w1〉dη+

∫ 1

0
〈h′0w0〉dη =− ∂

∂x

[
`
∫ s

0

(
h̄
∫ 1

0
〈u1〉dη+

∫ 1

0
〈h′0u0〉dη

)
ds
]
. (6.26)

The computation of the time averages in the above expressions, involving products

of the Fourier expansions defined in (6.7), is facilitated by noting that products of func-

tions belonging to different modes yield a zero time average. Further use of the identities

〈Re(ieintA)Re(ieintB)〉= Re(AB∗)/2 and 〈Re(eintA)Re(ieintB)〉= Re(iA∗B)/2, which apply to

any generic time-independent complex functions A and B, with the asterisk ∗ denoting complex

conjugates, provides

Fx =
1
2

∞

∑
n=1
|an|2n2 Re(Fx,n) and Fs =

1
2

∞

∑
n=1
|an|2n2 Re(Fs,n) (6.27)

with

Fx,n =
1
`

∂

∂x
(`|Un|2)+

1
h̄

∂

∂η
(UnV ∗n )+

1
`

∂

∂s
(UnW ∗n )−

η

h̄
∂

∂η
(UnH ′∗n )

− ∂h̄
∂x

η

h̄
∂

∂η
|Un|2−

1
`

∂h̄
∂s

η

h̄
∂

∂η
(UnW ∗n )+

2
h̄3nα2

∂2

∂η2 (iUnH ′∗n ) (6.28)

and

Fs,n =
∂

∂x
(WnU∗n )+2

(WnU∗n )
`

∂`

∂x
+

1
h̄

∂

∂η
(WnV ∗n )+

1
`

∂

∂s
|Wn|2−

η

h̄
∂

∂η
(WnH ′∗n )

− ∂h̄
∂x

η

h̄
∂

∂η
(WnU∗n )−

1
`

∂h̄
∂s

η

h̄
∂

∂η
|Wn|2 +

2
h̄3nα2

∂2

∂η2 (iWnH ′∗n ), (6.29)

Similarly, the time averages 〈h′0u0〉 and 〈h′0w0〉 appearing in (6.25) and (6.26) can be computed

124



from the expressions

〈h′0u0〉=
1
2

∞

∑
n=1
|an|2nRe

(
iH ′∗n Un

)
and 〈h′0w0〉=

1
2

∞

∑
n=1
|an|2nRe

(
iH ′∗n Wn

)
. (6.30)

6.1.3 Stokes Drift

The Lagrangian velocity components are computed according to uL = 〈u1〉+uSD, vL =

〈v1〉+ vSD, and wL = 〈w1〉+wSD, where the Stokes-drift velocities are given by

uSD =
1
h̄

{
〈u0h′0〉+

1
`

∂

∂s

(
h̄
〈

u0

∫
w0dt

〉)}
+

1
h̄

∂

∂η

〈
u0

[∫
v0dt−η

(
h′0 +

1
`

∂h̄
∂s

∫
w0dt

)]〉
, (6.31)

vSD =
1
`

∂

∂x

(
`

〈
v0

∫
u0dt

〉)
+

1
`

∂

∂s

〈
v0

∫
w0dt

〉
− η

h̄
∂

∂η

〈
v0

(
h′0 +

∂h̄
∂x

∫
u0dt +

1
`

∂h̄
∂s

∫
w0dt

)〉
(6.32)

wSD =
1
h̄

[
〈w0h′0〉+

∂

∂x

(
h̄
〈

w0

∫
u0dt

〉)]
+

1
h̄

∂

∂η

〈
w0

[∫
v0dt−η

(
h′0 +

∂h̄
∂x

∫
u0dt

)]〉
. (6.33)

The above considerations pertaining to time averages of products of Fourier expansions also apply

in this case, thereby yielding the simplified expressions

(uSD,vSD,wSD) =
1
2

∞

∑
n=1
|an|2nRe [i(Un,Vn,Wn)] , (6.34)
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where

Un =
1
h̄

[
UnH ′∗n +

1
`

∂

∂s

(
h̄UnW ∗n

)]
+

1
h̄

∂

∂η

{
Un

[
V ∗n −η

(
H ′∗n +

1
`

∂h̄
∂s

W ∗n

)]}
,

Vn =
1
`

∂

∂x
(`VnU∗n )+

1
`

∂

∂s
(VnW ∗n )−

η

h̄
∂

∂η

[
Vn

(
H ′∗n +

∂h̄
∂x

U∗n +
1
`

∂h̄
∂s

W ∗n

)]
, (6.35)

Wn =
1
h̄

[
WnH ′∗n +

∂

∂x

(
h̄WnU∗n

)]
+

1
h̄

∂

∂η

{
Wn

[
V ∗n −η

(
H ′∗n +

∂h̄
∂x

U∗n

)]}
.

6.1.4 Suggested Work

The flow and transport calculations described in the main text could all be modified for

a general pressure signal following the equations listed above. It is suggested that the flow and

transport are investigated for a simple three-peak model, which is a more accurate model of

intracranial pressure in a healthy individual. This should only require three Fourier modes, so

it should not be significantly more computationally intensive. Additionally, a detailed model of

the intracranial pressure using many more modes could also be studied, although it may be more

computationally expensive. The resulting velocity fields and concentration distributions should

be compared to those found using a simple intracranial pressure, and any differences should be

investigated thoroughly.

Furthermore, MRI data similar to that found in [13], could be obtained for the CSF flow

at several locations along the canal. Since MRI measurements are typically gated to the cardiac

cycle, the simple three-peak intracranial pressure model will be sufficient to model the real results

obtained from cardiac-gated MRI, as this signal behavior is caused by the cardiac cycle. The is

an additional lower-frequency modulation due to respiration could also be investigated by using

respiratory-gated measurements.
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6.2 Respiratory-driven Flow in the Spinal Canal

So far we have analyzed cerebrospinal fluid motion due to intracranial pressure variations.

However, many have shown that deep breathing [20] and coughing [92] influence CSF motion.

The respiratory cycle, as well as respiratory events such as coughing, affect the pressure in the

veins surrounding the spinal canal which, due to their close contact with the spinal canal, influence

the local pressure everywhere along the canal [47].

6.2.1 Changes to the Leading-Order Equations

The analysis presented here is nearly the same as chapter 2 with any changes described

below.

The venous pressure pv is defined as

pv(x, t) = p0− f (x)Πv(t) (6.36)

where p0 is the constant background pressure in the veins, f (x) is a function that describes the

variation with the lengthwise coordinate x, and Πv(t) is a periodic function (e.g. ∆pv cosωt,

where ∆pv is a constant) that describes the variation with time. Note that pv(x, t)− p0 has been

assumed to be separable.

The perturbation of the canal width h′ given by εh′ = h− h̄ is related to the pressure by

h′(x,s, t) = γ(p− pv) = γ
(
k2 p′+ f (x)Πv(t)

)
. (6.37)

The analysis proceeds in the same manner as section 2.2.1 with these new conditions and

begins to differ when continuity is enforced. P′ must satisfy

d
dx

[
Q̃(x)

dP′

dx

]
+ l
(∫ 1

0
γds
)(

k2P′+ f (x)
)
= 0 (6.38)

127



where

Q̃(x) = l(x)Q(x) = l(x)
∫ 1

0
h̄(x,s)

∫ 1

0
G(x,η,s) dηds (6.39)

is a function which describes the volume flux of CSF, which is given by

V̇CSF(x, t) = Re
[

ieit dP′

dx
Q̃(x)

]
. (6.40)

The boundary condition at x = 1 is simply dP′
dx = 0 as before, which enforces zero flux at the

closed end. However, the boundary condition at x = 0 is now more complicated. In the previous

analysis, the boundary condition at x = 0 was P′ = 0 to indicate that the pressure at the entrance

of the canal was equal to the intracranial pressure. Now only the venous pressure along the canal

is being taken into account. We start with a conservation equation in the cranial cavity from the

Monro-Kellie doctrine [56], assuming the brain volume is constant in time, which gives

V̇a = V̇v +V̇CSF (6.41)

where V̇a is the volume flux of arterial blood into the cranial cavity and V̇v is the volume flux of

the venous blood out of the cranial cavity, measured at the foramen magnum. Note that these

volume fluxes are all defined such that they are, on average, positive. The venous blood flow

rate is assumed to be linear with the pressure difference between the cranial cavity and the veins.

Therefore, it is written as

V̇v = βc

(
dpc

dt
− dpv

dt

)
(6.42)

where βc is a constant that describes the compliance of the cranial vault as it responds to pressure

changes. This has been nondimensionalized such that βc is expected to be of order unity.

Since only the respiratory effects are of interest here, we set V̇a = 0. Then, by combining
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(6.40), (6.41), and (6.42) we obtain

dP′

dx

∣∣∣∣
0
Q̃(0)+βc

[
k2P′(0)+ f (0)

]
= 0 (6.43)

which has been evaluated at x = 0 since the volume conservation is only valid at that location. For

clarity, the equation and boundary conditions are all repeated here. The equation to be solved is

d
dx

[
Q̃(x)

dP′

dx

]
+ l
(∫ 1

0
γds
)(

k2P′+ f (x)
)
= 0 (6.44)

with boundary conditions


dP′
dx Q̃(x)+βc

[
k2P′(x)+ f (x)

]
= 0, x = 0;

dP′
dx = 0, x = 1.

(6.45)

The above can be solved numerically for any l(x), γ(x,s), h̄(x,s).

However, for l(x) = γ(x) = 1 and h̄(x,s) = h̄(s) such that Q̃ is constant, P′ is found

analytically to be

P′(x) = Acos(µx)+Bsin(µx)− sin(µx)
µQ̃

∫ x

1
f (ξ)cos(µξ)dξ+

cos(µx)
µQ̃

∫ x

1
f (ξ)sin(µξ)dξ

(6.46)

where

A =
βcµ

∫ 1
0 f (ξ)sin(µξ)dξ− ∫ 1

0 f (ξ)cos(µξ)dξ−βc f (0)
µ tan(µ)Q̃+βck2

, (6.47)

B = A tan(µ) =
βcµ

∫ 1
0 f (ξ)sin(µξ)dξ− ∫ 1

0 f (ξ)cos(µξ)dξ−βc f (0)
µQ̃+βck2 cot(µ)

, (6.48)

µ =
k√
Q̃
, (6.49)

where ξ is a dummy integration variable. The subsequent analysis of the Lagrangian velocity
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field is identical to the previous paper, except that h′ and p′ have changed.

6.2.2 Suggested Work

The flow and transport calculations described in the main text could all be modified to

instead analyze the effect of pressure variations along the canal. It is suggested that the flow

and transport are studied for several simple functions f (x), as well as a more detailed model

describing the pressure variations along the canal due to venous blood pressure changes.

It is also recommended that respiratory-gated MRI measurements of CSF flow are obtained

for at several locations along the canal. By measuring the local CSF flow, as well as the arterial

and venous blood flow across the foramen magnum, one could estimate the overall cranial

compliance βc and the function describing the local pressure variation due to veins f (x).

6.3 Transport of Particles in the Spinal Canal

The velocities and transport equations described in chapters 2–4 can effectively describe

small, light particles or dissolved fluids which will perfectly follow the fluid motion, such as

the radioactive tracers used in early experiments to study CSF motion [17]. However, larger or

heavier particles have an increased inertia which may lead to trajectories which do not perfectly

track the fluid motion. Biological macromolecules as well as liposome particles containing drugs

are both active research areas in intrathecal drug delivery which can possibly be large enough for

their inertia to affect their trajectory [31, 78]. The same model and expressions for the Eulerian

velocities in chapter 2 are used here to calculate trajectories of inertial particles.
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6.3.1 Governing Equations

From Newton’s Second Law, we can write

m
d2xp

dt2 =−3πµdp

(
dxp

dt
−v
)

(6.50)

where m is the mass of the particle, xp is the location of the particle, µ is the viscosity of the

fluid, dp is the diameter of the particle, and v is the fluid velocity. It is assumed that the particles

are spherical and that the only body force is drag. Additional body forces, such as magnetic or

gravitational forces, could also be added here.

This equation can be nondimensionalized with the scales used in chapter 2 to yield

St
d2xp

dt2 =−
(

dxp

dt
− εv

)
(6.51)

where the Stokes number takes the form

St =
ρpd2

p/(18µ)
ω−1 (6.52)

where ρp is the particle density and ω is the frequency of the leading order pulsatile flow. The

Stokes number represents the comparison between the relaxation time of the drag (ρpd2
p/(18µ))

and the time scale related to the fluid flow (ω−1). A large Stokes number corresponds to a large

or heavy particle, which will tend to continue along its current path, while a small Stokes number

corresponds to a light or small particle, which will tend to follow the fluid motion. For St→ 0,

the previously found fluid-particle trajectories (2.38) are obtained. This system of second-order

ordinary differential equations may be solved for using a time-advancing numerical scheme. As

in the main text, it is recommended to introduce a moving coordinate η = y/h(x,θ, t) so that the

boundary conditions are constant in time.

Although (6.51) can be solved directly for xp in terms of t, we can again introduce a
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second time variable τ = ε2t, along with the expansions

xp(t,τ) = xp0(t,τ)+ εxp1(t,τ)+ ε
2xp2(t,τ)+ . . . (6.53)

v = v0 + ε[v1(xp0, t)+xp1 ·∇v1(xp0, t)], (6.54)

to describe the slow motion of a particle. All periodic motion with zero mean over a cycle of 2π

is assumed to follow the short time scale t and all other motion is carried by the dependence on τ.

Thus, (6.53) and (6.54) can be substituted in to (6.51) and evaluated at each order of the small

parameter ε. At O(1), (6.51) becomes

St
∂2xp0

∂t2 =
∂xp0

∂t
(6.55)

which implies xp0 must be a function of τ only because the motion in t must be periodic. Therefore,

xp0 = c1(τ).

At O(ε), (6.51) becomes

St
∂2xp1

∂t2 =
∂xp1

∂t
+v0 (6.56)

which can be integrated to give

xp1 = c3(τ)+
∫ t

Re
[

ieitV
1+ iSt

]
dt, (6.57)

upon substitution of the known oscillatory velocity components, where the dependence on the

Stokes number is clearly found.

Finally, at O(ε2), the equation becomes

St
∂2xp2

∂t2 =−∂xp0

∂τ
− ∂xp2

∂t
+ εv1 +xp1 ·∇v0 (6.58)
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which can then be time averaged, using the notation 〈·〉= ∫ t+2π

t ·dt, to give

∂xp0

∂τ
= 〈v1〉+ 〈xp1 ·∇v0〉 (6.59)

and therefore the short time scale t is eliminated from the problem and we have an equation only

in terms of the long time scale τ. Note that this is the same equation for the long-time behavior

of a fluid-particle trajectory found in section 3; however, xp1 now carries the dependence on the

Stokes number. Thus, the change in the long-term behavior of inertial particles, as compared to

fluid particles, is caused solely by Stokes drift.

6.3.2 Suggested Work

It is suggested that these equations in τ are solved and compared to the original, full

solution in the small time scale t, thus validating the two-time scale analysis. It is expected

that calculation of a trajectory in τ is much faster than an equivalent amount of time in t. It

is also suggested that these results are compared to those for fluid-particle motion with little

diffusion, the 1� S� ε−2 case. Perhaps larger particles will have enough inertia to escape

the Lagrangian vortices found in the variable eccentricity case. Finally, it is suggested that this

problem is expanded for other types of body forces such as gravitational and magnetic.
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Polytechnique Fédérale de Lausanne, 2008.

[60] NICOL, M. E., AND HOLDCROFT, A. Density of intrathecal agents. British Journal of
Anaesthesia 68, 1 (1992), 60–63.

[61] ONOFRIO, B. M., L., Y. T., AND G., A. P. Continuous low-dose intrathecal morphine
administration in the treatment of chronic pain of malignant origin. Mayo Clinic Proceedings
56 (1981), 516–520.

138
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