
UC Davis
UC Davis Previously Published Works

Title
Distribution-free tests of independence in high dimensions

Permalink
https://escholarship.org/uc/item/7bj2c35q

Journal
Biometrika, 104(4)

ISSN
0006-3444

Authors
Han, Fang
Chen, Shizhe
Liu, Han

Publication Date
2017-12-01

DOI
10.1093/biomet/asx050
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7bj2c35q
https://escholarship.org
http://www.cdlib.org/


Biometrika (2017), 104, 4, pp. 813–828 doi: 10.1093/biomet/asx050
Printed in Great Britain Advance Access publication 3 October 2017

Distribution-free tests of independence in high dimensions

BY FANG HAN

Department of Statistics, University of Washington, Box 354322, Seattle,
Washington 98195, U.S.A.

fanghan@uw.edu

SHIZHE CHEN

Department of Statistics, Columbia University, 1255 Amsterdam Avenue, New York,
New York 10027, U.S.A.
shizhe.chen@gmail.com

AND HAN LIU

Department of Operations Research and Financial Engineering, Princeton University,
Sherrerd Hall, Charlton Street, Princeton, New Jersey 08544, U.S.A.

hanliu@princeton.edu

SUMMARY

We consider the testing of mutual independence among all entries in a d-dimensional random
vector based on n independent observations. We study two families of distribution-free test
statistics, which include Kendall’s tau and Spearman’s rho as important examples. We show that
under the null hypothesis the test statistics of these two families converge weakly to Gumbel
distributions, and we propose tests that control the Type I error in the high-dimensional setting
where d > n. We further show that the two tests are rate-optimal in terms of power against sparse
alternatives and that they outperform competitors in simulations, especially when d is large.

Some key words: Gumbel distribution; Kendall’s tau; Linear rank statistic; Mutual independence; Rank-type U -statistic;
Spearman’s rho.

1. INTRODUCTION

1·1. Literature review

Consider a d-dimensional continuous random vector X , where X = (X1, . . . , Xd)T ∈ R
d .

Given n samples, we aim to test the null hypothesis H0 : X1, . . . , Xd are mutually independent.
This problem has been studied intensively in the case where X is multivariate Gaussian. When
d < n, methods proposed include the likelihood ratio test (Anderson, 2003), Roy’s (1957) largest
root test and Nagao’s (1973) test, which test the identity of the Pearson’s covariance matrix
� or the correlation matrix R using their sample counterparts. When d and n both grow and
the ratio d/n does not converge to zero, classic likelihood ratio tests perform poorly since the
sample eigenvalues do not converge to their population counterparts (Bai & Yin, 1993). This has
motivated work in high-dimensional settings.

In what follows, let γ denote the limit of d/n as n and d diverge to infinity. When 0 < γ � 1,
Bai et al. (2009) and Jiang & Yang (2013) proposed, and established the asymptotic normality
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of, corrected likelihood ratio test statistics. Specifically, Bai et al. (2009) considered the regime
γ ∈ (0, 1), and Jiang et al. (2012) extended it to the γ = 1 case. Johnstone (2001) and Bao
et al. (2012) proved the Tracy–Widom law for the null limiting distributions of Roy’s largest
root test statistics. The result of Bao et al. (2012) is only valid for γ ∈ (0, 1), while the result of
Johnstone (2001) applies to the case of γ = 1. These results are further generalized to γ > 1
in Péché (2009) and in Pillai & Yin (2012), with possibly non-Gaussian observations. When γ

can be arbitrarily large but remains bounded, Ledoit & Wolf (2002) and Schott (2005) developed
and established asymptotic normality of corrected Nagao test statistics. Jiang (2004) proposed a
test statistic based on the largest sample correlation coefficient and showed that it converges to a
Gumbel distribution, also known as an extreme-value Type I distribution. With some adjustments,
Birke & Dette (2005) and Cai & Jiang (2012) proved that the tests of Ledoit & Wolf (2002) and
Jiang (2004) extend to the case of γ = ∞. To the best of our knowledge, there is no result
generalizing the test of Schott (2005) to the regime γ = ∞.

When γ can be infinity, Srivastava (2006) proposed a corrected likelihood ratio test using only
nonzero sample eigenvalues. Srivastava (2005) introduced a test that uses unbiased estimators of
the traces of powers of the covariance matrix. Cai & Ma (2013) showed that the test of Chen et al.
(2010) uniformly dominates the corrected likelihood ratio tests of Bai et al. (2009) and Jiang &
Yang (2013); the three test statistics are asymptotically normal. Zhou (2007) modified the test of
Jiang (2004) and showed that the null limiting distribution of the test statistic is Gumbel.

Most of the aforementioned tests are valid only under normality. For non-Gaussian data, testing
H0 in high dimensions is not as well studied: Péché (2009) and Pillai & Yin (2012) considered
Roy’s largest root test for sub-Gaussian data; Bao et al. (2015) looked at the Spearman rho
statistic; and Jiang (2004) examined the largest off-diagonal entry in the sample correlation
matrix. In particular, Jiang (2004) showed that, for testing a simplified version of H0, the normality
assumption can be relaxed to E(|X |r) < ∞ for some r > 30. Later, Zhou (2007) modified Jiang’s
(2004) test to require only r � 6. See also Li & Rosalsky (2006), Zhou (2007), Liu et al. (2008),
Li et al. (2010), Cai & Jiang (2011, 2012), Shao & Zhou (2014) and Han et al. (2017).

This paper investigates testing H0 in high dimensions. The asymptotic regime of interest is
where d and n both grow and d/n can diverge or converge to any nonnegative value. Our main
focus is on nonparametric rank-based tests and their optimality. We consider two families of rank-
based test statistics, which include Spearman’s rho (Spearman, 1904) and Kendall’s tau (Kendall,
1938), and prove that under the null hypothesis they converge weakly to Gumbel distributions.
We also perform power analysis and establish optimality of the proposed tests against sparse
alternatives, explicitly defined in § 4. In particular, we show that the tests based on Spearman’s
rho and Kendall’s tau are rate-optimal against sparse alternatives.

1·2. Other related work

Testing H0 is related to testing bivariate independence. To test the independence between two
random variables taking scalar values, Hotelling & Pabst (1936) and Kendall (1938) proposed
using the Spearman’s rho and Kendall’s tau statistics, and Hoeffding (1948b) suggested the D
statistic. To test the independence of two random vectors of possibly very high dimensions,
Bakirov et al. (2006), Székely & Rizzo (2013) and Jiang et al. (2013) proposed tests based on
normalized distance between characteristic functions, distance correlations and modified likeli-
hood ratios. However, we cannot directly apply these results to test H0 without multiple testing
adjustments.

A notable alternative to Pearson’s correlation coefficient is Spearman’s rho. Zhou (2007) estab-
lished the limiting distribution of the largest off-diagonal entry of the Spearman’s rho correlation
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matrix, but did not provide a power analysis of the corresponding test. This paper includes the
result of Zhou (2007) as a special case.

Many researchers have considered testing independence based on kernel methods (Gretton
et al., 2007; Fukumizu et al., 2008; Póczos et al., 2012; Reddi & Póczos, 2013). They have focused
on kernel dependence measures, the Hilbert–Schmidt norm of the cross-covariance operator
(Gretton et al., 2007), or the normalized cross-covariance operator (Fukumizu et al., 2008).
Using these dependence measures, early works concerned testing independence between two
random variables (Gretton et al., 2007; Fukumizu et al., 2008) that might live in arbitrary sample
spaces. Recently, Reddi & Póczos (2013) generalized the proposal in Fukumizu et al. (2008)
and developed a copula-based kernel dependence measure for testing mutual independence.
Póczos et al. (2012) offer an alternative kernel-based test using the maximum mean discrepancy
(Borgwardt et al., 2006) between the empirical copula and the joint distribution of d independent
uniform random variables. However, existing kernel-based tests were developed in the low-
dimensional setting; Ramdas et al. (2015) have shown that such tests have low power in high
dimensions.

During the preparation of this paper, it came to our attention that Mao (2017) and Leung
& Drton (2017) also considered testing H0 for non-Gaussian data in high dimensions. These
authors have proposed tests based on sums of rank correlations, such as Kendall’s tau (Leung &
Drton, 2017) and Spearman’s rho (Mao, 2017; Leung & Drton, 2017). They further established
asymptotic normality of the proposed test statistics in the case where γ can be arbitrarily large
but is bounded. In particular, the theory in Mao (2017) follows from the procedure developed in
Schott (2005), and the theory in Leung & Drton (2017) relies on U -statistics theory.

2. TESTING PROCEDURES

2·1. Two families of tests

Let {Xi,· = (Xi,1, . . . , Xi,d)T, i = 1, . . . , n} be n independent replicates of a d-dimensional
random vector X ∈ R

d . To avoid discussion of possible ties, we consider continuous random
vectors. For any two entries j |= k ∈ {1, . . . , d}, let Qj

ni be the rank of Xi,j in {X1,j, . . . , Xn,j} and

let Rjk
ni be the relative rank of the kth entry compared to the jth entry; that is, Rjk

ni ≡ Qk
ni′ subject

to the constraint that Qj
ni′ = i for i = 1, . . . , n.

We propose two families of nonparametric tests based on the relative ranks. The first family
includes tests based on simple linear rank statistics of the form

Vjk ≡
n∑

i=1

cnig{Rjk
ni/(n + 1)} (j |= k ∈ {1, . . . , d}), (1)

where {cni, i = 1, . . . , n} form an array of constants called the regression constants and g(·) is
a Lipschitz function called the score function. We assume

∑n
i=1 c2

ni > 0 to avoid triviality. It is
immediately clear that Spearman’s rho belongs to the family of simple linear rank statistics. To
accommodate tests of independence, we further pose the alignment assumption

cni = n−1f {i/(n + 1)}, (2)

where f (·) is a Lipschitz function. Under this assumption, the simple linear rank statistic is a
general measure of the agreement between the ranks of two sequences. It will be made clear
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in § § 3 and 4 that the alignment assumption (2) is not required in deriving the null limiting
distribution, but is crucial in the power analysis.

The second family includes tests based on rank-type U -statistics, i.e., U -statistics of order
m < n that depend only on the relative ranks {Rjk

ni, i = 1, . . . , n}. In other words, a rank-type
U -statistic takes the form

Ujk ≡ 1

n(n − 1) · · · (n − m + 1)

∑
i1 |=i2 |=··· |=im

h(Xi1,{j,k}, . . . , Xim,{j,k})(j |= k ∈ {1, . . . , d}), (3)

and Ujk depends only on {Rjk
ni}n

i=1. Here, for any vector Xi,· and some index set A ⊂ {1, . . . , d}, let
Xi,A be the subvector of Xi,· with entries in the index set A. The kernel function h(·) is assumed to
be bounded but not necessarily symmetric. The boundedness assumption is mild since correlation
is the object of interest.

Next, we propose two tests based on the two families of statistics. We begin with a testing
procedure based on simple linear rank statistics. Under H0, the distribution of Vjk is irrelevant to
the specific distribution of X for all j |= k ∈ {1, . . . , d}. Accordingly, the mean and variance of Vjk
are calculable without knowing the true distribution. Let EH0(·) and varH0(·) be the expectation
and variance of a certain statistic under H0. We have

EH0(Vjk) = ḡn

n∑
i=1

cni, varH0(Vjk) = 1

n − 1

n∑
i=1

[
g{i/(n + 1)} − ḡn

]2 n∑
i=1

(cni − c̄n)
2, (4)

where ḡn ≡ n−1∑n
i=1 g{i/(n + 1)} is the sample mean of g{Rjk

ni/(n + 1)} (i = 1, . . . , n). Based
on {Vjk , 1 � j < k � d}, we propose the following statistic for testing H0:

Ln ≡ max
j<k

∣∣Vjk − EH0(Vjk)
∣∣. (5)

As with simple linear rank statistics, the expectation and variance of the rank-type U -statistics
EH0(Ujk) and varH0(Ujk) can be calculated analytically. We can test H0 using

L̃n ≡ max
j<k

∣∣Ujk − EH0(Ujk)
∣∣. (6)

Detailed studies of the null limiting distributions of Ln and L̃n are deferred to § 3. Here we give
some intuition. Under certain conditions, the standardized version of Vjk or Ujk is asymptotically
normal.Accordingly, the standardized version of L2

n or L̃2
n is asymptotically close to the maximum

of d(d − 1)/2 independent chi-squared random variables with one degree of freedom. The latter
converges weakly to a Gumbel distribution after adjustment.

Let σ 2
V and σ 2

U be the variances of n1/2Vjk and n1/2Ujk under H0, i.e.,

σ 2
V ≡ n varH0(Vjk), σ 2

U ≡ n varH0(Ujk). (7)

We propose the following size-α tests Tα and T̃α of H0:

Tα ≡ I

(
nL2

n

σ 2
V

− 4 log d + log log d � qα

)
, T̃α ≡ I

(
nL̃2

n

σ 2
U

− 4 log d + log log d � qα

)
. (8)



Distribution-free tests of independence 817

Here I (·) represents the indicator function and

qα ≡ − log(8π) − 2 log log(1 − α)−1 (9)

is the 1 − α quantile of the Gumbel distribution function exp{−(8π)−1/2 exp(−y/2)}. In what
follows, we consider a fixed nominal significance level, such as α = 0·05.

Alternatively, we can simulate the exact distribution of the studied statistic and choose qα to be
the 1 − α quantile of the corresponding empirical distribution. This simulation-based approach
is discussed in the Supplementary Material.

2·2. Examples

In this subsection, we present four distribution-free tests of independence that belong to the
two general families defined in § 2·1.

Example 1 (Spearman’s rho). Recall that Qj
ni and Qk

ni are the ranks of Xi,j and Xi,k among
{X1,j, . . . , Xn,j} and {X1,k , . . . , Xn,k}, respectively. Spearman’s rho is defined as

ρjk =
∑n

i=1(Q
j
ni − Q̄j

n)(Qk
ni − Q̄k

n){∑n
i=1(Q

j
ni − Q̄j

n)2
∑n

i=1(Q
k
ni − Q̄k

n)2
}1/2

= 12

n(n2 − 1)

n∑
i=1

(
i − n + 1

2

)(
Rjk

ni − n + 1

2

)
(j |= k ∈ {1, . . . , d}),

where Q̄j
n = Q̄k

n ≡ (n + 1)/2. This is a simple linear rank statistic, and we have

EH0(ρjk) = 0, varH0(ρjk) = (n − 1)−1 (j |= k ∈ {1, . . . , d}).
According to (8), the corresponding test statistic is

T ρ
α = I

{
(n − 1) max

j<k
ρ2

jk − 4 log d + log log d � qα

}
.

Example 2 (Kendall’s tau). Kendall’s tau is defined, for j |= k ∈ {1, . . . , d}, by

τjk = 2

n(n − 1)

∑
i<i′

sign(Xi′,j − Xi,j) sign(Xi′,k − Xi,k) = 2

n(n − 1)

∑
i<i′

sign(Rjk
ni′ − Rjk

ni),

where the sign function sign(·) is defined as sign(x) = x/|x| with the convention 0/0 = 0.
This statistic is a function of the relative ranks {Rjk

ni, i = 1, . . . , n} and is also a U -statistic with
bounded kernel h(x1,{1,2}, x2,{1,2}) ≡ sign(x1,1 − x2,1) sign(x1,2 − x2,2). Accordingly, Kendall’s
tau is a rank-type U -statistic. Moreover,

EH0(τjk) = 0, varH0(τjk) = 2(2n + 5)

9n(n − 1)
(j |= k ∈ {1, . . . , d}).

According to (8), the proposed test statistic based on Kendall’s tau is

T τ
α = I

{
9n(n − 1)

2(2n + 5)
max
j<k

τ 2
jk − 4 log d + log log d � qα

}
.
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Example 3 (A major part of Spearman’s rho). Although Spearman’s rho is not a U -statistic,
by Hoeffding (1948a) we can write, for j |= k ∈ {1, . . . , d},

ρjk = n − 2

n + 1
ρ̂jk + 3τjk

n + 1
,

where

ρ̂jk = 3

n(n − 1)(n − 2)

∑
i |=i′ |=i′′

sign(Xi,j − Xi′,j) sign(Xi,k − Xi′′,k).

Here ρ̂jk is a U -statistic of degree three with an asymmetric bounded kernel. Moreover,

EH0(ρ̂jk) = 0, varH0(ρ̂jk) = n2 − 3

n(n − 1)(n − 2)
(j |= k ∈ {1, . . . , d}).

As in (8), the test based on {ρ̂jk , 1 � j < k � d} is

T ρ̂
α = I

{
n(n − 1)(n − 2)

n2 − 3
max
j<k

ρ̂2
jk − 4 log d + log log d � qα

}
.

Example 4 (Projection of Kendall’s tau to simple linear rank statistics). Kendall’s tau does
not belong to the family of simple linear rank statistics. However, by the projection argument in
Hájek (1968), τjk can be approximated by

τ̂jk = 8

n2(n − 1)

n∑
i=1

(
i − n + 1

2

)(
Rjk

ni − n + 1

2

)
(j |= k ∈ {1, . . . , d}).

Using the variance of ρjk and the relationship between ρjk and τ̂jk , it is easy to obtain that

EH0(τ̂jk) = 0, varH0(τ̂jk) = 4(n + 1)2

9n2(n − 1)
( j |= k ∈ {1, . . . , d}).

We observe that varH0(τ̂jk)/varH0(τjk) goes to unity as n grows, indicating that τ̂jk is asymptoti-
cally equivalent to τjk under H0. The proposed test statistic is

T τ̂
α = I

{
9n2(n − 1)

4(n + 1)2 max
j<k

τ̂ 2
jk − 4 log d + log log d � qα

}
.

Remark 1. We have considered two families of test statistics: a family of simple linear rank
statistics and a family of rank-type U -statistics. Waerden (1957) and Woodworth (1970) studied
the performance of Spearman’s rho and Kendall’s tau in testing bivariate independence under
normality, and showed that Spearman’s rho is more efficient than Kendall’s tau when n is small,
while the reverse is true if n is large. Although the threshold point is theoretically calculable, in
practice it is very difficult to approximate.
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3. LIMITING NULL DISTRIBUTIONS

In this section we characterize the limiting distributions of Ln and L̃n under H0. We first
introduce some necessary notation. Let v = (v1, . . . , vd)T ∈ R

d be a d-vector and let M =
[Mjk ] ∈ R

d×d be a d × d matrix. For index sets I , J ⊂ {1, . . . , d}, let vI be the subvector of
v with entries indexed by I , and let MI ,J be the submatrix of M with rows indexed by I and
columns indexed by J . Let λmin(M ) denote the smallest eigenvalue of M . For two sequences
{a1, a2, . . .} and {b1, b2, . . .}, we write an = O(bn) if there exists some constant C such that for
any sufficiently large n, |an| � C|bn|. We write an = o(bn) if for any positive constant c and any
sufficiently large n, |an| � c|bn|. We write an = oy(bn) if the constant depends on some scalar
y, i.e., |an| � cy|bn|. We study the asymptotics of triangular arrays (Greenshtein & Ritov, 2004),
allowing the dimension d ≡ dn to grow with n. In the following c and C will represent generic
positive constants, whose values may vary at different locations.

We first consider the simple linear rank statistic Vjk . The following theorem shows that under H0

and some regularity conditions on the regression constants {cn1, . . . , cnn}, the statistic nL2
n/σ

2
V −

4 log d + log log d converges weakly to a Gumbel distribution.

THEOREM 1. Suppose that the simple linear rank statistics {Vjk , 1 � j < k � d} take the form
(1) with regression constants {cn1, . . . , cnn} satisfying

max
1�i�n

|cni − c̄n|2 �
C2

1

n

n∑
i=1

(cni − c̄n)
2,

∣∣∣∣∣
n∑

i=1

(cni − c̄n)
3

∣∣∣∣∣
2

�
C2

2

n

{
n∑

i=1

(cni − c̄n)
2

}3

, (10)

where c̄n ≡ ∑n
i=1 cni represents the sample mean of the regression constants and C1 and C2

are two constants. Further suppose that the score function g(·) is differentiable with bounded
Lipschitz constant. Then under H0, if log d = o(n1/3) as n grows, for any y ∈ R we have∣∣pr(nL2

n/σ
2
V − 4 log d + log log d � y) − exp{−(8π)−1/2 exp(−y/2)}∣∣ = oy(1),

where Ln and σ 2
V are defined in (5) and (7).

It is common to have conditions of the form (10) in Theorem 1 for the simple linear rank statis-
tics to be asymptotically normal or to deviate moderately from normality; see Hájek et al. (1999)
and Kallenberg (1982). Seoh et al. (1985) gave similar conditions for {cni, i = 1, . . . , n}. The Lip-
schitz condition rules out the Fisher–Yates statistic, where g(·) is proportional to 
−1{·/(n + 1)}
and 
−1(·) represents the quantile function of the standard Gaussian.

Theorem 1 gives a distribution-free result for testing H0 (see Kendall & Stuart, 1961, Ch. 31).
In contrast, tests based on sample covariance and correlation matrices (e.g., Jiang, 2004; Li et al.,
2010; Cai & Jiang, 2011; Shao & Zhou, 2014) are not distribution-free; for instance, Li et al.
(2010) and Shao & Zhou (2014) impose moment requirements on X .

Spearman’s rho is a simple linear rank statistic, and it satisfies the conditions (10). Therefore,
Theorem 1 is a strict generalization of Theorem 1.2 in Zhou (2007).

We now turn to rank-type U -statistics. The next theorem is the analogue of Theorem 1.

THEOREM 2. Suppose that the rank-type U-statistics {Ujk , 1 � j < k � d} are of the form (3)
and of degree m, and that the kernel function h(·) is bounded and nondegenerate. Then under H0,
if log d = o(n1/3) as n grows, for any y ∈ R we have∣∣pr(nL̃2

n/σ
2
U − 4 log d + log log d � y) − exp{−(8π)−1/2 exp(−y/2)}∣∣ = oy(1),
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where L̃n and σ 2
U are defined in (6) and (7).

The assumption on h(·) requires that the rank-type U -statistic be nondegenerate; hence it rules
out Hoeffding’s D statistic.

Corollary 1 says that the tests Tα and T̃α can effectively control the size.

COROLLARY 1. Suppose that the conditions inTheorem 1 orTheorem 2 hold; then, respectively,
pr(Tα = 1 | H0) = α + o(1), pr(T̃α = 1 | H0) = α + o(1). Furthermore, all test statistics in
Examples 1–4 converge weakly to a Gumbel distribution.

COROLLARY 2. Under the regime where log d = o(n1/3) as n grows, pr(T �
α = 1 | H0) = α +

o(1) (� ∈ {ρ, τ , ρ̂, τ̂ }), where T �
α corresponds to the test statistics introduced in Examples 1–4

for � ∈ {ρ, τ , ρ̂, τ̂ }.

4. POWER ANALYSIS AND OPTIMALITY PROPERTIES

4·1. Sparse alternatives

Let U(c) be a set of matrices indexed by a constant c,

U(c) ≡
{

M ∈ R
d×d : diag(M ) = Id , M = M T, max

1�j<k�d
|Mjk | � c(log d/n)1/2

}
, (11)

where Id denotes the d×d identity matrix and diag(M ) represents a matrix with diagonal elements
equal to the diagonal elements of M and with all off-diagonal elements equal to zero.

We define the random matrix V̂ = [V̂jk ] ∈ R
d×d by

V̂jk = V̂kj = σ−1
V {Vjk − EH0(Vjk)}, V̂�� = 1 (1 � j < k � d; 1 � � � d),

where σV is defined in (7) and {Vjk , 1 � j < k � d} are the simple linear rank statistics. Let the
population version of V̂ be V ≡ E(V̂ ). We study the power of tests against the alternative

H V
a (c) ≡ {F(X ) : V {F(X )} ∈ U(c)}, (12)

where F(X ) is the joint distribution function of X and we write V {F(X )} to emphasize that
V = E(V̂ ) = ∫

V̂ dF(X ) is a function of F(X ).
Similarly, we define the random matrix Û = [Ûjk ] ∈ R

d×d by

Ûjk = Ûkj = Ujk − EH0(Ujk)

σ̃U
, Û�� = 1 (1 � j < k � d; 1 � � � d),

where {Ujk , 1 � j < k � d} are the rank-type U -statistics and

σ̃ 2
U ≡ m2 varH0

[
EH0{h(X1,{1,2}, . . . , Xm,{1,2}) | X1,{1,2}}

]
. (13)

We define the population version of Û to be U ≡ E(Û ). Then we study the power of tests against
the alternative

H U
a (c) ≡ {F(X ) : U {F(X )} ∈ U(c)}. (14)
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When studying rate-optimality, we consider the alternative

H R
a (c) ≡ {F(X ) : R{F(X )} ∈ U(c)}, (15)

where R is the population correlation matrix; § 4·3 clarifies why we use H R
a (c) in (15).

All three alternatives are based on the set of matrices U(c), of which at least one entry has
magnitude greater than C(log d/n)1/2 for some large constant C; so we call (12), (14) and (15)
the sparse alternatives.

The three alternatives may not be equivalent. For instance, max1�j<k�d |Vjk | � c(log d/n)1/2

does not imply max1�j<k�d |Ujk | � c(log d/n)1/2. The exact relationship between H V
a and H U

a
is intriguing. Taking Kendall’s tau and Spearman’s rho as examples, Fredricks & Nelsen (2007)
have shown that for a bivariate random vector, the ratio between the population analogues of
the two statistics converges to 3/2 as the joint distribution approaches independence. Under a
fixed alternative, however, the relationship between the population analogues of Kendall’s tau
and Spearman’s rho remains unclear and probably depends heavily on the specific distribution.
Hence, we do not pursue a theoretical comparison of the powers of the tests.

4·2. Power analysis

The following theorem characterizes the conditions under which the power of Tα tends to unity
as n grows, under the alternative H V

a in (12).

THEOREM 3. Assume that the alignment assumption in (2) holds, and that σ 2
V = A1{1 + o(1)}

and max{|f (0)|, |g(0)|} � A2 for some positive constants A1 and A2. Further assume that f (·)
and g(·) have bounded Lipschitz constants. Then, for some large scalar B1 depending only on
A1, A2 and the Lipschitz constants of f (·) and g(·),

inf
F(X )∈H V

a (B1)
pr(Tα = 1) = 1 − o(1),

where the infimum is taken over all distributions F(X ) such that V {F(X )} ∈ U(B1).

Similarly, T̃α has the property of the power tending to unity under the alternative H U
a in (14).

THEOREM 4. Suppose that the kernel function h(·) in (3) is bounded with |h(·)| � A3 and

m2 varH0

[
EH0{h(X1,{1,2}, . . . , Xm,{1,2}) | X1,{1,2}}

] = {1 + o(1)}A4

for some positive constants A3 and A4. Then, for some large scalar B2 depending only on A3, A4
and m,

inf
F(X )∈H U

a (B2)
pr(T̃α = 1) = 1 − o(1),

where the infimum is taken over all distributions F(X ) such that U {F(X )} ∈ U(B2).

Here H V
a (B1) and H U

a (B2) are both sparse alternatives, which can be very close to the null
in the sense that all but a small number of entries in V or U can be exactly zero. The above
theorems show that the proposed tests are sensitive to small perturbations to the null. For the
examples discussed in § 2, Theorems 3 and 4 show that their powers tend to unity under the
sparse alternative.
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4·3. Optimality

We now establish the optimality of the proposed tests in the following sense. Recall that Tα and
T̃α can correctly reject the null hypothesis provided that at least one entry of V or U has magnitude
greater than C(log d/n)1/2 for some constant C. We show that such a bound is rate-optimal, i.e.,
that the rate of the signal gap, (log d/n)1/2, cannot be relaxed further.

For each n, define Tα to be the set of all measurable size-α tests. In other words, Tα ≡ {Tα :
pr(Tα = 1 | H0) � α}.

THEOREM 5. Assume that c0 < 1 is a positive constant, and let β be a positive constant
satisfying α + β < 1. Under the regime where log d/n = o(1) as n grows, for large n and d we
have

inf
Tα∈Tα

sup
F(X )∈H R

a (c0)

pr(Tα = 0) � 1 − α − β,

where the supremum is taken over the distribution family H R
a (c0) defined in (15).

Theorem 5 shows that any measurable size-α test cannot differentiate between the null hypoth-
esis H0 and the sparse alternative when maxj<k |Rjk | � c0(log d/n)1/2 for some constant
c0 < 1.

In the Supplementary Material we give the detailed proof of Theorem 5. It begins with the
observation that the family of alternative distributions H R

a (c0) includes some Gaussian distribu-
tions as a subset, since one can construct a Gaussian distribution given any R ∈ U(c0). Therefore,
the supremum over H R

a (c0) is no smaller than the supremum over the Gaussian subset. The rest of
the proof follows from the general framework in Baraud (2002). In particular, the proof technique
is relevant to the argument used in deriving the lower bound in two-sample covariance tests (Cai
et al., 2013).

Due to technical constraints, the alternative considered in Theorem 5 is defined with the
Pearson’s population correlation matrix R. As mentioned in § 4·1, it is unclear whether there exist
equivalences between V , U and R. Therefore, in order to apply Theorem 5 to the alternatives
used in Theorems 3 and 4, we make the following assumptions.

Assumption 1. When X is Gaussian, the matrices V and R are such that for large n and d,
cVjk � Rjk � CVjk for j |= k ∈ {1, . . . , d}, where c and C are two constants.

Assumption 2. When X is Gaussian, the matrices U and R are such that for large n and d,
cUjk � Rjk � CUjk for j |= k ∈ {1, . . . , d}, where c and C are two constants.

In the proof of Theorem 5, we obtain a lower bound by considering the Gaussian subset of
H R

a (c0). This is why we requireAssumptions 1 and 2 to hold at least for the Gaussian distributions.
Theorem 5 then justifies the rate-optimality of the proposed tests, summarized as follows.

THEOREM 6.

(a) Suppose that the simple linear rank statistics {Vjk , 1 � j < k � d} satisfy all the conditions
in Theorems 1 and 3. Suppose also that Assumption 1 holds. Then, under the regime where
log d = o(n1/3) as n grows, the corresponding size-α test Tα is rate-optimal. In other
words, there exist two constants D1 < D2 such that:

(i) supF(X )∈H V
a (D2)

pr(Tα = 0) = o(1);
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(ii) for any β > 0 satisfying α + β < 1, for large n and d we have

inf
Tα∈Tα

sup
F(X )∈H V

a (D1)

pr(Tα = 0) � 1 − α − β.

(b) For all rank-type U-statistics satisfying the conditions in Theorems 2 and 4, if Assumption 2
holds, then the same rate-optimality property holds.

As an example, the next corollary justifies the test statistics in Examples 1–4.

COROLLARY 3. The four test statistics in Examples 1–4 are all rate-optimal against the
corresponding sparse alternatives.

Corollary 3 is a direct consequence of Theorem 6 and Lemma C8 in the Supplementary
Material. Its proof is therefore omitted.

5. NUMERICAL EXPERIMENTS

5·1. Tests

We compare the performances of our proposed tests and several competitors on various syn-
thetic datasets in both low-dimensional and high-dimensional settings. Additional numerical
results are reported in the Supplementary Material, which includes comparisons with other tests
of H0, testings with simulation-based rejection thresholds, and an application.

We propose a test based on Spearman’s rho statistic, outlined in Example 1, using the result in
Theorem 1. We also propose a test based on Kendall’s tau statistic, outlined in Example 2, using
the result in Theorem 2. We use the theoretical rejection threshold qα in (9) for both tests. Below
we will refer to these tests as the Spearman test and the Kendall test.

As a competitor, we consider the test of Zhou (2007), which rejects the null hypothesis if

n max
j<k

r2
jk − 4 log d + log log d � qα ,

where qα is the theoretical threshold defined in (9).
Another competitor is the test of Mao (2014), which rejects the null hypothesis if⎧⎨

⎩
∑
j<k

r2
jk

1 − r2
jk

− d(d − 1)

2(n − 4)

⎫⎬
⎭
{

(n − 4)2(n − 6)

d(d − 1)(n − 3)

}1/2

� 
−1(1 − α),

where 
−1(·) is the quantile function of the standard Gaussian. The test statistic in Mao (2014)
has guaranteed size control only under normality.

A further two competitors are the kernel-based tests of Reddi & Póczos (2013) and Póczos
et al. (2012). Briefly, Reddi & Póczos (2013) propose to calculate the Hilbert–Schmidt norm of
the normalized cross-covariance operators after a copula transformation, and Póczos et al. (2012)
propose using the estimated maximum mean discrepancy after a copula transformation. In both
kernel-based tests, we use the Gaussian kernel with standard deviation being the median distance
heuristic as in Reddi & Póczos (2013) and Póczos et al. (2012). We use simulation to determine
the rejection thresholds for both tests, since the null distribution of F(X ) is uniform. Although
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a theoretical rejection threshold is proposed in Póczos et al. (2012), it becomes too conservative
in high dimensions.

In total, we apply six tests in the numerical experiments, namely the Spearman test outlined
in Example 1, the Kendall test outlined in Example 2, and the tests of Zhou (2007), Mao (2014),
Reddi & Póczos (2013) and Póczos et al. (2012). In the following experiments, we set the nominal
significance level to α = 0·05 for all tests.

We also compared the performance of our procedures with that of two more rank-based statis-
tics proposed by Mao (2017) and Leung & Drton (2017). Due to space limitations, these additional
results are presented in the Supplementary Material.

5·2. Synthetic data analysis

We now perform size and power comparisons between the competing tests described in § 5·1. In
this simulation, we generate synthetic data from five different types of distribution: the Gaussian
distribution, the light-tailed Gaussian copula, the heavy-tailed Gaussian copula, the multivariate
t distribution, and the multivariate exponential distribution. To evaluate the sizes of the tests, we
generate data from the five types of distribution under the null, where all entries in X are mutually
independent. For evaluating the powers of the tests, we generate different sets of data from the
five types of distribution under sparse alternatives. For instance, for the Gaussian distribution, we
draw our data from Nd(0, Id) to evaluate the size, and generate data from Nd(0, R∗) to evaluate
the power. Here R∗ ∈ R

d×d is a positive-definite matrix whose off-diagonal entries are all zero
except for eight randomly chosen entries. Details of the data-generating mechanism are given in
the Supplementary Material.

In summary, we generate data from ten distributions: one set under the null and one set
under the sparse alternative for each of the five types of distribution. For each distribution, we
draw n independent replicates of the d-dimensional random vector X ∈ R

d . To examine the
effects of increasing the sample size and dimension, we take the sample size n to be 60 or 100
and the dimension d to be 50, 200 or 800. Results from 5000 simulated datasets are shown
in Fig. 1.

Under the Gaussian distribution, most tests can effectively control the size under all combi-
nations of n and d. Our proposed method and that of Zhou (2007) attain higher power than the
other competitors. In contrast, the test of Mao (2014) has relatively low power; this is as expected
because, under the sparse alternative, the correlation matrix has only eight nonzero entries. By
averaging over all entries in the correlation matrix, the test of Mao (2014) is less sensitive to the
sparse alternative. For similar reasons, the test of Póczos et al. (2012) has low power against the
sparse alternative. The test of Reddi & Póczos (2013) has decreasing power as d grows, which
corroborates the findings of Ramdas et al. (2015).

Under the light-tailed Gaussian copula, the performances of all six tests are similar to their
performances under the Gaussian distribution. Notably, our proposed tests achieve higher power
than the test of Zhou (2007), especially when the ratio d/n is large.

Under the heavy-tailed Gaussian copula, only our proposed tests correctly control the size
while attaining high power. The tests of Zhou (2007) and Mao (2014) have very high power
under the alternative, but their sizes are severely inflated under the null. The kernel-based tests
of Reddi & Póczos (2013) and Póczos et al. (2012) correctly control the size but have very low
power.

Under the multivariate t distribution, the performances are similar to those under the heavy-
tailed Gaussian copula.
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Fig. 1. Empirical sizes and powers of six tests under five types of distribution averaged over 5000 replicates at the 0·05
nominal significance level, shown by the horizontal dotted line in each panel. The vertical axis represents the proportion
of rejected tests in the 5000 replicates. The vertical dotted lines separate six different data-generating schemes, for
which (n, d) ranges from (60, 50) to (100, 800). Only the pairs (60, 50) and (100, 50) are in the low-dimensional
setting. The six tests considered in the simulation are represented by: ◦ and •, the Spearman test; ◦+ and •+, the Kendall
test; 	 and �, the test of Zhou (2007); � and �, the test of Mao (2014); δ and �, the test of Reddi & Póczos (2013); ∇
and �, the test of Póczos et al. (2012). Hollow shapes, e.g., ◦+, represent empirical sizes under the null, and solid shapes,
e.g., •+, represent empirical powers under the alternative. A grey symbol, e.g., δ and δ, indicates that the corresponding
test fails to control the size at the 0·05 nominal significance level in the corresponding null model. In this simulation,

we say that a test fails to control the size at 0·05 if its empirical size exceeds 0·05 + 1·96(0·05 × 0·95/5000)1/2.

Under the multivariate exponential distribution, our proposed tests and the test of Reddi &
Póczos (2013) achieve high power while correctly controlling the size across all settings. The
tests of Mao (2014) and Zhou (2007) fail to control the size in high dimensions. The test of
Póczos et al. (2012) has low power compared with the others.

In summary, our proposed tests correctly control the size and achieve high power across all
types of distributions regardless of the sample size and dimension. The Kendall test performs
slightly better than the Spearman test in terms of power. This is consistent with the observations
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in Woodworth (1970), which show that Kendall’s tau is asymptotically more powerful than
Spearman’s rho in testing independence in terms of having the Bahadur efficiency bounded
within (1, 1·05] under the Gaussian distribution. For the relationship between Spearman’s rho
and Kendall’s tau under different alternatives, we refer to Fredricks & Nelsen (2007) for details.
The performances of the tests of Zhou (2007) and Mao (2014) are strongly influenced by the data
structure, and these tests cannot effectively control the size under heavy-tailed distributions. This
is as expected because the validity of Mao’s (2014) test relies heavily on the Gaussian assumption,
and the performance of Zhou’s (2007) test is related to the moments. The kernel-based tests of
Reddi & Póczos (2013) and Póczos et al. (2012) control the size correctly in most cases, but their
power suffers in high dimensions, as observed by Ramdas et al. (2015).

6. DISCUSSION

The regression constants {cni}n
i=1, the score function g(·) in (1), and the kernel function

h(·) in (3) are assumed to be identical across different pairs of entries; this condition can be
straightforwardly relaxed, but for clarity of presentation we do not give further details in this
direction.

The problem studied in this paper is related to one-sample and two-sample tests of equality of
covariance or correlation matrices and to sphericity tests in high dimensions. There exist extensive
studies along these lines of research; see, among others, Ledoit & Wolf (2002), Chen et al. (2010),
Fisher et al. (2010), Srivastava & Yanagihara (2010), Fisher (2012), Li & Chen (2012), Cai et al.
(2013), Zhang et al. (2013) and Han et al. (2017). For equity and sphericity tests, existing methods
mostly focus on Pearson’s sample covariance matrix. Corresponding tests are based on statistics
characterizing the difference between two-sample covariance matrices under different norms,
such as the Frobenius norm or the maximum norm. As an alternative, Zou et al. (2014) proposed
a sphericity test using the multivariate signs; however, the theoretical results in their paper are
valid only under the regime where d = O(n2).

Testing equality of covariance or correlation matrices is challenging since the random vari-
ables are not mutually independent. In the Supplementary Material, focusing on the one-sample
test, we test the bandedness of the latent correlation matrix under the semiparametric Gaussian
copula model. We show that the test built on Kendall’s tau statistic can asymptotically con-
trol the size and is rate-optimal against the sparse alternative. See the Supplementary Material
for details.
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