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How dispersal potential manifests as realized mi-

gration (sensu Wright 1931) is a core question that 

links pattern and process in biogeography, ecology 

and evolution. It is a question that cannot be an-

swered by knowing about dispersal alone; the an-

swer requires understanding how traits of organ-

isms influence dispersal potential, how abiotic and 

biotic environments filter dispersers, and how in-

teractions between organisms and environments 

determine dispersal routes (e.g., Johnson and 

Black 1994, Siegel et al. 2003, Shanks 2009). A 

new paper by Luiz et al. (2013), investigating de-

terminants of range size in reef fishes, emphasizes 

that understanding the relationship between dis-

persal potential and migration also may require 

understanding the traits of non-dispersive phases. 

 Luiz et al. (2013) report that the characteris-

tics of generally non-dispersive adult phases cor-

relate strongly with differences in range size, 

which historically have been considered the con-

sequence of differences among dispersive larval 

phases (e.g., Lester et al. 2007). The significance of 

this initially counter-intuitive finding is that it 

greatly enriches recent discussion of dispersal 

that, after decades focusing on the influence of 

pelagic larval duration (PLD), has, as the authors 

put it, “yielded mixed results” (Luiz et al. 

2013:16498) By analogy, consider how the state 

of knowledge about dispersal in terrestrial plants 

might look if we studied fruits alone and not other 

diverse aspects of dispersal syndromes, such as 

the animals involved (e.g., Beaudrot et al. 2013).  

 Luiz et al. (2013:16500) find that the indi-

vidual and combined effects of adult body size 

(independent effect [IE] = 36%), nocturnality (IE = 

26%), and schooling behavior (IE = 16%) “are more 

important in determining the size of geographic 

ranges than larval dispersal potential” (IE = 13%; 

Table 1). They suggest that these adult character-

istics provide key advantages in terms of in-

creased establishment success by decreasing pre-

dation risk and reducing Allee effects. The result 

and inference make sense (Figure 1). Population 

genetic theory has long recognized the bipartite—

dispersal and establishment—nature of migration 

(e.g., Marshall et al. 2010). Similarly, without dis-

persal and establishment, there can be no mean-

ingful expansion in range size. 

 The same suite of population theory, how-

ever, also highlights a weakness in the inference 

that correlation with adult traits means the domi-

nant effects are in “population establishment af-

ter propagule arrival” (Luiz et al. 2013:16499); em-

phasis added). For example, adult body size tends 

to correlate with fecundity and with longevity in 

many fishes (Beverton 1987, Winemiller and Rose 

1992, Hixon et al. 2006:306, Juan-Jordá et al. 

2013; see also Figure 1a–d). Thus, although the 

fecundity advantage of large-bodied species may 

sometimes be counteracted by greater abundance 

of small-bodied species, complex relationships 

between body size and abundance (White et al. 

2007) mean that larger fish can be both more fe-

cund and equally or more abundant than smaller 

fish (e.g., Munday and Jones 1998). Thus, the ad-

vantage of body size may accrue via post-dispersal 

processes and/or via increased lifetime output of 

larvae. The total effect size of dispersal poten-

tial—considering lifetime larval production, PLD, 

and Luiz and colleague’s preferred dataset—is 

therefore greater than 13% and possibly as large 

as 49% (i.e., 13.3% + 36.0%; Table 1), which could 

turn their conclusion upside-down. Moreover, if a 

substantial effect of body size is mediated via lar-

val production, their justification for excluding the 

high-PLD trans-Pacific fishes is limited and the to-

tal effect size of dispersal could be as high as 62% 

(i.e., 24.8% + 37.6%; Table 1), though this would 

require that other correlated factors, such as 

young-of-year growth, contribute little. Conse-

quently, despite the advances made by Luiz et al. 

(2013)—a dataset including ~3-5% of marine 

fishes, an alternative perspective, and application 

of mixed models—we remain uncertain about the 

relative importance of factors influencing migra-

tion and range size in this dataset and across 
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Figure 1. A few examples of possible components in dispersal syndromes, drawn from across a diversity of taxa, pre-
dominantly fishes (a–d) and invertebrates (e–f). (a) Egg diameter is positively correlated with maximum adult total 
length (TL) in angelfishes, r = 0.83, p < 0.001; green circles = Indo-West Pacific species, blue squares = western Atlan-
tic species. Redrawn from Figure 5 of Thresher and Brothers (1985). (b) Batch fecundity is positively correlated with 
maximum length in tunas, mackerels, and bonitos, r = 0.81, p < 0.001; in these taxa length is positively correlated 
with longevity (from Figure 1 of Juan-Jordá et al. 2013). (c) Fecundity is positively correlated with length at maturity 
in marine fishes, Ln(clutch) = 2.34*Ln(length) – 2.24,  r2 = 0.35. Redrawn from Figure 2 of Winemiller and Rose 
(1992). (d) Young-of-year growth—mean increment in millimeters total length during the first year following hatch-
ing or independent life for viviparous fishes—is positively correlated with clutch size in marine fishes, Ln(YoY) = 
0.10*Ln(clutch) + 3.63,  r2 = 0.35. Redrawn from Figure 2 of Winemiller and Rose (1992). (e) Pelagic duration is posi-
tively correlated with lifetime fecundity across an alga (dotted lines, shaded), five gastropods (solid lines; datapoints 
for two pairs of taxa with the same pelagic duration and fecundity are jittered), and two barnacle species (dashed 
lines, hatched), r = 0.87, p = 0.005. Both factors are strongly correlated with population genetic structure.  Redrawn 
from Appendix D of Dawson et al. (in press). (f) The number of eggs produced per female per breeding season of fifty
-three marine benthic invertebrates—decapods, echinoderms, molluscs, nemerteans, polychaetes, prosobranchs—
with different types of development; redrawn from Thorson (1950).  That relationships exist in these six published 
datasets does not mean that the same relationships exist in other datasets, but establishes the general need to con-
sider correlations within complex traits forming “dispersal syndromes” (Ronce and Clobert 2012, Dawson et al. in 
press), and their potential effects in specific analyses such as that of Luiz et al. (2013). 



Box 1. As the way we think about bio-physical structure in the sea changes, our vocabulary evolves to 

reframe concepts more clearly and to convey complex ideas more easily. Thus, dispersal and migration 

both refer to spatial movements but have long distinguished the latter’s inclusion of establishment or 

gene flow.  Here are several other examples that have been influential in the past decade, and a couple 

of more recent suggestions. 

Connectivity: the exchange of individuals among locations. See Riddle et al. (2008) for a brief history of 

the term, which was brought to prominence by Cowen et al. (2000) and has since become a central 

topic in marine ecology (Cowen & Sponaugle 2009). 

Chaotic genetic patchiness: genetic heterogeneity that does not follow a simple consistent pattern, but 

forms a shifting, ephemeral patchiness among sites and between years (Johnson and Black 1982, 

1984). Employed relatively rarely through the 1990s, the term has surged in popularity since the mid-

2000s as larval dispersal has become part of a bigger picture (e.g., Hellberg 2009, Toonen & Grosberg 

2011).  Similar to eurymixis which emphasizes complexity, rather than unpredictability, and transient 

heterogeneity as a source of adaptive variation in a dynamic environment (Dawson et al. 2011).  

Dispersal syndrome: patterns of covariation of life-history, behavioural, physiological, and/or morpho-

logical traits associated with dispersal (Clobert et al. 2009, Dawson 2014) 

Filters: environmental changes that inhibit the movement of individuals of different species, and there-

fore their genes, to different extents depending in part on the strength and nature of the filter, and in 

part on the attributes of the entity being filtered (Carlquist 1965, and many others). Filters may occur 

individually or co-occur and emphasize multi-faceted links between ecological processes and evolu-

tionary patterns more than the related terms ‘breaks’ and ‘barriers’ in the sea (Dawson et al. 2006). 

Seascape: analogous with landscape; the environment, particularly through which marine organisms 

move. Used in scientific literature as early as Sieburth (1975), the term remained rare for two dec-

ades (DiSalvo et al. 1988, Bartlett & Carter 1991) before entering the mainstream (e.g. Jackson & 

Sheldon 1994). Merrel (1994) provides an intriguing metaphor rethinking Wright's adaptive land-

scape as an undulating surface on which interactions between environmental and biotic factors are in 

continuous motion. 

other taxa. Luiz et al. (2013) will help usher in new 

perspectives, broader and more detailed datasets, 

and more life-like conceptual and analytical 

frameworks (Box 1). 

 Migration is the result of interactions be-

tween complex traits and complex environments. 

We likely need commensurately sophisticated ap-

proaches to infer processes from patterns that 

vary spatially, phylogenetically, and temporally. If 

we wish to understand how dispersal potential 

manifests as realized migration we need to re-

frame the question, adopt meaningful study de-

signs, collect new data, and make nuanced infer-

ences (Hart and Marko 2010, Dawson 2014). We 

must approach analyses understanding that there 

are many covariates—including body size, longev-

ity, fecundity, egg size, developmental mode, time 
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 13 frontiers of biogeography 6.1, 2014 — © 2014 the authors; journal compilation © 2014 The International Biogeography Society 

Table 1. Significant variables ranked according to their 
independent effects (IE %) after adjustment for the ratio 
between the species range size and region size and (a) 
excluding or (b) including trans-Pacific (tP) species. From 
Table 1 of Luiz et al. (2013).  Variables that are, or are 
potentially, closely allied with dispersal potential are itali-
cized.  

  
Variable 

(a) IE % exclud-
ing tP species 

(b) IE % includ-
ing tP species 

Body size 36.0 37.6 

Nocturnal 25.9 19.4 

Schooling 16.2 13.9 

PLD 13.3 24.8 

Region 8.3 4.2 

 



to maturity, behavior—that may contribute to 

marine dispersal syndromes (e.g., Shanks et al. 

2003). Among the ~0.5 million marine species, 

there also may be many exceptions; finding cases 

that break or vary predominant dispersal syn-

dromes may help tease apart the influences of 

components in complex traits (Box 2).  
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