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ABSTRACT 

This paper examines the Sequential, Full Information Maximum 
Likelihood (FIML), and Linearized Maximum Likelihood (LML) estimators for 
a Nested Logit model of time-of-day choice for work trips. These 
estimators are compared using a Monte Carlo study based on specification 
and data from a previously published empirical study. The sequential 
estimator is found to be much less efficient than either LML or FIML; and 
its uncorrected second-stage standard-error estimates are strongly 
downward biased. LML is only slightly less efficient than FIML, but is 
often easier to compute. However there are cases where the sequential 
and LML estimators do not exist. 





I. INTRODUCTION 

The growing popularity and sophistication of discrete choice models 

has led to increasingly frequent use of the nested logit (NL) model. It 

is a natural generalization of multinomial logit (MNL), sharing some of 

its computational advantages but allowing freedom from the property of 

"independence from irrelevant alternatives" [McFadden (1981)]. Its 

applied uses have included transportation modal choice [Ben-Akiva (1974), 

Cosslett (1978)], consumer durable choice [Brownstone (1980)], household 

energy demand [Goett (1979), Cameron (1982)], and automobile demand 

[Train (1980, 1985), Hensher and Moncfield (1982), Hocherman et al 

(1983)]. 

One of the attractions of NL is the ability to use sequential 

estimation consisting of two or more MNL steps in succession. This 

sequential estimator has several well-known disadvantages: it is not 

asymptotically efficient, and it produces inconsistent standard error 

estimates [Amemiya (1978)]. Little work has been done assessing the 

severity of these problems in practice, or comparing the sequential 

estimator with alternative estimators. McFadden (1981) reports results 

by Cosslett using full information maximum likelihood (FIML} for two NL 

models; one is insignificantly different from MNL and the other yields 

parameter estimates outside the allowable range for NL to be a random 

utility model (see the next section). Brownstone (1980) and Hausman and 

McFadden (1984) report FIML but not sequential results. No other NL 



estimators have even been computed in any published literature known to 

1 
us. 

2 

This paper investigates three NL estimators, namely the sequential 

estimator and two asymptotically efficient estimators: full information 

maximum likelihood (FIML) and linearized maximum likelihood (LML). The 

latter consists of one step of the method-of-scoring algorithm starting 

from the sequential estimator. We use a Monte Carlo design based on data 

and specification from an applied study of work-trip timing. The example 

is one that has been thoroughly investigated using MNL, and for which NL 

is a plausible generalization. By examining the empirical distribution 

of parameter estimates obtained from repetitions of a single known 

stochastic model, we can compare the estimators' efficiencies and check 

the finite-sample accuracy of their asymptotic sampling distributions. 

Our results support the desirability of using asymptotically 

efficient estimators wherever possible, and strongly caution against the 

use of uncorrected standard error estimates from the sequential estimator. 

l some results using LML are reported in an earlier (unpublished) 
version of Hausman and McFadden (1984). 
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II. NOTATION 

The NL model used in this paper is known as a two-level model and is 

represented diagrammatically by the "tree structure" shown in Figure 1. 

The twelve alternatives are divided into three groups, each represented 

by a "node" denoted a, b, or c. The probability of choosing alternative 

k attached to node s is: 

where 

and 

Pk= P(kjs) • P(s) 

P(kls) = I exp(V./p) -

P(s) = 

I= log 
r 

jcBS J s 

exp(p I) 
s s 

rexp(p I) 
r r r 

r 
jcB 

r 

McFadden (1981) shows that if 

exp(V Ip) 
k s 

exp(I) 
s 

r = a,b,c. 

(l) 

(la) 

(lb) 

(le) 

(ld) 



4 

Figure 1 

Nested Logit Tree Structure 

b level 2 

1 2 3 4 5 6 7 8 9 10 11 12 level 1 



0 <pr< l, r = a,b,c , 

these probabilities can be derived from a random utility model in which 

This Vj is the "average" or "strict" utility of alternative j . 

utility is specified in (le) to be a linear function of observable 

characteristics zj 

making the choice. 

describing both the alternative and the individual 

The quantity I 
r 

is called the inclusive value of 

5 

node r . A node such as b with only one attached alternative is said 

to be degenerate, and it is easy to see that Ib=v9/pb, 

P(9lb)=l , P(b) is independent of pb , and hence the parameter 

pb drops out of equation (1). In this paper, furthermore, we 

constrain 

( 2) 

Denote a member of the sample (also called a "case") by superscript 

n ; denote the alternative chosen by that member by kn and the 

n 
corresponding node by s 

n 
L = r log P 

n kn 

= r log Pn(knlsn) + 
n 

Ll + L2 

The log-likelihood function is then 

r n n log P (s) 
n 

(3) 



Note that £ appears in both L
1 

and L
2

, but that the scalar 

appears in L
1 

only through the quotients £Ip. The sequential 

estimator takes advantage of this fact: it first estimates £Ip by 

maximizing L1 
2 

(first stage); uses these estimates to compute I . r , 

p 

then estimates p by maximizing L
2 

(second stage). The advantage of 

this procedure is that both L
1 

and L
2 

have the form of MNL 

log-likelihoods in parameters £Ip and p, respectively, hence can 

3 
be maximized using MNL computer programs. The MNL algorithm at the 

2 one or more components of £ may not be identified at the first 
stage because the corresponding variables do not vary over alternatives 
within groups Br- An example is a dummy variable equal to 1 for 
jcBa and O otherwise. Such variables can simply be omitted in 
calculating inclusive value, and entered separately as additional 
variables at higher stages. To see this, 

1 2 i 2 2 2 
partition £ = (£, £) and zj = (zj, zj), where zj = zr for all 

2 
jcBr so that £ is not identified at the first stage. Then from 

equation (ld), 

f 2 2 1 lJ 2 2 1 Ir= log exp(£ zr)• _r£ exp(£ zj) = £ zr + Ir' 
Jc r 

where 11 is the inclusive value computed from (ld) omitting 
r 

variables 2 z . 

3 If Pa and Pc are not constrained equal, distinct 

6 

first-stage estimates of £/pr are obtained on each subsample whose 
choices are in one of the nondegenerate groups Br . If these are 
constrained to be proportional so as to yield identical estimates of £, 
the ability to use "off-the-shelf" MNL algorithms is lost: if they are 
not so constrained, the best estimate of £, given the second-stage 
estimates of pr , is unclear. Imposing constraint (2) solves this 
problem by allowing a considerably more efficient technique at the first 
stage: £Ip is estimated on the union of the subsamples just 
mentioned. To our knowledge this procedure has not been explicitly 
described, though it appears to have been used in practice [e.g. Train 
(1980)]. Note that in our example, since node b is degenerate, the 
first stage still does not use the entire sample: £Ip is estimated 
ignoring the information from those sample members choosing alternative 9. 
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second stage generates what we call the "uncorrected" standard-error 

estimate of p, using the Hessian of L
2 

and hence implicitly 

assuming that the values Blp used in calculating L
2 

are 

nonstochastic. The correct (i.e., consistent)standard-error estimate of 

p is computed as explained in the Appendix. 

FIML, in contrast, maximizes L simultaneously with respect to B 

and p, using a nonlinear maximization algorithm that typically 

requires computing L and some of its derivatives at each iteration. We 

used the quadratic hill-climbing algorithm of Goldfeld and Quandt (1973, 

pp. 5-8) except that in place of the Hessian we substituted the expected 

cross-product of the gradient, both for step direction and for 

standard-error estimates: hence our procedure is a modified method of 

scoring (Rao, 1973, p. 370). 

LML maximizes a quadratic approximation to L based on the values 

of L and its first two derivatives at the sequential estimate 

e ={£' ,p' }' . The second derivative is estimated by the expected 
SEQ SEQ SEQ 

value of the cross-product of the gradient. Thus the LML estimate is: 

e 

where 

= e 
LML 

a 
g = r 

n 

H = r r 
n j 

-1 (4) + H g 
SEQ 

n log P 
kn (4a) 

ae 

n (a log P~J 
Pj ae ( 

a log P~ J 
ae· (4b) 



with (4a) and (4b) both evaluated at e 
SEQ 

Note that e is 
LML 

8 

obtained from one step of the method-of-scoring algorithm; hence it is 

consistent and efficient (Theil, 1971, p. 527). It requires essentially 

the same computations as FIML except they need not be iterated to 

convergence. 
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III. EMPIRICAL EXAMPLE 

The empirical example is the choice of time-of-day for work trips, 

previously modelled by McFadden et. al. (1977), small (1982), and 

Abkowitz (1981). Because of analytical difficulties with treating the 

choice as continuous,
4 

plus a tendency of respondents to round off 

replies to the nearest five minutes, all of these authors estimated an 

MNL model of choice among 12 discrete alternatives, each representing 

arrival at work within a particular 5-minute interval. The choice set 

consists of intervals centered from 40 minutes before to 15 minutes after 

the official work start time for the individual. Data were collected on 

the actual arrival times, the official work start times, and other 

characteristics of 527 individuals who commuted by auto to a major city 

in the San Francisco Bay area in 1972 (see McFadden et. al., 1977). 

These were supplemented with engineering calculations of the travel times 

each would have faced at each of the 12 alternative arrival times. 

The model estimated here is a simple extension of the previously 

published MNL results of small (1982). The most well-behaved 

specification found in that paper is reestimated in the first column of 

5 
Table 1, with variables defined as follows: 

4 For example, the congestion curves (giving travel time versus time 
of day) are neither monotonic, concave, nor convex. Hence, stating the 
condition for utility maximization requires dividing the possible range 
of time of day into several regions, and corner solutions are frequent. 

5 The sample used here is larger than that in small (1982) because of 
reconstruction of some previously missing carpool data. The MNL 
coefficient estimates are nearly identical, except that SDE, SDL, and 
SDLX have been divided by 10 in the current paper for computational 
reasons. 
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SD = Schedule Delay: actual arrival time minus official work start time 

in minutes, for a given alternative. Thus its value for 

alternative j is SDj = 

Rl5 t if SD= -30, -15, 0, 15 

otherwise. 

Rl0 t if SD= -40, -30, -20, 

otherwise. 

TIM = Travel time in minutes. 

SDE = Max {-SD/10 , 0}. 

SDL = Max {SD/10 , 0}. 

5(j-9), j = 1, ... ,12. 

-10, 0, 10 

FLEX= Answer to question: "How many minutes late can you arrive at work 

without it mattering very much?" 

SDLX 

D2L 

CP 

= Max {(SD-FLEX)/10 , 0} 

=fl if SD~ FLEX 

(o otherwise. 

= Dummy for carpool. 

This model captures the trade-off between the desire to avoid congestion 

on the one hand, and the desire to avoid arriving too early or late on 

the other. The estimated marginal rates of substitution imply that the 

average noncarpooler would incur .53 minute of travel time to avoid 

arriving an extra minute early; 1.24 minute to avoid arriving an extra 

minute late; and an additional 1.53 minute to avoid arriving an extra 

6 
minute beyond the reported employer's flexibility range. 

6 These are the ratios of the coefficient on SDE, SOL, and SDLX, 
respectively, to the coefficient on TIM; divided by 10 to get in the 
right units. 
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Table 1: Estimation Results on Actual Data 

MNL MODEL NESTED LOOIT MODEL 

FIML Sequential LML FIML 

!3/p 
(S.E.) 

Rl5 1.106 1.133 1.157 1.134 
(.101) (.129) (.115) (. 110) 

RlO .398 .416 .439 .419 
(.102) (.128) (.114) (.108) 

TIM -.141 -.195 -.179 -.163 
(. 053) (.072) (.064) .060 

TIM•CP .105 .163 .139 .129 
(. 076) (.104) (.090) (.084) 

SDE -.75 -.69 -.76 -.75 
(.06) (.09) (. 07) (.07) 

SDE•CP .23 .04 .24 .23 
(.09) (.13) ( .11) ( .10) 

SDL -1.75 -1.92 -2.33 -2.07 
(. 29) (. 81) (.52) (.50) 

SDLX -2.16 -3.10 -3.49 -2.81 
(.81) (2.09) (1.47) ( 1. 28) 

D2L -1.057 -1.015 -1.467 -1.314 
(.170) (1.197) (. 395) (.362) 

~ 

p .882 .648 .807 
(S.E.) (.419) (.134) (.178) 
[uncorrected S. E.] (.075] 

Log Likelihood -994.90 -998.10 -995.48 -994.43 

Notes: 
Dependent variable is choice among 12 time-of-day alternatives. each a 

5-minute arrival interval. Alternative 9 is on-time arrival. 
No. cases= 527. 
Asymptotic standard errors are in parentheses. 
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Clearly the assumption of independence from irrelevant alternatives, 

implicit in MNL, is dubious here. At least two correlation patterns 

other than independence might plausibly be postulated for the unobserved 

preferences for these 12 alternatives. One, explored by Small (1981), is 

induced by the ordering of the alternatives and involves a closer 

correlation among "nearby" alternatives. The other, explored here, 

occurs if commuters have unmeasured preferences for arriving early 

{alternatives 1-8), on-time (alternative 9), or late (alternatives 

10-12), thereby inducing correlation within the corresponding groups 

B ={1, ••• ,8} , 
a 

B ={10,11.12} . 
C 

This is precisely the 

kind of situation for which NL is designed. We also computed estimates 

using several other groupings (i.e. tree structures), including some 

three-level trees [small and Brownstone (1982)]. The groupings used here 

gave among the most plausible results of any tried. 

The sequential estimation results are given in the second column of 

Table 1. The inefficiency of the sequential estimator is manifested in 

the large standard error estimates. This arises because the 187 

individuals choosing alternative 9 (on-time arrival) are dropped from the 

first-stage estimation since node b is degenerate (see footnote 3). 

Further evidence of the sequential estimator's inefficiency is that the 

likelihood attained is lower than that attained by the less general MNL 

model -- an unsettling result which we found for other tree structures as 

well. 

Table 1 also shows the uncorrected standard error estimates for p 

as computed by the MNL algorithm in the second stage. This is a gross 

underestimate relative to the correct asymptotic standard error 
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estimates, corroborating Cosslett's (1978) findings. Use of uncorrected 

standard errors might lead an investigator to unwarranted rejection of 

the hypothesis that the true model is MNL (i.e., p = 1 ). 

Table 1 also presents results for LML and FIML, which yield 

considerably lower asymptotic standard error estimates than the 

sequential estimator. This apparent efficiency gain is particularly 

important for p and for those coefficients (of SDLX and D2L) that are 

only identified from the 22 individuals choosing late alternatives. 

Computationally, each of these estimators has its advantages and 

. 7 
disadvantages. The sequential estimator is the simplest, but the need 

to correct its standard error estimates greatly reduces this advantage: 

the correction requires programming effort and computer time comparable 

to that needed to compute LML. We see little reason to use the 

sequential estimator if standard errors for 
A 

p are needed. Comparing 

FIML and LML is more difficult. on the one hand, FIML does not 

require the sequential estimator as starting values (indeed, we found it 

often converges more easily starting from p = 1 and from coefficients 

set either to zero or to the MNL estimates). on the other, FIML requires 

a nonlinear maximization algorithm, uses more computer time, and 

sometimes encounters convergence problems or multiple maxima. 

7 We used the program QUAIL [Berkman, et al (1979)] for MNL and for 
sequential NL estimates. The quadratic hill-climbing algorithm "GRADX" 
in GQOPT, distributed by Richard Quandt of Princeton University, was used 
for FIML estimation of NL. LML used a separate FORTRAN program with 
matrix inversion routine "LINV2P" from International Mathematical and 
Statistical Libraries. 
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IV. MONTE CARLO RESULTS 

The conclusions in the previous section are based on a single model 

of unknown validity. Hence they may be affected by misspecification, and 

the asymptotic approximations underlying the standard error estimates may 

be inaccurate. These problems are overcome in this section through a 

Monte Carlo study based on the empirical model. Starting with "true" 

parameter values chosen in advance (for realism they are taken to be the 

simple average of the sequential and FIML estimates from Table 1), 

individual choices are generated randomly from the probabilities in 

equations (1) - (ld); these choices are then used to compute the various 

estimators. Furthermore, the process is repeated many times in order to 

obtain an empirical sampling distribution of the parameter estimates; as 

the number of repetitions becomes large, this empirical distribution 

should approach the true small-sample distribution. All the results 

reported here are based on 100 Monte Carlo repetitions; there was little 

change in the empirical distributions as the number of repetitions was 

increased beyond 60. 

This method of estimating small-sample moments is identical to 

Efron's (1982) "bootstrap" estimator, a very general technique whose 

practical application in econometrics has been limited to linear models 

[Freedman and Peters (1984)] or to unrealistically simple binomial logit 

models [Brownstone (1984), Davidson and MacKinnon (1984)]. By contrast, 

the study described here is based on a realistic model and data set. 
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One immediate problem with our design is that the sequential and LML 

estimators turn out to exist for only 18 percent of the Monte Carlo 

repetitions. In the others, the first-stage log-likelihood L
1 

increases monotonically as the coefficient of SDLX and/or D2L goes to 

--co. The reason is that SDLX and D2L are identically zero on 

alternatives 1-9, so only for those relatively few sample members 

choosing to arrive late do they vary across the alternatives included in 

L1 . Hence only through such cases do these variables' coefficients 

affect If it happens that in every such case the alternative 

chosen minimizes SDLX, then L
1 

is maximized by setting the 

coefficient of SDLX to --co. A similar argument holds for D2L. 

This problem hardly ever occurs with FIML because all 12 alternatives 

are considered simultaneously for each case. Since SDLX and D2L often 

vary between alternatives 9 and io, a given Monte Carlo repition usually 

generates several "people" who choose alternative 10 even though it has a 

higher value of SDLX and/or D2L than alternative 9. In only one 

repetition did FIML fail to produce finite coefficient estimates. 

Our example should not be viewed as pathological because of this 

problem. on the contrary, our design shows that estimator nonexistence 

can easily arise in data generated by a perfectly reasonable true model. 

The problem illustrates dramatically the general point that important 

information is lost by ignoring certain alternatives at the first stage 

of the sequential estimation process. In practice, an investigator using 

sequential estimation on data generated by the true model considered here 

might well be led to reject the correct specification because of 

"unreasonable" results, and to use some incorrect specification instead. 
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Selected results of the Monte Carlo experiment are shown in Table 2. 

In order not to bias the comparisons of the three estimators, their 

empirical sampling distributions are computed on the same subset of the 

total set of 545 Monte Carlo repetitions: namely, those 100 for which 

all three estimators exist. Unsurprisingly, the coefficients on SDLX and 

D2L are strongly upward biased in this subset, since it excludes many of 

the repetitions with choice vectors favoring highly negative estimates of 

these coefficients. 

The last column describes the FIML empirical distribution on a more 

complete set of repetitions: 100 of the first 101 (excluding the one for 

which FIML failed to exist). The upward bias disappears, though the 

coefficient of SDLX now shows a sizable downward bias. It appears that 

FIML gives results about as good (i.e. coefficient estimates about as 

tightly distributed around the true parameters) whether or not the 

sequential estimator exists. 

Since p enters the log-likelihoods in a highly nonlinear fashion, 

we repeated the entire experiment changing the true value of p to 

0.20. This results in Table 3. The major difference is that the 

sequential estimator now exists for 77 percent of the repetitions; the 

smaller value of p causes the late alternatives to be chosen more 

frequently, which in turn increases the number of cases for which SDLX 

and D2L vary across alternatives included in L
1 

. 

Tables 2 and 3 corroborate the conclusions of the previous section: 

LML and FIML are more efficient than sequential estimation, and 

the uncorrected standard error estimate for p is likely to be a gross 

underestimate. The efficiency gain is greatest in the case p=.844, 
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Table 2: Monte Carlo Results for p = .844 

Coefficient (True Value) Sample and Estimator 

99% for 
18% for which SEQ which FIML 

exists exists 

SEQ LML FIML FIML 

TIM (- .179) 
Bias .011 .008 .019 .002 
RMSE .077 .062 .063 .061 so .076 .059 .056 .058 

SDE (-.720) 
Bias .000 .023 .006 .001 
RMSE .093 .079 .066 .072 - .089 SD .068 .063 .066 

SDLX (-2.960) 
Bias 1.212 .600 .604 -. 432 
RMSE 1. 761 1.231 1.154 1.698 
""' 1.938 .970 1.100 1.618 SD 

D2L (-1.164) 
Bias 1.035 -.238 .119 -.017 
RMSE 1.372 .752 .344 .378 
st 1.218 .392 .313 .345 

p (.844) 
Bias .011 -.060 .181 .041 
RMSE .368 .217 .380 .249 so .406 .176 . 271 .217 
SD (4ncorrected) .Ot5 
Skewness 1.90 .047 1.80 1.12 

Log L -1038.27 -998.15 -990 .12 -985.77 

Note: Each entry represents 100 repetitions excluding those for which 
the relevant estimator fails to exist. SEQ denotes the sequential 
estimator. 
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Table 3: Monte Carlo Results for p = .20 

Coefficient (True Value) 

TIM (-.179) 
Bias 
RMSE 
SD 

SDE (-.720) 
Bias 
RMSE 
SD 

SDLX (-2.960) 
Bias 
RMSE 
SD 

D2L (-1.164) 
Bias 
RMSE 
SD 

p (.200) 
Bias 
RMSE 
SD 
SD (uncorrected) 
Skewness 

SEQ 

.003 

.076 

.089 

-.024 
.106 
.105 

-.088 
.744 
.800 

.082 

.631 

.870 

-.003 
.037 
.042 
.029 

0.42 

Log L -1027.28 

Sample of Estimator 

100% for 
77% for which SEQ which FIML 

exists exists 

LML FIML FIML 

.003 .004 -.002 

.077 .077 .079 

.084 .084 .084 

-.018 -.020 -.023 
.100 .100 .102 
.099 .099 .099 

-.147 -.093 -.096 
.687 .676 .755 
.742 .740 .758 

-.038 -.039 -.142 
.540 .539 .628 
.586 .581 .612 

-.004 .002 -.003 
.036 .038 .037 
.039 .040 .039 

0.25 0.21 0.28 

-1026.32 -1026.28 -1024.62 

Note: Each entry represents 100 repetitions excluding those for which 
the relevant estimator fails to exist. SEQ denotes the sequential 
estimator. 



and for the two coefficients (SDLX and D2L) that, from the earlier 

discussion, are rather tenuously estimated. 

One striking result is the excellent performance of LML relative to 

FIML. Generally these estimators are equally efficient for this model. 

LML may therefore be preferred in many situations except where it fails 

to exist. 

The tables also show that the small sample distributions are mostly 

quite close to their asymptotic limits. The best way to see this is by 

~ 
comparing the estimated standard deviations SD with the root-mean-

19 

squared error RMSE, since most practical applications assume zero bias 

and use the asymptotic standard errors to generate confidence intervals. 
A 

comparison of the rows SD and RMSE in the tables shows that this 

procedure works quite well for most coefficients and estimators. The 

exceptions are the coefficient of D2L and the parameter p , especially 

in the case of p=.844. This may be due to the large amount of 

skewness found in their empirical distributions. (The empirical 

skewness of p is given in the next to last row of each table; 

skewness of the coefficient estimates, not shown, is small except 

occasionally for SDLX and D2L.) It is possible that reparameterizing the 

NL model to reduce the nonlinearity in p would improve the accuracy 

of the asymptotic approximations for p, but that is well beyond the 

scope of this paper. 
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V. CONCLUSION 

The theoretical advantages of efficient estimation seem to be 

realized for this particular model and data set. The sequential 

estimator may be useful for initial screening of models, but it cannot be 

relied upon for standard errors of the p parameters without a 

difficult correction. LML performs substantially better than the 

sequential estimator and is no harder to compute, if that correction is 

performed. FIML does not require computation of the sequential estimator 

and seems not to be adversely affected by the configurations of variables 

that cause the sequential estimator (and hence LML) not to exist. 

However, if FIML is used with arbitrary starting values, care must be 

taken that the global optimum is reached since otherwise consistency is 

not guaranteed. 

In this study the asymptotic approximations of the small-sample 

distributions of most parameter estimates are adequate. This result is 

at odds with previous work on the simpler binomial legit model. Much 

more work is needed to discover just what conditions cause the asymptotic 

approximations to fail. 

Until then, the bootstrap technique used here appears a useful though 

expensive method for estimating standard errors. As computing costs 

fall, investigators should consider substituting this for the 

traditionally reported asymptotic standard errors, which our results show 

to be sometimes misleading for hard-to-estimate parameters. 
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Appendix: standard Error Formulas for the Sequential Nested Logit 

Estimator. 

This appendix specializes the general formulas given in McFadden 

(1981, pp. 252-260) to the 2-level Nested Logit model with a single p 

parameter. 

Equation (3) gives the log-likelihood function as: 

(Al) 
n n n n n L = I log P (K Is) + I log P (s) - L

1 
+ L

2 n n 

Partition 
1 

1?) 
1 z2) .13 and z into two groups .13 = ( 13 , and z = (z , 

such that .13 
2 

is not identified at the first stage (i.e., via 

1 2 
maximization of Ll). Let z and z be the quantities actually 

entered as variables at stages 

2 
-y their coefficients. Thus 

1 and 2, respectively; and 

1 1 1 1 2 2 z =z , -y = 13 Ip , z = (z , 

1 
'( 

1 
I ) • 

and 

and 

2 
-y 

2 
= (.13 , p), where 

1 
I is the inclusive value from the first stage. 

22 

1 z takes on distinct values 
1 z k,s,n for alternative k attached to node 

s for individual n ; whereas z2 , which by construction does not vary among 

alternatives attached to a given node, takes on values 

Let Ei be the expectation operator appropriate for 

probabilities P(kls) 

(A2) M .. = E. 
1] 1 

and E uses P(s). 
2 

Define 

z 
2 
s,n 

L. 
1 

i.e., E
1 

uses 



McFadden (1981) shows that the asymptotic covariance matrix 

of the sequential estimator of y is consistently estimated by 

(A3) V = 

-1 
Mll 

-1 -1 
-M22M21Mll 

-1 I -1 
-Mll M21M2L 

-1 -1 -1 -1 
M22+M22M21MllM21M22 

M .• is just the Information Matrix for the MNL likelihood function at 
l. l. 
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the i:th stage, so the MNL computer packages produce standard-error 
-1 . 

estimat~s asymptotically equal to M ... It 1.s clear from formula (A3) that 
l. 1. 

1 these "uncorrected" estimates are cnrrect only for y and are downward 

biased for 2 y 

Define the random variables s 
k,s,n 

to equal 1 if individual 

chooses alternative k attached to node s. Let s - rs 
s,n k k,s,n 

E S 1 k,s,n 
n 

= p (kls) and E S 
2 s,n 

n 
= p (s). 

Using this notation we have 

(A4) Ll = I I I S. log Pn(kls) 
n s k 

;<,s,n 

and 

n 
(AS) L2 = I 'I' s log P (s) I.., 

n s 
s,n 

n 

Then 



Differentiating (A4) and (AS) yi~lds 

(A6) 

(A7) 

(A8) 

where 

3L
2 

-1 
3Y 

312 

. 3y2 

-1 z 
s,n 

=LL IS (Z 1 
n s k k,s,n k,s,n 

Zl ) 
s,n 

I L S (z1 
L Pn(t)Z1 = p 

n s 
s,n s,n 

t 
t, n 

= L L s (Z2 22) 
s,n s,n n 

n s 

and 
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) 

311 
Note that --

2 
= 0, and therefore M

12 
= 0. Taking expectations of (A6-A8) we 

have: 
3y 

(Zl - zl ) pn (k Is) (Zl -1 
) I (A9) Mll = L L z - z 

k 
k,s,n s,n k,s,n s,n 

n s 

(AlO) M21 L L (Z2 - z2) Pn(s) '-1 
L z

1 Pn(t)]' = p ~ -s.,n n s,n. t,n 
n s t 

(Z2 - z2) n (Z2 - z2) 
I 

(All) M22 = L L P (s) 
s,n n s,n n n s 

Formulas (A9)- (Al 1) , with probabilities evaluated at the sequential estimates 

of y, were used in formula (A3) to produce the correct standard errors in 

Table 1. The "uncorrected standard errors" are simply the square roots of the 
-1 

diagonal elements of M ... 
ii 
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