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Introduction
The human leukocyte antigen B (HLA-B) gene is a

member of the major histocompatibility complex (MHC),

a region of the human genome located on chromosome 6.

The MHC [also known as the human leukocyte antigen

(HLA) complex] includes three subregions, designated

as class I, class II, and class III. Each of these subregions

contains a variety of genes that mainly code for proteins

involved in the immune system. HLA-B is part of the

class I group, along with HLA-A and HLA-C, all three of

which code for their eponymous proteins [1]. Class II

genes include HLA-DR, HLA-DP, and HLA-DQ [2],

and class III genes include complement components

and cytokines such as complement factor B (CFB) and
members of the tumor necrosis factor (TNF) family [1,3].

The MHC is a large region of the genome and contains

many other genes besides the ones listed above; please

see Horton et al. [1] for more details. The HLA genes are

important within the field of pharmacogenetics: varia-

tions within these genes have been associated with

severe drug reactions as well as changes in how well a

patient responds to a drug.

The HLA-B protein and the other class I group members

are cell-surface molecules responsible for the presenta-

tion of endogenous peptides to CD8+ T cells and exist

on almost all nucleated cells. This is in contrast to class II

molecules, which display exogenous peptides to CD4+
T cells, and are present only on antigen-presenting cells

such as macrophages or dendritic cells [2,4]. This pre-

sentation of peptides to T cells aids in the recognition of

pathogens [2]. As a class I molecule, most of the peptides

that HLA-B presents come from the normal breakdown

of host cellular proteins and are recognized by the

immune system as such (i.e. ‘self’ peptides). However,

when a cell becomes infected by a pathogen, the proteins

presented will be from the pathogen and recognized as

foreign or ‘nonself’. T-cell antigen receptors on CD8+
cytotoxic T cells are responsible for this recognition and

will stimulate an immune reaction that destroys the

cell [5].

Class I molecules are expressed in a codominant manner,

and humans inherit a set of HLA-A, B, and C genes from

each parent. Therefore, given allelic variations within

these genes, up to six different class I molecules can

be expressed on a cell surface. HLA-A, B, and C are

heterodimers consisting of an α chain, encoded by

their respective genes, and a protein known as

β2-microglobulin, which is encoded on chromosome 15.

The α chain of HLA-B has four domains: one cyto-

plasmic, one transmembrane, one that binds to CD8+
cytotoxic T cells, and one that makes up a peptide-

binding groove, where the presented peptide is nestled

[5]. This peptide-binding region of the gene is highly

polymorphic, and allelic differences between class I

genes are often because of variations within this region

[2,5]. Indeed, allelic variants of class I genes can differ

from one another by up to 20 amino acids. Peptides bind

to the groove through interaction with specific amino acid

residues; thus, any amino acid changes because of allelic

variation may affect the peptide-binding specificity of a

class I molecule [5] (class II molecules have more flex-

ibility in peptide-binding; see Janeway et al. [5]). The

type of extensive polymorphism seen in HLA genes

allows a wide variety of peptides to be presented, and

likely evolved to combat pathogens effectively [5]. In

addition to affecting the peptides capable of being

presented, allelic variants in the HLA-B gene have also

been associated with susceptibility and resistance to

numerous diseases as well as adverse reactions to a wide

range of pharmaceuticals. This makes HLA-B highly

relevant to pharmacogenetic research. This Very

Important Pharmacogene summary onHLA-B is available

with interactive links to genetic variants and drugs on the

PharmGKB website at http://www.pharmgkb.org/gene/
PA35056.

HLA-B allele frequencies and nomenclature
Because of the highly polymorphic nature of class I

genes, a large number of HLA-B alleles have been

identified. Information on the frequencies of over 2800

HLA-B alleles in populations worldwide can be found at

The Allele Frequency Net Database (http://www.allele
frequencies.net/) [6]; allele frequencies for specific poly-

morphisms will be discussed within relevant sections of

this review. Systematic nomenclature for these alleles is
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invaluable, given their quantity. The HLA nomenclature

committee has provided a detailed nomenclature to this

end, and comprehensive information on the allele nam-

ing process can be found at their website at http://hla.
alleles.org [7]. Briefly, all HLA alleles receive at least a

four-digit name consisting of two sets of two digits

separated by a colon, such as HLA-B*57:01. The first set

of digits before the colon describes the type, typically the

antigen designation used to describe the HLA alleles

before genetic sequencing. The second set of digits

indicates the specific allele, numerically ordered on the

basis of when the DNA sequence was discovered; this set

of digits describes nonsynonymous substitutions only [7,

8]. This paper will only refer to the first one or two sets of

digits. However, longer names, up to four sets of digits

separated by colons and possibly a letter suffix, can be

assigned if more detail is necessary, such as the type or

the location of nucleotide substitution (e.g. synonymous

or intronic) or resultant protein expression (e.g. null

protein or cytoplasmic protein); for more information on

this process, please refer to the HLA nomenclature

website (http://hla.alleles.org).

HLA-B and disease associations
A number of HLA-B alleles or allele groups have been

associated with susceptibility or resistance to particular

diseases. These include HLA-B*53 and resistance to

malaria [9,10], HLA-B*51, and susceptibility to the

inflammatory condition Beçhet’s disease [11,12], and

HLA-B*46, and increased risk of Graves’ disease, an

autoimmune disorder [13]. Two particularly strong dis-

ease associations are HLA-B*57 and HIV long-term

nonprogression, and HLA-B*27 and ankylosing

spondylitis (AS).

HLA-B*57 and HIV long-term nonprogression
Without treatment, almost all patients infected with HIV

will ultimately progress to AIDS. However, a small per-

centage of patients do not advance, even long after the

median progression time. These patients are referred to

as long-term nonprogressors or ‘elite controllers’, and

HLA-B*57 alleles, particularly *57:01 and *57:03, are

highly enriched in this group of individuals [14–21].

Although this association is well known, the mechanism

by which it occurs remains unclear. Kosmrlj and collea-

gues used computer algorithms to predict that less than

half the number of unique peptides (derived from the

human proteome) bound to the HLA-B*57:01 protein

compared with HLA-B*07:01 (a non-HIV-protective

form of the molecule). The authors suggested that this

affected repertoire development, leading to T cells that

had been exposed to fewer self-peptides. This in turn

may lead to a higher frequency of T cells that recognize

viral peptides, such as those from HIV, as well as T cells

that are more cross-reactive toward mutant epitopes.

These qualities would enable the T cells to better control

the HIV infection, keeping the viral load in check and

thereby making the development of AIDS unlikely [16].

HLA-B*27 and ankylosing spondylitis
AS is a chronic inflammatory rheumatic disease, affecting

mainly the axial skeleton and the sacroiliac joints. It leads

to inflammatory back pain, as well as other clinical fea-

tures including enthesitis and anterior uveitis [22]. The

presence of HLA-B*27 leads to the highest risk for AS,

and this form of HLA-B is found in over 90% of AS

patients with European ancestry. However, only 1–5% of

HLA-B*27 individuals will go on to develop AS, and not

all alleles of HLA-B*27 are associated with its develop-

ment. AlthoughHLA-B*27:05, *27:02, *27:04, and *27:07
do confer risk, other types such as *27:06 and *27:09 do

not appear to be associated with the disease [23]. As with

HIV and HLA-B*57:01, the mechanism behind this

association is unclear, although multiple theories have

attempted to explain the relationship. Several of these

theories are summarized in a review by McHugh and

Bowness [24], including the arthritogenic peptide

hypothesis, which suggests that HLA-B*27 binds parti-

cular peptides that give rise to a cytotoxic T-cell

response, the misfolding and unfolded protein response

hypothesis, which suggests that the accumulation of

abnormally folded HLA-B*27 molecules leads to an

inflammatory response, and the free heavy chain and

homodimer hypothesis, where AS results from the

immune recognition of monomeric or dimeric

β2-microglobulin-free and peptide-free HLA-B*27
molecules [24]. Recent GWAS analyses have identified a

number of non-MHC genes associated with AS sus-

ceptibility; these genes may help explain the mechanism

of AS pathogenesis. For example, multiple genes within

the interleukin-23 (IL-23) proinflammatory cytokine

pathway were associated with AS, indicating that this

may be a core immunological pathway underlying disease

development. In addition, multiple aminopeptidase

genes, such as ERAP1 and ERAP2, have been associated

with AS. The protein products of these genes are

involved in peptide trimming before HLA class I binding

and presentation, suggesting that HLA-B*27 may be

involved in disease development through the aberrant

trimming or presentation of peptides [25–28].

HLA-B pharmacogenetics
HLA-B alleles have been associated with reactions to a

large number of different drugs. Some of these associa-

tions have been well studied, such as HLA-B*57:01 and

abacavir hypersensitivity, HLA-B*58:01 and allopurinol-

induced severe cutaneous adverse reactions (SCARs),

and HLA-B*15:02 and carbamazepine (CBZ)-induced

Stevens–Johnson syndrome (SJS) and toxic epidermal

necrolysis (TEN). Other associations that are not as

widely studied, but still show significant results include

HLA-B*57:01 and flucloxacillin-induced liver injury and

HLA-B*15:02 and phenytoin-induced SJS and TEN.
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A list of the HLA-B alleles and pharmacogenetic asso-

ciations discussed in this review (along with their positive

and negative predictive values, if available) can be found

in Table 1. For the alleles presented in this paper, there

is no difference in phenotype depending on whether one

or two HLA-B alleles are present, and therefore, the

pharmacogenetic studies discussed only consider whe-

ther an individual has the allele or not. Consequently, in

the tables throughout this review, the ‘prevalence’ of an

HLA-B allele refers to how many patients carry that allele

and not the frequency of the allele in the population.

Some studies do use allele frequencies in their statistical

analyses, and these cases are noted within the tables.

Many other HLA-B alleles besides the ones discussed

in this paper have shown associations with various

drug phenotypes. A table of all the HLA-B allele and

drug phenotype associations currently annotated by

PharmGKB can be found on the website at http://www.
pharmgkb.org/gene/PA35056.

HLA-B testing
Several options exist for determining whether a patient

carries a particular HLA-B allele. One is by direct

sequencing of the gene, and assignment of a star allele

after checking the sequence against known HLA-B
alleles. Although this method provides high-resolution

genotyping and is the most accurate, it is both time-

consuming and expensive and is not used widely [8]. An

alternative and commonly used approach is genotyping,

where the sequence variants known to define a particular

HLA-B allele are detected using PCR primers specific for

each variant [8]. Quality assurance studies carried out on

the accuracy of HLA-B*57:01 testing using sequence-

specific primer PCR across multiple laboratories have

shown very high sensitivity and specificity, indicating

that laboratories using this method appear to be offering

effective screening for the allele [35]. Another method

that offers cost-effective, rapid, and sensitive screening

for HLA-B*57:01 or HLA-B*58:01 is flow cytometry.

HLA-B*57:01 and HLA-B*58:01 belong to a serological

group known as HLA-B17. B17 monoclonal antibodies

can be used to identify individuals who carry the HLA-

B17 serotype, and these individuals can then undergo

further DNA typing to determine whether they carry the

*57:01 or *58:01 risk alleles. As B17 is normally present in

less than 10% of the population, assaying for the presence

of B17 first allows greater than 90% of a patient popula-

tion to be eliminated from unnecessary HLA testing

[36–38].

It is also possible to test for the presence of an HLA-B
allele by genotyping for one or more single nucleotide

polymorphisms (SNPs) nearby in linkage disequilibrium

with that allele. However, linkage disequilibrium can

vary across populations, and this method may have lower

accuracy [8,39]. The HCP5 SNP rs2395029 has been

suggested as a potential marker for abacavir-induced

hypersensitivity as the variant allele has shown strong

linkage disequilibrium with *57:01 [40–43]. However, it

is not in complete concordance with *57:01 [44,45], and

individuals with the *57:01 allele, but not the rs2395029

variant allele [44–46] as well as individuals with the

rs2395029 variant allele, but not the *57:01 allele [40,41,

44,45] have been noted. This type of incomplete con-

cordance could result in the denial of abacavir to indivi-

duals who are not at risk for a hypersensitivity reaction

(HSR) or administration of abacavir to individuals who

are at risk for an HSR [8,46]. In addition, the studies

showing strong linkage between *57:01 and rs2395029

have been carried out in populations of mainly Caucasian

or Hispanic descent; the strength of the linkage between

the alleles has not been confirmed in large African or

Asian populations [8]. Several studies have noted that

caution should be exercised when using rs2395029 as a

surrogate marker for HLA-B*57:01 [8,31,47]. However,

because of the inexpensive and straightforward nature of

this screening method, some laboratories do choose to

perform SNP testing over allele-specific PCR [8].

It is important to note that currently, the high level of

polymorphism within the HLA genes makes HLA geno-

typing at a high resolution challenging [48–50]. The

present sequencing methods can result in ambiguous

typing results with an inability to resolve phase [48,49].

In addition, different alleles may share similar sequences

within the sequenced region [50], and defining poly-

morphisms may lie outside the amplified region [48,49].

These issues may be resolved through next-generation

Table 1 List of HLA-B alleles and their associated drug phenotypes

HLA-B risk allele Drug Phenotype References PPV (%) NPV (%) References

*57:01 Abacavir
Flucloxacillin

Hypersensitivity reaction
Drug-induced liver injury

See Table 2
Daly et al. [30]

55 100 Mallal and colleagues [29,31]

*58:01 Allopurinol SCARs, MPE See Table 3 1.5 100 Tassaneeyakul et al. [32]
*15:02 Carbamazepine

Phenytoin
SJS/TEN
SJS/TEN

See Table 4
See Table 5

1.8
33a

100
100a

Yip et al. [33]
Tassaneeyakul et al. [34]

The phenotypes listed for each drug are more likely to occur in patients who carry the associated allele. For example, carriers of *57:01 who are administered abacavir have
an increased chance of a hypersensitivity reaction compared with noncarriers. When available, positive and negative predictive values are also shown. An interactive
version of this table is available online at http://www.pharmgkb.org/gene/PA35056.
HLA, human leukocyte antigen; MPE, maculopapular eruption; NPV, negative predictive value; PPV, positive predictive value; SCARs, severe cutaneous adverse reactions;
SJS/TEN, Stevens–Johnson Syndrome/toxic epidermal necrolysis.
aFor phenytoin-induced SJS only.
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sequencing, which allows for clonal amplification and

massively parallel sequencing. These two properties

provide phase information and the ability to sequence

more and larger regions of genes, including intronic

regions [48,49].

A list of commercially available genetic tests for various

HLA-B alleles can be found on PharmGKB at http://www.
pharmgkb.org/views/viewGeneticTests.action; a more com-

prehensive list can be found at the Genetic Testing

Registry (http://www.ncbi.nlm.nih.gov/gtr/). As HLA-B

expression is codominant, HLA-B genotyping results

are either ‘positive’, with the * allele being present in one

or both copies of the gene, or ‘negative’, where no copies

of the allele are present; there is no intermediate phe-

notype [8].

Important variants
HLA-B*57:01
Abacavir
In addition to being enriched in HIV long-term non-

progressors, the *57:01 allele is also associated strongly

and independently with the development of an abacavir

HSR. Abacavir is a nucleoside reverse transcriptase

inhibitor used for the treatment of HIV. It is generally

well tolerated, and common side effects include nausea,

headache, and diarrhea [51]. However, ∼ 5–8% of

patients experience an HSR within the first 6 weeks of

treatment [8]. Symptoms of an HSR include at least two

of the following: fever, rash, cough, gastrointestinal

symptoms (e.g. nausea, vomiting, abdominal pain), dys-

pnean and fatigue [8]. These symptoms worsen with

continued treatment, but typically improve within 24 h

after discontinuation. However, drug rechallenge after

discontinuation of abacavir because of an HSR can result

in symptom recurrence within a matter of hours and

potentially life-threatening allergic reactions [52,53]. An

overview of abacavir and *57:01 pharmacogenetic studies

can be found in Table 2.

In 2002, two separate research groups published the first

evidence that HLA-B*57:01 was present in a significantly

higher percentage of patients showing an abacavir HSR

compared with patients with no reaction. These studies

were carried out in North American [54] and Australian

[53] populations, and both included 200 participants.

This association was subsequently confirmed by another

study within a UK population of 64 patients [55].

However, these three studies were all carried out using

predominantly Caucasian men, limiting their scope.

Despite this limitation, several clinics began imple-

menting prospective screening of these alleles with suc-

cess [59–61]. A later study recognized the significance of

the allele in White female and Hispanic populations, but

found no significant associations for the Black population

from this study [62]. This was likely because of the lower

number of Black patients in the study and the fact that

Black populations tend to have a lower carriage rate of

the allele [56,62] – African populations often have *57:01
allele frequencies of less than 2.5%, in contrast to

European populations, who often have *57:01 fre-

quencies of 6–7% [8]. Indeed, a study in Ugandan

patients failed to find the *57:01 allele in either patients

with an abacavir HSR or tolerant controls [58].

In 2007, a study known as SHAPE (which included a

similar number of White and Black participants) found

that fewer cases of abacavir HSRs were found among

Black patients. However, 100% of both White and Black

patients who had immunologically confirmed HSRs were

positive for the HLA-B*57:01 allele [56]. This suggested

that although immunologically confirmed HSRs are rare

among Black populations because of the reduced fre-

quency of *57:01, the allele has the same clinical impli-

cations in both populations [56]. A definitive association

between *57:01 and abacavir HSRs emerged in 2008

with the results of the PREDICT-1 study, a double-

blind, prospective, randomized study with 1956 patients

from 19 countries. Patients were observed for 6 weeks

and divided into two categories: those who underwent

screening for the HLA-B*57:01 allele and were excluded

from treatment with abacavir if they tested positive and

those who underwent standard care without any screen-

ing. Abacavir HSRs were immunologically confirmed

with skin patch testing. The results of the study showed

that screening eliminated immunologically confirmed

HSRs – 0% of the patients screened had an HSR,

whereas 2.7% of the control population did. This gave

the screening a negative predictive value of 100% [29].

The positive predictive value of HLA-B*57:01 for

abacavir-induced HSRs is typically cited as 55%, imply-

ing that around half of all patients who are HLA-B*57:01
positive will not develop an abacavir HSR [31,63,64].

This indicates that other genes and environmental factors

are likely involved in the development of an abacavir-

induced HSR. Research in this area has been scarce, but

several studies have suggested a member of the 70 kDa

heat shock protein (HSP70) family as a potential factor

[65–67].

This body of evidence led the Food and Drug

Administration (FDA) to implement a boxed warning in

2008, detailing the risk of an HSR for abacavir-treated

patients with the HLA-B*57:01 allele. The FDA also

recommended that all patients be screened before being

treated, and to not use abacavir in HLA-B*57:01-positive
individuals [68]. The European Medicines Agency [69],

and therapeutic guidelines from the Clinical

Pharmacogenetics Implementation Consortium (CPIC)

[8] and the Dutch Pharmacogenetics Working Group [70]

also recommend genotyping for this allele before begin-

ning abacavir treatment.

The HLA-B protein exerts no direct effect on abacavir

pharmacokinetics or pharmacodynamics, and it is still

unclear how the HLA-B*57:01 allele affects susceptibility
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Table 2 Summary of abacavir and *57:01 pharmacogenetic studies

P-values and ORs listed pertain to the risk for an abacavir hypersensitivity reaction (HSR) in patients carrying the *57:01 allele compared with noncarriers. P-values and
ORs were calculated by comparing the frequency of *57:01 in patients who developed an HSR compared with the frequency in abacavir-tolerant controls. The prevalence
of *57:01 is listed for patients who developed an HSR (case) and in those who were abacavir-tolerant (control). An interactive version of this table is available online at
http://www.pharmgkb.org/haplotype/PA165956565, and is updated as new results come to our attention.
CI, confidence interval; HLA, human leukocyte antigen; OR, odds ratio.
aUnspecified remaining races.
bData using a ‘standard’ case definition: cases of hypersensitivity were either ‘definite/probable’ or ‘possible’. Results differed, but were still significant for White and
Hispanic patients (and still nonsignificant for Black patients) using a ‘restrictive’ case definition – only cases that were ‘definite/probable’. For ‘restrictive’ case definition
data, please refer to the paper directly.
cImmunologically confirmed HSRs. For clinically confirmed HSR data, please refer to the paper directly.
dIncluding 4.7% Indo-Asian, 3.1% Hispanic, 2% Metis and 2.2% oriental or unknown.
eClinically confirmed HSRs.
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to drug hypersensitivity. Several hypotheses exist. One is

the hapten concept, which suggests that small com-

pounds such as drugs (haptens) bind to the peptides

bound to immune receptors such as HLA-B, causing T

cells to react and stimulate an immune reaction [71].

Another is the p-i concept (pharmacological interactions

with immune receptors), which proposes that drugs bind

directly and reversibly to immune receptors, stimulating

an immune reaction [71]. Recent evidence seems to

support an alternative hypothesis. Two studies, both

published in 2012, found that abacavir can bind non-

covalently and with specificity to the F pocket of the

peptide-binding groove of HLA-B*57:01 [72,73].

Because of the amino acid residues unique to the *57:01
protein, abacavir can bind only to this particular form of

HLA-B. The binding of abacavir to HLA-B*57:01 is

believed to alter the shape and chemistry of the antigen-

binding cleft, and consequently, the repertoire of pep-

tides which can bind the molecule. Indeed, both of these

papers, as well as an additional paper by Norcross and

colleagues, all identified specific changes in the peptides

presented by HLA-B*57:01 in the presence of abacavir

compared with HLA-B*57:01 in the absence of the drug

[72–74]. As T cells are trained to be tolerant to a parti-

cular repertoire of peptides during their development in

the thymus, the alteration in the peptides that can be

presented may mean that these new peptides are per-

ceived as foreign. This change would stimulate CD8+
T-cell production and response, and would manifest as an

abacavir HSR [72,73]. Indeed, CD8+ T cells are abun-

dant in skin biopsies of patients who present with a rash

during an abacavir HSR [75].

Flucloxacillin
HLA-B*57:01 is also associated with flucloxacillin drug-

induced liver injury (DILI). Flucloxacillin is a semisyn-

thetic penicillin, used widely across Europe and Australia

for staphylococcal infection [30,76]. However, it is also

associated with the development of cholestatic hepatitis,

with risk factors being female sex, age older than

55 years, and treatment duration of longer than 2 weeks

[76]. A genome-wide association study found that a

marker in complete linkage disequilibrium with HLA-
B*57:01 was also strongly associated with flucloxacillin

DILI. Further analysis found that patients with this allele

had an 80-fold increased risk of developing DILI com-

pared with those without the allele [30]. However, flu-

cloxacillin DILI is a very rare condition, with an

estimated prevalence of only 8.5 out of every 100 000

patients. In addition, the positive predictive value of

*57:01 for DILI is only 0.12%, meaning that the majority

of patients with *57:01 will not develop flucoloxacillin-

induced DILI. Indeed, this positive predictive value

indicates that almost 14 000 white patients would need to

be tested for *57:01 and excluded from receiving the

drug to prevent one case of DILI; in non-white or mixed

populations, this number could be higher [77]. Given the

low positive predictive value and the high number nee-

ded to test to prevent one case, pretreatment screening

implementation in the clinic is likely not feasible at this

time. In their discussion of flucloxacillin HLA-B*57:01
screening, Phillips and Mallal [77] suggest that a more

practical approach would be to carefully monitor patients

receiving flucloxacillin and to consider their HLA-
B*57:01 genotype only if there is biochemical evidence

for hepatitis, at which point the drug can be stopped. It is

uncertain how the presence of the *57:01 allele leads to

an increased risk for flucloxacillin-induced DILI.

However, it does not appear to be through the same

mechanism as *57:01 and abacavir hypersensitivity:

Wuillemin et al. [78] found that in the presence of the

HLA-B*57:01 molecule, flucloxacillin stimulated T cells

(including CD8+ T cells) according to the p-i concept.

In a later study, Wuillemin et al. [79] also showed that

DILI might be caused by the infiltration of cytotoxic

CD8+ and CD3+ T cells into the liver. Consideration

of the results from both studies of Wuillemin and col-

leagues provides a possible explanation for the connec-

tion between *57:01 and DILI.

HLA-B*58:01
Allopurinol
The HLA-B*58:01 allele is associated strongly with

allopurinol-induced SCARs, which include hypersensi-

tivity syndrome (HSS) and SJS/TEN [80]. Allopurinol is

mainly used for conditions associated with hyperur-

icemia, such as gout and tumor lysis syndrome [81]. The

drug works by inhibiting the enzyme xanthine oxidase,

which is responsible for the conversion of hypoxanthine

and xanthine into uric acid. In this manner, the drug

lowers the amount of uric acid created in the body [80,

82]. Most side effects from allopurinol are mild, with the

most common complaint being gastrointestinal upset [80,

82]. However, allopurinol has also been associated with

severe adverse reactions. SJS and TEN (or SJS/TEN

when referencing both) are two forms of the same con-

dition. Both involve severe mucocutaneous blistering and

epidermal detachment, and usually present 1–3 weeks

after treatment begins. SJS and TEN are distinguished

by the amount of skin detachment: SJS is classified as

1–10% detachment of body surface area (BSA), SJS and

TEN overlap as 10–30% of BSA, and TEN as greater

than 30% of BSA. Although the occurrence of these

symptoms is rare (only two patients per million per year),

SJS and TEN can be permanently disabling or even fatal.

The mortality rate correlates with the level of skin

detachment, ranging from a 1–5% mortality rate for SJS to

a 25–35% mortality rate for TEN [83,84]. In contrast to

SJS/TEN, HSS (also known as drug-induced hypersen-

sitivity syndrome or drug reaction with eosinophilia and

systemic symptoms) typically has organ involvement,

such as hepatitis or nephritis, in addition to fever and a

severe rash [85–87]. The risk of developing SCARs

during allopurinol treatment is 0.1–0.4% [80]. In some
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association studies with allopurinol-induced SCARs, only

the relationship with SJS/TEN is discussed and HSS is

not used as an associated phenotype.

The first association between HLA-B*58:01 and SCARs

emerged from a 2005 Taiwanese study on Han Chinese

patients, which found that 100% of the 51 patients

who developed allopurinol-induced SCARs had the

HLA-B*58:01 allele, whereas only 15% of the 135

allopurinol-tolerant patients carried the allele. This yiel-

ded an odds ratio of 580 for the development of SCARs

with this particular allele [85]. Follow-up studies in Thai,

Korean, Japanese, Han Chinese, and European popula-

tions also found significant results [32,88–95]. However,

differences exist between these ethnicities when con-

sidering the magnitude of risk for developing SCARs.

Although Han Chinese and Thai patients show excep-

tionally high odds ratios for developing SCARs,

European and Japanese *58:01 carriers show compara-

tively much lower risks for the development of SCAR

(Table 3). This disparity in odds ratios is likely because

of variations in *58:01 frequencies between ethnicities,

rather than a differing effect of the *58:01 allele

depending on ethnicity. Although the Han Chinese and

Thais tend to have *58:01 allele frequencies of around

8%, Europeans and Japanese have allele frequencies of

∼ 1.4 and 0.5%, respectively [6,32,92,94]. The *58:01
allele may also be associated with a more mild cutaneous

adverse drug reaction, maculopapular eruption (MPE),

which presents as a rash consisting of macules and

papules. Cao et al. [88] found that 100% of their Han

Chinese patients who developed an MPE while receiv-

ing allopurinol carried the *58:01 allele. In contrast, Lee

and colleagues found that none of their 12 patients who

presented with MPE carried the *58:01 allele, whereas

six out of 11 of their patients who developed SCARs did.

However, this may be because of the large presence of

Caucasians in their study, a population with a low *58:01
frequency. Eleven of the patients with MPE were

Caucasian, as were the five patients who developed

SCARs, but did not carry *58:01 [96]. Table 3 presents an

overview of allopurinol and *58:01 pharmacogenetic

studies, and indicates whether a study has analyzed

SCARs, SJS/TEN, HSS, or MPE.

Because of the strong associations observed between

*58:01 and allopurinol, the CPIC recommends genotyp-

ing before treatment with allopurinol and suggests that

the drug should be contraindicated in patients with one

or more *58:01 alleles [80]. The American College of

Rheumatology also recommends that *58:01 screening be
considered when assessing the risks of the drug, espe-

cially in populations with high frequencies of the allele,

such as the Han Chinese or Thais [101]. Unlike abacavir,

no clinical trials have been published that test whether

genotyping for the presence of HLA-B*58:01 can reduce

the number of SCAR or SJS/TEN cases in patients

treated with allopurinol. On the basis of data from Han

Chinese and Thai populations, the negative predictive

value of this allele for SJS/TEN development is 100%,

but the positive predictive value is only about 1.5% [80].

This indicates that most patients who carry the allele will

not develop SJS/TEN. Discovery of new genetic, or

nongenetic, factors that lead to SJS/TEN or SCAR

development may help increase the positive predictive

value. Studies on the mechanism of SCAR development

in HLA-B*58:01 carriers have been limited. A recent

study suggested that it is a metabolite of allopurinol,

oxypurinol, which causes the HSR in individuals with the

HLA-B*58:01 allele: oxypurinol was found to bind to the

F pocket of HLA-B*58:01 through the p-i mechanism

with a higher affinity compared with allopurinol [102].

HLA-B*15:02
Carbamazepine
HLA-B*15:02 is associated strongly with SJS/TEN in

patients taking CBZ, an anticonvulsant and mood-

stabilizing drug. Along with epilepsy and bipolar dis-

order, CBZ is also used to treat a variety of other condi-

tions, such as schizophrenia, trigeminal neuralgia, and

carpal tunnel syndrome [103]. As with *58:01, the allele

frequency of *15:02 varies worldwide. Han Chinese have

an average allele frequency of almost 6%, but this value

can range anywhere from 1.9 to 12.4% depending on the

population [6]. In addition, other Chinese populations,

such as the Bulang, can have an allele frequency of close

to 36% [104]. Thai and Malaysian populations also have

high *15:02 allele frequencies, with average allele fre-

quencies of close to 8%. In contrast, Koreans show a

frequency of 0.3%, Japanese a frequency of 0.1%, and

Caucasians a frequency of only 0.06% [6]. These per-

centages correlate with the number and strength of stu-

dies finding significant results linking *15:02 with the

development of SJS/TEN: studies in Caucasian [105

–107] and Japanese [93] patients have been limited and

have shown exclusively nonsignificant results. One study

in Koreans found a significant association when compar-

ing allele frequencies for SJS/TEN patients against

population controls, but no significant association when

comparing against CBZ-tolerant controls [108]. In con-

trast, studies in Han Chinese are numerous and show

very high odds ratios for CBZ-induced SJS/TEN [107,

109–114]. Studies in Indian [115], Thai [34,116,117],

Malaysian [118,119], and Singaporean [120,121] popula-

tions have also found significant associations. These

pharmacogenetic studies are summarized in Table 4. In

addition, three meta-analyses (not included in Table 4)

that combined studies with Chinese, Korean, Malaysian,

and Thai patients all found odds ratios of ∼ 80 for the

development of CBZ-induced SJS/TEN in patients car-

rying the *15:02 allele [126–128].

Because of the low frequency in Korean, Japanese, and

Caucasian populations, screening for exclusively *15:02
may not be sufficient from a global perspective. Other
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Table 3 (continued)

P-values and odds ratios (ORs) listed pertain to the risk for allopurinol-induced adverse reactions in patients carrying the *58:01 allele compared with noncarriers. P-values
and ORs were calculated by comparing the frequency of *58:01 in patients who developed adverse reactions to the frequency of *58:01 in allopurinol-tolerant controls or
in healthy population controls. The prevalence of *58:01 is listed for patients who developed adverse reactions (case) and in those who were allopurinol-tolerant (tolerant
control) or from a healthy population (population control). An interactive version of this table is available online at http://www.pharmgkb.org/haplotype/PA165956630, and
is updated as new results come to our attention.
cADRs, cutaneous adverse drug reactions; CI, confidence interval; HSS, hypersensitivity syndrome; MPE, maculopapular eruption; SCARs, severe cutaneous adverse
drug reactions; SJS/TEN, Stevens–Johnson Syndrome/toxic epidermal necrolysis.
aFour of the six patients with *58:01 were of Southeast Asian origin and two were Caucasian. All patients with SCARs but without *58:01 (i.e. the five remaining patients)
were Caucasian.
bOne patient was of Southeast Asian origin and the remaining patients were Caucasian.
cIncludes 27 Caucasian patients, and four non-Caucasian patients of Pakistani, Cuban, Indian, and Senegalese background; all four non-Caucasian patients carried the
*58:01 allele.
dControls were from Western Europe, but specific ethnic information was not provided; the majority of these controls were assumed to be Caucasian.
eCases were exclusively Caucasian.
fEthnicity of the controls was not specified.
gMPE and SCAR.
hAllele frequencies.
iBorn in Germany to Kenyan parents.
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Table 4 (continued)

P-values and odds ratios (ORs) listed pertain to the risk for carbamazepine-induced Stevens–Johnson syndrome or toxic epidermal necrolysis (SJS/TEN) in patients
carrying the *15:02 allele compared with noncarriers. P-values and ORs were calculated by comparing the frequency of *15:02 in patients who developed SJS/TEN to the
frequency in carbamazepine-tolerant controls or in healthy population controls. The prevalence of *15:02 is listed for patients who developed SJS/TEN (case) and in those
who were carbamazepine-tolerant (tolerant control) or from a healthy population (population control). An interactive version of this table is available online at http://www.
pharmgkb.org/haplotype/PA165954769, and is updated as new results come to our attention.
CI, confidence interval; NS, nonsignificant; SJS, Stevens–Johnson syndrome.
aCaucasian only.
bPediatrics. Multiple ethnicities included, please refer to the paper directly for more information.
cAll three case patients with the allele were of Asian ancestry, countries unspecified.
dThe one tolerant control with the allele was of Asian ancestry, country unspecified.
eFour patients with *15:02 were of Asian ancestry (Vietnam, China, Cambodia, and Reunion Island). The remaining eight patients without *15:02 were Caucasian
(Germany, France).
fFour Malaysian, two Chinese.
gSix Malaysian, two Chinese.
hPediatrics. Two Chinese, three Malaysian.
iPediatrics. Seven Chinese, two Malaysian, one Indian.
jTen Chinese, three Malaysian.
kTwenty Chinese, six Malaysian.
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alleles have shown significant relationships with SJS/TEN

within these ethnicities, such as HLA-B*07:02 [105] and

HLA-A*31:01 [107,129–131]. Several studies in Japanese,

Korean, and Han Chinese patients suggest that carriers of

the HLA-B*15:11 alleles [108,112,132] have an increased

risk of developing SCARs. The average allele frequencies

for *15:11 in Japanese and Korean populations are higher

than for *15:02, with values of 0.4–0.8% for the Japanese

and 1.6% for Koreans [6]. Both *15:02 and *15:11 are part

of the same HLA-B75 serotype [108,132], and the two

alleles share a 98.6% amino acid sequence homology [112].

Therefore, they may share similar structures that lead to

the triggering of an immune reaction when CBZ is admi-

nistered [112]. Studies on *07:02, *31:01, and *15:11 are

limited compared with those on *15:02, and research into

alleles beyond *15:02may help improve predictive genetic

testing for SJS/TEN.

Unlike other HLA-B alleles, the associations between

HLA-B*15:02 and CBZ are phenotype specific. Many of

the studies mentioned above ([105–107,111,113,117,119,

120,123,125,126]) also looked for associations with HSS,

as well as MPE. However, none of the studies found any

associations between *15:02 and CBZ-induced HSS or

MPE, indicating that the allele may be particular to the

development of SJS or TEN. One study has assessed the

link between *15:11 and CBZ-induced HSS, and found

no significant association [108]. In contrast, HLA-A*31:01
has shown strong associations with the development of

CBZ-induced HSS or MPE in European [106,107,130],

Han Chinese [107,123], Japanese [131], and Korean [108]

populations, as well as in a meta-analysis that included

patients of all four aforementioned ethnicities [126].

A 2011 study assessed the value of genotyping before

CBZ treatment, with close to 4500 Taiwanese individuals

of Han Chinese descent participating. The 367 patients

who were found to be positive for *15:02 were told not to

take the medication, whereas the remaining 4120 took

the drug as normal. Because of ethical considerations,

historical incidences of SJS/TEN were used as a control.

Although no cases of SJS/TEN occurred in the study,

historical data estimations found that 10 cases of

SJS/TEN would have likely appeared in the study

cohort, a significant difference [133]. Although those of

Caucasian ethnicity do tend to have lower frequencies of

the *15:02 allele, genotyping before treatment is still

useful for these individuals as they may be unaware of

Asian ancestry or fail to alert their doctor to their heritage.

At this time, the US FDA recommends genotyping for

*15:02 before treatment with CBZ in all Asian popula-

tions, although it does not make recommendations for

patients of other ethnicities [134]. The negative pre-

dictive value of this allele for patients in Taiwan is sug-

gested to be 100% and the positive predictive value is

suggested to be 7.7% [134]. This low positive predictive

value implies that additional genetic or nongenetic fac-

tors likely play a role in the development of SJS/TEN in

patients taking CBZ. Despite the low positive predictive

value, it may be advisable to avoid the drug in *15:02-
positive patients, given that there are effective alter-

natives to CBZ [129,134]. Indeed, both CPIC and the

Canadian Pharmacogenomics Network for Drug Safety

recommend that a different agent be used if a patient is

found to be a carrier of the *15:02 allele because of a

strong increased risk for SJS/TEN [39,129].

The mechanism of CBZ-induced SJS/TEN is still

unclear. In a recent study, Wei and colleagues found that

peptide-loaded HLA-B*15:02 presented CBZ to cyto-

toxic T lymphocytes without any previous processing or

drug metabolism. Only HLA-B*15:02 could bind CBZ,

as opposed to HLA-B*15:01, *15:03, *40:01, or *51:01.
Endogenous peptides already loaded onto the molecule

were found to be required before CBZ could be pre-

sented [135]. The authors suggested that the binding of

CBZ to HLA-B*15:02 activates and induces clonal

expansion of cytotoxic (CD8+ ) T lymphocytes, eliciting

a severe immune reaction that leads to SJS or TEN [135].

The skin reaction observed in cases of SJS or TEN are

believed to be because of CD8+ T lymphocytes, which

are found in abundance in skin blister cells of patients

with SJS/TEN, and are believed to release cytotoxic

proteins that induce keratinocyte apoptosis [135–137].

One of the studies that looked at the mechanism of

abacavir-induced HSR also found that CBZ binds to

HLA-B*15:02, but no mention was made on whether

loaded endogenous peptides are necessary. However, the

authors noted that there was a repertoire shift in the

peptides bound to HLA-B*15:02 in the presence of CBZ,

albeit at a smaller magnitude than that of peptides bound

to *57:01 in the presence of abacavir. This change could

lead to an immune reaction by the same mechanism

suggested for an abacavir-induced HSR [72]. Further

studies in this area should help elucidate the precise

manner in which the *15:02 allele affects the develop-

ment of SJS/TEN in patients taking CBZ.

Phenytoin and other antiepileptics
*15:02 is also associated with SJS/TEN in patients taking

phenytoin, another antiepileptic; pharmacogenetic results

are presented in Table 5. Studies linking *15:02 with

SJS/TEN include four in Han Chinese patients [124,138

–140] and one in Thai patients limited only to SJS cases

[117]. In addition, a meta-analysis of four studies found a

significant association between *15:02 and phenytoin-

induced SJS/TEN [128]. Although these studies have

shown statistically strong results, they have been limited

in number and population size. One study in Thai chil-

dren found no link between *15:02 and phenytoin-

induced SCARs [141]. Variations within the CYP2C9
gene have also shown associations with phenytoin-related
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adverse reactions. Phenytoin is primarily metabolized to

its inactive form by CYP2C9, and alleles that result in

decreased enzymatic activity, specifically CYP2C9*2 and

*3, have been linked with increased phenytoin con-

centrations [142–145] and an increased risk for neurolo-

gical toxicities [146,147] and cutaneous adverse drug

reactions [140,148]. Consideration of both HLA-B*15:02
and CYP2C9*2 and *3 may be important in any future

clinical pretreatment screening programs.

Currently, the FDA recommends that physicians con-

sider the risks associated with SJS/TEN in patients tak-

ing phenytoin who have Asian ancestry and carry the

*15:02 allele, particularly in light of the evidence linking

*15:02 with CBZ-induced SJS/TEN [149]. Phenytoin,

CBZ, oxcarbazepine, phenobarbital, and lamotrigine are

all known as aromatic antiepileptic drugs (AEDs) because

of the presence of an aromatic ring in their structure –

symptoms of hypersensitivity were found to occur twice

as often in patients administered aromatic AEDs as

opposed to nonaromatic AEDs (e.g. levetiracetam or

topiramate) [150], suggesting that the presence of the

ring may be involved in the higher risk for adverse

reactions [151]. A recent study looking at children taking

CBZ, oxcarbazepine, or phenobarbital found that those

who developed SJS had a higher frequency of the

*15:02 allele compared with tolerant controls or healthy

population controls [152]. Wei et al. [135], in their study

on the mechanism by which *15:02 is associated with

CBZ-induced SJS/TEN, noted that oxcarbazepine,

which has a tricyclic ring structure similar to CBZ, was

also capable of binding with HLA-B*15:02, although not

as strongly as CBZ. However, studies linking HLA-
B*15:02 with oxcarbazepine-induced SJS or MPE have

shown mixed results [138,153–155]. Although no indivi-

dual studies have found significant associations between

*15:02 and lamotrigine-induced adverse reactions [124,

138,156,157], a meta-analysis of four studies did find a

significantly increased risk for SJS/TEN for patients

carrying *15:02 who receive lamotrigine [128].

Table 5 Summary of phenytoin and *15:02 pharmacogenetic studies

P-values and odds ratios (ORs) listed pertain to the risk for phenytoin-induced Stevens–Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) in patients carrying
the *15:02 allele compared with noncarriers. P-values and ORs were calculated by comparing the frequency of *15:02 for patients who developed SJS/TEN to the
frequency in phenytoin-tolerant controls. The prevalence of *15:02 is listed in patients who developed SJS/TEN (case) and in those who were phenytoin-tolerant (tolerant
control). An interactive version of this table is available online at http://www.pharmgkb.org/haplotype/PA165954769, and is updated as new results come to our attention.
CI, confidence interval; SCARs, severe cutaneous adverse drug reactions.
aCombined study results from Tassaneeyakul and colleagues [34,94,124].
bP-value for comparison in *15:02 frequencies between tolerant controls and combined cases.
cBonferroni-corrected P-value.
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Conclusion
The HLA-B gene has shown associations with a wide

range of diseases and adverse drug reactions. Despite

this, very little is understood about the mechanisms by

which variations in an immune system gene can affect

the propensity for certain pharmacological reactions or

particular illnesses. However, some progress has been

made in understanding the mechanisms behind abacavir

HSRs and CBZ-induced SJS/TEN, particularly in the

last couple years. Studies on abacavir HSRs have paved

the way for pharmacogenetic implementation within the

clinic: HLA-B*57:01 genotyping before abacavir treat-

ment is one of the key examples of pharmacogenetics

being used in routine medical practice. Given that HLA-
B*58:01 and *15:02 have also shown strong pharmaco-

genetic associations, these alleles may also be good can-

didates for clinical integration. HLA-B has been shown to

be an influential gene across many areas of medicine, and

future studies should improve our understanding of its

role in both disease and pharmacology.
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