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Masters of Arts in Geography 

University of California, Los Angeles, 2016 

Professor David L. Rigby, Chair 

 

This article develops a theoretical model of regional economic growth and change. It 

does so by first identifying how the spatial economy creates, selects, and retains knowledge 

variety through an examination of patent records and relevant literatures.  The article then 

synthesizes these findings to create a theoretical model and formalizes the theoretical model 

into a computer simulation. The resulting simulation model is highly predictive and 

adaptable, as we demonstrate by applying the model to test a core hypothesis from the 

economic geography literature. Since Saxenian’s (1994) comparison of the circumscribed 

technology firms of Boston to the relatively open and porous technology firms of Silicon 

Valley, the innovativeness of regional economies is broadly understood to be rooted in their 

propensity to create knowledge spillovers. The simulation model isolates the mechanism of 

knowledge spillovers to explore its relationship with regional dynamism. The results show 

that knowledge variety and innovation are maximized in regions with firms that allow most, 

but not all, of their knowledge to spill over to neighboring firms. The results give scientific 

clarity to how localized knowledge spillovers can both enhance and diminish regional 

innovative growth, and underscore the practical utility of formalized evolutionary modeling. 
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1. Introduction 

Why do regional economies grow and change? Scholars from a broad range of 

disciplines have sought to unpack the causes. Despite differences in their assumptions, 

theory, and methods, a growing consensus now argues that that the leading way for regions to 

upgrade their economies is by upgrading the technologies that their firms use in production 

(Nelson and Winter 1982, Romer 1987, Martin and Sunley 2006). 

It is precisely for this reason that economic geographers have sought to understand 

how regions change their technological structures. These efforts have given rise to the sub-

discipline of Evolutionary Economic Geography (EEG), which loosely adopts the Darwinian 

concepts of variation, selection, and retention to explain regional dynamics (Boschma and 

Frenken 2006, Boschma and Frenken 2011, Essletzbichler and Rigby 2007, Martin and 

Sunley 2006, Martin and Sunley 2014).  

Although promising, EEG does not yet have the tools it needs to explain regional 

economic growth. This is because EEG is theoretically incomplete. While recent empirical 

studies have gone a long way toward showing how regional economies retain their existing 

technological capabilities through cognitively-proximate search, we know much less about 

how regional economies create and select various technologies (Martin and Sunley 2006, 

Hidalgo et al. 2007, Essletzbichler and Rigby 2010, Rigby 2014, Heimericks and Boschma 

2014, Boschma et al. 2014, Boschma et al 2015, Frenken and Mas Tur 2016). In evolutionary 

economics, the creation of variety is necessary for organisms to mutate and seed the 

opportunities for change. Likewise, the selection of variety is then needed to realize these 

mutations and changes (Nelson and Winter 1982, Rigby and Essletzbichler 1997, Jonard and 

Yidizoglu 1998). EEG therefore needs to explain how regions create and select variety in 

order to show how their economies are able to evolve and grow over time. 
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This article forms a cohesive evolutionary theory of regional economic growth and 

change by: 1) showing how regional economies create and select variety, and 2) exploring 

how selection, variety, and retention cause regional economies to grow. The article addresses 

the first objective by reviewing relevant literatures in geography and management science 

and by systematically analyzing patent records from the United States and France. A 

computer simulation model is developed to address the second objective. 

The simulation model captures the mechanisms that create, select, and retain 

knowledge variety in firms and regions and shines light on many of the core questions in the 

economic geography literatures. We demonstrate the model’s utility by applying it to the 

classic but unresolved hypothesis in the regional development literature of whether the 

growth of regional economies is linked to their propensity to connect workers and ideas 

across the boundaries of firms (Saxenian 1994). Our findings add nuance to this theory, as we 

find that that firm openness has an inverted U-shaped relationship with the innovativeness of 

regions. Increased firm openness only increases regional innovativeness up to a certain point. 

This paper is organized in reverse-order, with empirics near the beginning and 

theoretical discussion and the development of the simulation model toward the end. Section 2 

discusses the current strengths and limitations of EEG theory. Sections 3-5 review related 

literatures, investigate patent data, and synthesize the findings in order to develop an 

understanding of how regions create and select technologies. Section 7 discusses how 

innovation occurs in the economy and how innovation affects market prices. Section 8 adds 

additional notes on the role that geography plays in innovation. Sections 9-13 outline the 

simulation model, and sections 13-15 discuss the model’s results. Section 16 concludes. 
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2. Evolutionary Economic Geography and Regional Path Dependence 

The effect of distance in clustering certain economic activities while spreading out 

others serves as the cornerstone of economic geography theory. While some economic 

activities can be done across distance, especially the transportation of finished goods and 

services, many intermediate and input goods experience much greater friction from space. 

Knowledge, particularly its subsets that are complex and tacit, has extraordinary difficulty in 

flowing between geographic regions (Polanyi 1966, Jaffe et al. 1993, Storper and Venables 

2002, Sorenson et al. 2006). Because complex and tacit knowledge are the instruction 

manuals that economic actors need to perform economic activities (Nelson and Winter 1982, 

Maskell and Malmberg 1999, Gertler 2002, Balland and Rigby 2016), the communication 

costs associated with sharing these instructions across distance effectively puts regional 

economies on metaphorical islands (Essletzbichler and Rigby 2007). With the exception of 

the occasional but costly knowledge pipeline (Bathelt et al. 2004), economic inputs are 

heavily localized while their outputs are heavily globalized. Therefore, regional economies 

are both independent and interdependent (Storper 1997). They are islands, separated by 

distance, but connected through the trade of their outputs. 

Scale economies cause the relative cognitive isolation of regional economies to create 

dynamic outcomes. Indeed, few ideas have helped push economic geography theory further 

than the lock-in theories of economists Paul David and Brian Arthur. David (1985) and 

Arthur’s (1989) theories of scale economies and the associated technological lock-in explain 

how and why old and sometimes inefficient technologies continue to be used long after they 

are invented. The aspect of these theories that geographers find so appealing is the notion of 

cumulative causation, in which small differences in an initial time period are reinforced and 

strengthened by increasing returns and network effects.  
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Across two leading sub-disciplines of economic geography, increasing returns and 

network effects are used to explain how and why regional economies retain their existing 

economic structures. In New Economic Geography, these scale economies take the form of 

increasing returns in the manufacturing sector; as once one region gains an advantage in 

manufacturing relative to other regions, scale effects cause a greater share of the 

manufacturing industry to agglomerate there (Krugman 1991). For Evolutionary Economic 

Geographers, increasing returns exist in the cognitive dimension through learning-by-doing 

(Arrow 1962). Inventors and firms invent or adopt new ideas that are similar to the ones they 

already know because local search is less costly and more certain than distant search (Martin 

and Sunley 2006, Boschma et al. 2005, Frenken and Mas Turk 2016). Therefore, regional 

capabilities in certain types of technologies are retained and strengthened over time and their 

evolution becomes path dependent. 

While the path dependence understanding of regional economic change has taught us 

much about how regional economies retain their existing technological capabilities, progress 

has not moved very far in terms of explaining how regions generate new varieties of 

capabilities and how they select their most advantageous ones. To be sure, it is difficult to 

identify how regions create technological variety. Though an expansive regional branching 

literature has shown that regions create variety by developing new technological capabilities 

that are similar to the ones they already have (Hidalgo et al. 2007, Essletzbichler and Rigby 

2010, Rigby 2014, Heimericks and Boschma 2014, Boschma et al. 2014, Boschma et al 2015, 

Frenken and Mas Tur 2016), it is doubtful that proximate technological entry creates enough 

variety to change the trajectory of regional economies. Moreover, the recent history of 

regional economic growth and decline in the United States is characterized by large ruptures, 

such as the falling apart of the rust belt and the rapid climb of the San Francisco Bay Area. 
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These transformations are hard to explain through the limited variety creation of proximate 

technological search. 

EEG then needs to be able to explain not only how regions create proximate variety, 

but how they create the degree of variety necessary to shift their economies to new 

development paths. Unfortunately, regional path creation has proven to be a thorny issue to 

resolve. The processes that lead to the creation of new development paths are often thought to 

be random, fleeting, trivial, or aspatial (Massey 1992, Feldman 2005, Martin and Sunley 

2006). Accordingly, economic geographic analysis usually relegates path creation to mere 

random events (Krugman 1991, Martin and Sunley 2006). Even management science, the 

discipline that pioneered the concept of path dependence in the social sciences, has difficulty 

in advancing a succinct theory of how path creation. As Arthur (1989, p. 118) wrote, the 

creation of new paths must lie somewhere in the bounded rationality, or discerning power, of 

inventors:  

Were we to have infinitely detailed prior knowledge of events and 

circumstances that might affect technology choices – political interests, the 

prior experience of developers, timing of contracts, and decisions at key 

meetings – the outcome or adoption market-share gained by each technology 

would presumably be determinable in advance. We can conclude that our 

limited discerning power, or more precisely the limited discerning power of an 

implicit observer [inventor], may cause indeterminacy of outcome. I therefore 

define ‘historical small events’ to be those events or conditions that are outside 

the ex-ante knowledge of the observer – beyond the resolving power of his 

‘model’ or abstraction of the situation. 
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The ability to change the trajectory of a technology, industry, or regional economy by 

creating the sufficient variety for a new evolutionary path therefore rests deep in the bounded 

agency of inventors and entrepreneurs. While it has proven difficult enough to pinpoint this 

capability within inventors (Garud and Karnoe 2001, Garud et al. 2010, Frenken et al. 2012), 

it is another problem altogether to locate the differential access to this agency and its 

accompanying patterns of path creation within regions.  

We acknowledge the difficulty of identifying how regions create the variety for new 

evolutionary paths. Perhaps the best direct explanation that geographers can give is that 

regions are always creating some degree of variety through the regular churning of their 

economies (Martin and Sunley 2006). Despite these difficulties in identification, EEG can 

generate a deeply informative understanding of how regions initiate new development paths 

by emphasizing the role of path selection. In order to initiate a given evolutionary path, a 

region must both create and select variety. Path creation may constantly occur in regions 

through forces that are trivial, random, aspatial, and hard to predict and study, but the 

selection and pursuit of particular paths follows clearly defined market and geographical 

forces. Moreover, path selection holds the key to understanding how regions realize new 

paths and variety.  

Economic theory generates a persuasive hypothesis as to which development paths 

regions will select and pursue. When regions have many paths that they can choose to pursue 

but limited resources constrain the number of paths that they can pursue, regions will select 

paths largely on basis of the paths’ immediate or near-term profitability. The primary agents 

behind innovations, including inventors and firms and their supporting financers and 

universities, face an incentive structure that is tied, directly or indirectly, to the market and 

profits. Therefore, microeconomic incentives and temporal myopia allocate resources toward 

the development path opportunities that offer sufficient economic returns. The predictability 
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of path selection can then be leveraged to explore how regions begin to pursue particular 

development paths, thereby informing us on how regional economies are able to grow. 

 

3. Exploration and Exploitation 

 As we hypothesize, path selection should follow clearly delimitated market forces. 

We believe that the management science literature on exploration and exploitation provides 

clues into how these market forces operate through myopic choice. The exploration and 

exploitation literature was initiated by March and Simon (1958) and exploded in activity 

following March’s (1991) stylized models of explorative and exploitative firms with the 

intention to create a framework for understanding the creation and selection of variety in 

firms. To the extent that regional economies are collections of co-located firms, the 

exploration and exploitation literature creates a framework for us to understand regional 

growth and change. 

March’s (1991) mean-distribution model was fundamental in establishing the 

orientation of the exploration and exploitation literature and is illustrative of the literature’s 

strengths and weaknesses toward our purposes. Generally, the exploration and exploitation 

literature is descriptively rich but lacking on mechanisms and dynamics. In his model, March 

imagines a world with two firms, Firm A and Firm B, where each firm performs several 

activities of varying profitability. Firm A’s activities have a lower average profitability but a 

lot of variance; some of Firm A’s activities are highly profitable, but most of its activities are 

not. Firm B’s activities have a higher average profitability and less variance. Over time, both 

firms chose to perform the most profitable activities that they know how to do and discard 

their least-profitable ones. After several time periods, Firm B will have hardly increased its 

mean profitability. However, Firm A will have drastically increased its mean profitability and 
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might even surpass Firm B because its large variance in profitable gives it great potential for 

growth. In essence, Firm A grew by selecting its most profitable activity and pursuing this 

activity’s development trajectory. Exploration, as demonstrated by Firm A, is associated with 

greater variety, higher costs, higher risks, and higher potential rewards, while exploitation, as 

demonstrated by Firm B, is associated with less variety (or even a convergence to a best-

practice), lower costs, few risks, and minimal potential rewards. 

Stylistically, March’s model describes two important components of exploration and 

exploitation. First, it describes the nature of these activities and their associated 

organizational forms. Secondly, it describes a likely outcome of these activities, as the 

exploiting firm has higher mean profitability but falls behind the exploring firm in the long-

run. While these descriptions give us a clear account of how exploration and exploitation 

operate, they do not tell us why firms pursue these actions. March’s model begs the follow-up 

question: why do firms sometimes choose to explore, and why do they sometimes choose to 

exploit? If the decision of a firm to exploit simultaneously causes it to embark along a 

development path,  and if regional economies are composed of interacting firms, the answer 

to this firm-level question will also shine light on how regional economies select paths. 

Unfortunately, the voluminous literature on exploration and exploitation that followed 

March (1991) has left this issue mostly unresolved, though we do owe to this literature a 

crystalized understanding of the nature of exploring and exploiting. These descriptive 

findings are relevant in that they help us think of regions and their selection of development 

paths in a static framework; the duty is left to us to connect this static firm-based framework 

to a dynamic, regionally-based application. Importantly though, the management science 

literature has shown that exploring firms have more variety: they are more decentralized, less 

hierarchical, and have higher rates of employee turnover. Firms with less process variety and 

a greater degree of cohesion are more exploitative (see Gupta et al. 2006 and Li et al. 2006 
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for reviews). Likewise, the outputs of exploration and exploitation are defined using the same 

taxonomy. Explorative outputs are generally identified by the degree of novelty that they 

introduce by shifting the trajectory of a technology, while exploitation creates outputs that are 

“improvements in existing components and architectures and build on the existing 

technological trajectory” (Benner and Tushman 2002, Jansen 2005).  

These descriptive accounts of exploring and exploiting firms also appear, perhaps in 

more cogent form, in theoretical exercises. To explore how firm innovation is influenced by 

their pursuit of explorative and exploitative strategies, Rivkin and Siggelkow (2006) build on 

Kaufmann’s NK model (Kaufmann 1993, Levinthal 1997) to develop a computer simulation 

in which firms navigate across a rugged fitness landscape by changing their organization, one 

component at a time. Siggelkow and Rivkin alter the traditional NK model by introducing 

randomly-placed “sticky points” on the fitness surface. When a firm stumbles onto one of 

these sticky points, the firm ceases to evolve and stays on the sticky point. Explorative and 

exploitative firms differ in the number of sticky points that they have in their fitness 

landscapes; exploitative firms have more sticky points and are therefore more likely to 

become stationary. Explorative firms, on the other hand, move across the surface tirelessly.  

In our view, the tirelessly exploring firm resembles the region that experiments with 

many varieties of production strategies; the more static and exploitative firm resembles the 

region that has selected and is pursuing a development path. Although this model provides a 

clear descriptive understanding of the organization of explorative and exploitative firms and 

their resulting evolutionary outcomes, it does not answer the central question of why firms 

pursue strategies that give them more or fewer “sticky points” on their fitness landscapes. 

Moreover, it does not explain why firms choose to explore for more variety or exploit by 

selecting existing variety. 



 

10 
 

Management science proposed the concept of organizational ambidexterity to resolve 

some of these issues, but once again these additions will take us closer but not all the way 

toward understanding how regions select development paths. Observing that firms must both 

explore and exploit in order to remain dynamic in the long-run, the ambidexterity literature 

seeks to understand how firms can sustain both seemingly mutually-exclusive activities at the 

same time. Hypothesized mechanisms of ambidexterity include the creation of subdivisions 

within organizations (Benner and Tushman 2003), the formation of teams with varying 

objectives and incentive structures (Adler et al. 1999), the assignment of different roles and 

duties to individuals (Jansen et al. 2008), the balancing of the strategic input from the more 

risk-taking lower-level managers and the more conservative executives in a firm (Smith and 

Tushman 2005, c.f. Siggelkow and Rivkin 2006), and to great extent, the aptitude of the 

organization’s influential players and executives in balancing the priorities of a large and 

complex firm (Teece 2007). While these strategies may seem divergent, they are connected 

by a common thread in that they advise firms to decentralize decision-making and incentives 

by spreading them across the groups, teams, employees, and priorities, thereby allowing the 

firm to generate and select variety simultaneously. 

The ambidexterity literature takes the important step toward linking exploitation and 

exploration to the long-run success of firms by observing that long-run success is a balancing 

act of the two activities. It therefore develops a framework for thinking about explorative and 

explorative firms that relates to regional path selection; we know that exploitation causes 

firms to become more centralized, shed variety, and pursue development paths. We also 

know that the two activities largely compete for the scarce resources of the firm, so firms 

must choose how to allocate their resources between the two. Now we must show how firms 

choose to do this allocation; how, for example, an exploring firm chooses to switch the bulk 
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of its resources from exploring to exploiting. Evidence toward this end is fragmented but can 

be coherently assembled from across a small handful of literatures. 

Generally in empirical studies, firms are shown to engage in explorative search when 

their existing variety is not worth exploiting, such as when their profit margins are slim. On 

the other hand, firms engage in exploitative search when their existing variety is proftible. 

Exploration is more frequent in industries that are more competitive, and firms tend to 

explore more when the distance between their profit level and aspiration level increases 

(Peters 1992, Hamel 2000). From Lerner’s analysis in the patent race literature, we know that 

increases in the storage density of disk drives were disproportionally created by less-

profitable and less-advanced firms in the industry (Lerner 1993). Therefore, the exploitative 

firms were the ones that already had highly profitable technologies. This finding was 

confirmed more recently by Igami (2015). Indeed, Schumpeter’s emphasis on the downturn 

of the business cycles as the primary stimulus to innovation, and its resulting Kondratieff 

Wave, are based on the notion that narrowing profit margins reduces the opportunity cost of 

exploration, causing firms to shift their resources in this direction. Song et al. (2003) 

summarized these views succinctly when they observed that when “firms perform well, they 

may be satisfied with their current programs of innovation and may thus be less motivated to 

[explore by] accessing other firms’ expertise to improve their own performance. As 

organizations experience success, their routines and products become more standardized.” 

Connecting these literatures creates a dynamic image of firm exploration and 

exploitation. Firms explore to generate variety and find new technologies, but finding an 

initial valuable technology narrows their search. Because one valuable technology is likely 

surrounded by similar valuable technologies, the firm begins to search for new technologies 

proximately, and continues to produce new but similar high-value technologies without 

incurring high search costs through proximate exploitation. This argument, however, still 
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lacks an explanation of how firm-level exploitation can map into regional-level exploitation. 

Therefore, in the following two sections we first theorize how this micro to macro causational 

force operates and then present supporting patent-based evidence toward our claims. 

 

4. Exploration and Exploitation at the Regional Level 

While exploration and exploitation are generally thought to occur at the micro-level, 

these behaviors can occur on a regional basis through two potential mechanisms. In the first 

scenario, inventors and firms in a region observe that other regions have developed the 

capability to produce high value knowledge. The inventors and firms in regions without 

valuable knowledge will try to imitate the others’ success by exploiting their discovery, 

pulling the regional knowledge core in the direction of valuable technology classes.  

Although inter-regional imitation has high potential returns, it has three barriers that 

prevent it from frequently occurring. For one, economic incentives dissuade inventors from 

sharing their highly-valued inventions (Zucker et al. 2002). Two, the tacit dimension of 

valuable knowledge makes it difficult-to-codify and difficult to share (Polanyi 1966). Third, 

the high complexity of valuable knowledge requires the coordination of research teams 

(Powell, et al. 1996), entire regions (Saxenain 1994), and even cultures for its production 

(Storper 1997, Gertler 2002, Storper 2015). In sum, inter-regional technological imitation 

faces uncooperative economic incentives, high to untenable communication costs, and the 

exorbitant fixed costs involved in replicating the key functions of regional economic 

ecosystems.  

A less costly alternative to inter-regional imitation is local technological exploitation. 

When a sector of a regional economy “gets hot” and repeatedly develops high-value patents, 
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the inventors in other sectors of the same region take notice. A strong economic incentive 

emerges to imitate their success as inventors in the region can generate the high revenues 

associated with the valuable technologies without facing high cognitive and geographic 

search costs. 

Local technological exploitation is more likely than inter-regional imitation. Most 

importantly, inventors imitating local inventors share regional hard and soft infrastructure. 

Resources relating to absorptive capacity (Cohen and Levinthal 1990) used in initially 

inventing valuable technologies, such as universities, local politics, research institutions, and 

a skilled labor force, are already in place for local imitators. Further, geographic proximity 

makes it easier for the imitating inventors to gain access to and retain the high-value 

knowledge by allowing frequent face-to-face communication and by providing local and fluid 

labor markets (Storper and Venables 2002, Sorenson and Fleming 2004, Breschi and Lissoni 

2005). Although the inventors already endowed with the high-value knowledge are 

incentivized to keep it secret, the cheaper communication costs and mobility of inventors 

increases the probability that others will either learn it or develop competitive alternative 

technologies. Geographic proximity makes excludable knowledge less exclusive and enables 

inter-firm copying and exploitation. 

 These arguments lead us to believe that local technological exploitation causes 

regions to reorient their productive resources away from their less valuable activities and 

toward their more valuable ones. We hypothesize that when a sector in a region “gets hot” to 

the extent that it increases the regions’ average value of its technologies, micro-decisions to 

imitate this success will cause the region to refocus its technological production away from 

its less valuable technologies and toward its more valuable ones. Moreover, rent seeking and 

imitation will shape the region’s evolutionary trajectory, with large repercussions for the 

degree of economic growth that it can later realize. 
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5. Empirical framework 

 Our primary objective in the empirical section of this paper is to show how an 

increase in the value of patents that a region produces causes the region reduce its variety and 

select a development path. Ideally, this hypothesis would be tested using micro-level data that 

would reveal how and why firms and inventors cause the consolidation of a region’s 

technological structure. Unfortunately, we do not have access to such data and must utilize 

data that is aggregated to the regional (CBSA and NUTS3) level. In particular, we use patent 

data from the U.S. and France between 1976 and 2005.  

While our dataset prohibits us from identifying the particular micro-mechanism that 

causes regions to reduce their technological variety, we are not overly concerned with this 

limitation because we seek to explain regional-level outcomes. Our findings show that 

regions do two things when the average profitability of their patents increases. First, regions 

reduce the number of technology classes that they are engaged in. Second, regions increase 

their aggregate patent output, presumably in its remaining high-value technology classes by 

coordinating their agents through knowledge spillovers. Regions, moreover, exploit profitable 

knowledge. 

 We adopt two specifications of our independent variable to show that our results are 

robust to our definition of patent value. The first specification is the average weighted 

ubiquity of the patents a region produces, or AVGWU. AVGWU has a straightforward 

economic interpretation. In a market economy, the technologies that are valuable are those 

that are hard-to-produce and scarce. These technologies can command quasi-monopoly rents 

by virtue of their restricted supply (Maskell and Malmberg 1999), making the technological 

classes with the lowest ubiquity the most valuable and the regions that produce low-ubiquity 

technologies realize high rents. 
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To calculate the ubiquity of each technology class, we first sum the number of regions 

that demonstrate revealed comparative advantage (RCA) in a given technology class 

(Hidalgo et al. 2007). An RCA value of a region for a given technology of greater than 1 

indicates that the region’s specialization of that technology is greater than the country’s 

average specialization in that technology. We then scale RCA such that RCA values greater 

than or equal to 1 are assigned a value of 1 and RCA values less than 1 are assigned a value 

of 0. The ubiquity of a technology class is calculated by summing these binary RCA values 

across regions. Finally, we compute the average weighted ubiquity (AVGWU) of each region 

by taking the mean weighted ubiquity value of the technologies it has RCA in. 

 Our second measurement of patent value, the Knowledge Complexity Indicator (KCI), 

is the eigenvector centrality of regions from the bimodal network that links regions to 

technologies (Hidalgo and Hausmann 2009, Balland and Rigby 2016). The technical 

definition of KCI is a mouthful, but again it has a simple economic interpretation of 

monopolistic rents.  A high KCI scores indicate that a city’s patent basket is similar to the 

patent baskets of cities with a large degree of knowledge variety. A city does not need to have 

a high degree of knowledge variety to receive a high KCI value. When the KCI score of a city 

climbs, the city is entering the technologies that are usually only produced by highly-diverse 

cities. 

 KCI recognizes that the most valuable types of technologies can only be produced in 

cities with a lot of variety. In general, major economies of scale are required to produce 

sophisticated, highly valued technologies. While some smaller and specialized cities may be 

able to produce a few sophisticated technologies, these are generally the norm. Likewise, 

while diverse cities also produce low-value technologies, small and specialized cities also 

produce these low-value technologies. 
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 One must understand eigenvector properties to fully appreciate KCI. Consider 

Google’s eigenvector method for identifying which webpages are important, PageRank. 

PageRank assess the importance a given webpage W by counting the number of other 

webpages that link to W. However, observing that not all webpages that link to W are of 

equal importance, PageRank also weights the strength that a linking page, LP, that links to W 

has based on the number of webpages that link to LP. This weighting process continues until 

the centrality value of W converges. By performing this multi-step weighting process, 

PageRank is able to remove noise from the data; so long as receiving a link is an indication of 

authority, PageRank will find the webpages with the greatest authority. The reasoning behind 

KCI runs parallel. So long as diversified cities generally produce highly valued patents and 

cities that are able to attain RCA in a few classes are not, KCI will produce a set of scores for 

regions of the difficulty involved in producing their patent basket. In practice KCI is highly 

correlated with AVGWU, but we believe that the eigenvector property of KCI makes it more 

precise. 

 We test the role of a region’s knowledge value (AWGWU and KCI) on its propensity 

to engage in fewer technology classes but with greater intensity, and find consistent results 

using both US and French patent data. The structure of our data for each country varies 

slightly, which causes our dependent and control variables to be different across the two 

countries. Our French data is disaggregated to the technology class level while our US data is 

aggregated at the regional level. Therefore, the meaningful indicator of a reduction in the 

number of technologies that regions are producing in France is the binary indicator exit, in 

which exit takes a value of 1 if a French region loses RCA in a technology that it used to have 

RCA in. In turn, we expect average ubiquity to be negatively associated with exit and KCI to 

be positively associated with exit. 
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 In the US, we use variety to calculate the technological variety of regions. Variety 

counts the number of different technologies that a region has RCA in at the regional level. 

We therefore anticipate that AVGWU will be positively associated with variety, and for KCI 

to be negatively associated with variety. For both countries, patents captures the increased 

aggregate patent output of regions. 

 We introduce a series of control variables in order to test for causal effect. In the 

French model, the entry/exit decomposition of the data allows us to control for the 

relatedness between the class being exited and the knowledge core of the region. In effect, 

this control variable allows us to ensure that regions are not only shedding classes that are 

distant from the regional core and irrelevant to its evolutionary trajectory (Frenken et al. 

2007). Relatedness also allows us to compare the strength of rent-seeking behavior on 

regional technological change relative to the strength of cost-reducing behavior through 

cognitively proximate search. We include 3-way fixed effects (technology, region, and time 

period) in this model, and control for the national number of patents that are produced in a 

given technology class. In the US model, we include a comprehensive list of socioeconomic 

and technical controls and 2-way region and time period fixed effects.
1
 Results for the 

contemporary US are shown in Table 1 and contemporary France in Table 2 in the appendix.
2
 

 We interpret the persistent significance and direction of average ubiquity and KCI as 

resounding evidence that regions select their profitable variety, which sorts them onto 

development paths. When regions move into more valuable technologies, exploitation causes 

the region to select these valuable technologies. Consolidation, however, comes at the 

expense of reduced variety that could have opened up new development paths. For these 

                                                           
1
 The control variables in this model are regional population, number of inventors, number of employees, the 

number of firms, average firm size, manufacturing share of the workforce, average earnings per worker, 
percent of the workforce that is college-educated, and the dollar value of NSF grants awarded to the region. 
 
2
 Unreported historical results for the US confirm the results of tables 1 and 2. 
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reasons, in the next section we hone the concept of rent exploitation within regions and insert 

exploitative behavior within regional path dependence theory.  

 

6. Theorizing the Schumpeterian Market 

The purpose of the following two sections is to synthesize the results found in the 

earlier empirical models and to hypothesize their implications for uneven regional 

development. The outcome of this synthesis is a simulation model in which the selection of 

profitable technologies and recombinant search produce spatially uneven levels of economic 

development. Finally, we use this model to test the key geographical hypothesis of how 

increased localized knowledge spillovers boost regional innovativeness. 

We begin with a Schumpeterian understanding of the creative forces behind economic 

growth and change. In a globalized economy with a surplus supply of workers, firms, and 

regions capable of producing generic products and technologies, competitive advantage 

hinges on the ability to produce products and technologies that are difficult for others to 

make. As many workers and firms bid for and compete to perform economic activities with a 

low degree of sophistication and a high degree of codifiable knowledge, economic rents and 

profits gravitate toward the workers and firms that perform sophisticated and difficult-to-

codify activities. These select firms and workers hold monopolistic control over scarce 

skillsets and knowledge, which they leverage to command superprofits and rents (Maskell 

and Malmberg 1999).  

Over time, scarce knowledge has an adverse effect. Its immediate high rents 

incentivize others to try to learn and use it as well. The knowledge diffuses and its ubiquity 

rises, which drives its associated rents downward. Inventors try to protect the valuable 
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knowledge they hold, but no knowledge is perfectly protected, and the reverse engineering of 

products, technologies, and organizational structures, along with the organic catch-up of 

laggards to the technological frontier, ubiquifies scarce knowledge. Even when scarce 

knowledge cannot be perfectly replicated, similar and competing knowledge is often created. 

For example, only one company can produce the iPhone, but many companies produce 

competing Android-based smartphones. If the search costs to reproduce valuable knowledge 

are sufficiently low, the successive selection of scarce knowledge causes it to multiply in 

quantity. 

So long as time raises the ubiquity and flattens the rents of existing knowledge, 

recently invented knowledge that is not yet old enough to widely disseminate will be scarce 

and command high rents. Recently invented knowledge is scarce for two reasons. First, its 

newness necessarily implies that it has not yet had time to broadly disseminate. Second, 

because the ubiquity of knowledge is relative, the introduction of new, scarce knowledge 

makes existing knowledge relatively more ubiquitous. 

 To illustrate this second point, consider a simple world in which there are two types of 

knowledge, A and B. Two people have access to knowledge A and two people have access to 

knowledge B. Therefore, the ubiquity (number of people with this knowledge) of A is 2, and 

of B is 2. Because each type of knowledge has a ubiquity value of 2, we know that the 

average world ubiquity of all types of knowledge is equal to 2 and that A and B command 

average rents. Now, in a later time period, imagine that an inventor pioneers a new type of 

knowledge, C. In this next time period, 2 people have A, 2 people have B, and 1 person has 

C. Knowledge C is less ubiquitous than knowledge A and B in absolute terms because 1 is 

less than 2. But knowledge C is also less ubiquitous than knowledge B and C in relative 

terms because the introduction of C has decreased the average ubiquity of all knowledge 

types from 2 to [ (2 + 2 + 1 ) / 3 ] = 1.666. Therefore, while the ubiquity of A and B has not 
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actually increased in absolute terms, their ubiquity has appreciated relative to the world 

mean. Their respective rents therefore must decline in real terms.  

As we have shown, new knowledge is not only scarce because it is new. Its 

introduction also makes existing knowledge relatively more ubiquitous. Competitive 

advantage then hinges on the invention of new and scarce knowledge, and in the following 

section we set out to theorize how new inventions are invented. 

 

7. Developing a theory of invention 

 In a world without innovation, scarce knowledge to be selected until it is no more 

profitable than the existing, ubiquitous sets of knowledge. The ubiquity and rents across all 

knowledge sets would converge to a mean value. Complete convergence of the returns to the 

knowledge-based factors of production would eliminate all economic incentives. Stasis 

would ensue as the economy enters a perverse general equilibrium. 

 The continued vitality of the capitalist economy, then, is contingent on its ability to 

maintain disequilibrium through creative destruction. In our model, as well as in our broader 

understanding of the global economy, innovation is the creative destruction that keeps the 

capitalist economy churning. Through dynamically altering the world average ubiquity, the 

creation of new knowledge variety incentivizes the forgetting of old, ubiquitous and low-

value knowledge and the experimentation for new, high value knowledge. 

 Inventions are invented in one of three ways. Each form of innovation has unique 

implications for the uneven development of regional economies. In the first, innovation 

occurs randomly in time, across people, and across space. This form of innovation diminishes 

the strength of regional path dependence, because it influences the knowledge stock of 
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regions without regard to their prior conditions. Random innovation, including historical 

accidents, will in turn always remain variance that cannot be explained because it has no 

explanation. The second source of innovation, in which new ideas emerge as an externality 

from regular economic activity, is foundational to theories of innovation in evolutionary 

economics (Nelson and Winters 1982). In this format, innovation naturally emerges from 

repeated business routines. Because invention occurs through normal economic practices, it is 

spatially concentrated in the most economically active regions. These large regions naturally 

produce new but related technologies over time. If these new technologies get selected, they 

will exert a gravitational pull on the region’s developmental trajectory. The third source of 

innovation is strategic action (Lerner 1997). Firms that operate with less profitable 

technologies have a greater incentive to invest in research and development than firms that 

already have access to more profitable technologies. Therefore, firms that have narrower 

profit margins innovate more. The model that we develop captures all three forms of 

innovation that we discuss in this section. 

 

8. The Role of Geography in Innovation 

 The highest rents are awarded to the people and firms that develop new and scarce 

skills, products, technologies, and knowledge. Rarely, though, are these inventions produced 

by lone inventors or isolated firms. The world economy is highly complex and layered, and 

knowledge that is scarce and valuable is too sophisticated for one inventor or firm to invent 

independently (Powell et al. 1996, Hidalgo 2015). The sophistication of this knowledge 

requires the support of entire networks or milieus of actors in order to produce them, 

including a collection of inventors working directly on particular innovations, source of 

capital, decades of prior research experience, effective demand for invention’s outputs, 



 

22 
 

federal governments that support property rights including intellectual property, local politics 

that at the very least do not impede research efforts, and so on (Teece 2010, Storper 1997). 

The specific inventors that embody tacit knowledge rely on extensive support structures. As 

innovations have become more complex, they have also become more collective in order to 

overcome this complexity. 

 Since Jaffe et al. (1993)’s seminal work, a multitude of studies have argued that 

geographic proximity is the primary determinant of the structure of collaborative and 

knowledge-transfer networks (c.f. Storper and Venables 2004, Boschma 2005, Balland et al. 

2015). By no means is the role of geography in forming networks fully agreed upon, as some 

continue to argue that space does not play a substantial role in connecting people (Peri 2005, 

Breschi and Lissoni 2009). However, we find the assertion that face-to-face communication 

is a necessary condition for the sharing of the complex, innovative knowledge between team 

members to be deeply persuasive.  

 Nonetheless, while the increasing geographic concentration of innovative activity 

suggests the need to co-locate in order to innovate (Sonn and Storper 2006), the proposed 

economic model of innovation and path dependence is agnostic to these issues. In its current 

form, the model embeds inventive networks and milieus into regions, but these networks can 

be easily disembedded from regions without altering the model’s core mechanisms. The key 

drivers of path dependence, including the exploitation of rents, the ubiquification of existing 

knowledge, and the invention of new technologies would continue to propel an aspatial 

model along development paths. However, disembedding the networks from regions would 

cause the model’s outcome to shift from an explanation of the emergence of regional 

evolution to an explanation of network evolution. These interpretations of the model are 

orthogonal to one-another, but nonetheless advance different policy recommendations. In the 

former, a geographical interpretation lends itself to place-based innovation policies while the 
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latter advances either policy developed without regard to space or altogether disputes the role 

of public policy in innovation, as inventors unaffiliated by the friction of space may already 

sort into spatially-disembedded networks as if they maximize profit (Friedman 1953). The 

impact of the embeddedness debate this model, however, is restricted to the interpretation of 

the model’s outcome and policy recommendations. 

 

9. Outlining the Simulation: Technologies and Firm Incentives 

 In this section, we describe the initial steps that we take to move from the appreciative 

verbal model to our computer simulation. We finish by using the simulation to inform our 

understanding of the drivers behind uneven regional development. 

 We begin with firms that use a heterogeneous set of technologies in production. Each 

production technology translates directly into an output. For example, a firm that uses the 

technology A in production produces an output of type A. Therefore, the production 

capabilities of firms are directly subject to the selection forces of the market. 

 The market price of technologies is determined on basis of their inverse ubiquity. 

Technologies that are scarce and have a high value of inverse ubiquity command 

monopolistic rents. Ubiquitous technologies, on the other hand, are highly competitive and 

generate minimal rents. Moreover, by assuming uniform and price-inelastic demand for the 

outputs associated with each technology of production, we can write the price commanded by 

technology a in terms of its ubiquity value: 

𝑃𝑟𝑖𝑐𝑒𝑎 =
1

ubiquity𝑎,𝑡−1
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 The use of a particular technology generates revenue, R. We assume that all revenue 

generated using a particular technology is reinvested in that same technology; the switching 

costs between using technologies are infinitely high. Therefore, we know that a firm using a 

quantity X of a will generate a revenue devoted to technology a: 

𝑅𝑎 =  
1

ubiquity𝑎,𝑡−1
∗ 𝑋𝑎 

 Firms reinvest their revenue R in the same technology with regard to the cost of using 

a technology. We assume that the cost of using a single technology is the world average 

weighted inverse ubiquity across all technologies, or WIUBIQ.  WIBUIQ can be written as  

 𝑊𝐼𝑈𝐵𝐼𝑄 =  

1
∑ 𝑊𝑎 ∗  𝑢𝑏𝑖𝑞𝑢𝑖𝑡𝑦𝑎,𝑡−1

𝑛
𝑎

n⁄

∑ 𝑊𝑎
𝑛
𝑎

 

and is theoretically motivated because WIUBIQ calculates the average level of rents across 

all technologies in the world. Moreover, we assume that the cost of using technologies is 

invariant across all technology types and that the world average rate of rents establishes this 

cost level. This assumption implies that the outputs of all world technologies from the 

previous time period are used as inputs to create the new technologies. Firms are insensitive 

to changes in prices in the input market. They are perfectly price-inelastic. 

 The change in use of a given technology can then be written as the quotient of the 

revenue generated by that technology and the cost of using a technology: 

ΔX𝑎 =  
𝑅𝑎

𝑊𝐼𝑈𝐵𝐼𝑄⁄  

 Without friction in the marketplace, this economy would cause the inverse ubiquity 

values of all technologies to converge to the world average after one time period. Firms 
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would perfectly increase or decrease their use of technology a in order to maximize profits. 

We therefore dampen the entry and exit of firm’s use of technologies by making ΔX𝑎 a 

function of the quantity of a used by the firm in the earlier time period: 

ΔX𝑎 =  

𝑅𝑎
𝑊𝐼𝑈𝐵𝐼𝑄⁄

2
+  

𝑋𝑎,𝑡−1

2
 

 

10: Firm-Level Agency: Exploitation and Exploration 

 The model endows firms with a very simple degree of agency: firms chose to exploit 

existing technologies or explore for new variety based on the expected value of these two 

activities. Because technologies are valued based on their inverse ubiquities, the expected 

value of exploiting a technology (EXVPLT) is its inverse ubiquity from the previous time 

period. 

 The expected value of exploring (EXVPLR) with a technology is less certain. 

Because exploration is characterized by risk, information asymmetries, and indeterminacy, 

we assume that the expected value of exploring with a technology is the world average 

weighted inverse ubiquity across all technologies. Moreover, firms expect to realize the world 

average rate of returns, WIUBIQ, when they chose to explore with a technology, because 

they are unaware of how valuable the resulting variety will be. 

Firms therefore chose to exploit technologies for which the expected value of 

exploitation is greater than that of exploration: 

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎 =  
1

ubiquity𝑎,𝑡−1
≥   

1
∑ 𝑊𝑎 ∗  𝑢𝑏𝑖𝑞𝑢𝑖𝑡𝑦𝑎,𝑡−1

𝑛
𝑎

n⁄

∑ 𝑊𝑎
𝑛
𝑎
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 Firms explore with technologies that they do not exploit, when the expected value of 

exploration is greater than or equal to the expected value of exploitation. In order to reduce 

the number of technologies that firms choose to explore with, we introduce a tuning 

parameter into the model. Moreover, we assume that each technology that a firm choses to 

explore with has a ρ (rho) probability of actually being exploited. While ρ can be interpreted 

as an exogenous, uniform degree of risk aversion, ρ’s primary purpose is to curtail the 

amount of exploration that occurs in the model. In unreported simulation runs, we show that 

augmenting the value of ρ does not substantively change the results’ qualitative 

interpretation.  

The decision-making of firms to explore and exploit with their technologies are 

illustrated by the flowchart in Table 3. Technologies that end up in the exploitation pool are 

exploited, and no additional actions are performed on these exploited technologies for the 

remainder of the time period. The firm then sets out to innovate with its exploring 

technologies through recombination. 

Firms recombine by piecing together existing technologies into new technologies. For 

example, a firm might explore with a technology A and a technology B to create a new 

technology, AB. That firm might later recombine A again with AB to create another novel 

technology, AAB. Technologies are then created according to a family tree that continues 

indefinitely:  
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More specifically, firms recombine by generating all possible pairs of their exploring 

technologies. For example, a firm exploring with the technologies A and B, will generate the 

resulting pairs A-B, B-A, A-A, and B-B. This firm therefore has 4 possible technology pairs. 

The order of recombination does not matter, so B-A becomes a second A-B. Applying this 

rule to all possible pairs the firm can generate, the firm is now expected to generate 2 A-B’s, 

1 A-A, and 1 B-B through exploration. We write these expected pairs as a vector of length 3: 

Possible Pairs = 2AB; 1AA; 1BB 

Because exploration does not produce any growth independent of ΔX𝑎, we normalize 

the possible pairs vector such that it sums to the total number of exploring technologies. 

Therefore, in this example the possible pairs vector must sum to 2. Normalization is 

performed by dividing the possible pairs vector by the number of exploring technologies, 

which gives us the realized pairs vector: 

Realized Pairs = 1AB; 0.5AA; 0.5BB 

Recombination can produce the seemingly bizarre outcome in which identical types 

of knowledge recombine. In the above example, technology A recombines with itself to 

produce the technology AA. This outcome is a common property of Markov chains, but in 

our context it can be interpreted as the event in which two workers with identical skillsets 
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converse and share their knowledge. Despite their similarities, they can mantain a 

conversation. However, because their skillsets are identical, the conversation creates no 

variety and no new knowledge is generated. Therefore, AA is structurally identical to the 

base technology A. We therefore write technology AA as simply A, and rewrite the realize 

pairs vector as follows: 

Realized Pairs = 1AB; 0.5A; 0.5B 

 The above scenario applies to the boundary case in which a firm tries to explore with 

just one type of technology. In this case, the firm has no variety with which it can produce 

new technologies. It therefore cannot recombine, so it will hold onto the same technology 

when it tries to explore with it. 

 

11. The Region 

 Economic regions are groupings of co-located firms. Technologies are able to spill-

over between firms within the same region but not to firms in other regions. Specifically, 

when a firm explores with a technology, it is able to recombine its exploring technology with 

the exploring technologies in the same firm and with the exploring technologies held by other 

firms in the same region. In our base version of the model, half of the technologies that a firm 

explores with recombine locally (meaning within the same firm), and half recombine 

externally (meaning any firm in the same region). Below, we illustrate how two co-located 

firms explore to generate new technologies through internal and external recombination. 



 

29 
 

 

 While our base variant of the model assumes that every firm explores externally with 

half of its technologies, we develop a second variant in which the propensity for firms to 

explore externally varies across regions. We call this model variant the “Saxenian Model”, 

because it is designed to test the mechanism popularized by AnnaLee Saxenian’s 1994 book 

Regional Advantage.
3
 In our Saxenian Model, the first region’s firms explore externally with 

10% of their technologies and locally with 90%; the second region’s firms explore externally 

with 20% of their technologies and locally with 80%; and so on. Endowing regions with a 

varying propensity for their firms to explore locally or externally allows us to test the 

mechanism behind institutional arguments of how localized knowledge spillovers relates to 

regional economic growth.  

 

12: Simulation Parameters and Initial Conditions 

We run the base model and the Saxenian Model variants each 25 times and collect the 

output trace. The base model shows us the inherent behavior of the model while the Saxenain 

variant allows us to test how differing propensities for localized knowledge transfer influence 

regional competitive advantage. Our additional model specifications and initial conditions are 

described in Table 4. In general, the results do not qualitatively change under different initial 

                                                           
3
 This line of reasoning is a mainstay in the economic geography and economic sociology literatures and 

features most recently in Storper’s (2015) analysis of the biotech industries of Los Angeles and San Francisco 
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conditions, though setting very high initial conditions (such as a model with 100 firms per 

region or a much longer time horizon) makes the model too cumbersome to run.  

 

13. Single-Run Simulation Results 

 We provide three sets of simulation results. The first set of results is a walkthrough of 

a single run of the simulation with a time-horizon set to 25. This walkthrough conveys an 

image of how the model unfolds over time to produce regional-level outcomes, and is shown 

in Table 5. 

This walkthrough is expressed through bipartite networks that connect region nodes 

(at the bottom) to the technologies that their firms use (at the top). An edge is drawn between 

regions and technologies if at least one firm in the region is using at least one of a given type 

of technology. The size of the city nodes are scaled relative to their size, measured by the 

number of technologies they produce. The size of the technology nodes are scaled relative to 

their profitability, with more profitable and less ubiquitous technologies shown in larger size. 

Therefore, an edge that connects a region to a large technology node suggests that the region 

can realize high gains through exploiting that technology.  

The first time period begins with the initial model conditions and each city produces 

some of each type of technology: A, B, AB, AAB, and ABB. However, small differences 

begin to emerge over time, when stochastic behavior allows certain regions to develop new 

technologies by chance. These stochastic differences create a snowballing effect as they lead 

some cities to continuously invent new and valuable technologies. Regions such as Region 5 

are able to continually grow over time through the interaction of its stochastically-generated 

early advantages and their reinforcing path dependency. Region 5’s early invention of a novel 
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technology (technology AABAB) creates a large opportunity to generate rents. The region’s 

firms are able to exploit these rents and grow, thereby increasing the number of AABAB they 

use in production. Exploitation creates resources that are later used to explore, and through 

the subsequent iterations of the model, the region enters into new and profitable technologies, 

extending its regional advantage. By the end of the model run (time period 25) we see that the 

cities that invented new technologies early on tend to do well.  

Early advantages in the model are influential but not deterministic. Region 2, for 

instance, did not develop a significant early advantage, but is able to outperform Region 5 by 

the conclusion of the model runs. Region 2 does this by exploring near time period 15. The 

region’s firms must have concluded that a pair of technologies was better explored with than 

exploited, which creates a novel recombination for the region by time period 15. The 

resulting technology is highly valuable, so the region’s firms select this technology and 

exploit it heavily, creating more resources to further explore with and deepen the newly 

developed evolutionary path. This path proves to be the seeds of the most profitable 

development path in the simulated world, and the region is able to ride this path through the 

end of the run. 

 

14. Batch Simulation Results 

 The qualitative results, although suggestive, only show the output of two model runs. 

To illustrate more regular results, we run the base model simulation 25 times and collect the 

results. We present the results from these runs in Table 6, wherein the cell values indicate the 

region size at the conclusion of the time horizon. Region size is calculated by summing the 

total number of technologies that the cities’ firms produce. This table shows the consistency 

of the results and the degree of regional inequality that emerges from the base model.  
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Importantly, no patterns emerge from the base model. Regions always diverge in 

terms of size, but there are no forces that induce some regions to grow more than others. 

These results confirm that our base model is neutral as to which city ends up as the most 

innovative.  

In the final model, we endow each region with a different degree of firm porosity. 

Region 1 has almost entirely open firm boundaries; when the firms in Region 1 look to 

explore, only 10% of their knowledge recombines within the same firm, and 90% of their 

knowledge recombines with other firms in the same region. Likewise, in Region 2, 20% of 

the knowledge recombines within the same firms and 80% recombines in the region. This 

pattern continues until we reach Region 10, where 100% of the knowledge recombines within 

the same firm. Each firm in Region 10 acts as an island.  

The dynamism of regions varies widely in the Saxenian Model, as shown in Tables 7 

and 8. The regions with more open firm borders, toward the left-hand side of the charts, grow 

more than the ones with more closed borders, on the right side. This general result supports 

the Saxenian Hypothesis as we find that cities with a greater degree of inter-firm knowledge 

sharing and transfer are able to invent new and valuable technologies and are more innovative 

in the long run. However, our model generates an additional key finding: innovativeness is 

not a constantly increasing function of firm openness, but peaks at the optimal value. 

Regional economies maximize their dynamism when 20% of their knowledge circulates 

within firms and 80% circulates across the region. Beyond this threshold, increased 

knowledge transfer hurts the region and its firms. We believe that this finding is novel to 

understandings of regional and cluster growth and development, and we devote the remainder 

of this paper to analyzing this result and interpreting its policy implications. 
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15. Innovation in Insular Regions 

 A key finding from our model is that regional long-run dynamism declines when 

firms share nearly all of their knowledge with the region’s other firms. While more work 

needs to be done to definitively confirm this pattern’s cause, we believe that we are 

witnessing the dynamic outcome a network property that traces back to Granovetter’s 

canonical work on the strength of weak ties. Strong network ties do not always create as 

much knowledge variety as weak ones do (Granovetter 1974), and occasional frictions in 

sharing knowledge can produce greater knowledge variety in the larger environment (Jonard 

and Yildizoglu 1998). 

Overly porous firm borders act as overly strong ties. When firms’ borders are too 

porous, the overall variety of knowledge in the region decreases. The firms’ knowledge 

stocks converge through excessive knowledge transfer so that, over time, each firm’s 

portfolio of technologies begin to look more alike those of their neighboring firms. When 

these technologically-similar firms try to collaborate and create new technologies, the results 

are not particularly novel. Knowledge in these regions becomes redundant. 

 This finding makes key contributions to network theory and economic geography. 

Within network theory, reducing the difficulty for nodes to interact is generally associated 

with an increase knowledge variety (see, for example, the small worlds network structure, 

beginning with Watts 1998). As we show, a particular network structure in a dynamic setting, 

in which a network interacts within a community of other networks, does not follow this 

general pattern. Our results should apply to any network arranged in this nested structure.  

 The nested network structure is widely prevalent across disciplines, and we predict 

that our result has cross-disciplinary appeal. One immediate application is to the exploration 

and exploitation literature. As we have discussed in earlier sections, the exploration and 
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exploitation literature seeks to understand how firms can maintain ambidexterity 

simultaneously both generate and select variety. Explanations toward these ends usually 

emphasize the degree of decentralization of a firm and how it helps the firm pursue 

exploration, exploitation, or both. Firms and their subdivisions can be modeled using the 

nested network structure we use to model regional economies. In a network model of the 

firm, technologies are contained in the firm’s subdivisions, which are able to collaborate or 

share knowledge with one-another. More decentralized firms have greater subsidiary 

autonomy and therefore share less knowledge with the other subsidiaries; more centralized 

firms, by contrast, have greater inter-subsidiary knowledge flow. Because this network model 

of the firm is the same network as the one we use to describe regional economies, the results 

from our simulation will apply to it. Therefore, our model identifies the optimal degree of 

decentralization that maximizes firm ambidexterity and long-run profit. 

 The application of our results to firm decentralization is illustrated by the example of 

Google’s recent creation of the conglomerate Alphabet, as we illustrate in the following 

chart. In creating Alphabet, the Google has increased the independence of its subsidiaries. We 

expect that increased independence will increase the variety of knowledge that Google is able 

to produce. In the new Alphabet, the occasional cross-subsidiary flow of knowledge within 

Alphabet keeps each of its subsidiaries dynamic through knowledge sharing, but these flows 

are sufficiently infrequent to eschew knowledge redundancy. Certainly, the quantity of 

knowledge variety that Alphabet will produce will be strongly augmented by other 

components of the firm; however, its recent decentralization should move it one step in a 

more innovative direction. 
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Old Google: Cross-Division Knowledge 

Sharing 

 

New Alphabet: More Closure 

 

 Within Economic Geography, the Saxenian argument that increased inter-firm 

interaction makes regions innovate more has long been accepted as the rule-of-thumb. While 

close ties may have been beneficial for some regions at certain points of time, there are 

dozens of examples we can think of in which too-close ties seem to have worked against 

regional economies in the long run. Grabher’s (1993) classic study of the German Ruhr 

immediately comes to mind, where too-close ties between firms were shown to reduce the 

variety of knowledge in the region and created technological lock-in. 

 The German Ruhr is not an exceptional case. Some of the largest and most innovative 

cities in North America during the early-to-mid 20
th

 century, now constituting the Rust Belt, 

have experienced similar outcomes. It seems well plausible that the mechanism we have 

identified here – that the links between their firms became too close – was at play. Qualitative 

and quantitative-driven studies are now needed to see if these cities developed close intra-

firm linkages, and the extent to which these linkages can explain their economic decline. 
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16. Conclusion 

 While EEG’s explosion of interest in in the past twenty-some years has generated an 

empirically-rich literature, the sub-discipline has made much less progress in its development 

of theory. Trouble arises when advancements in empirics and theory are not in sync. More 

often than not, literatures in which empirics outrace theory develop fuzzy concepts, encounter 

difficulty in showing how these concepts interact with one-another, and lose sight their long-

term goals and aims. 

 In this article, we merged together existing concepts from the EEG literature.  The 

outcome of this combinatorial effort is a cohesive evolutionary model of regional growth and 

change. The model clarifies how the key evolutionary mechanisms of variety creation, 

selection, and retention create measurable regional outcomes. Additionally, the model gives 

us a clearer understanding of how regions move through the knowledge space by 

recombining technologies and how monopolistic rents create differential levels of economic 

development.  

The most important contribution of the model, however, is that it reconnects EEG 

with EEG’s original goal. The purpose of EEG is to explain the growth and change of 

regional economies, but its recent literature on regional diversification through branching is 

very indirectly related to regional growth. Our model connects regional branching to regional 

economic growth directly. 

 We nonetheless sense that the model is the result of a long-running collective effort. 

The ideas behind the model are not new, as they have existed for years in the communities of 

economic geographers, management scientists, network scientists, economic sociologists, 

evolutionary economists, among others. The value that the model adds is to bring these ideas 
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into interaction with one-another and to explore the outcome of the resulting conversation 

through an iterative process.  

Applying the model to the Saxenian Hypothesis indicates the pragmatic utility of 

creating such a conversation. As we find, regions can achieve an optimal degree of 

knowledge transfer. While more work needs to be done to see how real-world regions can go 

about realizing  this optimal degree, policy makers now have a concrete goal to work toward.  

 The Saxenian Hypothesis is just one of many instances in which the model can make 

regional policy smarter. EEG’s rich and expansive count of qualitative studies have asked 

many important policy-related questions that have yet to be subjected to rigorous, systematic 

examination. We believe that our simulation model can be adapted to examine many of these 

questions, especially those for which data is hard to come by. If we are not misguided in the 

model’s capabilities, the policy recommendation that the model generates for how regions 

can achieve an optimal degree of knowledge transfer will be just the first of its many such 

contributions. 
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Appendix: List of Tables 

 

Table 1: Effects of Increased Patent Value in United States, 1975-2005 

 Dependent Variable 

Variable 

 
Variety Variety Patents Variety Variety Patents 

Average  

Scarcity 

 

-97.9*** 

(16.7) 

-57.0*** 

(18.4) 

1.12*** 

(0.219) 
   

Average 

Scarcityt-1 

 

-44.1*** 

(12.0) 

-68.0*** 

(15.0) 

0.873*** 

(0.291) 
   

KCI 

 

 

   
-525*** 

(93.5) 

-482*** 

(77.1) 

4.16*** 

(0.751) 

KCIt-1    
-392*** 

(67.1) 

-331*** 

(60.6) 

4.76*** 

(0.745) 

Socioeconomic 

Controls 

 

Yes Yes Yes Yes Yes Yes 

2-Way Fixed 

Effects 

 

No Yes Yes No Yes Yes 

R-Squared 0.80 0.89 0.95 0.90 0.92 0.95 

Each model contains 1915 observations. Observations with fewer than 5 patents dropped. Standard errors 

clustered at the regional level. Socioeconomic controls include log number of patents, log adult population, log 

number of inventors, log total employment, log number of firms, log earnings per worker, log NSF grants value, 

manufacturing share of labor force, and percent college educated. 
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Table 2: Effects on Exit in France 

Variable 

Dependent Variable 

Exit Exit Patents Exit Exit Patents 

Average 

Scarcity 

 

0.00255*** 

(0.000234) 

0.000865** 

(0.000369) 

-21.5*** 

(6.49) 
   

KCI 

 

 

   
0.906*** 

(0.169) 

0.332** 

(0.168) 

-6.90*** 

(0.558) 

Relatedness 

Density 

 

-0.00150*** 

(0.000549) 

-0.000962** 

(0.00048) 
 

-0.00147*** 

(0.000526) 

-0.000971** 

(0.000479) 
 

Number of 

Patents in 

Region 

 

6.01e-6*** 

(5.59e-6) 

-5.47e-6 

(1.11e-5) 
 

1.12e-5* 

(6.66e-6) 

-1.19e-5 

(1.23e-5) 
 

3-Way Fixed 

Effects 

 

No Yes Yes No Yes Yes 

R-Squared 

 
0.012 0.096 0.0861 0.0085 0.0960 0.087 

Each model contains 28676 observations. Standard errors clustered at the regional level. Relatedness density 

calculates the cognitive distance between the city and the technology class being exited using the co-occurrence 

of technologies in cities following the methodology of Balland et al (2015). 3-way fixed effects include time 

period, regional, and technology class fixed effects. 
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Table 3: Flowchart of Firm Actions 
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Table 4: Model Parameters and Initial Conditions 

 

Simulation Specifications 

Number of Regions 10 

Number of Firms per Region 4 

Initial Technologies of Firms A, B, AB, AAB, ABB 

Initial Quantity of each Technology per Firm 10 

ρ (Risk Aversion) 95% 

Time Horizon 25 

Number of Model Runs 25 
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Table 5: Simulation Walk-Through 

 

 
Time Period 1 

 
Time Period 2 

 
Time Period 5 

 
Time Period 15 
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Time Period 20 

 
Time Period 25 
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Table 6: Batch Results from Base Model 

Cell values indicate total number of technologies in a region a time period 25 

 

 

 

 

 

 

 

 

 

 

 

  Region Number 

 
 

1 2 3 4 5 6 7 8 9 10 Mean 

M
o

d
el

 R
u

n
 N

u
m

b
er

 

1 49 54 268 440 614 54 57 383 49 358 232.6 

2 70 105 301 549 796 122 187 162 63 117 247.2 

3 295 252 231 70 282 79 427 76 758 76 254.6 

4 53 657 75 433 212 550 177 50 60 208 247.5 

5 396 47 438 201 760 389 45 173 59 49 255.7 

6 85 248 91 404 393 84 97 233 88 655 237.8 

7 174 431 171 266 565 161 62 230 172 70 230.2 

8 143 281 227 142 61 138 409 909 149 132 259.1 

9 129 53 47 485 54 1337 106 56 356 40 266.3 

10 659 55 614 337 569 55 51 110 120 118 268.8 

11 256 419 133 70 411 67 131 75 82 643 228.7 

12 484 249 62 273 129 480 226 73 127 444 254.7 

13 159 264 65 172 165 797 690 63 60 64 249.9 

14 235 235 410 148 59 611 490 60 69 97 241.4 

15 104 38 38 41 69 566 43 37 844 777 255.7 

16 336 227 73 67 498 142 154 335 528 65 242.5 

17 58 95 56 527 56 170 184 46 271 1050 251.3 

18 61 418 152 57 65 695 156 262 59 151 207.6 

19 44 1149 145 41 92 37 86 792 34 91 251.1 

20 113 102 209 166 102 566 439 103 405 113 231.8 

21 326 431 49 520 48 53 447 297 419 58 264.8 

22 54 450 224 59 50 521 730 296 43 46 247.3 

23 196 348 214 59 306 137 54 667 269 134 238.4 

24 56 55 937 231 233 224 231 239 60 211 247.7 

25 321 434 254 265 265 103 273 226 103 255 249.9 

Mean 194.2 283.8 219.3 240.9 274.1 325.5 238.0 238.1 209.8 240.8 
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Table 7: Batch Results from Saxenian Model 

Cell values indicate total number of technologies in a region a time period 25 

 

 

 

 

 

 

 Region Number 

 
 

1 2 3 4 5 6 7 8 9 10 Mean 

M
o

d
el

 R
u

n
 N

u
m

b
er

 

1 90 406 90 367 1210 42 39 39 39 48 237 

2 49 1088 682 136 61 52 183 51 89 61 245.2 

3 496 700 112 351 68 150 62 380 63 74 245.6 

4 95 185 429 177 802 313 156 99 44 41 234.1 

5 270 522 67 633 449 141 63 271 59 63 253.8 

6 38 994 101 849 150 41 47 48 52 144 246.4 

7 39 690 340 869 195 43 46 136 50 50 245.8 

8 525 184 58 819 62 242 160 251 154 74 252.9 

9 124 322 1217 53 301 56 149 63 62 304 265.1 

10 251 82 91 537 94 400 532 88 83 97 225.5 

11 353 406 681 343 47 384 49 229 59 56 260.7 

12 129 57 62 809 417 202 373 126 63 137 237.5 

13 38 412 337 33 42 136 1344 40 100 43 252.5 

14 50 466 633 205 521 326 54 53 161 64 253.3 

15 76 209 188 336 145 185 787 84 211 337 255.8 

16 408 902 71 321 192 62 77 63 71 79 224.6 

17 429 337 52 152 124 871 371 62 264 66 272.8 

18 435 255 95 281 272 96 264 84 249 251 228.2 

19 57 257 333 372 56 226 60 1017 56 57 249.1 

20 572 247 103 247 258 242 97 90 86 257 219.9 

21 300 404 561 475 52 50 438 52 54 61 244.7 

22 635 385 131 428 328 184 59 245 61 147 260.3 

23 313 969 256 71 418 68 75 64 249 70 255.3 

24 935 71 251 69 143 449 82 252 65 70 238.7 

25 158 73 68 607 61 238 935 67 57 97 236.1 

 Mean 274.6 424.9 280.3 381.6 258.7 207.9 260.0 158.1 100.0 109.9 

  SD 229.9 297.8 279.1 254.9 267.0 180.7 321.8 197.3 69.15 83.54 
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Table 8: Batch Results from Saxenian Model, Means and Deviations 
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