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Abstract We developed an individual-based stochastic-
empirical model to simulate the carbon dynamics of live
and dead trees in a Central Amazon forest near Manaus,
Brazil. The model is based on analyses of extensive field
studies carried out on permanent forest inventory plots,
and syntheses of published studies. New analyses
included: (1) growth suppression of small trees, (2)
maximum size (trunk base diameter) for 220 tree species,
(3) the relationship between growth rate and wood density,
and (4) the growth response of surviving trees to
catastrophic mortality (from logging). The model simu-
lates a forest inventory plot, and tracks recruitment,
growth, and mortality of live trees, decomposition of dead
trees (coarse litter), and how these processes vary with
changing environmental conditions. Model predictions
were tested against aggregated field data, and also
compared with independent measurements including
maximum tree age and coarse litter standing stocks.
Spatial analyses demonstrated that a plot size of ~10 ha
was required to accurately measure wood (live and dead)
carbon balance. With the model accurately predicting
relevant pools and fluxes, a number of model experiments
were performed to predict forest carbon balance response
to perturbations including: (1) increased productivity due
to CO2 fertilization, (2) a single semi-catastrophic (10%)
mortality event, (3) increased recruitment and mortality
(turnover) rates, and (4) the combined effects of increased

turnover, increased tree growth rates, and decreased mean
wood density of new recruits. Results demonstrated that
carbon accumulation over the past few decades observed
on tropical forest inventory plots (~0.5 Mg C ha−1 year−1)
is not likely caused by CO2 fertilization. A maximum 25%
increase in woody tissue productivity with a doubling of
atmospheric CO2 only resulted in an accumulation rate of
0.05 Mg C ha−1 year−1 for the period 1980–2020 for a
Central Amazon forest, or an order of magnitude less than
observed on the inventory plots. In contrast, model
parameterization based on extensive data from a logging
experiment demonstrated a rapid increase in tree growth
following disturbance, which could be misinterpreted as
carbon sequestration if changes in coarse litter stocks were
not considered. Combined results demonstrated that
predictions of changes in forest carbon balance during
the twenty-first century are highly dependent on assump-
tions of tree response to various perturbations, and
underscores the importance of a close coupling of model
and field investigations.

Keywords Carbon cycling model . Coarse woody debris .
Growth . Decomposition . Net ecosystem exchange .
Productivity

Introduction

Carbon cycling in old-growth tropical evergreen forests
has been the focus of considerable attention given the
importance of these ecosystems in the global carbon cycle
(Malhi et al. 1998; Tian et al. 1998; Cox et al. 2000;
Chambers et al. 2001a; Clark et al. 2003; Saleska et al.
2003; Baker et al. 2004a, b; Lewis et al. 2004a). Efforts to
curb the rise in atmospheric CO2 concentration have
highlighted the importance of identifying carbon sources
and sinks, although tracking the various movements of
carbon into the terrestrial biosphere cannot currently be
assessed with much accuracy (Bolin 1998). Human
activities in tropical forests are responsible for most of
the global land-use derived CO2 source of about
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2.2 Pg C year−1 during the 1990s (Houghton 2003;
Canadell et al. 2000), with at least 0.2 Pg C year−1 from
land-use in the Brazilian Amazon alone (Houghton et al.
2000). However, observations on forest inventory plots
have indicated that tree biomass is increasing in
Amazonian forests at a rate of about 0.4 Pg C year−1

(0.5 Mg C ha−1 year−1) (Phillips et al. 1998; Baker et al.
2004a, b). It has been suggested that this apparent sink
may be in response to atmospheric CO2 fertilization
(Phillips et al. 2002; Lewis et al. 2004a), although other
factors may play more important roles in determining
year-to-year changes in forest carbon balance (Keller et al.
1996; Clark et al. 2003; Nemani et al. 2003; Chambers and
Silver 2004). Because the rate of increase in atmospheric
CO2 would be considerably faster without a terrestrial
carbon sink (Schimel 1995), it is important to determine
first, if undisturbed tropical forests are in fact acting as
carbon sinks, and if so, whether they will continue to
sequester carbon in the coming decades.

A number of models have been developed to simulate
the gap dynamics of trees (Botkin and Schenk 1996;
Bugmann 2001), and biogeochemical cycling in terrestrial
ecosystems (VEMAP 1995), and a few models have
linked tree population dynamics and biogeochemistry
(Bolker et al. 1995; Post and Pastor 1996; Moorcroft et al.
2001) or focused on tropical forests (Alder 1995). These
models vary in their complexity, but in general are difficult
to parameterize. Models are often designed for specific
questions, or specific ecosystems, and are not easily
modified to address questions for which they were not
strictly developed. Modifying existing models for tropical
forests is particularly problematic because of the high tree
species diversity, soils that are often physically and
chemically different from temperate soils, and the lack
of appropriate mechanistic studies. For this project, instead
of obtaining, modifying, and parameterizing an existing
model, it was more practical to develop a site-specific
model to address a well-defined topic: spatial and temporal
variation in carbon cycling dynamics of live and dead trees
in an old-growth Central Amazon forest.

The model was designed to operate in two primary
modes. In the first mode, the model simulates stand
dynamics (i.e., recruitment, growth, and mortality) for live
trees and above-ground biomass (AGB-mode). The AGB-
mode is useful to explore how changes in processes that
affect individual trees impact forest carbon balance, and
can be readily compared to results obtained from forest
inventory plots. In the second mode, the model focuses on
the carbon balance of total large wood (TLW), which
includes trunks and large branches (≥10 cm in diameter)
from both live and dead trees (TLW-mode). TLW-mode is
useful for exploring how decomposition and heterotrophic
respiration from dead trees can offset changes in live trees.

The model focuses on the carbon cycling dynamics of
wood for number of reasons. First, data from litter
production and biomass increment studies demonstrate
that woody tissue production is a substantial portion of
above-ground net primary production (ANPP) (Fig. 1a)
(Luizão 1989; Chambers 2001b; Clark et al. 2001).

Second, wood comprises a large portion of total ecosystem
carbon storage in Central Amazon forests (Fig. 1b), and is
also the pool that is most vulnerable to rapid changes in
stocks in response to disturbance. Soil also contains a large
amount of carbon, but compared to wood carbon, soil is
much less susceptible to changes in carbon storage over
yearly to decadal time scales (Trumbore et al. 1995; Telles
et al. 2003) although studies at some sites show significant
changes (Veldkamp et al. 2003). Third, years with high
tree mortality rates (Nelson et al. 1994; Condit et al. 1995;
Williamson et al. 2000) can cause massive shifts of wood
carbon from live to dead pools, with consequent changes
in ecosystem structure and dynamics. Despite the
importance of wood in determining the carbon balance
of tropical forests, basic parameters such as residence
times, standing stocks, decomposition rates, and response
to disturbance are poorly characterized (Chambers et al.
2000; Houghton et al. 2000).

Fig. 1 a Assuming that the growth of live trees plus litterfall
provides a reasonable estimate of ANPP, growth was estimated from
BDFFP and BIONTE forest inventory plots (Chambers et al.
2001b), with between 80 and 95% of this growth as large wood
(Eq. 2). Fine surface litter production averaged 7.8 Mg ha−1 year−1,
with 1.3 Mg ha−1 year−1 of this litter as fine wood (<10 cm
diameter) (Klinge and Rodriguez 1968; Franken et al. 1979; Luizão
and Schubart 1987; Luizão 1995). Aggregating these studies to
determine carbon allocation to different production components
demonstrates that woody tissues are a sizable fraction of ANPP
(legend values Mg C ha−1 year−1) b Carbon stocks estimated from
numerous sources demonstrate that wood is also a large carbon
reservoir (legend values Mg C ha−1) (Davidson and Trumbore 1995;
Trumbore et al. 1995; Guimarães and Melvo-Ivo 1997; Chambers et
al. 2001b; Nascimento et al. 2002; N. Higuchi, unpublished data)

597



The model developed here serves as a means of
aggregating the carbon cycling behavior of individual
live and dead trees (≥10 cm diameter) measured through
extensive field studies including tree growth rates,
recruitment and mortality patterns, and decomposition
and respiration from coarse litter (dead trunks and
branches ≥10 cm diameter). These field data were used
to characterize statistical distributions of attributes for
individuals, and empirical relationships between attributes
and ecosystem processes, and included studies in both
undisturbed and logged forests. The overall goal was to
simulate spatial and temporal dynamics of trees and large
wood over spatial scales of 0.04 to 100 ha, and to explore
how above-ground carbon cycling responds to a number
of disturbances. Although we cannot directly address the
issue of whether or not old-growth tropical forests are in
fact acting as net sinks for atmospheric CO2, we can help
constrain the response by quantitatively exploring how a
number of factors influence forest carbon balance.

Methods and model development

Site description

Work was carried out on permanent plots monitored since
the early 1980s by the biomass and nutrient experiment
(BIONTE) logging experiment (Higuchi et al. 1997) of the
National Institute for Amazon Research (Instituto Nacio-
nal de Pesquisa da Amazônia, (INPA)) and the biological
dynamics of forest fragments project (BDFFP), a colla-
boration between INPA and the Smithsonian Institution
(Lovejoy and Bierregaard 1990; Rankin-De Merona 1992;
Laurance et al. 2002). Data obtained from the permanent
plots included stand dynamics (i.e., tree recruitment,
growth and mortality rates), and taxonomic information
for trees ≥10 cm trunk base diameter (Db; measured 1.3 m
or above the buttresses), hereafter referred to as “trees.”
Plots spanned a 50×40-km area (centered about 2°30′S,
60°W) approximately 60 km north of Manaus in the
Brazilian Amazon with an elevation of 100–150 m. For
the BDFFP site, only data from control plots located in
undisturbed old-growth forests were used. For the
BIONTE plots, data from both the control and treatment
plots were used.

Site vegetation is old-growth closed-canopy terra firme
(not seasonally inundated) forest. Mean annual rainfall at
Manaus was 2,110 mm and mean annual temperature was
26.7°C for 1910–1983 (National Oceanic and Atmospher-
ic Administration, National Climatic Data Center, Ashe-
ville, N.C., USA). However sites away from the river may
experience higher precipitation (Sombroek 2001), with a
forested site 50 km east of our study averaging
2,610 mm year−1 from 1980 to 2000, and precipitation
for year 2000 at the ZF-2 site registering 3,450 mm (Silva
et al. 2002). There is a distinct dry season during July,
August, and September with usually <100 mm of rain
during these months. The predominant soil type on plateau
forests in the study area according to different classifica-

tion systems is Xanthic Ferralsols (FAO/UNESCO), Allic
Haplorthoxes (Oxisols) (US), or yellow Latosols (Brazil).
However, there is considerable local topographic variation,
and soil type varies gradually with elevation, comprising
Oxisols on plateaus (about 80% clay), Ultisols on slopes,
and Spodosols (about 2–5% clay) in valleys associated
with streams (Bravard and Righi 1989; Laurance et al.
1999). Nearly 1,200 trees species have been identified in
nearby forests (Ribeiro et al. 1999) with some trees living
for more than 1,000 years (Chambers et al. 1998).

Model description

The model is individual based and coded in Java (an
object oriented language similar to C++) and uses a 1-year
time step. Trees located in 20×20 m cells (stands) are the
fundamental objects. Stands are aggregated into a single
plot with ~100 ha the largest manageable spatial scale (on
a desktop PC) for a single run (about 65,000 trees). As
described in more detail below, the model starts by filling
stands with 10 cm Db trees. These trees grow and die, and
new trees are recruited. Dead trees decompose, and carbon
is either lost as respiration or fragmentation. At present,
damage to living trees and relationships with carbon
balance (Chambers et al. 2001b) are not incorporated into
the model.

The biomass of each tree was calculated using an
allometric model based on the harvest of 315 trees in the
Central Amazon (Chambers et al. 2001b), given by:

lnðBtÞ
¼ �0:370þ 0:333 ln Dbð Þ þ 0:933 ln Dbð Þ½ �2

� 0:122 ln Dbð Þ½ �3 (1)

where Bt is the total tree biomass in oven-dry weight. In
TLW-mode, the mass of large wood (≥10 cm diameter) for
each tree was required to link with the coarse litter
decomposition submodel. For an additional 47 harvested
trees, both large wood and small wood mass was estimated
(N. Higuchi, unpublished data), and regression analysis
showed a significant increase from 80 to 95% in the mean
fraction of large wood for trees ranging from 12 to
98 cm Db (P<0.01), given by:

fLW ¼ 0:774þ 0:0018� Db (2)

where fLW is the fraction of total AGB in large wood, and
trees larger than 100 cm Db were assumed to be 95% large
wood. Dry biomass was set at 50% carbon based on
previous measurements (N. Higuchi, unpublished data;
Chambers et al. 2000). The model tracks the large-scale
carbon cycling balance of live trees in the AGB-mode, and
both large live wood and coarse litter in TLW-mode, by
summing the stocks and dynamics for each live and dead
tree.
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Random deviates drawn from frequency distributions of
growth, recruitment, mortality, stem density (number of
trees per stand), and wood density were used to allocate
attributes to individual trees, using:

Ax ¼ Mx þ SDx � R (3)

where M is the mean, SD is the standard deviation of
variable x, and R is a random normal deviate. The Rs were
generated using an algorithm (James 1990) that was coded
into Java (P. Houle, personal communication). For
attributes that were not normally distributed, A, M, and
SD were transformed values (e.g., Log10).

Growth

The growth rate distribution was based on measurements
of over 10,000 trees from the BDFFP inventory plots. Not
all trees grew over the census intervals as a number of
trees experienced zero or negative growth rates. For
example at one of the BDFFP sites (1,201), 3-ha of growth
data spanning the interval 1981–1991 demonstrated 13.6%
of trees (229/1,679) experienced no measurable positive
growth. Lack of growth may be due, in part, to
measurement error, but trees can also shrink from changes

in wood moisture content and transpiration rates (Ko-
zlowski et al. 1991; Clark and Clark 1999), or may live for
many years without increasing in diameter. In addition,
many trees may grow slower than the minimum increment
that can be measured with a standard Db tape over a
typical census interval. For the purposes of this model, to
develop a growth frequency distribution, only positive
growth rates were used because the model uses long-term
average growth rate (Gave=Db/age) which cannot, by
definition, be zero or negative. Growth rates were assumed
to be log-normally distributed (Fig. 2a). The model
assigned Gave to each tree, and this average growth rate
was modified by intrinsic and extrinsic factors that
influence growth.

To simulate variation in growth rates among individual
trees, the model required a frequency distribution of Gave.
The BDFFP permanent plot inventories provided short-
term growth rate (Gt) data measured over a 5 to 10-year
period. These data were used to approximate the Gave

frequency distribution by setting the mean Gave equal to
the mean Gt, and reducing the SD. This was done because
variation in the SD of Gave must be less than Gt. A 10-cm
Db tree cannot, for example, have experienced zero growth
for its entire life, although it may demonstrate zero
(measurable) growth for many years. With respect to mean
growth rate, a forest-wide mean over a 5 to 10-year period
is probably a reasonable approximation over the life of the

Fig. 2a–d The probability frequency distributions used to para-
meterize the model. a Log10 transformed short-term growth rate (Gt)
data from BDFFP inventory plots. A histogram of annual growth
rates for >8,500 trees measured for 5–10 years are shown, and
compared with log-normal distribution (mean=−0.976, SD=0.431).
The low end of the curve is not well defined because slow growth
rates are difficult to measure accurately (Db tape resolution is 1 mm
in diameter), and the census intervals were relatively short (5–
10 years). b Mortality rates from BDFFP and BIONTE data were

assumed to be log-normally distributed (mean=1.02%, SD=1.72%).
Rates were estimated from 56 separate census intervals varying from
1 to 5 years on 21 1-ha permanent plots. This distribution was used
to calculate a plot-scale annual mortality rate. c Distribution of stem
density (number of trees) at 400 m2 resolution (n=450, mean=24.3,
SD=5.0). d Distribution of wood density for >200 tree species from
the Central Amazon (mean=0.70 g cm−3, SD=0.15) (from Fearnside
1997)
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average tree. However, because zero and negative growth
rates were not included in the analysis of growth rate
variation, average growth rates are probably slightly
overestimated. The SD of Gave was set to be 50% of the
SD of measured Gt, and model sensitivity to this
parameterization was tested. The reduction in Gt SD was
the only model parameter that was tuned (i.e., not derived
empirically).

Mortality and recruitment

Mortality rates were based on data from the control
(undisturbed) plots at the BDFFP and BIONTE sites.
Annualized mortality rates were calculated using a stan-
dard logarithmic model (Swaine et al. 1987) over each
census interval (Fig. 2b). A mortality event can comprise a
single tree or multiple tree deaths in the same stand. The
BDFFP data included information on the frequency and
number of trees killed by other tree falls. These data were
mapped to a 400-m2 (20×20 m) resolution to predict the
probability of multiple treefall events. This analysis
demonstrated that 33% of total mortality was due to
multiple treefalls and these events were randomly assigned
to frequency classes of from one to seven trees per gap
based on the data. This allowed the model to predict some
spatial aggregation of coarse litter production, although
larger gaps and blowdowns (Nelson et al. 1994) were not
treated. Each time step (1 year) a plot-scale mortality rate
was calculated using a random deviate from the mortality
frequency distribution (Eq. 1). Mortality was size-inde-
pendent, with all trees having an equal likelihood of dying.
Recruitment tracked mortality. When a tree died, it was
replaced by a new tree in a randomly chosen stand. In this
way, the total number of trees in the entire plot was
conserved, but the number of trees in any individual stand
varied. Changes in mortality were not implicitly tied to
changes in environmental factors (e.g., precipitation).
However, since changes in precipitation can be viewed
as essentially random, annual mortality reflects changing
conditions that produced variability in the empirical data.
Census intervals much longer than a year act to reduce
estimated annual mortality rates (Malhi et al. 2004), so
annual rates presented here probably have small system-
atic errors toward lower rates. In addition, mortality was
plot-size-independent, as we had no empirical data
demonstrating variability in rates when moving from, for
example, a 1-ha to a 100-ha plot size.

Coarse litter decomposition

When a tree died a decomposition rate was calculated
using a multiple regression model from a coarse litter
decomposition study carried out in the BDFFP and
BIONTE permanent plots (Chambers et al. 2000), given
by:

kd ¼ 1:104� 0:670�� 0:163 log10 Dbð Þ½ �2
if kd < 0:02; then kd ¼ 0:02

(4)

where kd is the rate constant (fraction per year), ρ is live
wood density (gram per cubic centimeter), and Db

(centimeter) was limited to a maximum of 100 cm
corresponding to the largest tree measured by Chambers
et al. (2000). The slowest decomposition rate was limited
to 2% year−1 which was the lowest rate quantified by
Chambers et al. (2000). Decomposition losses were
partitioned into respiration and fragmentation losses
based on a coarse litter respiration study with 80%
respiration and 20% fragmentation losses (Chambers et al.
2001c). When a dead tree decomposed to 5% of its initial
mass, the remaining material was assigned to fragmenta-
tion losses. Since the model only tracks carbon balance of
AGB and TLW, the fate of losses (e.g., respiration vs
fragmentation), although important from a larger ecosys-
tem perspective, does not alter the carbon balance of AGB
or TLW, and was not explored for this study.

Initializing and iterating the model

A plot consisted of an area divided into 400 m2 cells
(20×20 m) called stands. At the beginning of a run, a
number of trees were randomly assigned to each stand
using a random deviate (Eq. 1) drawn from the BDFFP
stem density data (Fig. 2c). Each new tree started at
10 cm Db and was randomly assigned (Eq. 1) an Gave

(Fig. 2a), and an initial age (assumed to be Db/Gave). Wood
density was randomly assigned (Eq. 1) to each new tree
based on data from >200 Central Amazon tree species
(Fig. 2d) (Fearnside 1997). The size of the plot and the
time of the model run varied depending on the issue being
explored. For example, when maximum tree age was
being addressed, the model ran at 100 ha for 2,500 years
prior to generating output to ensure stabilization of the
age-class distribution, because some trees can live longer
than 1,000 years (Chambers et al. 1998).

Preliminary runs and model corrections

Preliminary runs of the model predicted size-class
distributions and live wood production rates quite different
from the forest inventory data. The model under-predicted
the number of small trees and over-predicted the number
of large trees. Since small trees are often suppressed due to
an inadequate availability of light (Clark and Clark 1992),
on average, small trees probably grow slower than larger
trees. Regression analysis of the BDFFP data showed a
subtle (i.e., low r2), yet highly significant curvilinear
relationship between stem diameter and growth rate
(P<0.0001), with rates increasing with Db (e.g., Clark
and Clark 1999) and slowing for the largest trees (second
order term). This curvilinear relationship between growth
rate and Db was modeled by scaling the average long-term
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growth rate (Gave) as a function of Db, using:

log10 ðGDÞ
¼ �2:007þ 1:107 log10 ðDbÞ � 0:222½log10
�ðDbÞ�2 (5)

and

Gt ¼ Go þ Go
ðGD � GaveÞ

Gave

� �
(6)

where Gs are all log10-transformed growth rates (centi-
meter per year), Gave is the global average growth rate
(mean of Fig. 2a), GD is the average growth rate for a
given Db, Go is last years growth rate, and Gt is scaled for
this years Db. Using Eq. 5, growth rate increases from
about 0.8–2.0 mm year−1 as trees grow from 10 to 80 cm
Db, and then slowly increases reaching a plateau at about
2.3 mm year−1 for the largest trees. When these size-
dependent changes in growth rate were accounted for, the
model more accurately predicted the size-class distribution
of the smallest trees.

After accounting for Db dependent variation in growth
rates, the model still over-predicted the number of large
trees (>50 cm Db), resulting in substantial overestimates of
live wood mass (Fig. 3a) and annual biomass increment.
We suspected that lack of information on species depen-
dent variation in maximum tree size was causing the
model to over-predict the number of large trees. The
model was assigning all trees an equal probability of
attaining large sizes. However, in the Central Amazon the
potential number of tree species that can colonize a gap is
at least ~2,000 (Ribeiro et al. 1999), and the life-history
strategy of these tree species varies considerably. Some
species are understory specialists that never attain large
sizes, whereas others are emergents, towering many
meters above the average canopy height (Lieberman and
Lieberman 1987). Unfortunately, unlike most temperate
tree species (McMahon 1973), there is little information
concerning maximum Db attained by tropical trees. One
problem is that most species have densities of less than
one individual per hectare (Rankin-De Merona et al.
1992), and it is logistically challenging to obtain adequate
sample sizes to assess variation in maximum diameters.

As a preliminary analysis, the BDFFP data provided
tree species size distribution information. Maximum
diameter for 220 species with at least eight individuals
present in the data set was tallied. However, since eight
individuals was not an adequate sample size to assess for
maximum size, the data set was tested for a sampling bias.
There was a significant relationship between sample size
and maximum diameter (P=0.01), where species with
fewer individuals were biased toward smaller maximum
sizes. This bias was corrected by assuming that the
maximum size for the species with the most individuals
was not biased, and a correction factor was determined for
species with fewer individuals. This resulted in a maxi-

mum correction amounting to an increase in maximum
size of 50% for species with eight individuals. Next, a
frequency distribution was generated, and each new tree
was randomly assigned to one of 14 maximum diameter
pseudo-species. Once a tree reached this diameter limit,
growth stopped (see Discussion), but the probability of
mortality did not increase. With this pseudo-species
information, the model more accurately predicted Db

size-class distribution and AGB, although the model still
under-predicted the number of trees in the 20–30-cm
classes, and slightly over-predicted trees in the 50–90-cm
classes (Fig. 3b).

The model presented here utilizes variation in growth
rate, wood density, and maximum size to create pseudo-
species that represent many different life-history strategies.
Whether each combination of these attributes is equally
probable remains to be investigated. For example, perhaps
species with large maximum diameters, on average, grow
faster than species with small maximum diameters.
However, with the extremely high diversity, species exist
with attributes that may seem intuitively improbable. For
example, Dinizia excelsa has very dense wood (0.92 g dry
weight cm−3) and grows relatively fast as determined by
radiocarbon dates of five individuals ~100 cm Db (Cham-
bers et al. 2001d). Even after accounting for large

Fig. 3 Comparison of the distribution of biomass in 10 cm size
classes for the model and from the forest inventory data. a When the
model was run without the pseudo-species (see text) both the
distribution and total biomass were poorly estimated. b Including
species information on maximum diameter resulted in better
predictions of biomass distribution across most size classes
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radiocarbon errors for trees less than about 350 years, D.
excelsa average growth rate fell somewhere between 0.33
and 1.10 cm year−1, compared to an average of
0.21 cm year−1 from Eq. 5 for 100 cm Db tree.

Response to CO2 fertilization

Model predictions of carbon storage response to increased
productivity driven by elevated atmospheric CO2 concen-
tration has been briefly published elsewhere (Chambers et
al. 2001a, Chambers and Silver 2004). Chambers et al.
(2001a) demonstrated a lag-time of more than 100 years
before carbon storage reaches a new dynamic equilibrium
in response to a 25% increase in productivity over an
arbitrary 50 year interval. Chambers and Silver (2004)
linked a 25% productivity increase to the actual and
expected increase in atmospheric CO2 from 1850 to 2100,
and predicted a small CO2 fertilization sink of about
0.2 Mg C ha−1 year−1 over a longer ~200 year interval.
The equations to model the relationship between increased
productivity and atmospheric CO2 are described below.

First, the known and expected increase in atmospheric
CO2 from 1850 to 2100 can be modeled using ice core
data from 1850 to 1950 (Neftel et al. 1985; Friedli et al.
1986), data from Mauna Loa for 1950–2000 (Keeling and

Whorf 2002), and the IPCC scenario IS92a for 2000–2100
(IPCC 2000) where atmospheric CO2 concentration
doubles from the pre-industrial concentration (i.e.,
560 ppm) in about year 2070, and reaches about
700 ppm by 2100. The entire CO2 trajectory from 1850
to 2100 can be empirically modeled using a third order
polynomial (r2=0.99) giving:

½CO2�atm
¼ �212; 048þ 341:5 year � 0:1830 year2

þ 0:00003270 year3 (7)

where year is the calendar year. The relationship between
atmospheric CO2 concentration ([CO2]atm) and increased
productivity is best described by a beta (β) response
function that has been defended as more appropriate than a
Michaelis–Menten function (Amthor and Koch 1996). The
response function β is estimated from relevant elevated
CO2 experiments as:

� ¼ ½ðNPPe=NPPaÞ � 1�
lnð½CO2�e=½CO2�aÞ

(8)

where the subscripts e and a are the corresponding

Fig. 4 Results from the BIONTE logging experiment show a rapid
increase in growth rates for surviving trees after logging treatments
T1–T3. The magnitude of the increase was dependent on the
intensity of the logging event shown as percent biomass loss
(legends) from logging and collateral mortality (Eq. 11), and growth

rates rapidly returned to pre-disturbance levels (k=−0.207, Eq. 10)
over time as biomass accumulated (Table 1). Although T0 did not
undergo treatment, the plot responded similarly to the treatment
plots with both biomass accumulation (Table 1), and a decline in
growth rates over time
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productivities under elevated and ambient [CO2]atm (which
vary from study to study). Estimating β for old-growth
forests of the Central Amazon is quite difficult because
there are no particularly relevant studies. However, based
on studies in other intact ecosystems, and field and
laboratory experiments, β could be zero, or probably not
much larger than 0.36, corresponding to a 25% increase in
NPP for a doubling of [CO2]atm (Chambers and Silver
2004; Clark 2004). Of the few large-scale studies of
whole-forest response to elevated [CO2]atm using the free-
air CO2 enrichment (FACE) method, a loblolly pine
plantation on relatively nutrient rich soils experienced a
~25% increase in woody tissue productivity with a
doubling of [CO2]atm (Hamilton et al. 2002). Thus,
although it is possible that a Central Amazon forest on
nutrient depleted soils could experience a stronger CO2

fertilization response than a loblolly pine plantation, given
the experimental evidence, such a position is difficult to
support (Chambers and Silver 2004; Clark 2004). Using
the β function, growth under elevated [CO2]atm for each
tree in the model is calculated as:

Ge ¼ Gt
1þ � ln½CO2�e

½CO2�a

� �
(9)

where Gt is from Eq. 6, and [CO2]e is limited to a
maximum of 580 ppm. Using this approach, we explored
how carbon balance responds to various values of β, and
constrained an upper limit for an above-ground CO2

fertilization response in Central Amazon forests.

Response to catastrophic mortality

Background mortality rates were based on data from
control plots (Fig. 2b) which provided information on
year-to-year variation in mortality rates driven by changes
in weather and other environmental variables. However,
relatively catastrophic mortality events occasionally occur
(Nelson et al. 1994; Condit et al. 1995; Williamson et al.
2000) and can result in marked changes in forests structure
and functioning. In lieu of data directly demonstrating the
effects of catastrophic mortality, we used the forest
inventory data collected on the BIONTE logging treatment
plots as a surrogate for varying intensities of catastrophic
mortality, which we define here as a tree mortality rate that
exceeds 3.0% stems year−1 (~maximum in Fig. 2b).

The BIONTE was established at INPA reserves located
along the ZF-2 road north of Manaus in the mid-1980s
(Higuchi et al. 1997). The experiment consisted of three
blocks of 24 ha each, with four treatments in each block
comprising four replicate hectares. Permanent inventory
plots were established in the centermost hectare of each
replicate (12 ha total). The treatments (T) were: T0,
control; T1, 32% of commercial species basal area
removed; T2, 42% removed, and T3, 69% removed (but
see Fig. 4 legends for actual biomass loss). Each year after
the logging treatments, with the exception of two 2-year

intervals, growth, recruitment and mortality for trees
≥10 cm Db was quantified.

One of the most notable characteristics of a catastrophic
mortality event is transfer of a sizeable amount of large
wood from live to dead pools. As there are no studies
demonstrating altered rates of coarse litter decomposition
rates in logged forests, or forests that have experienced
relatively high tree mortality rates, coarse litter decompo-
sition under catastrophic mortality was modeled as
described above. Another characteristic of forests that
have experienced high tree mortality is a competitive
release from neighboring trees, and an increase in growth
and productivity, by surviving trees (e.g., Alder and Silva
2000). This response was clearly evident in the BIONTE
inventory data showing an increase in growth rates for
surviving trees as a function of the percent of biomass lost
during the logging experiment from tree removal and
collateral mortality (additional trees killed during the
logging operation), along with a decrease in growth rates
as a function of time since the disturbance (Fig. 4). This
dynamic was best modeled by fitting an exponential decay
function, which describes the growth rate of surviving
trees, with:

Gt ¼ Goe
�0:207t þ 1:10 (10)

where Go is the average growth rate of surviving trees (in
millimeter per year) immediately following the high
mortality event (not including recruits), Gt is the average
growth rate at t number of years after the event, −0.207 is
the decay constant derived from fitting the BIONTE
growth curves (Fig. 4), and 1.10 mm year−1 is the long-
term average growth rate for trees in undisturbed forests
from the BDFFP data (Fig. 2a). The immediate growth
rate response to disturbance (Go), increased linearly with
the size of the disturbance event (Fig. 4), and was modeled
by:

Go ¼ 1:41þ 13:7� � (11)

where δ is the mortality rate as the fraction of biomass lost
during the event (removal plus collateral mortality).
Combining Eqs. 9 and 10 describes the growth rate
response of surviving trees as a function of the time since
the disturbance (t) and the size of the disturbance event
(δ).

An interesting feature of results from the BIONTE study
is that the control plots (T0), showed a decline in growth
rates similar to the logged forests, although with a lower
initial growth rate (Go) (Fig. 4, T0). At first this was
perplexing, as these plots were expected to function
similar to undisturbed forest with a relatively constant
average growth rate taken over a number of years, and not
a continuous decline in growth rates over time. The control
plots showed an accumulation of biomass (Table 1) and a
decrease in growth rates, which was qualitatively similar
to forests that had undergone a high tree mortality event.
Although there are probably different ways to interpret this
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change, we assumed that the control plots were in a non-
steady-state condition and were aggregating biomass to a
pre-disturbance level. Since the growth rates in T0
ultimately returned to values close to those found in
undisturbed forests (Figs. 2a, 4, T0) we assumed that the
amount of biomass accumulated over the time-since-
disturbance interval was equal to the presumed disturbance
event, which varied from 2.0 to 11.5% assumed biomass
lost (Fig. 4, T0).

For the purposes of developing our carbon cycling
model, the most important results from the BIONTE
growth data were that (1) growth rates for surviving trees
increased rapidly in response to the death of neighboring
trees (Eq. 11), (2) growth rates decrease back to pre-
disturbance levels rapidly (−20.7% year−1, Eq. 10), and (3)
a relatively small disturbance (e.g., before the plot was
established) may cause a large increase in growth rates
(Fig. 4, T0). Using these results, we explored model
predictions of forest carbon balance response to variability
in tree mortality in both AGB-mode and TLW-mode, and
then compare these model results with other published
studies documenting changes in tropical forest dynamics.

Changing forest turnover and community composition

Three distinct responses of tree recruitment to disturbance
were recognized. First, in response to background mortal-
ity rates, there is no change in species composition of trees
that recruit in newly formed gaps. This is the case in the
undisturbed forests where the vast majority of gaps recruit
few pioneer species such as Cecropia sp. and Vismia sp.,
and the species composition of gaps is largely undistin-
guishable from undisturbed stands (Hubbell et al. 1999).
The second type of response is a gradual increase in
recruitment and mortality rates (turnover; Phillips and
Gentry 1994) that may favor a gradual shift in the species
composition of recruitment, without a dramatic increase in
the number of pioneer species and without a secondary
successional phase. Since tropical forests with faster
turnover rates generally have a tree species composition
with relatively lower wood density (Baker et al. 2004a),
this change in turnover may result in a gradually changing
species composition favoring trees with lower wood
density and faster growth rates. The third type of
disturbance is a mortality event large enough to cause
high recruitment of pioneer species, and the initiation of
secondary succession. In the present model, we only
explored the first two types of disturbance.

Although it is widely accepted that trees with higher
wood density have lower growth rates, this hypothesis has
not been rigorously tested for numerous tree species with
varying wood densities in an old-growth tropical forests.
To test this hypothesis, we used data on tree species and
growth rates from 29 ha of control plots at the BDFFP
sites. We found a total of 60 species with at least five
individuals per species, and where wood density data was
available from published sources. Relative growth rates
(growth mass divided by total tree mass) were calculated T
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using Eq. 1 to demonstrate the apparent effect of wood
density on carbon accumulation. Although there was
considerable scatter in the data, there was a significant
decline in relative biomass growth rate with wood density
using Eq. 1 (Fig. 5). For example, apparent biomass
production rate for a tree of wood density of 0.40 g cm−3

was about twice as great as that predicted for a wood
density of 0.80 g cm−3 (36.1–19.4 g kg−1 year−1,
respectively). Because Eq. 1 does not account for differ-
ences in wood density, a simple scaling factor was
introduced that reduces biomass proportionally with
changes in wood density:

B� ¼ Bt
1þ ð�� �aveÞ

�ave

� �
(12)

where Bt is tree biomass (Eq. 1), and ρave is the average
wood density (Fig. 2d). Since wood density was normally
distributed, this equation was only important for determin-
ing plot-scale carbon stocks and fluxes when there was a
change in tree species composition, and average wood
density. Applying Eq. 12 to the data from Fig. 5 resulted in
a non-significant relationship between wood density and
biomass productivity, demonstrating that although low-
wood-density trees may be growing faster in diameter,
they are not accumulating carbon faster than high-wood-
density species.

Using these methods the model was used to explore two
types of events. First the model was run with varying
levels of increasing forest turnover to explore the isolated
impact of a more dynamic forest on carbon balance.
Second, we assumed that increasing turnover would favor
the recruitment of faster growing species with lower wood
density, corresponding to a change in tree community
composition. In other words, in a more dynamic forest
with faster growth rates, an increase in biomass would be
predicted using Eq. 1, but if newly recruited trees have a
lower than average wood density, Eq. 12 acts to reduce
forest biomass accumulation rates.

Size dependent and independent mortality

What happens to a tree as it approaches the diameter limit
for its species? In the present model implementation, the
tree stops growing and eventually dies from a random
mortality event. To some extent this approach is supported
by field measurements, which indicate that stem diameter
increment can decline to nearly zero, and a tree can persist
for many years without allocating carbon to wood
production (see Growth). This distinction has important
implications for the age structure of the forest, and raises
some interesting questions. For example, if mortality is
size-dependent, and trees at their species Db limit expe-
rience higher mortality rates, how will the biomass and age
structure of the forest change? To explore the effect of
size-dependent mortality (SDM), the model was run in two
additional modes. First, as described above, in size-

independent mortality (SIM) mode, when trees reached
their species diameter limits, trees simply stopped growing
and mortality was a random event. Next, in SDM mode,
trees died soon after they reach their species Db limit.

Results and discussion

The model predicted a number of fluxes, pools, and
structural features of Central Amazon terra firme forest
that compared well with field data. First, a comparison of

Fig. 5 Although there is considerable scatter, trees with lower wood
density appear to accumulate biomass faster using an allometric
model (Chambers et al. 2001b) that does not account for differences
in wood density. However, when growth is correct for wood density,
this relationship is no longer apparent (not shown, see text). The 60
species studied were as follows with number of individuals and
absolute growth rates in brackets [n; mm year−1]: Anacardium
spruceanum (As)[11; 2.9], Aniba canelilla (Ac) [13; 1.6], Astronium
lecointei (Al) [8; 0.9], Brosimum acutifolium (Ba) [10; 2.4], B.
guianensis (Bg) [25; 1.1], B. parinarioides (Bp) [16; 1.3], B.
potabile (Bo) [5; 3.2], B. rubescens (Br) [70; 1.0], Cariniana
micrantha (Cm) [9; 2.6], Caryocar villosum (Cv) [7; 2.6], Clarisia
racemosa (Cr) [13; 2.1], Cordia sagotii (Cs) [13; 0.9], Corytho-
phora rimosa (Ci) [19; 1.6], Couma macrocarpa (Ca) [13; 1.6],
Couratari stellata (Ct) [15; 0.6], Dialium guianense (Dg) [9; 3.0],
Diclinanona calycina (Dc) [6; 3.2], Dipteryx excelsa (De) [7; 0.4],
D. odorata (Do) [19; 1.7], Drypetes variabilis (Dv) [30; 0.9],
Endopleura uchi (Eu) [17; 2.3], Enterolobium schomburgkii (Es) [6;
3.6], Erisma uncinatum (En) [5; 4.0], Eschweilera coriacea (Ec)
[277; 1.3], Goupia glabra (Gg) [42; 1.7], Guatteria olivacea (Go)
[16; 3.7], Helicostylis tomentosa (Ht) [41; 1.2], Inga paraensis (Ip)
[39; 4.5], Jacaranda copaia (Jc) [12; 1.7], Laetia procera (Lr) [9;
2.1], Lecythis poiteaui (Lp) [10; 0.4], Lecythis zabucajo (Lz) [22;
2.1], Licania oblongifolia (Lo) [30; 1.8], Licaria cannella (Lc) [20;
1.4], Manilkara bidentata (Mb) [12; 0.7], Manilkara huberi (Mh)
[22; 2.3], Maquira sclerophylla (Ms) [35; 1.5], Micropholis
guyanensis (Mg) [49; 1.8], Micropholis venulosa (Mv) [7; 1.2],
Onychopetalum amazonicum (Oa) [33; 1.0], Parinari montana (Pm)
[5; 2.0], Parkia multijuga (Pu) [20; 4.8], P. nitida (Pn) [11; 5.8], P.
pendula (Pp) [5; 2.8], Pouteria anomala (Pa) [67; 1.5], P. caimito
(Pc) [35; 1.5], P. guianensis (Pg) [53;1.1], Protium heptaphyllum
(Ph) [12; 1.9], P. tenuifolium (Pt) [8; 1.8], Qualea paraensis (Qp)
[13; 1.7], Sacoglottis guianensis (Sg) [9; 2.4], Scleronema
micranthum (Sm) [191; 2.1], Swartzia panacoco (Sp) [8; 0.9],
Symphonia globulifera (Sl) [9; 1.9], Tabebuia serratifolia (Ts) [9;
0.4], Tapirira guianensis (Tg) [8; 6.6], Tetragastris panamensis (Tp)
[77; 1.1], Vantanea parviflora (Vp) [54; 2.6], Virola michelii (Vm)
[9; 2.6], and Vochysia obidensis (Vo) [15; 2.8]
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size-class structure between the model and the forest
inventory data demonstrated the model predicts both
above-ground tree biomass and the distribution of biomass
among Db size classes reasonably well, and underscores
the importance of species information in modeling forest
structure (Fig. 3b). Some model predictions were com-
pared with empirical data (Table 2). In many cases these
comparisons were simply consistency checks because we
were comparing the aggregated plot data to model
predictions based on individual tree data. For example,
data on individual tree growth rates were used to
parameterize the model, and then compared with plot-
scale productivity estimates, where the size structure is
also important. However, in a few cases, independent data
were available to compare with model predictions. First,
predicted coarse litter standing stocks was about the same
as that measured in an intensive 3 ha study in the BIONTE
project control plots (Summers 1998) (Table 2). Also,
radiocarbon studies of maximum tree age (Chambers et al.
1998, 2001d) found 1,000-year-old trees, and the average
age for trees >100 cm Db also compare well with model
predictions (Table 2).

CO2 fertilization

Chambers et al. (2001a), employing essentially the same
model presented here, demonstrated that in response to an
arbitrary 25% increase in tree growth rates, there was a
lag-time of more than a century before large wood carbon
balance reach a new dynamic equilibrium. Chambers and
Silver (2004), also employing the model presented here,
found that if the increase in tree growth rates was tied to
the known and expected increase in atmospheric CO2

(Eq. 7), the long-term Central Amazon forest carbon sink
for TLW would only be about 0.18 Mg C ha−1 year−1,
although this sink strength would not be reached until
~2020–2030. In this study, we used the model in AGB-
mode using various β factors corresponding to 25, 50, 75,

and 100% increases in tree growth with a doubling of
[CO2]atm. Simulations predicted changes in tree biomass
from 1850 to 2150 (Fig. 6). Linear regressions for only the
period from 1980 to 2020, which would be a reasonable
comparison with existent tropical forest inventory plots
(~0.5 Mg C ha−1 year−1 from Baker et al. 2004b),
predicted a carbon sink strength during this period
increasing from 0.05–0.51 Mg C ha−1 year−1 as β was
increased from 0.36 to 1.44.

Only with a very high β factor, corresponding to a
~100% increase in productivity with a doubling of [CO2]
atm, did the model predict a carbon sink commensurate
with Baker et al. (2004b). Is it reasonable to expect that
tropical forest wood productivity will double with a
doubling of [CO2]atm? Chambers and Silver (2004) argue
that, given current understanding of how intact ecosystems
(not individual potted plants or crops) respond to elevated
[CO2]atm, the largest supportable β factor is probably
~0.36, corresponding to a 25% increase in productivity
with a doubling of [CO2]atm, which would correspond to a
carbon sink of 0.05 Mg C ha−1 year−1 for the period 1980–
2020 (Fig. 6), or 0.04 Pg C year−1 for the entire Amazon
basin (assuming 7.11×106 km2). In comparison, Tian et al.
(1998) using a large-scale biogeochemical model (TEM)
estimated a higher CO2 fertilization response of 0.1–
0.4 Pg C year−1 for the Amazon basin.

Comparing forests across the entire Amazon basin,
Central Amazon forests are among the least productive
and dynamic (Baker et al. 2004b; Phillips et al. 2004;
Malhi et al. 2004), and the predicted CO2 fertilization
response at other sites using this model may be
significantly higher. However, forests with higher growth
rates also have higher turnover rates (Phillips et al. 2004),
which may to some extent reduce the effect of elevated
growth on forest biomass accumulation (Fig. 9). Also, the
most dynamic Amazon forests are about three times more
productive as Central Amazon forests (Malhi et al. 2004),
but the CO2 fertilization response predicted here with a β

Table 2 Comparison of model output and field data. ND no data.
Growth and mortality rates, and tree biomass stocks, were estimated
from the forest inventory data, and model results are based on
averages from five model runs at 10 ha each. Independent
comparisons include coarse litter stocks measured by Summers
(1998) in three 1 ha plots from the BIONTE project control plots,
and radiocarbon dates of tree ages (Chambers et al. 1998, 2001d).
Maximum age, and age for trees ≥100 cm Db, were based on five
model runs for 2,500 years at 100 ha

Attribute Empirical Model

Live trees (Mg C ha−1) 156 160
Coarse litter (Mg C ha−1) 15 17
Growth (Mg C ha−1 year−1) 1.7 1.6
Mortality (Mg C ha−1 year−1) 2.1 1.7
Mean DBH (cm) 21.1 20.4
Mean age >10 cm Db (years) ND 175
Mean age >100 cm Db (years) 425 383
Maximum age (years) 1,372 1,192

Fig. 6 Predicted response of above-ground tree biomass over time
with different assumed CO2 fertilization rates. Response was linked
to the known and expected increase in atmospheric CO2, and
elevated growth was modeled using a ß function, as described in the
text
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of 0.36 is about an order of magnitude less than the
observed average pan-Amazonian biomass accumulation
(Fig. 6) (Baker et al. 2004b). Additional studies are needed
to differentiate between the numerous factors that can lead
to changes in forest carbon balance, but it seems unlikely
that CO2 fertilization can explain more than a small
portion of the observed increase.

Tree mortality, coarse litter, and TLW dynamics

One of the emphases in this study is demonstrating the
importance of wood carbon and coarse litter in determin-
ing year-to-year variations in forest carbon balance.
However, in only a few cases are both live and dead
wood carbon pools quantified in forest ecosystem studies,
so results in TLW-mode are difficult to compare with field
data. The vast majority of carbon balance studies only
focus on the above-ground portion of live trees, over
relatively short time periods of a few decades, and spatial
scales of a few hundred hectares (e.g., Baker et al. 2004a,
b). This live tree inventory approach may overlook
important ecosystem processes that help determine forest
carbon balance. For example, studies in the Eastern
Amazon near the city of Santarém found a large amount
of coarse litter in a ~20-ha plot, and estimated that the site
was probably a net source of carbon to the atmosphere,
and not a carbon sink, as would have been predicted using
only the tree survey data (Saleska et al. 2003; Rice et al.
2004).

The model predicts spatial and temporal variation in
TLW carbon fluxes and pools. Recall that ~85% of tree
mass is large wood (Eq. 2), so that in TLW-mode, the live
tree portion of the model operates similar to AGB-mode.
Comparing the magnitude of variation in TLW from year-
to-year as a function of an increase in plot size shows that
spatial carbon balance variability stabilizes at ~10 ha
(Fig. 7). This is because at <10 ha the influence of large
treefalls has a considerable effect on net TLW carbon
balance, and at >10 ha, annual variation in plot-scale
mortality has a larger influence than individual treefalls.
This suggests plot sizes of <10 ha are vulnerable to
random excursions from mass balance and are probably
not sufficient for addressing questions of regional carbon
balance. Also, temporal variability also emphasizes the
importance of quantifying both live and dead wood pools
(e.g., Rice et al. 2004) when assessing directional changes
in forest carbon balance. In addition, if highly clumped
and episodic tree mortality is quantitatively important, the
spatial scale required to representatively sample tree
mortality may be considerably larger than suggested in
Fig. 7, perhaps approaching hundreds to thousands of
hectares. These relatively large gaps would not have to be
as large as the blowdowns characterized by Nelson et al.
(1994), but larger than perhaps a few dozen trees, which
are rarely characterized in the inventory data.

How does forest carbon balance respond to a tree
mortality event that is less than that required to cause a
changes in tree species composition (e.g., large recruit-

ment of pioneer species), but higher than background
mortality rates? To explore this scenario, we ran the model
in both AGB-mode and TLW-mode with a 10% tree
mortality event in 1975. Next, we looked at how carbon
balance would change if we set up a simulated permanent
plot in 1980. In AGB-mode there is a rapid increase in tree
biomass as forest accumulates to the pre-disturbance level,
and this accumulation rate (~0.5 Mg ha−1 year−1) (Fig. 8)
is comparable to Baker et al. (2004b). However, in TLW-
mode, there is essentially no change in carbon balance
over time, as gains in tree biomass from elevated growth
rates, are roughly balanced by losses from an increased
stock of coarse litter. Thus, a relatively small disturbance
event that occurred before most plots were established is
capable of causing the observed change in live biomass
(Baker et al. 2004b), while a very strong CO2 fertilization
is required to produce the same effect (Fig. 6).

Tian et al. (1998) predicted that Amazon forests act as
carbon sources during dry–hot years associated with El
Niño because reductions in soil moisture and elevated
temperatures reduced NPP, and higher temperatures
increased heterotrophic respiration. However, one of the
main disturbances associated with El Niño drought is a
higher than average tree mortality rate (Condit et al. 1995)
and many years are needed for this material to decay and
release carbon to the atmosphere (Chambers et al. 2000).
Also, litter production during years with typical tree
mortality (Fig. 2b) is about equally distributed between
wood and leaf material (Chambers et al. 2001b), while
during high mortality years, the proportion of woody
material is much larger. Moreover, respiration from coarse
and fine surface litter is greatly reduced under low
moisture conditions (Chambers et al. 2001c; Toledo
2002; Goulden et al. 2004). Thus assertions that Amazon
forests act as a carbon sources during dry years is quite
speculative—there will be a considerable lag-time before

Fig. 7 The SD of large wood biomass in TLW-mode over time,
compared with variation in plots size. As the plot size increased,
standing stock variability decreased until it stabilized at ~10 ha. This
is due to individual treefalls driving variation at small spatial scales,
and plot-scale mortality driving variation at larger scales. This result
indicates that permanent inventory plots <10 ha may not be
representative of regional carbon balance. If highly-aggregated (both
spatially and temporally) mortality events exceeding ~5% are
quantitatively important, carbon balance studies may require
considerably larger areas
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carbon associated with dead trees is respired to the
atmosphere.

Changing community composition

Phillips and Gentry (1994) found an approximate doubling
(from 1 to 2%) in tropical forest tree turnover rates
(average of recruitment and mortality) at 40 sites, with
most of this change observed between 1980 and 1990
(Phillips et al. 2004). Using the model in AGB-mode, we

explored the consequences of an instantaneous increase in
forest turnover on forest biomass. Model results demon-
strate that changes in tree turnover rates have a strong
impact on forest biomass (Fig. 9a). However, it is unlikely
that changes in forest turnover will only affect rates of tree
recruitment and mortality. Other changes, such as an
increase in growth rate for surviving trees growing in a
more open forest (Fig. 4), and a decrease in wood density
for new recruits, are likely to occur in conjunction with
increasing turnover.

Assess the precise nature of changes brought about by
increased forest turnover (Phillips et al. 2004) is difficult
for lack of appropriate experimental studies. For example,
although the BIONTE data provide information on how
forest growth responds to an instantaneous increase in tree
mortality rates (Fig. 4), how growth will respond to a
chronic increase in turnover rates is unknown. How

Fig. 8a–c Forest carbon balance response to a single 10% mortality
event. a In AGB-mode, live trees accumulate biomass for a few
decades following the event. b However, in TLW-mode, changes in
coarse litter stocks and fluxes c largely balance changes in live large
wood biomass (lower line in b), and the carbon balance of TLW
(upper line in b) shows a roughly stochastic trend following the
event

Fig. 9a, b Modeled response of tree biomass to changes in forest
turnover rates. a As the rate at which individual trees die and are
recruited increases by 25, 50, and 100%, forest biomass exhibits
continuous declines. Biomass decreases by more than 50% with a
doubling of turnover because the number of annual survivors
decreases, not the mass of those individuals. The mass of each tree
at the time of death is indirectly reduced by higher mortality rates
due to a lower mean age at time of death. b Combined results
assuming a 50% increase in turnover rates, a decrease in the average
wood density of recruits (0.70–0.60), and increases in tree growth
rates of 25, 50, and 75% under constantly elevated turnover. Results
are ambiguous, suggesting that predictions of forest response into
the twenty-first century are highly dependent on assumptions based
on limited data
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changes in the wood density of new recruits will be related
to increases in forest turnover rate is also largely unknown.
To at least provide some qualitative information on the
interplay of some factors, we ran the model in AGB-mode
assuming a 50% increase in tree turnover rates, a decrease
from 0.70 to 60 g cm−3 for mean wood density of new
recruits (Eq. 12), and an increase of 25, 50, and 75% for
tree growth rates (Fig. 9b). Results show that the
interactive effect of increased turnover rates on changes
in carbon stocks depends to a large extent on the long-term
tree growth rate response.

Size dependent and independent mortality

The model was run five times each for 2,500 years at
100 ha in both SDM- and SIM-mode. Results showed that
1,000-year-old trees (millenarians) were absent in SDM-
mode (oldest was 972 years), and occurred at a frequency
of 0.042 ha−1 in SIM-mode, or about 1 millenarian for
every 24 ha of forest. About, 500-year-old trees occurred
at frequencies of 1.6 ha−1 and 1.1 ha−1 in SIM- and SDM-
mode, respectively. In addition, five runs of the model in
SDM-mode at 10 ha predicted a 20% reduction in forest
tree biomass from 319 to 256 Mg ha−1 when compared
with SIM-mode (Table 2). Thus, whether or not trees are
more prone to mortality as their species diameter limit is
reached has important implications for forest age and
biomass structure. Condit et al. (1995) found that tree
mortality for trees larger than 1.0 cm Db was independent
of tree size over the census interval 1982–1985, but was
dependent on tree size during the census interval 1985–
1990. Chambers et al. (1998) demonstrated that 1,000-year
old trees occur in similar Central Amazon forests in close
proximity to forests studied here. In addition, tree biomass
compared more closely with the empirical data when the
model was run in SIM-mode. However, it is important to
point out that the SD of the tree growth distribution served
as a tuning parameter (Fig. 2a), and it is likely that the
model could be forced to reproduce forest biomass
structure in SDM-mode by re-tuning this parameter.
Additional studies are needed to further explore the
relationship between tree mortality rates and maximum
species size limits.

Additional comments

With the exception of the initial combined treatment of
turnover rates, tree growth rate response, and the wood
density of recruits (Fig. 9b), we have focused here on the
individual effects of various processes on forest structure
and function for a Central Amazon forest. Initial explo-
ration of combined effects demonstrated that predictions
about whether or not old-growth tropical forests will act as
carbon sources, sinks, or remain in overall balance,
depends on assumptions for which reliable field data are
often not available. Using pan-Amazonian forest inventory
data, Lewis et al. (2004b) found that both basal area and

basal area growth rates increased in Amazonian forests,
and suggested elevated tree productivity as the most likely
driver. As shown in Fig. 4, if tree biomass is accumulating
due to recovery from disturbance, growth rates would be
expected to decline over time, not increase. However,
whether or not results from inventory plots are indicative
of long-term trends or random variability remains to be
determined. There are a host of potential factors that can
drive changes in tree growth rate and forest carbon balance
(Nemani et al. 2003; Chambers and Silver 2004; Lewis et
al. 2004a), and distinguishing among these factors using
higher temporal and spatial resolution forest inventory
methods remains an important research area. Modeling
results such as presented here can point to important field
studies to help accurately predict the trajectory of forest
change, and to distinguish transient phenomena from long-
term trends. Examples of important question that need to
be addressed include: (1) what affect do large gaps (e.g.,
≥~10 trees) have on the plot size needed to accurately
assess carbon balance (e.g., Fig. 7)? (2) How will species
composition and carbon balance respond to chronic
elevated turnover rates? (3) Will responses vary among
Amazon forest sites with different dynamics? (4) Are
observed changes in forest structure and dynamics
indicative of long-term trends or short-term variability?
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